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Preface

When I wrote the first edition in the 1970s my goal was to present the state of
the art of a century old discipline that had recently undergone a revolutionary
transformation. After the book was reprinted in 1997 I started contemplating
a revised edition. It has soon become clear to me that in order to describe
the present day set theory I would have to write a more or less new book.

As a result this edition differs substantially from the 1978 book. The major
difference is that the three major areas (forcing, large cardinals and descrip-
tive set theory) are no longer treated as separate subjects. The progress in
past quarter century has blurred the distinction between these areas: forcing
has become an indispensable tool of every set theorist, while descriptive set
theory has practically evolved into the study of L(R) under large cardinal
assumptions. Moreover, the theory of inner models has emerged as a major
part of the large cardinal theory.

The book has three parts. The first part contains material that every
student of set theory should learn and all results contain a detailed proof. In
the second part I present the topics and techniques that I believe every set
theorist should master; most proofs are included, even if some are sketchy.
For the third part I selected various results that in my opinion reflect the
state of the art of set theory at the turn of the millennium.

I wish to express my gratitude to the following institutions that made
their facilities available to me while I was writing the book: Mathematical
Institute of the Czech Academy of Sciences, The Center for Theoretical Study
in Prague, CRM in Barcelona, and the Rockefeller Foundation’s Bellagio Cen-
ter. I am also grateful to numerous set theorists who I consulted on various
subjects, and particularly to those who made invaluable comments on prelim-
inary versions of the manuscript. My special thanks are to Miroslav Repický
who converted the handwritten manuscript to LATEX. He also compiled the
three indexes that the reader will find extremely helpful.

Finally, and above all, I would like to thank my wife for her patience and
encouragement during the writing of this book.

Prague, May 2002 Thomas Jech
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Basic Set Theory



1. Axioms of Set Theory

Axioms of Zermelo-Fraenkel

1.1. Axiom of Extensionality. If X and Y have the same elements, then
X = Y .

1.2. Axiom of Pairing. For any a and b there exists a set {a, b} that
contains exactly a and b.

1.3. Axiom Schema of Separation. If P is a property (with parameter p),
then for any X and p there exists a set Y = {u ∈ X : P (u, p)} that contains
all those u ∈ X that have property P .

1.4. Axiom of Union. For any X there exists a set Y =
⋃

X , the union
of all elements of X.

1.5. Axiom of Power Set. For any X there exists a set Y = P (X), the
set of all subsets of X.

1.6. Axiom of Infinity. There exists an infinite set.

1.7. Axiom Schema of Replacement. If a class F is a function, then for
any X there exists a set Y = F (X) = {F (x) : x ∈ X}.

1.8. Axiom of Regularity. Every nonempty set has an ∈-minimal element.

1.9. Axiom of Choice. Every family of nonempty sets has a choice func-
tion.

The theory with axioms 1.1–1.8 is the Zermelo-Fraenkel axiomatic set
theory ZF; ZFC denotes the theory ZF with the Axiom of Choice.

Why Axiomatic Set Theory?

Intuitively, a set is a collection of all elements that satisfy a certain given
property. In other words, we might be tempted to postulate the following
rule of formation for sets.
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1.10. Axiom Schema of Comprehension (false). If P is a property,
then there exists a set Y = {x : P (x)}.

This principle, however, is false:

1.11. Russell’s Paradox. Consider the set S whose elements are all those
(and only those) sets that are not members of themselves: S = {X : X /∈ X}.
Question: Does S belong to S? If S belongs to S, then S is not a member of
itself, and so S /∈ S. On the other hand, if S /∈ S, then S belongs to S. In
either case, we have a contradiction.

Thus we must conclude that

{X : X /∈ X}

is not a set, and we must revise the intuitive notion of a set.
The safe way to eliminate paradoxes of this type is to abandon the Schema

of Comprehension and keep its weak version, the Schema of Separation:

If P is a property, then for any X there exists a set Y = {x ∈ X : P (x)}.

Once we give up the full Comprehension Schema, Russell’s Paradox is no
longer a threat; moreover, it provides this useful information: The set of all
sets does not exist. (Otherwise, apply the Separation Schema to the property
x /∈ x.)

In other words, it is the concept of the set of all sets that is paradoxical,
not the idea of comprehension itself.

Replacing full Comprehension by Separation presents us with a new prob-
lem. The Separation Axioms are too weak to develop set theory with its
usual operations and constructions. Notably, these axioms are not sufficient
to prove that, e.g., the union X ∪Y of two sets exists, or to define the notion
of a real number.

Thus we have to add further construction principles that postulate the
existence of sets obtained from other sets by means of certain operations.

The axioms of ZFC are generally accepted as a correct formalization of
those principles that mathematicians apply when dealing with sets.

Language of Set Theory, Formulas

The Axiom Schema of Separation as formulated above uses the vague notion
of a property. To give the axioms a precise form, we develop axiomatic set
theory in the framework of the first order predicate calculus. Apart from
the equality predicate =, the language of set theory consists of the binary
predicate ∈, the membership relation.
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The formulas of set theory are built up from the atomic formulas

x ∈ y, x = y

by means of connectives

ϕ ∧ ψ, ϕ ∨ ψ, ¬ϕ, ϕ → ψ, ϕ ↔ ψ

(conjunction, disjunction, negation, implication, equivalence), and quantifiers

∀xϕ, ∃xϕ.

In practice, we shall use in formulas other symbols, namely defined pred-
icates, operations, and constants, and even use formulas informally; but it
will be tacitly understood that each such formula can be written in a form
that only involves ∈ and = as nonlogical symbols.

Concerning formulas with free variables, we adopt the notational conven-
tion that all free variables of a formula

ϕ(u1, . . . , un)

are among u1, . . . , un (possibly some ui are not free, or even do not occur,
in ϕ). A formula without free variables is called a sentence.

Classes

Although we work in ZFC which, unlike alternative axiomatic set theories,
has only one type of object, namely sets, we introduce the informal notion
of a class. We do this for practical reasons: It is easier to manipulate classes
than formulas.

If ϕ(x, p1, . . . , pn) is a formula, we call

C = {x : ϕ(x, p1, . . . , pn)}

a class. Members of the class C are all those sets x that satisfy ϕ(x, p1, . . . , pn):

x ∈ C if and only if ϕ(x, p1, . . . , pn).

We say that C is definable from p1, . . . , pn; if ϕ(x) has no parameters pi

then the class C is definable.
Two classes are considered equal if they have the same elements: If

C = {x : ϕ(x, p1, . . . , pn)}, D = {x : ψ(x, q1, . . . , qm)},

then C = D if and only if for all x

ϕ(x, p1, . . . , pn) ↔ ψ(x, q1, . . . , qm).
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The universal class, or universe, is the class of all sets:

V = {x : x = x}.

We define inclusion of classes (C is a subclass of D)

C ⊂ D if and only if for all x, x ∈ C implies x ∈ D,

and the following operations on classes:

C ∩ D = {x : x ∈ C and x ∈ D},
C ∪ D = {x : x ∈ C or x ∈ D},
C − D = {x : x ∈ C and x /∈ D},⋃

C = {x : x ∈ S for some S ∈ C} =
⋃
{S : S ∈ C}.

Every set can be considered a class. If S is a set, consider the formula x ∈ S
and the class

{x : x ∈ S}.

That the set S is uniquely determined by its elements follows from the Axiom
of Extensionality.

A class that is not a set is a proper class.

Extensionality

If X and Y have the same elements, then X = Y :

∀u (u ∈ X ↔ u ∈ Y ) → X = Y.

The converse, namely, if X = Y then u ∈ X ↔ u ∈ Y , is an axiom of
predicate calculus. Thus we have

X = Y if and only if ∀u (u ∈ X ↔ u ∈ Y ).

The axiom expresses the basic idea of a set: A set is determined by its ele-
ments.

Pairing

For any a and b there exists a set {a, b} that contains exactly a and b:

∀a ∀b ∃c ∀x (x ∈ c ↔ x = a ∨ x = b).
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By Extensionality, the set c is unique, and we can define the pair

{a, b} = the unique c such that ∀x (x ∈ c ↔ x = a ∨ x = b).

The singleton {a} is the set

{a} = {a, a}.

Since {a, b} = {b, a}, we further define an ordered pair

(a, b)

so as to satisfy the following condition:

(1.1) (a, b) = (c, d) if and only if a = c and b = d.

For the formal definition of an ordered pair, we take

(a, b) = {{a}, {a, b}}.

We leave the verification of (1.1) to the reader (Exercise 1.1).
We further define ordered triples, quadruples, etc., as follows:

(a, b, c) = ((a, b), c),

(a, b, c, d) = ((a, b, c), d),
...

(a1, . . . , an+1) = ((a1, . . . , an), an+1).

It follows that two ordered n-tuples (a1, . . . , an) and (b1, . . . , bn) are equal if
and only if a1 = b1, . . . , an = bn.

Separation Schema

Let ϕ(u, p) be a formula. For any X and p, there exists a set Y = {u ∈ X :
ϕ(u, p)}:

(1.2) ∀X ∀p ∃Y ∀u (u ∈ Y ↔ u ∈ X ∧ ϕ(u, p)).

For each formula ϕ(u, p), the formula (1.2) is an Axiom (of Separation).
The set Y in (1.2) is unique by Extensionality.

Note that a more general version of Separation Axioms can be proved
using ordered n-tuples: Let ψ(u, p1, . . . , pn) be a formula. Then

(1.3) ∀X ∀p1 . . . ∀pn ∃Y ∀u (u ∈ Y ↔ u ∈ X ∧ ψ(u, p1, . . . , pn)).



8 Part I. Basic Set Theory

Simply let ϕ(u, p) be the formula

∃p1, . . . ∃pn (p = (p1, . . . , pn) and ψ(u, p1, . . . , pn))

and then, given X and p1, . . . , pn, let

Y = {u ∈ X : ϕ(u, (p1, . . . , pn))}.

We can give the Separation Axioms the following form: Consider the class
C = {u : ϕ(u, p1, . . . , pn)}; then by (1.3)

∀X ∃Y (C ∩ X = Y ).

Thus the intersection of a class C with any set is a set; or, we can say even
more informally

a subclass of a set is a set.

One consequence of the Separation Axioms is that the intersection and the
difference of two sets is a set, and so we can define the operations

X ∩ Y = {u ∈ X : u ∈ Y } and X − Y = {u ∈ X : u /∈ Y }.

Similarly, it follows that the empty class

∅ = {u : u �= u}

is a set—the empty set ; this, of course, only under the assumption that at
least one set X exists (because ∅ ⊂ X):

(1.4) ∃X (X = X).

We have not included (1.4) among the axioms, because it follows from the
Axiom of Infinity.

Two sets X , Y are called disjoint if X ∩ Y = ∅.
If C is a nonempty class of sets, we let⋂

C =
⋂
{X : X ∈ C} = {u : u ∈ X for every X ∈ C}.

Note that
⋂

C is a set (it is a subset of any X ∈ C). Also, X∩Y =
⋂
{X, Y }.

Another consequence of the Separation Axioms is that the universal
class V is a proper class; otherwise,

S = {x ∈ V : x /∈ x}

would be a set.
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Union

For any X there exists a set Y =
⋃

X :

(1.5) ∀X ∃Y ∀u (u ∈ Y ↔ ∃z (z ∈ X ∧ u ∈ z)).

Let us introduce the abbreviations

(∃z ∈ X)ϕ for ∃z (z ∈ X ∧ ϕ),

and
(∀z ∈ X)ϕ for ∀z (z ∈ X → ϕ).

By (1.5), for every X there is a unique set

Y = {u : (∃z ∈ X)u ∈ z} =
⋃
{z : z ∈ X} =

⋃
X,

the union of X .
Now we can define

X ∪ Y =
⋃
{X, Y }, X ∪ Y ∪ Z = (X ∪ Y ) ∪ Z, etc.,

and also
{a, b, c} = {a, b} ∪ {c},

and in general
{a1, . . . , an} = {a1} ∪ . . . ∪ {an}.

We also let
X  Y = (X − Y ) ∪ (Y − X),

the symmetric difference of X and Y .

Power Set

For any X there exists a set Y = P (X):

∀X ∃Y ∀u (u ∈ Y ↔ u ⊂ X).

A set U is a subset of X , U ⊂ X , if

∀z (z ∈ U → z ∈ X).

If U ⊂ X and U �= X , then U is a proper subset of X .
The set of all subsets of X ,

P (X) = {u : u ⊂ X},

is called the power set of X .
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Using the Power Set Axiom we can define other basic notions of set theory.
The product of X and Y is the set of all pairs (x, y) such that x ∈ X and

y ∈ Y :

(1.6) X × Y = {(x, y) : x ∈ X and y ∈ Y }.

The notation {(x, y) : . . . } in (1.6) is justified because

{(x, y) : ϕ(x, y)} = {u : ∃x∃y (u = (x, y) and ϕ(x, y))}.

The product X × Y is a set because

X × Y ⊂ PP (X ∪ Y ).

Further, we define
X × Y × Z = (X × Y ) × Z,

and in general

X1 × . . . × Xn+1 = (X1 × . . . × Xn) × Xn+1.

Thus

X1 × . . . × Xn = {(x1, . . . , xn) : x1 ∈ X1 ∧ . . . ∧ xn ∈ Xn}.

We also let
Xn = X × . . . × X︸ ︷︷ ︸

n times

.

An n-ary relation R is a set of n-tuples. R is a relation on X if R ⊂ Xn.
It is customary to write R(x1, . . . , xn) instead of

(x1, . . . , xn) ∈ R,

and in case that R is binary, then we also use

x R y

for (x, y) ∈ R.
If R is a binary relation, then the domain of R is the set

dom(R) = {u : ∃v (u, v) ∈ R},

and the range of R is the set

ran(R) = {v : ∃u (u, v) ∈ R}.

Note that dom(R) and ran(R) are sets because

dom(R) ⊂
⋃⋃

R, ran(R) ⊂
⋃⋃

R.

The field of a relation R is the set field(R) = dom(R) ∪ ran(R).
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In general, we call a class R an n-ary relation if all its elements are n-
tuples; in other words, if

R ⊂ V n = the class of all n-tuples,

where Cn (and C × D) is defined in the obvious way.
A binary relation f is a function if (x, y) ∈ f and (x, z) ∈ f implies y = z.

The unique y such that (x, y) ∈ f is the value of f at x; we use the standard
notation

y = f(x)

or its variations f : x �→ y, y = fx, etc. for (x, y) ∈ f .
f is a function on X if X = dom(f). If dom(f) = Xn, then f is an n-ary

function on X .
f is a function from X to Y ,

f : X → Y,

if dom(f) = X and ran(f) ⊂ Y . The set of all functions from X to Y is
denoted by Y X . Note that Y X is a set:

Y X ⊂ P (X × Y ).

If Y = ran(f), then f is a function onto Y . A function f is one-to-one if

f(x) = f(y) implies x = y.

An n-ary operation on X is a function f : Xn → X .
The restriction of a function f to a set X (usually a subset of dom(f)) is

the function
f�X = {(x, y) ∈ f : x ∈ X}.

A function g is an extension of a function f if g ⊃ f , i.e., dom(f) ⊂ dom(g)
and g(x) = f(x) for all x ∈ dom(f).

If f and g are functions such that ran(g) ⊂ dom(f), then the composition
of f and g is the function f ◦ g with domain dom(f ◦ g) = dom(g) such that
(f ◦ g)(x) = f(g(x)) for all x ∈ dom(g).

We denote the image of X by f either f“X or f(X):

f“X = f(X) = {y : (∃x ∈ X) y = f(x)},

and the inverse image by

f−1(X) = {x : f(x) ∈ X}.

If f is one-to-one, then f−1 denotes the inverse of f :

f−1(x) = y if and only if x = f(y).

The previous definitions can also be applied to classes instead of sets.
A class F is a function if it is a relation such that (x, y) ∈ F and (x, z) ∈ F
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implies y = z. For example, F“C or F (C) denotes the image of the class C
by the function F .

It should be noted that a function is often called a mapping or a corre-
spondence (and similarly, a set is called a family or a collection).

An equivalence relation on a set X is a binary relation ≡ which is reflexive,
symmetric, and transitive: For all x, y, z ∈ X ,

x ≡ x,

x ≡ y implies y ≡ x,

if x ≡ y and y ≡ z then x ≡ z.

A family of sets is disjoint if any two of its members are disjoint. A par-
tition of a set X is a disjoint family P of nonempty sets such that

X =
⋃
{Y : Y ∈ P}.

Let ≡ be an equivalence relation on X . For every x ∈ X , let

[x] = {y ∈ X : y ≡ x}

(the equivalence class of x). The set

X/≡ = {[x] : x ∈ X}

is a partition of X (the quotient of X by ≡). Conversely, each partition P
of X defines an equivalence relation on X :

x ≡ y if and only if (∃Y ∈ P )(x ∈ Y and y ∈ Y ).

If an equivalence relation is a class, then its equivalence classes may be
proper classes. In Chapter 6 we shall introduce a trick that enables us to
handle equivalence classes as if they were sets.

Infinity

There exists an infinite set.

To give a precise formulation of the Axiom of Infinity, we have to define
first the notion of finiteness. The most obvious definition of finiteness uses the
notion of a natural number, which is as yet undefined. We shall define natural
numbers (as finite ordinals) in Chapter 2 and give only a quick treatment of
natural numbers and finiteness in the exercises below.

In principle, it is possible to give a definition of finiteness that does not
mention numbers, but such definitions necessarily look artificial.

We therefore formulate the Axiom of Infinity differently:

∃S (∅ ∈ S ∧ (∀x ∈ S)x ∪ {x} ∈ S).

We call a set S with the above property inductive. Thus we have:
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Axiom of Infinity. There exists an inductive set.

The axiom provides for the existence of infinite sets. In Chapter 2 we
show that an inductive set is infinite (and that an inductive set exists if there
exists an infinite set).

We shall introduce natural numbers and finite sets in Chapter 2, as a part
of the introduction of ordinal numbers. In Exercises 1.3–1.9 we show an al-
ternative approach.

Replacement Schema

If a class F is a function, then for every set X , F (X) is a set.

For each formula ϕ(x, y, p), the formula (1.7) is an Axiom (of Replace-
ment):

(1.7) ∀x∀y ∀z (ϕ(x, y, p) ∧ ϕ(x, z, p) → y = z)

→ ∀X ∃Y ∀y (y ∈ Y ↔ (∃x ∈ X)ϕ(x, y, p)).

As in the case of Separation Axioms, we can prove the version of Replace-
ment Axioms with several parameters: Replace p by p1, . . . , pn.

If F = {(x, y) : ϕ(x, y, p)}, then the premise of (1.7) says that F is
a function, and we get the formulation above. We can also formulate the
axioms in the following ways:

If a class F is a function and dom(F ) is a set, then ran(F ) is a set.
If a class F is a function, then ∀X ∃f (F �X = f).

The remaining two axioms, Choice and Regularity, will by introduced in
Chapters 5 and 6.

Exercises

1.1. Verify (1.1).

1.2. There is no set X such that P (X) ⊂ X.

Let
N =

T{X : X is inductive}.
N is the smallest inductive set. Let us use the following notation:

0 = ∅, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2}, . . . .

If n ∈ N , let n + 1 = n ∪ {n}. Let us define < (on N ) by n < m if and only if
n ∈ m.

A set T is transitive if x ∈ T implies x ⊂ T .
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1.3. If X is inductive, then the set {x ∈ X : x ⊂ X} is inductive. Hence N is
transitive, and for each n, n = {m ∈N : m < n}.

1.4. If X is inductive, then the set {x ∈ X : x is transitive} is inductive. Hence
every n ∈N is transitive.

1.5. If X is inductive, then the set {x ∈ X : x is transitive and x /∈ x} is inductive.
Hence n /∈ n and n �= n + 1 for each n ∈N .

1.6. If X is inductive, then {x ∈ X : x is transitive and every nonempty z ⊂ x has
an ∈-minimal element} is inductive (t is ∈-minimal in z if there is no s ∈ z such
that s ∈ t).

1.7. Every nonempty X ⊂N has an ∈-minimal element.
[Pick n ∈ X and look at X ∩ n.]

1.8. If X is inductive then so is {x ∈ X : x = ∅ or x = y ∪ {y} for some y}. Hence
each n �= 0 is m + 1 for some m.

1.9 (Induction). Let A be a subset of N such that 0 ∈ A, and if n ∈ A then
n + 1 ∈ A. Then A = N .

A set X has n elements (where n ∈ N ) if there is a one-to-one mapping of n
onto X. A set is finite if it has n elements for some n ∈ N , and infinite if it is not
finite.

A set S is T-finite if every nonempty X ⊂ P (S) has a ⊂-maximal element, i.e.,
u ∈ X such that there is no v ∈ X with u ⊂ v and u �= v. S is T-infinite if it is not
T-finite. (T is for Tarski.)

1.10. Each n ∈N is T-finite.

1.11. N is T-infinite; the set N ⊂ P (N ) has no ⊂-maximal element.

1.12. Every finite set is T-finite.

1.13. Every infinite set is T-infinite.
[If S is infinite, consider X = {u ⊂ S : u is finite}.]

1.14. The Separation Axioms follow from the Replacement Schema.
[Given ϕ, let F = {(x, x) : ϕ(x)}. Then {x ∈ X : ϕ(x)} = F (X), for every X.]

1.15. Instead of Union, Power Set, and Replacement Axioms consider the following
weaker versions:

∀X ∃Y S

X ⊂ Y , i.e., ∀X ∃Y (∀x ∈ X)(∀u ∈ x)u ∈ Y ,(1.8)

∀X ∃Y P (X) ⊂ Y , i.e., ∀X ∃Y ∀u (u ⊂ X → u ∈ Y ),(1.9)

If a class F is a function, then ∀X ∃Y F (X) ⊂ Y .(1.10)

Then axioms 1.4, 1.5, and 1.7 can be proved from (1.8), (1.9), and (1.10), using the
Separation Schema (1.3).
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Historical Notes

Set theory was invented by Georg Cantor. The first attempt to consider infinite sets
is attributed to Bolzano (who introduced the term Menge). It was however Cantor
who realized the significance of one-to-one functions between sets and introduced
the notion of cardinality of a set. Cantor originated the theory of cardinal and
ordinal numbers as well as the investigations of the topology of the real line. Much of
the development in the first four chapters follows Cantor’s work. The main reference
to Cantor’s work is his collected works, Cantor [1932]. Another source of references
to the early research in set theory is Hausdorff’s book [1914].

Cantor started his investigations in [1874], where he proved that the set of
all real numbers is uncountable, while the set of all algebraic reals is countable.
In [1878] he gave the first formulation of the celebrated Continuum Hypothesis.

The axioms for set theory (except Replacement and Regularity) are due to
Zermelo [1908]. The Replacement Schema is due to Fraenkel [1922a] and Skolem
(see [1970], pp. 137–152).

Exercises 1.12 and 1.13: Tarski [1925a].



2. Ordinal Numbers

In this chapter we introduce ordinal numbers and prove the Transfinite Re-
cursion Theorem.

Linear and Partial Ordering

Definition 2.1. A binary relation < on a set P is a partial ordering of P if:

(i) p �< p for any p ∈ P ;
(ii) if p < q and q < r, then p < r.

(P, <) is called a partially ordered set. A partial ordering < of P is a linear
ordering if moreover

(iii) p < q or p = q or q < p for all p, q ∈ P .

If < is a partial (linear) ordering, then the relation ≤ (where p ≤ q if either
p < q or p = q) is also called a partial (linear) ordering (and < is sometimes
called a strict ordering).

Definition 2.2. If (P, <) is a partially ordered set, X is a nonempty subset
of P , and a ∈ P , then:

a is a maximal element of X if a ∈ X and (∀x ∈ X) a �< x;
a is a minimal element of X if a ∈ X and (∀x ∈ X)x �< a;
a is the greatest element of X if a ∈ X and (∀x ∈ X)x ≤ a;
a is the least element of X if a ∈ X and (∀x ∈ X) a ≤ x;
a is an upper bound of X if (∀x ∈ X)x ≤ a;
a is a lower bound of X if (∀x ∈ X) a ≤ x;
a is the supremum of X if a is the least upper bound of X ;
a is the infimum of X if a is the greatest lower bound of X .

The supremum (infimum) of X (if it exists) is denoted supX (inf X).
Note that if X is linearly ordered by <, then a maximal element of X is its
greatest element (similarly for a minimal element).

If (P, <) and (Q, <) are partially ordered sets and f : P → Q, then f is
order-preserving if x < y implies f(x) < f(y). If P and Q are linearly ordered,
then an order-preserving function is also called increasing.
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A one-to-one function of P onto Q is an isomorphism of P and Q if
both f and f−1 are order-preserving; (P, <) is then isomorphic to (Q, <).
An isomorphism of P onto itself is an automorphism of (P, <).

Well-Ordering

Definition 2.3. A linear ordering < of a set P is a well-ordering if every
nonempty subset of P has a least element.

The concept of well-ordering is of fundamental importance. It is shown be-
low that well-ordered sets can be compared by their lengths; ordinal numbers
will be introduced as order-types of well-ordered sets.

Lemma 2.4. If (W, <) is a well-ordered set and f : W → W is an increasing
function, then f(x) ≥ x for each x ∈ W .

Proof. Assume that the set X = {x ∈ W : f(x) < x} is nonempty and let z
be the least element of X . If w = f(z), then f(w) < w, a contradiction. ��

Corollary 2.5. The only automorphism of a well-ordered set is the identity.

Proof. By Lemma 2.4, f(x) ≥ x for all x, and f−1(x) ≥ x for all x. ��

Corollary 2.6. If two well-ordered sets W1, W2 are isomorphic, then the
isomorphism of W1 onto W2 is unique. ��

If W is a well-ordered set and u ∈ W , then {x ∈ W : x < u} is an initial
segment of W (given by u).

Lemma 2.7. No well-ordered set is isomorphic to an initial segment of itself.

Proof. If ran(f) = {x : x < u}, then f(u) < u, contrary to Lemma 2.4. ��

Theorem 2.8. If W1 and W2 are well-ordered sets, then exactly one of the
following three cases holds :

(i) W1 is isomorphic to W2;
(ii) W1 is isomorphic to an initial segment of W2;
(iii) W2 is isomorphic to an initial segment of W1.

Proof. For u ∈ Wi, (i = 1, 2), let Wi(u) denote the initial segment of Wi

given by u. Let

f = {(x, y) ∈ W1 × W2 : W1(x) is isomorphic to W2(y)}.

Using Lemma 2.7, it is easy to see that f is a one-to-one function. If h is
an isomorphism between W1(x) and W2(y), and x′ < x, then W1(x′) and
W2(h(x′)) are isomorphic. It follows that f is order-preserving.
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If dom(f) = W1 and ran(f) = W2, then case (i) holds.
If y1 < y2 and y2 ∈ ran(f), then y1 ∈ ran(f). Thus if ran(f) �= W2 and

y0 is the least element of W2− ran(f), we have ran(f) = W2(y0). Necessarily,
dom(f) = W1, for otherwise we would have (x0, y0) ∈ f , where x0 = the least
element of W1 − dom(f). Thus case (ii) holds.

Similarly, if dom(f) �= W1, then case (iii) holds.
In view of Lemma 2.7, the three cases are mutually exclusive. ��

If W1 and W2 are isomorphic, we say that they have the same order-type.
Informally, an ordinal number is the order-type of a well-ordered set.

We shall now give a formal definition of ordinal numbers.

Ordinal Numbers

The idea is to define ordinal numbers so that

α < β if and only if α ∈ β, and α = {β : β < α}.

Definition 2.9. A set T is transitive if every element of T is a subset of T .
(Equivalently,

⋃
T ⊂ T , or T ⊂ P (T ).)

Definition 2.10. A set is an ordinal number (an ordinal) if it is transitive
and well-ordered by ∈.

We shall denote ordinals by lowercase Greek letters α, β, γ, . . . . The class
of all ordinals is denoted by Ord .

We define
α < β if and only if α ∈ β.

Lemma 2.11.

(i) 0 = ∅ is an ordinal.
(ii) If α is an ordinal and β ∈ α, then β is an ordinal.
(iii) If α �= β are ordinals and α ⊂ β, then α ∈ β.
(iv) If α, β are ordinals, then either α ⊂ β or β ⊂ α.

Proof. (i), (ii) by definition.
(iii) If α ⊂ β, let γ be the least element of the set β − α. Since α is

transitive, it follows that α is the initial segment of β given by γ. Thus
α = {ξ ∈ β : ξ < γ} = γ, and so α ∈ β.

(iv) Clearly, α ∩ β is an ordinal, α ∩ β = γ. We have γ = α or γ = β,
for otherwise γ ∈ α, and γ ∈ β, by (iii). Then γ ∈ γ, which contradicts the
definition of an ordinal (namely that ∈ is a strict ordering of α). ��
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Using Lemma 2.11 one gets the following facts about ordinal numbers
(the proofs are routine):

< is a linear ordering of the class Ord .(2.1)
For each α, α = {β : β < α}.(2.2)
If C is a nonempty class of ordinals, then

⋂
C is an ordinal,

⋂
C ∈ C

and
⋂

C = inf C.
(2.3)

If X is a nonempty set of ordinals, then
⋃

X is an ordinal, and
⋃

X =
sup X .

(2.4)

For every α, α ∪ {α} is an ordinal and α ∪ {α} = inf{β : β > α}.(2.5)

We thus define α + 1 = α ∪ {α} (the successor of α). In view of (2.4), the
class Ord is a proper class; otherwise, consider supOrd + 1.

We can now prove that the above definition of ordinals provides us with
order-types of well-ordered sets.

Theorem 2.12. Every well-ordered set is isomorphic to a unique ordinal
number.

Proof. The uniqueness follows from Lemma 2.7. Given a well-ordered set W ,
we find an isomorphic ordinal as follows: Define F (x) = α if α is isomorphic
to the initial segment of W given by x. If such an α exists, then it is unique.
By the Replacement Axioms, F (W ) is a set. For each x ∈ W , such an α
exists (otherwise consider the least x for which such an α does not exist). If
γ is the least γ /∈ F (W ), then F (W ) = γ and we have an isomorphism of W
onto γ. ��

If α = β + 1, then α is a successor ordinal. If α is not a successor ordinal,
then α = sup{β : β < α} =

⋃
α; α is called a limit ordinal. We also consider 0

a limit ordinal and define sup ∅ = 0.
The existence of limit ordinals other than 0 follows from the Axiom of

Infinity; see Exercise 2.3.

Definition 2.13 (Natural Numbers). We denote the least nonzero limit
ordinal ω (or N). The ordinals less than ω (elements of N) are called finite
ordinals, or natural numbers. Specifically,

0 = ∅, 1 = 0 + 1, 2 = 1 + 1, 3 = 2 + 1, etc.

A set X is finite if there is a one-to-one mapping of X onto some n ∈ N .
X is infinite if it is not finite.

We use letters n, m, l, k, j, i (most of the time) to denote natural numbers.
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Induction and Recursion

Theorem 2.14 (Transfinite Induction). Let C be a class of ordinals and
assume that :

(i) 0 ∈ C;
(ii) if α ∈ C, then α + 1 ∈ C;
(iii) if α is a nonzero limit ordinal and β ∈ C for all β < α, then α ∈ C.

Then C is the class of all ordinals.

Proof. Otherwise, let α be the least ordinal α /∈ C and apply (i), (ii), or (iii).
��

A function whose domain is the set N is called an (infinite) sequence
(A sequence in X is a function f : N → X .) The standard notation for
a sequence is

〈an : n < ω〉
or variants thereof. A finite sequence is a function s such dom(s) = {i : i < n}
for some n ∈ N ; then s is a sequence of length n.

A transfinite sequence is a function whose domain is an ordinal:

〈aξ : ξ < α〉.

It is also called an α-sequence or a sequence of length α. We also say that
a sequence 〈aξ : ξ < α〉 is an enumeration of its range {aξ : ξ < α}. If
s is a sequence of length α, then s�x or simply sx denotes the sequence of
length α + 1 that extends s and whose αth term is x:

s�x = sx = s ∪ {(α, x)}.

Sometimes we shall call a “sequence”

〈aα : α ∈ Ord〉

a function (a proper class) on Ord .
“Definition by transfinite recursion” usually takes the following form:

Given a function G (on the class of transfinite sequences), then for every θ
there exists a unique θ-sequence

〈aα : α < θ〉

such that
aα = G(〈aξ : ξ < α〉)

for every α < θ.
We shall give a general version of this theorem, so that we can also con-

struct sequences 〈aα : α ∈ Ord〉.
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Theorem 2.15 (Transfinite Recursion). Let G be a function (on V ),
then (2.6) below defines a unique function F on Ord such that

F (α) = G(F �α)

for each α.

In other words, if we let aα = F (α), then for each α,

aα = G(〈aξ : ξ < α〉).

(Note that we tacitly use Replacement: F �α is a set for each α.)

Corollary 2.16. Let X be a set and θ an ordinal number. For every func-
tion G on the set of all transfinite sequences in X of length < θ such that
ran(G) ⊂ X there exists a unique θ-sequence 〈aα : α < θ〉 in X such that
aα = G(〈aξ : ξ < α〉) for every α < θ. ��

Proof. Let

(2.6) F (α) = x ↔ there is a sequence 〈aξ : ξ < α〉 such that:

(i) (∀ξ < α) aξ = G(〈aη : η < ξ〉);
(ii) x = G(〈aξ : ξ < α〉).

For every α, if there is an α-sequence that satisfies (i), then such a sequence is
unique: If 〈aξ : ξ < α〉 and 〈bξ : ξ < α〉 are two α-sequences satisfying (i), one
shows aξ = bξ by induction on ξ. Thus F (α) is determined uniquely by (ii),
and therefore F is a function. It follows, again by induction, that for each α
there is an α-sequence that satisfies (i) (at limit steps, we use Replacement
to get the α-sequence as the union of all the ξ-sequences, ξ < α). Thus F is
defined for all α ∈ Ord . It obviously satisfies

F (α) = G(F �α).

If F ′ is any function on Ord that satisfies

F ′(α) = G(F ′�α)

then it follows by induction that F ′(α) = F (α) for all α. ��

Definition 2.17. Let α > 0 be a limit ordinal and let 〈γξ : ξ < α〉 be
a nondecreasing sequence of ordinals (i.e., ξ < η implies γξ ≤ γη). We define
the limit of the sequence by

limξ→α γξ = sup{γξ : ξ < α}.

A sequence of ordinals 〈γα : α ∈ Ord〉 is normal if it is increasing and
continuous, i.e., for every limit α, γα = limξ→α γξ.
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Ordinal Arithmetic

We shall now define addition, multiplication and exponentiation of ordinal
numbers, using Transfinite Recursion.

Definition 2.18 (Addition). For all ordinal numbers α

(i) α + 0 = α,
(ii) α + (β + 1) = (α + β) + 1, for all β,
(iii) α + β = limξ→β(α + ξ) for all limit β > 0.

Definition 2.19 (Multiplication). For all ordinal numbers α

(i) α · 0 = 0,
(ii) α · (β + 1) = α · β + α for all β,
(iii) α · β = limξ→β α · ξ for all limit β > 0.

Definition 2.20 (Exponentiation). For all ordinal numbers α

(i) α0 = 1,
(ii) αβ+1 = αβ · α for all β,
(iii) αβ = limξ→β αξ for all limit β > 0.

As defined, the operations α+β, α ·β and αβ are normal functions in the
second variable β. Their properties can be proved by transfinite induction.
For instance, + and · are associative:

Lemma 2.21. For all ordinals α, β and γ,

(i) α + (β + γ) = (α + β) + γ,
(ii) α · (β · γ) = (α · β) · γ.

Proof. By induction on γ. ��

Neither + nor · are commutative:

1 + ω = ω �= ω + 1, 2 · ω = ω �= ω · 2 = ω + ω.

Ordinal sums and products can be also defined geometrically, as can sums
and products of arbitrary linear orders:

Definition 2.22. Let (A, <A) and (B, <B) be disjoint linearly ordered sets.
The sum of these linear orders is the set A ∪ B with the ordering defined as
follows: x < y if and only if

(i) x, y ∈ A and x <A y, or
(ii) x, y ∈ B and x <B y, or
(iii) x ∈ A and y ∈ B.
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Definition 2.23. Let (A, <) and (B, <) be linearly ordered sets. The product
of these linear orders is the set A × B with the ordering defined by

(a1, b1) < (a2, b2) if and only if either b1 < b2 or (b1 = b2 and a1 < a2).

Lemma 2.24. For all ordinals α and β, α + β and α · β are, respectively,
isomorphic to the sum and to the product of α and β.

Proof. By induction on β. ��

Ordinal sums and products have some properties of ordinary addition and
multiplication of integers. For instance:

Lemma 2.25.

(i) If β < γ then α + β < α + γ.
(ii) If α < β then there exists a unique δ such that α + δ = β.
(iii) If β < γ and α > 0, then α · β < α · γ.
(iv) If α > 0 and γ is arbitrary, then there exist a unique β and a unique

ρ < α such that γ = α · β + ρ.
(v) If β < γ and α > 1, then αβ < αγ .

Proof. (i), (iii) and (v) are proved by induction on γ.
(ii) Let δ be the order-type of the set {ξ : α ≤ ξ < β}; δ is unique by (i).
(iv) Let β be the greatest ordinal such that α · β ≤ γ. ��

For more, see Exercises 2.10 and 2.11.

Theorem 2.26 (Cantor’s Normal Form Theorem). Every ordinal α >
0 can be represented uniquely in the form

α = ωβ1 · k1 + . . . + ωβn · kn,

where n ≥ 1, α ≥ β1 > . . . > βn, and k1, . . . , kn are nonzero natural
numbers.

Proof. By induction on α. For α = 1 we have 1 = ω0 · 1; for arbitrary α > 0
let β be the greatest ordinal such that ωβ ≤ α. By Lemma 2.25(iv) there
exists a unique δ and a unique ρ < ωβ such that α = ωβ · δ + ρ; this δ
must necessarily be finite. The uniqueness of the normal form is proved by
induction. ��

In the normal form it is possible to have α = ωα; see Exercise 2.12. The
least ordinal with this property is called ε0.
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Well-Founded Relations

Now we shall define an important generalization of well-ordered sets.
A binary relation E on a set P is well-founded if every nonempty X ⊂ P

has an E-minimal element, that is a ∈ X such that there is no x ∈ X with
x E a.

Clearly, a well-ordering of P is a well-founded relation.
Given a well-founded relation E on a set P , we can define the height of E,

and assign to each x ∈ P an ordinal number, the rank of x in E.

Theorem 2.27. If E is a well-founded relation on P , then there exists
a unique function ρ from P into the ordinals such that for all x ∈ P ,

(2.7) ρ(x) = sup{ρ(y) + 1 : y E x}.

The range of ρ is an initial segment of the ordinals, thus an ordinal num-
ber. This ordinal is called the height of E.

Proof. We shall define a function ρ satisfying (2.7) and then prove its unique-
ness. By induction, let

P0 = ∅, Pα+1 = {x ∈ P : ∀y (y E x → y ∈ Pα)},
Pα =

⋃
ξ<α

Pξ if α is a limit ordinal.

Let θ be the least ordinal such that Pθ+1 = Pθ (such θ exists by Replacement).
First, it should be easy to see that Pα ⊂ Pα+1 for each α (by induction).
Thus P0 ⊂ P1 ⊂ . . . ⊂ Pθ. We claim that Pθ = P . Otherwise, let a be
an E-minimal element of P − Pθ. It follows that each x E a is in Pθ, and
so a ∈ Pθ+1, a contradiction. Now we define ρ(x) as the least α such that
x ∈ Pα+1. It is obvious that if x E y, then ρ(x) < ρ(y), and (2.7) is easily
verified. The ordinal θ is the height of E.

The uniqueness of ρ is established as follows: Let ρ′ be another function
satisfying (2.7) and consider an E-minimal element of the set {x ∈ P : ρ(x) �=
ρ′(x)}. ��

Exercises

2.1. The relation “(P, <) is isomorphic to (Q,<)” is an equivalence relation (on
the class of all partially ordered sets).

2.2. α is a limit ordinal if and only if β < α implies β + 1 < α, for every β.

2.3. If a set X is inductive, then X ∩ Ord is inductive. The set N =
T

{X : X is
inductive} is the least limit ordinal �= 0.
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2.4. (Without the Axiom of Infinity). Let ω = least limit α �= 0 if it exists, ω = Ord
otherwise. Prove that the following statements are equivalent:

(i) There exists an inductive set.
(ii) There exists an infinite set.
(iii) ω is a set.

[For (ii)→ (iii), apply Replacement to the set of all finite subsets of X.]

2.5. If W is a well-ordered set, then there exists no sequence 〈an : n ∈ N 〉 in W
such that a0 > a1 > a2 > . . ..

2.6. There are arbitrarily large limit ordinals; i.e., ∀α∃β > α (β is a limit).
[Consider limn→ω αn, where αn+1 = αn + 1.]

2.7. Every normal sequence 〈γα : α ∈ Ord〉 has arbitrarily large fixed points, i.e.,
α such that γα = α.

[Let αn+1 = γαn , and α = limn→ω αn.]

2.8. For all α, β and γ,

(i) α · (β + γ) = α · β + α · γ,
(ii) αβ+γ = αβ · αγ ,

(iii) (αβ)γ = αβ·γ .

2.9. (i) Show that (ω + 1) · 2 �= ω · 2 + 1 · 2.
(ii) Show that (ω · 2)2 �= ω2 · 22.

2.10. If α < β then α + γ ≤ β + γ, α · γ ≤ β · γ, and αγ ≤ βγ ,

2.11. Find α, β, γ such that

(i) α < β and α + γ = β + γ,
(ii) α < β and α · γ = β · γ,
(iii) α < β and αγ = βγ .

2.12. Let ε0 = limn→ω αn where α0 = ω and αn+1 = ωαn for all n. Show that
ε0 is the least ordinal ε such that ωε = ε.

A limit ordinal γ > 0 is called indecomposable if there exist no α < γ and β < γ
such that α + β = γ.

2.13. A limit ordinal γ > 0 is indecomposable if and only if α+γ = γ for all α < γ
if and only if γ = ωα for some α.

2.14. If E is a well-founded relation on P , then there is no sequence 〈an : n ∈N 〉
in P such that a1 E a0, a2 E a1, a3 E a2, . . . .

2.15 (Well-Founded Recursion). Let E be a well-founded relation on a set P ,
and let G be a function. Then there exists a function F such that for all x ∈ P ,
F (x) = G(x,F �{y ∈ P : y E x}).

Historical Notes

The theory of well-ordered sets was developed by Cantor, who also introduced
transfinite induction. The idea of identifying an ordinal number with the set of
smaller ordinals is due to Zermelo and von Neumann.
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Cardinality

Two sets X , Y have the same cardinality (cardinal number, cardinal),

(3.1) |X | = |Y |,

if there exists a one-to-one mapping of X onto Y .
The relation (3.1) is an equivalence relation. We assume that we can

assign to each set X its cardinal number |X | so that two sets are assigned
the same cardinal just in case they satisfy condition (3.1). Cardinal numbers
can be defined either using the Axiom of Regularity (via equivalence classes
of (3.1)), or using the Axiom of Choice. In this chapter we define cardinal
numbers of well-orderable sets; as it follows from the Axiom of Choice that
every set can be well-ordered, this defines cardinals in ZFC.

We recall that a set X is finite if |X | = |n| for some n ∈ N ; then X is
said to have n elements. Clearly, |n| = |m| if and only if n = m, and so we
define finite cardinals as natural numbers, i.e., |n| = n for all n ∈ N .

The ordering of cardinal numbers is defined as follows:

(3.2) |X | ≤ |Y |

if there exists a one-to-one mapping of X into Y . We also define the strict
ordering |X | < |Y | to mean that |X | ≤ |Y | while |X | �= |Y |. The relation ≤
in (3.2) is clearly transitive. Theorem 3.2 below shows that it is indeed a par-
tial ordering, and it follows from the Axiom of Choice that the ordering is
linear—any two sets are comparable in this ordering.

The concept of cardinality is central to the study of infinite sets. The
following theorem tells us that this concept is not trivial:

Theorem 3.1 (Cantor). For every set X , |X | < |P (X)|.

Proof. Let f be a function from X into P (X). The set

Y = {x ∈ X : x /∈ f(x)}

is not in the range of f : If z ∈ X were such that f(z) = Y , then z ∈ Y if
and only if z /∈ Y , a contradiction. Thus f is not a function of X onto P (X).
Hence |P (X)| �= |X |.
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The function f(x) = {x} is a one-to-one function of X into P (X) and so
|X | ≤ |P (X)|. It follows that |X | < |P (X)|. ��

In view of the following theorem, < is a partial ordering of cardinal num-
bers.

Theorem 3.2 (Cantor-Bernstein). If |A| ≤ |B| and |B| ≤ |A|, then
|A| = |B|.

Proof. If f1 : A → B and f2 : B → A are one-to-one, then if we let B′ =
f2(B) and A1 = f2(f1(A)), we have A1 ⊂ B′ ⊂ A and |A1| = |A|. Thus
we may assume that A1 ⊂ B ⊂ A and that f is a one-to-one function of A
onto A1; we will show that |A| = |B|.

We define (by induction) for all n ∈ N :

A0 = A, An+1 = f(An),

B0 = B, Bn+1 = f(Bn).

Let g be the function on A defined as follows:

g(x) =
{

f(x) if x ∈ An − Bn for some n,

x otherwise.

Then g is a one-to-one mapping of A onto B, as the reader will easily verify.
Thus |A| = |B|. ��

The arithmetic operations on cardinals are defined as follows:

(3.3) κ + λ = |A ∪ B| where |A| = κ, |B| = λ, and A, B are disjoint,

κ · λ = |A × B| where |A| = κ, |B| = λ,

κλ = |AB| where |A| = κ, |B| = λ.

Naturally, the definitions in (3.3) are meaningful only if they are independent
of the choice of A and B. Thus one has to check that, e.g., if |A| = |A′| and
|B| = |B′|, then |A × B| = |A′ × B′|.

Lemma 3.3. If |A| = κ, then |P (A)| = 2κ.

Proof. For every X ⊂ A, let χX be the function

χX(x) =
{

1 if x ∈ X ,

0 if x ∈ A − X .

The mapping f : X → χX is a one-to-one correspondence between P (A) and
{0, 1}A. ��
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Thus Cantor’s Theorem 3.1 can be formulated as follows:

κ < 2κ for every cardinal κ.

A few simple facts about cardinal arithmetic:

+ and · are associative, commutative and distributive.(3.4)
(κ · λ)µ = κµ · λµ.(3.5)
κλ+µ = κλ · κµ.(3.6)
(κλ)µ = κλ·µ.(3.7)
If κ ≤ λ, then κµ ≤ λµ.(3.8)
If 0 < λ ≤ µ, then κλ ≤ κµ.(3.9)
κ0 = 1; 1κ = 1; 0κ = 0 if κ > 0.(3.10)

To prove (3.4)–(3.10), one has only to find the appropriate one-to-one func-
tions.

Alephs

An ordinal α is called a cardinal number (a cardinal) if |α| �= |β| for all β < α.
We shall use κ, λ, µ, . . . to denote cardinal numbers.

If W is a well-ordered set, then there exists an ordinal α such that |W | =
|α|. Thus we let

|W | = the least ordinal such that |W | = |α|.

Clearly, |W | is a cardinal number.
Every natural number is a cardinal (a finite cardinal); and if S is a finite

set, then |S| = n for some n.
The ordinal ω is the least infinite cardinal. Note that all infinite cardinals

are limit ordinals. The infinite ordinal numbers that are cardinals are called
alephs.

Lemma 3.4.

(i) For every α there is a cardinal number greater than α.
(ii) If X is a set of cardinals, then sup X is a cardinal.

For every α, let α+ be the least cardinal number greater than α, the
cardinal successor of α.

Proof. (i) For any set X , let

(3.11) h(X) = the least α such that there is no one-to-one
function of α into X .

There is only a set of possible well-orderings of subsets of X . Hence there
is only a set of ordinals for which a one-to-one function of α into X exists.
Thus h(X) exists.
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If α is an ordinal, then |α| < |h(α)| by (3.11). That proves (i).
(ii) Let α = supX . If f is a one-to-one mapping of α onto some β < α,

let κ ∈ X be such that β < κ ≤ α. Then |κ| = |{f(ξ) : ξ < κ}| ≤ β,
a contradiction. Thus α is a cardinal. ��

Using Lemma 3.4, we define the increasing enumeration of all alephs. We
usually use ℵα when referring to the cardinal number, and ωα to denote the
order-type:

ℵ0 = ω0 = ω, ℵα+1 = ωα+1 = ℵ+
α ,

ℵα = ωα = sup{ωβ : β < α} if α is a limit ordinal.

Sets whose cardinality is ℵ0 are called countable; a set is at most countable
if it is either finite or countable. Infinite sets that are not countable are
uncountable.

A cardinal ℵα+1 is a successor cardinal. A cardinal ℵα whose index is
a limit ordinal is a limit cardinal.

Addition and multiplication of alephs is a trivial matter, due to the fol-
lowing fact:

Theorem 3.5. ℵα · ℵα = ℵα.

To prove Theorem 3.5 we use a pairing function for ordinal numbers:

The Canonical Well-Ordering of α × α

We define a well-ordering of the class Ord × Ord of ordinal pairs. Under
this well-ordering, each α × α is an initial segment of Ord2; the induced
well-ordering of α2 is called the canonical well-ordering of α2. Moreover, the
well-ordered class Ord2 is isomorphic to the class Ord , and we have a one-
to-one function Γ of Ord2 onto Ord . For many α’s the order-type of α × α
is α; in particular for those α that are alephs.

We define:

(3.12) (α, β) < (γ, δ) ↔ either max{α, β} < max{γ, δ},
or max{α, β} = max{γ, δ} and α < γ,

or max{α, β} = max{γ, δ}, α = γ and β < δ.

The relation < defined in (3.12) is a linear ordering of the class Ord × Ord .
Moreover, if X ⊂ Ord ×Ord is nonempty, then X has a least element. Also,
for each α, α × α is the initial segment given by (0, α). If we let

Γ(α, β) = the order-type of the set {(ξ, η) : (ξ, η) < (α, β)},
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then Γ is a one-to-one mapping of Ord2 onto Ord , and

(3.13) (α, β) < (γ, δ) if and only if Γ(α, β) < Γ(γ, δ).

Note that Γ(ω×ω) = ω and since γ(α) = Γ(α×α) is an increasing function
of α, we have γ(α) ≥ α for every α. However, γ(α) is also continuous, and so
Γ(α × α) = α for arbitrarily large α.

Proof of Theorem 3.5. Consider the canonical one-to-one mapping Γ of Ord×
Ord onto Ord . We shall show that Γ(ωα × ωα) = ωα. This is true for α = 0.
Thus let α be the least ordinal such that Γ(ωα ×ωα) �= ωα. Let β, γ < ωα be
such that Γ(β, γ) = ωα. Pick δ < ωα such that δ > β and δ > γ. Since δ×δ is
an initial segment of Ord × Ord in the canonical well-ordering and contains
(β, γ), we have Γ(δ× δ) ⊃ ωα, and so |δ× δ| ≥ ℵα. However, |δ× δ| = |δ| · |δ|,
and by the minimality of α, |δ| · |δ| = |δ| < ℵα. A contradiction. ��

As a corollary we have

(3.14) ℵα + ℵβ = ℵα · ℵβ = max{ℵα,ℵβ}.

Exponentiation of cardinals will be dealt with in Chapter 5. Without the
Axiom of Choice, one cannot prove that 2ℵα is an aleph (or that P (ωα) can
be well-ordered), and there is very little one can prove about 2ℵα or ℵℵβ

α .

Cofinality

Let α > 0 be a limit ordinal. We say that an increasing β-sequence 〈αξ :
ξ < β〉, β a limit ordinal, is cofinal in α if limξ→β αξ = α. Similarly, A ⊂ α is
cofinal in α if sup A = α. If α is an infinite limit ordinal, the cofinality of α
is

cf α = the least limit ordinal β such that there is an increasing
β-sequence 〈αξ : ξ < β〉 with limξ→β αξ = α.

Obviously, cf α is a limit ordinal, and cf α ≤ α. Examples: cf(ω + ω) =
cf ℵω = ω.

Lemma 3.6. cf(cf α) = cf α.

Proof. If 〈αξ : ξ < β〉 is cofinal in α and 〈ξ(ν) : ν < γ〉 is cofinal in β, then
〈αξ(ν) : ν < γ〉 is cofinal in α. ��

Two useful facts about cofinality:

Lemma 3.7. Let α > 0 be a limit ordinal.

(i) If A ⊂ α and sup A = α, then the order-type of A is at least cf α.
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(ii) If β0 ≤ β1 ≤ . . . ≤ βξ ≤ . . ., ξ < γ, is a nondecreasing γ-sequence of
ordinals in α and limξ→γ βξ = α, then cf γ = cf α.

Proof. (i) The order-type of A is the length of the increasing enumeration
of A which is an increasing sequence with limit α.

(ii) If γ = limν→cf γ ξ(ν), then α = limν→cf γ βξ(ν), and the nondecreasing
sequence 〈βξ(ν) : ν < cf γ〉 has an increasing subsequence of length ≤ cf γ,
with the same limit. Thus cf α ≤ cf γ.

To show that cf γ ≤ cf α, let α = limν→cf α αν . For each ν < cf α, let
ξ(ν) be the least ξ greater than all ξ(ι), ι < ν, such that βξ > αν . Since
limν→cf α βξ(ν) = α, it follows that limν→cf α ξ(ν) = γ, and so cf γ ≤ cf α. ��

An infinite cardinal ℵα is regular if cf ωα = ωα. It is singular if cf ωα < ωα.

Lemma 3.8. For every limit ordinal α, cf α is a regular cardinal.

Proof. It is easy to see that if α is not a cardinal, then using a mapping
of |α| onto α, one can construct a cofinal sequence in α of length ≤ |α|, and
therefore cf α < α.

Since cf(cf α) = cf α, it follows that cf α is a cardinal and is regular. ��

Let κ be a limit ordinal. A subset X ⊂ κ is bounded if sup X < κ, and
unbounded if sup X = κ.

Lemma 3.9. Let κ be an aleph.

(i) If X ⊂ κ and |X | < cf κ then X is bounded.
(ii) If λ < cf κ and f : λ → κ then the range of f is bounded.

It follows from (i) that every unbounded subset of a regular cardinal has
cardinality κ.

Proof. (i) Lemma 3.7(i).
(ii) If X = ran(f) then |X | ≤ λ, and use (i). ��

There are arbitrarily large singular cardinals. For each α, ℵα+ω is a sin-
gular cardinal of cofinality ω.

Using the Axiom of Choice, we shall show in Chapter 5 that every ℵα+1

is regular. (The Axiom of Choice is necessary.)

Lemma 3.10. An infinite cardinal κ is singular if and only if there exists
a cardinal λ < κ and a family {Sξ : ξ < λ} of subsets of κ such that |Sξ| < κ
for each ξ < λ, and κ =

⋃
ξ<λ Sξ. The least cardinal λ that satisfies the

condition is cf κ.

Proof. If κ is singular, then there is an increasing sequence 〈αξ : ξ < cf κ〉
with limξ αξ = κ. Let λ = cf κ, and Sξ = αξ for all ξ < λ.

If the condition holds, let λ < κ be the least cardinal for which there is
a family {Sξ : ξ < λ} such that κ =

⋃
ξ<λ Sξ and |Sξ| < κ for each ξ < λ. For
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every ξ < λ, let βξ be the order-type of
⋃

ν<ξ Sν . The sequence 〈βξ : ξ < λ〉
is nondecreasing, and by the minimality of λ, βξ < κ for all ξ < λ. We shall
show that limξ βξ = κ, thus proving that cf κ ≤ λ.

Let β = limξ→λ βξ. There is a one-to-one mapping f of κ =
⋃

ξ<λ Sξ into
λ× β: If α ∈ κ, let f(α) = (ξ, γ), where ξ is the least ξ such that α ∈ Sξ and
γ is the order-type of Sξ ∩α. Since λ < κ and |λ× β| = λ · |β|, it follows that
β = κ. ��

One cannot prove without the Axiom of Choice that ω1 is not a countable
union of countable sets. Compare this with Exercise 3.13

The only cardinal inequality we have proved so far is Cantor’s Theorem
κ < 2κ. It follows that κ < λκ for every λ > 1, and in particular κ < κκ

(for κ �= 1). The following theorem gives a better inequality. This and other
cardinal inequalities will also follow from König’s Theorem 5.10, to be proved
in Chapter 5.

Theorem 3.11. If κ is an infinite cardinal, then κ < κcf κ.

Proof. Let F be a collection of κ functions from cf κ to κ: F = {fα : α < κ}.
It is enough to find f : cf κ → κ that is different from all the fα. Let κ =
limξ→cf κ αξ. For ξ < cf κ, let

f(ξ) = least γ such that γ �= fα(ξ) for all α < αξ.

Such γ exists since |{fα(ξ) : α < αξ}| ≤ |αξ| < κ. Obviously, f �= fα for all
α < κ. ��

Consequently, κλ > κ whenever λ ≥ cf κ.
An uncountable cardinal κ is weakly inaccessible if it is a limit cardinal

and is regular. There will be more about inaccessible cardinals later, but let
me mention at this point that existence of (weakly) inaccessible cardinals is
not provable in ZFC.

To get an idea of the size of an inaccessible cardinal, note that if ℵα > ℵ0

is limit and regular, then ℵα = cf ℵα = cf α ≤ α, and so ℵα = α.
Since the sequence of alephs is a normal sequence, it has arbitrarily large

fixed points; the problem is whether some of them are regular cardinals. For
instance, the least fixed point ℵα = α has cofinality ω:

κ = lim〈ω, ωω, ωωω , . . .〉 = limn→ω κn

where κ0 = ω, κn+1 = ωκn .
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Exercises

3.1. (i) A subset of a finite set is finite.
(ii) The union of a finite set of finite sets is finite.
(iii) The power set of a finite set is finite.
(iv) The image of a finite set (under a mapping) is finite.

3.2. (i) A subset of a countable set is at most countable.
(ii) The union of a finite set of countable sets is countable.
(iii) The image of a countable set (under a mapping) is at most countable.

3.3. N ×N is countable.
[f(m, n) = 2m(2n + 1) − 1.]

3.4. (i) The set of all finite sequences in N is countable.
(ii) The set of all finite subsets of a countable set is countable.

3.5. Show that Γ(α× α) ≤ ωα.

3.6. There is a well-ordering of the class of all finite sequences of ordinals such
that for each α, the set of all finite sequences in ωα is an initial segment and its
order-type is ωα.

We say that a set B is a projection of a set A if there is a mapping of A onto B.
Note that B is a projection of A if and only if there is a partition P of A such
that |P | = |B|. If |A| ≥ |B| > 0, then B is a projection of A. Conversely, using the
Axiom of Choice, one shows that if B is a projection of A, then |A| ≥ |B|. This,
however, cannot be proved without the Axiom of Choice.

3.7. If B is a projection of ωα, then |B| ≤ ℵα.

3.8. The set of all finite subsets of ωα has cardinality ℵα.
[The set is a projection of the set of finite sequences.]

3.9. If B is a projection of A, then |P (B)| ≤ |P (A)|.
[Consider g(X) = f−1(X), where f maps A onto B.]

3.10. ωα+1 is a projection of P (ωα).
[Use |ωα×ωα| = ωα and project P (ωα×ωα): If R ⊂ ωα×ωα is a well-ordering,

let f(R) be its order-type.]

3.11. ℵα+1 < 22ℵα
.

[Use Exercises 3.10 and 3.9.]

3.12. If ℵα is an uncountable limit cardinal, then cf ωα = cf α; ωα is the limit of
a cofinal sequence 〈ωξ : ξ < cf α〉 of cardinals.

3.13 (ZF). Show that ω2 is not a countable union of countable sets.
[Assume that ω2 =

S

n<ω Sn with Sn countable and let αn be the order-type
of Sn. Then α = supn αn ≤ ω1 and there is a mapping of ω × α onto ω2.]

A set S is Dedekind-finite (D-finite) if there is no one-to-one mapping of S
onto a proper subset of S. Every finite set is D-finite. Using the Axiom of Choice,
one proves that every infinite set is D-infinite, and so D-finiteness is the same as
finiteness. Without the Axiom of Choice, however, one cannot prove that every
D-finite set is finite.

The set N of all natural numbers is D-infinite and hence every S such that
|S| ≥ ℵ0, is D-infinite.
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3.14. S is D-infinite if and only if S has a countable subset.
[If S is D-infinite, let f : S → X ⊂ S be one-to-one. Let x0 ∈ S − X and

xn+1 = f(xn). Then S ⊃ {xn : n < ω}.]

3.15. (i) If A and B are D-finite, then A ∪B and A×B are D-finite.
(ii) The set of all finite one-to-one sequences in a D-finite set is D-finite.
(iii) The union of a disjoint D-finite family of D-finite sets is D-finite.

On the other hand, one cannot prove without the Axiom of Choice that a pro-
jection, power set, or the set of all finite subsets of a D-finite set is D-finite, or that
the union of a D-finite family of D-finite sets is D-finite.

3.16. If A is an infinite set, then PP (A) is D-infinite.
[Consider the set {{X ⊂ A : |X| = n} : n < ω}.]

Historical Notes

Cardinal numbers and alephs were introduced by Cantor. The proof of the Cantor-
Bernstein Theorem is Bernstein’s; see Borel [1898], p. 103. (There is an earlier proof
by Dedekind.) The first proof of ℵα ·ℵα = ℵα appeared in Hessenberg [1906], p. 593.
Regularity of cardinals was investigated by Hausdorff, who also raised the question
of existence of regular limit cardinals. D-finiteness was formulated by Dedekind.
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The set of all real numbers R (the real line or the continuum) is the unique
ordered field in which every nonempty bounded set has a least upper bound.
The proof of the following theorem marks the beginning of Cantor’s theory
of sets.

Theorem 4.1 (Cantor). The set of all real numbers is uncountable.

Proof. Let us assume that the set R of all reals is countable, and let c0,
c1, . . . , cn, . . . , n ∈ N , be an enumeration of R. We shall find a real number
different from each cn.

Let a0 = c0 and b0 = ck0 where k0 is the least k such that a0 < ck.
For each n, let an+1 = cin where in is the least i such that an < ci < bn,
and bn+1 = ckn where kn is the least k such that an+1 < ck < bn. If we let
a = sup{an : n ∈ N}, then a �= ck for all k. ��

The Cardinality of the Continuum

Let c denote the cardinality of R. As the set Q of all rational numbers is
dense in R, every real number r is equal to sup{q ∈ Q : q < r} and because
Q is countable, it follows that c ≤ |P (Q)| = 2ℵ0 .

Let C (the Cantor set) be the set of all reals of the form
∑∞

n=1 an/3n,
where each an = 0 or 2. C is obtained by removing from the closed interval
[0, 1], the open intervals (1

3 , 2
3 ), (1

9 , 2
9 ), (7

9 , 8
9 ), etc. (the middle-third intervals).

C is in a one-to-one correspondence with the set of all ω-sequences of 0’s
and 2’s and so |C| = 2ℵ0 .

Therefore c ≥ 2ℵ0 , and so by the Cantor-Bernstein Theorem we have

(4.1) c = 2ℵ0 .

By Cantor’s Theorem 4.1 (or by Theorem 3.1), c > ℵ0. Cantor conjectured
that every set of reals is either at most countable or has cardinality of the
continuum. In ZFC, every infinite cardinal is an aleph, and so 2ℵ0 ≥ ℵ1.
Cantor’s conjecture then becomes the statement

2ℵ0 = ℵ1

known as the Continuum Hypothesis (CH).
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Among sets of cardinality c are the set of all sequences of natural numbers,
the set of all sequences of real numbers, the set of all complex numbers. This
is because ℵℵ0

0 = (2ℵ0)ℵ0 = 2ℵ0 , 2ℵ0 · 2ℵ0 = 2ℵ0 .
Cantor’s proof of Theorem 4.1 yielded more than uncountability of R; it

showed that the set of all transcendental numbers has cardinality c (cf. Ex-
ercise 4.5).

The Ordering of R

A linear ordering (P, <) is complete if every nonempty bounded subset of P
has a least upper bound. We stated above that R is the unique complete
ordered field. We shall generally disregard the field properties of R and will
concern ourselves more with the order properties.

One consequence of being a complete ordered field is that R contains the
set Q of all rational numbers as a dense subset. The set Q is countable and
its ordering is dense.

Definition 4.2. A linear ordering (P, <) is dense if for all a < b there exists
a c such that a < c < b.

A set D ⊂ P is a dense subset if for all a < b in P there exists a d ∈ D
such that a < d < b.

The following theorem proves the uniqueness of the ordered set (R, <).
We say that an ordered set is unbounded if it has neither a least nor a greatest
element.

Theorem 4.3 (Cantor).

(i) Any two countable unbounded dense linearly ordered sets are isomor-
phic.

(ii) (R, <) is the unique complete linear ordering that has a countable
dense subset isomorphic to (Q, <).

Proof. (i) Let P1 = {an : n ∈ N} and let P2 = {bn : n ∈ N} be two
such linearly ordered sets. We construct an isomorphism f : P1 → P2 in the
following way: We first define f(a0), then f−1(b0), then f(a1), then f−1(b1),
etc., so as to keep f order-preserving. For example, to define f(an), if it is not
yet defined, we let f(an) = bk where k is the least index such that f remains
order-preserving (such a k always exists because f has been defined for only
finitely many a ∈ P1, and because P2 is dense and unbounded).

(ii) To prove the uniqueness of R, let C and C′ be two complete dense
unbounded linearly ordered sets, let P and P ′ be dense in C and C′, re-
spectively, and let f be an isomorphism of P onto P ′. Then f can be
extended (uniquely) to an isomorphism f∗ of C and C′: For x ∈ C, let
f∗(x) = sup{f(p) : p ∈ P and p ≤ x}. ��
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The existence of (R, <) is proved by means of Dedekind cuts in (Q, <).
The following theorem is a general version of this construction:

Theorem 4.4. Let (P, <) be a dense unbounded linearly ordered set. Then
there is a complete unbounded linearly ordered set (C,≺) such that :

(i) P ⊂ C, and < and ≺ agree on P ;
(ii) P is dense in C.

Proof. A Dedekind cut in P is a pair (A, B) of disjoint nonempty subsets
of P such that

(i) A ∪ B = P ;
(ii) a < b for any a ∈ A and b ∈ B;
(iii) A does not have a greatest element.

Let C be the set of all Dedekind cuts in P and let (A1, B1) � (A2, B2) if
A1 ⊂ A2 (and B1 ⊃ B2). The set C is complete: If {(Ai, Bi) : i ∈ I} is
a nonempty bounded subset of C, then (

⋃
i∈I Ai,

⋂
i∈I Bi) is its supremum.

For p ∈ P , let

Ap = {x ∈ P : x < p}, Bp = {x ∈ P : x ≥ p}.

Then P ′ = {(Ap, Bp) : p ∈ P} is isomorphic to P and is dense in C. ��

Suslin’s Problem

The real line is, up to isomorphism, the unique linearly ordered set that is
dense, unbounded, complete and contains a countable dense subset.

Since Q is dense in R, every nonempty open interval of R contains a ra-
tional number. Hence if S is a disjoint collection of open intervals, S is at
most countable. (Let 〈rn : n ∈ N〉 be an enumeration of the rationals. To
each J ∈ S assign rn ∈ J with the least possible index n.)

Let P be a dense linearly ordered set. If every disjoint collection of open
intervals in P is at most countable, then we say that P satisfies the countable
chain condition.

Suslin’s Problem. Let P be a complete dense unbounded linearly ordered
set that satisfies the countable chain condition. Is P isomorphic to the real
line?

This question cannot be decided in ZFC; we shall return to the problem
in Chapter 9.
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The Topology of the Real Line

The real line is a metric space with the metric d(a, b) = |a − b|. Its metric
topology coincides with the order topology of (R, <). Since Q is a dense
set in R and since every Cauchy sequence of real numbers converges, R is
a separable complete metric space. (A metric space is separable if it has
a countable dense set; it is complete if every Cauchy sequence converges.)

Open sets are unions of open intervals, and in fact, every open set is the
union of open intervals with rational endpoints. This implies that the number
of all open sets in R is the continuum and so is the number of all closed sets
in R (Exercise 4.6).

Every open interval has cardinality c, therefore every nonempty open
set has cardinality c. We show below that every uncountable closed set has
cardinality c. Proving this was Cantor’s first step in the search for the proof of
the Continuum Hypothesis. In Chapter 11 we show that CH holds for Borel
and analytic sets as well.

A nonempty closed set is perfect if it has no isolated points. Theorems 4.5
and 4.6 below show that every uncountable closed set contains a perfect set.

Theorem 4.5. Every perfect set has cardinality c.

Proof. Given a perfect set P , we want to find a one-to-one function F from
{0, 1}ω into P . Let S be the set of all finite sequences of 0’s and 1’s. By
induction on the length of s ∈ S one can find closed intervals Is such that
for each n and all s ∈ S of length n,

(i) Is ∩ P is perfect,
(ii) the diameter of Is is ≤ 1/n,
(iii) Is�0 ⊂ Is, Is�1 ⊂ Is and Is�0 ∩ Is�1 = ∅.

For each f ∈ {0, 1}ω, the set P ∩
⋂∞

n=0 If�n has exactly one element, and we
let F (f) to be this element of P . ��

The same proof gives a more general result: Every perfect set in a sepa-
rable complete metric space contains a closed copy of the Cantor set (Exer-
cise 4.19).

Theorem 4.6 (Cantor-Bendixson). If F is an uncountable closed set,
then F = P ∪ S, where P is perfect and S is at most countable.

Corollary 4.7. If F is a closed set, then either |F | ≤ ℵ0 or |F | = 2ℵ0 . ��
Proof. For every A ⊂ R, let

A′ = the set of all limit points of A

It is easy to see that A′ is closed, and if A is closed then A′ ⊂ A. Thus we let

F0 = F, Fα+1 = F ′
α,

Fα =
⋂

γ<α
Fγ if α > 0 is a limit ordinal.
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Since F0 ⊃ F1 ⊃ . . . ⊃ Fα ⊃ . . ., there exists an ordinal θ such that Fα = Fθ

for all α ≥ θ. (In fact, the least θ with this property must be countable, by
the argument below.) We let P = Fθ.

If P is nonempty, then P ′ = P and so it is perfect. Thus the proof is
completed by showing that F − P is at most countable.

Let 〈Jk : k ∈ N〉 be an enumeration of rational intervals. We have F−P =⋃
α<θ(Fα − F ′

α); hence if a ∈ F − P , then there is a unique α such that a is
an isolated point of Fα. We let k(a) be the least k such that a is the only
point of Fα in the interval Jk. Note that if α ≤ β, b �= a and b ∈ Fβ − F ′

β ,
then b /∈ Jk(a), and hence k(b) �= k(a). Thus the correspondence a �→ k(a) is
one-to-one, and it follows that F − P is at most countable. ��

A set of reals is called nowhere dense if its closure has empty interior. The
following theorem shows that R is not the union of countably many nowhere
dense sets (R is not of the first category).

Theorem 4.8 (The Baire Category Theorem). If D0, D1, . . . , Dn, . . . ,
n ∈ N , are dense open sets of reals, then the intersection D =

⋂∞
n=0 Dn is

dense in R.

Proof. We show that D intersects every nonempty open interval I. First
note that for each n, D0 ∩ . . . ∩ Dn is dense and open. Let 〈Jk : k ∈ N〉
be an enumeration of rational intervals. Let I0 = I, and let, for each n,
In+1 = Jk = (qk, rk), where k is the least k such that the closed interval
[qk, rk] is included in In ∩ Dn. Then a ∈ D ∩ I, where a = limk→∞ qk. ��

Borel Sets

Definition 4.9. An algebra of sets is a collection S of subsets of a given
set S such that

(i) S ∈ S,
(ii) if X ∈ S and Y ∈ S then X ∪ Y ∈ S,
(iii) if X ∈ S then S − X ∈ S.

(4.2)

(Note that S is also closed under intersections.)
A σ-algebra is additionally closed under countable unions (and intersec-

tions):

(iv) If Xn ∈ S for all n, then
⋃∞

n=0 Xn ∈ S.

For any collection X of subsets of S there is a smallest algebra (σ-alge-
bra) S such that S ⊃ X ; namely the intersection of all algebras (σ-algebras) S
of subsets of S for which X ⊂ S.

Definition 4.10. A set of reals B is Borel if it belongs to the smallest σ-
algebra B of sets of reals that contains all open sets.
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In Chapter 11 we investigate Borel sets in more detail. In particular, we
shall classify Borel sets by defining a hierarchy of ω1 levels. For that we need
however a weak version of the Axiom of Choice that is not provable in ZF
alone. At this point we mention the lowest level of the hierarchy (beyond
open sets and closed sets): The intersections of countably many open sets
are called Gδ sets, and the unions of countably many closed sets are called
Fσ sets.

Lebesgue Measure

We assume that the reader is familiar with the basic theory of Lebesgue
measure. As we shall return to the subject in Chapter 11 we do not define
the concept of measure at this point. We also caution the reader that some
of the basic theorems on Lebesgue measure require the Countable Axiom of
Choice (to be discussed in Chapter 5).

Lebesgue measurable sets form a σ-algebra and contain all open intervals
(the measure of an interval is its length). Thus all Borel sets are Lebesgue
measurable.

The Baire Space

The Baire space is the space N = ωω of all infinite sequences of natural
numbers, 〈an : n ∈ N〉, with the following topology: For every finite sequence
s = 〈ak : k < n〉, let

(4.3) O(s) = {f ∈ N : s ⊂ f} = {〈ck : k ∈ N〉 : (∀k < n) ck = ak}.

The sets (4.3) form a basis for the topology of N . Note that each O(s) is also
closed.

The Baire space is separable and is metrizable: consider the metric
d(f, g) = 1/2n+1 where n is the least number such that f(n) �= g(n). The
countable set of all eventually constant sequences is dense in N . This sepa-
rable metric space is complete, as every Cauchy sequence converges.

Every infinite sequence 〈an : n ∈ N〉 of positive integers defines a con-
tinued fraction 1/(a0 + 1/(a1 + 1/(a2 + . . .))), an irrational number between
0 and 1. Conversely, every irrational number in the interval (0, 1) can be
so represented, and the one-to-one correspondence is a homeomorphism. It
follows that the Baire space is homeomorphic to the space of all irrational
numbers.

For various reasons, modern descriptive set theory uses the Baire space
rather than the real line. Often the functions in ωω are called reals.

Clearly, the space N satisfies the Baire Category Theorem; the proof is
similar to the proof of Theorem 4.8 above. The Cantor-Bendixson Theorem
holds as well. For completeness we give a description of perfect sets in N .
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Let Seq denote the set of all finite sequences of natural numbers. A (se-
quential) tree is a set T ⊂ Seq that satisfies

(4.4) if t ∈ T and s = t�n for some n, then s ∈ T .

If T ⊂ Seq is a tree, let [T ] be the set of all infinite paths through T :

(4.5) [T ] = {f ∈ N : f�n ∈ T for all n ∈ N}.

The set [T ] is a closed set in the Baire space: Let f ∈ N be such that f /∈ [T ].
Then there is n ∈ N such that f�n = s is not in T . In other words, the open
set O(s) = {g ∈ N : g ⊃ s}, a neighborhood of f , is disjoint from [T ]. Hence
[T ] is closed.

Conversely, if F is a closed set in N , then the set

(4.6) TF = {s ∈ Seq : s ⊂ f for some f ∈ F}

is a tree, and it is easy to verify that [TF ] = F : If f ∈ N is such that f�n ∈ T
for all n ∈ N , then for each n there is some g ∈ F such that g�n = f�n; and
since F is closed, it follows that f ∈ F .

If f is an isolated point of a closed set F in N , then there is n ∈ N such
that there is no g ∈ F , g �= f , such that g�n = f�n. Thus the following
definition:

A nonempty sequential tree T is perfect if for every t ∈ T there exist
s1 ⊃ t and s2 ⊃ t, both in T , that are incomparable, i.e., neither s1 ⊃ s2 nor
s2 ⊃ s1.

Lemma 4.11. A closed set F ⊂ N is perfect if and only if the tree TF is
a perfect tree. ��

The Cantor-Bendixson analysis for closed sets in the Baire space is carried
out as follows: For each tree T ⊂ Seq, we let

(4.7) T ′ = {t ∈ T : there exist incomparable s1 ⊃ t and s2 ⊃ t in T}.

(Thus T is perfect if and only if ∅ �= T = T ′.)
The set [T ]−[T ′] is at most countable: For each f ∈ [T ] such that f /∈ [T ′],

let sf = f�n where n is the least number such that f�n /∈ T ′. If f, g ∈
[T ] − [T ′], then sf �= sg, by (4.7). Hence the mapping f �→ sf is one-to-one
and [T ]− [T ′] is at most countable.

Now we let

(4.8) T0 = T, Tα+1 = T ′
α,

Tα =
⋂

β<α

Tβ if α > 0 is a limit ordinal.

Since T0 ⊃ T1 ⊃ . . . ⊃ Tα ⊃ . . ., and T0 is at most countable, there is an
ordinal θ < ω1 such that Tθ+1 = Tθ. If Tθ �= ∅, then it is perfect.
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Now it is easy to see that
[⋂

β<α Tβ

]
=

⋂
β<α[Tβ], and so

(4.9) [T ] − [Tθ] =
⋃

α<θ

([Tα] − [T ′
α]);

hence (4.9) is at most countable. Thus if [T ] is an uncountable closed set
in N , the sets [Tθ] and [T ] − [Tθ] constitute the decomposition of [T ] into
a perfect and an at most countable set.

In modern descriptive set theory one often speaks about the Lebesgue
measure on N . This measure is the extension of the product measure m on
Borel sets in the Baire space induced by the probability measure on N that
gives the singleton {n} measure 1/2n+1. Thus for every sequence s ∈ Seq of
length n ≥ 1 we have

(4.10) m(O(s)) =
n−1∏
k=0

1/2s(k)+1.

Polish Spaces

Definition 4.12. A Polish space is a topological space that is homeomorphic
to a separable complete metric space.

Examples of Polish spaces include R, N , the Cantor space, the unit in-
terval [0, 1], the unit circle T , the Hilbert cube [0, 1]ω, etc.

Every Polish space is a continuous image of the Baire space. In Chapter 11
we prove a somewhat more general statement.

Exercises

4.1. The set of all continuous functions f : R → R has cardinality c (while the set
of all functions has cardinality 2c).

[A continuous function on R is determined by its values at rational points.]

4.2. There are at least c countable order-types of linearly ordered sets.
[For every sequence a = 〈an : n ∈ N 〉 of natural numbers consider the order-

type
τa = a0 + ξ + a1 + ξ + a2 + . . .

where ξ is the order-type of the integers. Show that if a �= b, then τa �= τb.]

A real number is algebraic if it is a root of a polynomial whose coefficients are
integers. Otherwise, it is transcendental.

4.3. The set of all algebraic reals is countable.

4.4. If S is a countable set of reals, then |R − S| = c.
[Use R ×R rather than R (because |R ×R| = 2ℵ0).]
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4.5. (i) The set of all irrational numbers has cardinality c.
(ii) The set of all transcendental numbers has cardinality c.

4.6. The set of all open sets of reals has cardinality c.

4.7. The Cantor set is perfect.

4.8. If P is a perfect set and (a, b) is an open interval such that P ∩ (a, b) �= ∅,
then |P ∩ (a, b)| = c.

4.9. If P2 �⊂ P1 are perfect sets, then |P2 − P1| = c.
[Use Exercise 4.8.]

If A is a set of reals, a real number a is called a condensation point of A if every
neighborhood of a contains uncountably many elements of A. Let A∗ denote the
set of all condensation points of A.

4.10. If P is perfect then P ∗ = P .
[Use Exercise 4.8.]

4.11. If F is closed and P ⊂ F is perfect, then P ⊂ F ∗.
[P = P ∗ ⊂ F ∗.]

4.12. If F is an uncountable closed set and P is the perfect set constructed in
Theorem 4.6, then F ∗ ⊂ P ; thus F ∗ = P .

[Every a ∈ F ∗ is a limit point of P since |F − P | ≤ ℵ0.]

4.13. If F is an uncountable closed set, then F = F ∗ ∪ (F − F ∗) is the unique
partition of F into a perfect set and an at most countable set.

[Use Exercise 4.9.]

4.14. Q is not the intersection of a countable collection of open sets.
[Use the Baire Category Theorem.]

4.15. If B is Borel and f is a continuous function then f−1(B) is Borel.

4.16. Let f : R → R. Show that the set of all x at which f is continuous is a Gδ set.

4.17. (i) N ×N is homeomorphic to N .
(ii) Nω is homeomorphic to N .

4.18. The tree TF in (4.6) has no maximal node, i.e., s ∈ T such that there is no
t ∈ T with s ⊂ t. The map F �→ TF is a one-to-one correspondence between closed
sets in N and sequential trees without maximal nodes.

4.19. Every perfect Polish space has a closed subset homeomorphic to the Cantor
space.

4.20. Every Polish space is homeomorphic to a Gδ subspace of the Hilbert cube.
[Let {xn : n ∈N} be a dense set, and define f(x) = 〈d(x, xn) : n ∈N 〉.]

Historical Notes

Theorems 4.1, 4.3 and 4.5 are due to Cantor. The construction of real numbers by
completion of the rationals is due to Dedekind [1872].

Suslin’s Problem: Suslin [1920].
Theorem 4.6: Cantor, Bendixson [1883].
Theorem 4.8: Baire [1899].
Exercise 4.5: Cantor.



5. The Axiom of Choice and Cardinal
Arithmetic

The Axiom of Choice

Axiom of Choice (AC). Every family of nonempty sets has a choice func-
tion.

If S is a family of sets and ∅ /∈ S, then a choice function for S is a func-
tion f on S such that

(5.1) f(X) ∈ X

for every X ∈ S.
The Axiom of Choice postulates that for every S such that ∅ /∈ S there

exists a function f on S that satisfies (5.1).
The Axiom of Choice differs from other axioms of ZF by postulating

the existence of a set (i.e., a choice function) without defining it (unlike,
for instance, the Axiom of Pairing or the Axiom of Power Set). Thus it is
often interesting to know whether a mathematical statement can be proved
without using the Axiom of Choice. It turns out that the Axiom of Choice is
independent of the other axioms of set theory and that many mathematical
theorems are unprovable in ZF without AC.

In some trivial cases, the existence of a choice function can be proved
outright in ZF:

(i) when every X ∈ S is a singleton X = {x};
(ii) when S is finite; the existence of a choice function for S is proved by

induction on the size of S;
(iii) when every X ∈ S is a finite set of real numbers; let f(X) = the least

element of X .

On the other hand, one cannot prove existence of a choice function (in ZF)
just from the assumption that the sets in S are finite; even when every X ∈ S
has just two elements (e.g., sets of reals), we cannot necessarily prove that
S has a choice function.

Using the Axiom of Choice, one proves that every set can be well-ordered,
and therefore every infinite set has cardinality equal to some ℵα. In particular,
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any two sets have comparable cardinals, and the ordering

|X | ≤ |Y |

is a well-ordering of the class of all cardinals.

Theorem 5.1 (Zermelo’s Well-Ordering Theorem). Every set can be
well-ordered.

Proof. Let A be a set. To well-order A, it suffices to construct a transfinite
one-to-one sequence 〈aα : α < θ〉 that enumerates A. That we can do by
induction, using a choice function f for the family S of all nonempty subsets
of A. We let for every α

aα = f(A − {aξ : ξ < α})

if A − {aξ : ξ < α} is nonempty. Let θ be the least ordinal such that A =
{aξ : ξ < θ}. Clearly, 〈aα : α < θ〉 enumerates A. ��

In fact, Zermelo’s Theorem 5.1 is equivalent to the Axiom of Choice:
If every set can be well-ordered, then every family S of nonempty sets has
a choice function. To see this, well-order

⋃
S and let f(X) be the least element

of X for every X ∈ S.
Of particular importance is the fact that the set of all real numbers can

be well-ordered. It follows that 2ℵ0 is an aleph and so 2ℵ0 ≥ ℵ1.
The existence of a well-ordering of R yields some interesting counterex-

amples. Well known is Vitali’s construction of a nonmeasurable set (Exer-
cise 10.1); another example is an uncountable set of reals without a perfect
subset (Exercise 5.1).

If every set can be well-ordered, then every infinite set has a countable
subset: Well-order the set and take the first ω elements. Thus every infinite
set is Dedekind-infinite, and so finiteness and Dedekind finiteness coincide.

Dealing with cardinalities of sets is much easier when we have the Axiom
of Choice. In the first place, any two sets have comparable cardinals. Another
consequence is:

(5.2) if f maps A onto B then |B| ≤ |A|.

To show (5.2), we have to find a one-to-one function from B to A. This is
done by choosing one element from f−1({b}) for each b ∈ B.

Another consequence of the Axiom of Choice is:

(5.3) The union of a countable family of countable sets is countable.

(By the way, this often used fact cannot be proved in ZF alone.) To prove (5.3)
let An be a countable set for each n ∈ N . For each n, let us choose an
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enumeration 〈an,k : k ∈ N〉 of An. That gives us a projection of N ×N onto⋃∞
n=0 An:

(n, k) �→ an,k.

Thus
⋃∞

n=0 An is countable.
In a similar fashion, one can prove a more general statement.

Lemma 5.2. |
⋃

S| ≤ |S| · sup{|X | : X ∈ S}.

Proof. Let κ = |S| and λ = sup{|X | : X ∈ S}. We have S = {Xα : α < κ}
and for each α < κ, we choose an enumeration Xα = {aα,β : β < λα}, where
λα ≤ λ. Again we have a projection

(α, β) �→ aα,β

of κ × λ onto
⋃

S, and so |
⋃

S| ≤ κ · λ. ��

In particular, the union of ℵα sets, each of cardinality ℵα, has cardinal-
ity ℵα.

Corollary 5.3. Every ℵα+1 is a regular cardinal.

Proof. This is because otherwise ωα+1 would be the union of at most ℵα sets
of cardinality at most ℵα. ��

Using the Axiom of Choice in Mathematics

In algebra and point set topology, one often uses the following version of
the Axiom of Choice. We recall that if (P, <) is a partially ordered set, then
a ∈ P is called maximal in P if there is no x ∈ P such that a < x. If X is
a nonempty subset of P , then c ∈ P is an upper bound of X if x ≤ c for every
x ∈ X .

We say that a nonempty C ⊂ P is a chain in P if C is linearly ordered
by <.

Theorem 5.4 (Zorn’s Lemma). If (P, <) is a nonempty partially ordered
set such that every chain in P has an upper bound, then P has a maximal
element.

Proof. We construct (using a choice function for nonempty subsets of P ),
a chain in P that leads to a maximal element of P . We let, by induction,

aα = an element of P such that aα > aξ for every ξ < α if there is one.

Clearly, if α > 0 is a limit ordinal, then Cα = {aξ : ξ < α} is a chain in P
and aα exists by the assumption. Eventually, there is θ such that there is no
aθ+1 ∈ P , aθ+1 > aθ. Thus aθ is a maximal element of P . ��
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Like Zermelo’s Theorem 5.1, Zorn’s Lemma 5.4 is equivalent to the Axiom
of Choice (in ZF); see Exercise 5.5.

There are numerous examples of proofs using Zorn’s Lemma. To mention
only of few:

Every vector space has a basis.
Every field has a unique algebraic closure.
The Hahn-Banach Extension Theorem.
Tikhonov’s Product Theorem for compact spaces.

The Countable Axiom of Choice

Many important consequences of the Axiom of Choice, particularly many
concerning the real numbers, can be proved from a weaker version of the
Axiom of Choice.

The Countable Axiom of Choice. Every countable family of nonempty
sets has a choice function.

For instance, the countable AC implies that the union of countably many
countable sets is countable. In particular, the real line is not a countable
union of countable sets. Similarly, it follows that ℵ1 is a regular cardinal. On
the other hand, the countable AC does not imply that the set of all reals can
be well-ordered.

Several basic theorems about Borel sets and Lebesgue measure use the
countable AC; for instance, one needs it to show that the union of count-
ably many Fσ sets is Fσ. In modern descriptive set theory one often works
without the Axiom of Choice and uses the countable AC instead. In some
instances, descriptive set theorists use a somewhat stronger principle (that
follows from AC):

The Principle of Dependent Choices (DC). If E is a binary relation
on a nonempty set A, and if for every a ∈ A there exists b ∈ A such that
b E a, then there is a sequence a0, a1, . . . , an, . . . in A such that

(5.4) an+1 E an for all n ∈ N .

The Principle of Dependent Choices is stronger than the Countable Axiom
of Choice; see Exercise 5.7.

As an application of DC we have the following characterization of well-
founded relations and well-orderings:

Lemma 5.5.

(i) A linear ordering < of a set P is a well-ordering of P if and only if
there is no infinite descending sequence

a0 > a1 > . . . > an > . . .

in A.
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(ii) A relation E on P is well-founded if and only if there is no infinite
sequence 〈an : n ∈ N〉 in P such that

(5.5) an+1 E an for all n ∈ N .

Proof. Note that (i) is a special case of (ii) since a well-ordering is a well-
founded linear ordering.

If a0, a1, . . . , an, . . . is a sequence that satisfies (5.5), then the set {an :
n ∈ N} has no E-minimal element and hence E is not well-founded.

Conversely, if E is not well-founded, then there is a nonempty set A ⊂ P
with no E-minimal element. Using the Principle of Dependent Choices we
construct a sequence a0, a1, . . . , an, . . . that satisfies (5.5). ��

Cardinal Arithmetic

In the presence of the Axiom of Choice, every set can be well-ordered and so
every infinite set has the cardinality of some ℵα. Thus addition and multipli-
cation of infinite cardinal numbers is simple: If κ and λ are infinite cardinals
then

κ + λ = κ · λ = max{κ, λ}.
The exponentiation of cardinals is more interesting. The rest of Chapter 5 is
devoted to the operations 2κ and κλ, for infinite cardinals κ and λ.

Lemma 5.6. If 2 ≤ κ ≤ λ and λ is infinite, then κλ = 2λ.

Proof.

2λ ≤ κλ ≤ (2κ)λ = 2κ·λ = 2λ. ��(5.6)

If κ and λ are infinite cardinals and λ < κ then the evaluation of κλ

is more complicated. First, if 2λ ≥ κ then we have κλ = 2λ (because κλ ≤
(2λ)λ = 2λ), but if 2λ < κ then (because κλ ≤ κκ = 2κ) we can only conclude

(5.7) κ ≤ κλ ≤ 2κ.

Not much more can be claimed at this point, except that by Theorem 3.11
in Chapter 3 (κcf κ > κ) we have

(5.8) κ < κλ if λ ≥ cf κ.

If λ is a cardinal and |A| ≥ λ, let

(5.9) [A]λ = {X ⊂ A : |X | = λ}.

Lemma 5.7. If |A| = κ ≥ λ, then the set [A]λ has cardinality κλ.
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Proof. On the one hand, every f : λ → A is a subset of λ × A, and |f | = λ.
Thus κλ ≤ |[λ×A]|λ = |[A]λ|. On the other hand, we construct a one-to-one
function F : [A]λ → Aλ as follows: If X ⊂ A and |X | = λ, let F (X) be some
function f on λ whose range is X . Clearly, F is one-to-one. ��

If λ is a limit cardinal, let

(5.10) κ<λ = sup{κµ : µ is a cardinal and µ < λ}.

For the sake of completeness, we also define κ<λ+
= κλ for infinite successor

cardinals λ+.
If κ is an infinite cardinal and |A| ≥ κ, let

(5.11) [A]<κ = Pκ(A) = {X ⊂ A : |X | < κ}.

It follows from Lemma 5.7 and Lemma 5.8 below that the cardinality of
Pκ(A) is |A|<κ.

Infinite Sums and Products

Let {κi : i ∈ I} be an indexed set of cardinal numbers. We define

(5.12)
∑
i∈I

κi =
∣∣∣ ⋃
i∈I

Xi

∣∣∣,
where {Xi : i ∈ I} is a disjoint family of sets such that |Xi| = κi for each
i ∈ I.

This definition does not depend on the choice of {Xi}i; this follows from
the Axiom of Choice (see Exercise 5.9).

Note that if κ and λ are cardinals and κi = κ for each i < λ, then∑
i<λ

κi = λ · κ.

In general, we have the following

Lemma 5.8. If λ is an infinite cardinal and κi > 0 for each i < λ, then

(5.13)
∑
i<λ

κi = λ · supi<λ κi.

Proof. Let κ = supi<λ κi and σ =
∑

i<λ κi. On the one hand, since κi ≤ κ
for all i, we have

∑
i<λ κ ≤ λ ·κ. On the other hand, since κi ≥ 1 for all i, we

have λ =
∑

i<λ 1 ≤ σ, and since σ ≥ κi for all i, we have σ ≥ supi<λ κi = κ.
Therefore σ ≥ λ · κ. ��
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In particular, if λ ≤ supi<λ κi, we have∑
i<λ

κi = supi<λ κi.

Thus we can characterize singular cardinals as follows: An infinite cardinal κ
is singular just in case

κ =
∑
i<λ

κi

where λ < κ and for each i, κi < κ.

An infinite product of cardinals is defined using infinite products of sets.
If {Xi : i ∈ I} is a family of sets, then the product is defined as follows:

(5.14)
∏
i∈I

Xi = {f : f is a function on I and f(i) ∈ Xi for each i ∈ I}.

Note that if some Xi is empty, then the product is empty. If all the Xi are
nonempty, then AC implies that the product is nonempty.

If {κi : i ∈ I} is a family of cardinal numbers, we define

(5.15)
∏
i∈I

κi =
∣∣∣∏
i∈I

Xi

∣∣∣,
where {Xi : i ∈ I} is a family of sets such that |Xi| = κi for each i ∈ I.
(We abuse the notation by using

∏
both for the product of sets and for the

product of cardinals.)
Again, it follows from AC that the definition does not depend on the

choice of the sets Xi (Exercise 5.10).
If κi = κ for each i ∈ I, and |I| = λ, then

∏
i∈I κi = κλ. Also, infinite sums

and products satisfy some of the rules satisfied by finite sums and products.
For instance,

∏
i κλ

i = (
∏

i κi)λ, or
∏

i κλi = κ
P

i λi . Or if I is a disjoint union
I =

⋃
j∈J Aj , then

(5.16)
∏
i∈I

κi =
∏

j∈J

( ∏
i∈Aj

κi

)
.

If κi ≥ 2 for each i ∈ I, then

(5.17)
∑
i∈I

κi ≤
∏
i∈I

κi.

(The assumption κi ≥ 2 is necessary: 1+1 > 1 ·1.) If I is finite, then (5.17) is
certainly true; thus assume that I is infinite. Since

∏
i∈I κi ≥

∏
i∈I 2 = 2|I| >

|I|, it suffices to show that
∑

i κi ≤ |I| ·
∏

i κi. If {Xi : i ∈ I} is a disjoint
family, we assign to each x ∈

⋃
i Xi a pair (i, f) such that x ∈ Xi, f ∈

∏
i Xi

and f(i) = x. Thus we have (5.17).
Infinite product of cardinals can be evaluated using the following lemma:
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Lemma 5.9. If λ is an infinite cardinal and 〈κi : i < λ〉 is a nondecreasing
sequence of nonzero cardinals, then∏

i<λ

κi = (supi κi)λ.

Proof. Let κ = supi κi. Since κi ≤ κ for each i < λ, we have∏
i<λ

κi ≤
∏
i<λ

κ = κλ.

To prove that κλ ≤
∏

i<λ κi, we consider a partition of λ into λ disjoint
sets Aj , each of cardinality λ:

(5.18) λ =
⋃

j<λ

Aj .

(To get a partition (5.18), we can, e.g., use the canonical pairing function
Γ : λ×λ → λ and let Aj = Γ(λ×{j}).) Since a product of nonzero cardinals
is greater than or equal to each factor, we have

∏
i∈Aj

κi ≥ supi∈Aj
κi = κ,

for each j < λ. Thus, by (5.16),

∏
i<λ

κi =
∏

j<λ

( ∏
i∈Aj

κi

)
≥

∏
j<λ

κ = κλ. ��

The strict inequalities in cardinal arithmetic that we proved in Chapter 3
can be obtained as special cases of the following general theorem.

Theorem 5.10 (König). If κi < λi for every i ∈ I, then∑
i∈I

κi <
∏
i∈I

λi.

Proof. We shall show that
∑

i κi �
∏

i λi. Let Ti, i ∈ I, be such that |Ti| = λi

for each i ∈ I. It suffices to show that if Zi, i ∈ I, are subsets of T =
∏

i∈I Ti,
and |Zi| ≤ κi for each i ∈ I, then

⋃
i∈I Zi �= T .

For every i ∈ I, let Si be the projection of Zi into the ith coordinate:

Si = {f(i) : f ∈ Zi}.

Since |Zi| < |Ti|, we have Si ⊂ Ti and Si �= Ti. Now let f ∈ T be a function
such that f(i) /∈ Si for every i ∈ I. Obviously, f does not belong to any Zi,
i ∈ I, and so

⋃
i∈I Zi �= T . ��

Corollary 5.11. κ < 2κ for every κ.

Proof. 1 + 1 + . . .︸ ︷︷ ︸
κ times

< 2 · 2 · . . .︸ ︷︷ ︸
κ times

. ��

Corollary 5.12. cf(2ℵα) > ℵα.
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Proof. It suffices to show that if κi < 2ℵα for i < ωα, then
∑

i<ωα
κi < 2ℵα .

Let λi = 2ℵα . ∑
i<ωα

κi <
∏

i<ωα

λi = (2ℵα)ℵα = 2ℵα . ��

Corollary 5.13. cf(ℵℵβ
α ) > ℵβ.

Proof. We show that if κi < ℵℵβ
α for i < ωβ, then

∑
i<ωβ

κi < ℵℵβ
α . Let

λi = ℵℵβ
α . ∑

i<ωβ

κi <
∏

i<ωβ

λi = (ℵℵβ
α )ℵβ = ℵℵβ

α . ��

Corollary 5.14. κcf κ > κ for every infinite cardinal κ.

Proof. Let κi < κ, i < cf κ, be such that κ =
∑

i<cf κ κi. Then

κ =
∑

i<cf κ

κi <
∏

i<cf κ

κ = κcf κ. ��

The Continuum Function

Cantor’s Theorem 3.1 states that 2ℵα > ℵα, and therefore 2ℵα ≥ ℵα+1, for
all α. The Generalized Continuum Hypothesis (GCH) is the statement

2ℵα = ℵα+1

for all α. GCH is independent of the axioms of ZFC. Under the assumption
of GCH, cardinal exponentiation is evaluated as follows:

Theorem 5.15. If GCH holds and κ and λ are infinite cardinals then:

(i) If κ ≤ λ, then κλ = λ+.
(ii) If cf κ ≤ λ < κ, then κλ = κ+.
(iii) If λ < cf κ, then κλ = κ.

Proof. (i) Lemma 5.6.
(ii) This follows from (5.7) and (5.8).
(iii) By Lemma 3.9(ii), the set κλ is the union of the sets αλ, α < κ, and

|αλ| ≤ 2|α|·λ = (|α| · λ)+ ≤ κ. ��

The beth function is defined by induction:

�0 = ℵ0, �α+1 = 2�α ,

�α = sup{�β : β < α} if α is a limit ordinal.

Thus GCH is equivalent to the statement �α = ℵα for all α.
We shall now investigate the general behavior of the continuum func-

tion 2κ, without assuming GCH.
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Theorem 5.16.

(i) If κ < λ then 2κ ≤ 2λ.
(ii) cf 2κ > κ.
(iii) If κ is a limit cardinal then 2κ = (2<κ)cf κ.

Proof. (ii) By Corollary 5.12,
(iii) Let κ =

∑
i<cf κ κi, where κi < κ for each i. We have

2κ = 2
P

i κi =
∏
i

2κi ≤
∏
i

2<κ = (2<κ)cf κ ≤ (2κ)cf κ ≤ 2κ. ��

For regular cardinals, the only conditions Theorem 5.16 places on the
continuum function are 2κ > κ and 2κ ≤ 2λ if κ < λ. We shall see that these
are the only restrictions on 2κ for regular κ that are provable in ZFC.

Corollary 5.17. If κ is a singular cardinal and if the continuum function is
eventually constant below κ, with value λ, then 2κ = λ.

Proof. If κ is a singular cardinal that satisfies the assumption of the theorem,
then there is µ such that cf κ ≤ µ < κ and that 2<κ = λ = 2µ. Thus

2κ = (2<κ)cf κ = (2µ)cf κ = 2µ. ��

The gimel function is the function

(5.19) (κ)ג = κcf κ.

If κ is a limit cardinal and if the continuum function below κ is not
eventually constant, then the cardinal λ = 2<κ is a limit of a nondecreasing
sequence

λ = 2<κ = limα→κ 2|α|

of length κ. By Lemma 3.7(ii), we have

cf λ = cf κ.

Using Theorem 5.16(iii), we get

(5.20) 2κ = (2<κ)cf κ = λcf λ.

If κ is a regular cardinal, then κ = cf κ; and since 2κ = κκ, we have

(5.21) 2κ = κcf κ.

Thus (5.20) and (5.21) show that the continuum function can be defined in
terms of the gimel function:

Corollary 5.18.

(i) If κ is a successor cardinal, then 2κ = .(κ)ג
(ii) If κ is a limit cardinal and if the continuum function below κ is even-

tually constant, then 2κ = 2<κ · .(κ)ג
(iii) If κ is a limit cardinal and if the continuum function below κ is not

eventually constant, then 2κ = .(κ>2)ג ��
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Cardinal Exponentiation

We shall now investigate the function κλ for infinite cardinal numbers κ
and λ.

We start with the following observation: If κ is a regular cardinal and
λ < κ, then every function f : λ → κ is bounded (i.e., sup{f(ξ) : ξ < λ} < κ).
Thus

κλ =
⋃

α<κ
αλ.

and so
κλ =

∑
α<κ

|α|λ.

In particular, if κ is a successor cardinal, we obtain the Hausdorff formula

(5.22) ℵℵβ

α+1 = ℵℵβ
α · ℵα+1.

(Note that (5.22) holds for all α and β.)
In general, we can compute κλ using the following lemma. If κ is a limit

cardinal, we use the notation limα→κ αλ to abbreviate sup{µλ : µ is a cardinal
and µ < κ}.

Lemma 5.19. If κ is a limit cardinal, and λ ≥ cf κ, then

κλ = (limα→κ αλ)cf κ.

Proof. Let κ =
∑

i<cf κ κi, where κi < κ for each i. We have κλ ≤
(
∏

i<cf κ κi)λ =
∏

i κλ
i ≤

∏
i(limα→κ αλ) = (limα→κ αλ)cf κ ≤ (κλ)cf κ = κλ.

��

Theorem 5.20. Let λ be an infinite cardinal. Then for all infinite cardi-
nals κ, the value of κλ is computed as follows, by induction on κ:

(i) If κ ≤ λ then κλ = 2λ.
(ii) If there exists some µ < κ such that µλ ≥ κ, then κλ = µλ.
(iii) If κ > λ and if µλ < κ for all µ < κ, then:

(a) if cf κ > λ then κλ = κ,
(b) if cf κ ≤ λ then κλ = κcf κ.

Proof. (i) Lemma 5.6
(ii) µλ ≤ κλ ≤ (µλ)λ = µλ.
(iii) If κ is a successor cardinal, we use the Hausdorff formula. If κ is

a limit cardinal, we have limα→κ αλ = κ. If cf κ > λ then every f : λ → κ is
bounded and we have κλ = limα→κ αλ = κ. If cf κ ≤ λ then by Lemma 5.19,
κλ = (limα→κ αλ)cf κ = κcf κ. ��

Theorem 5.20 shows that all cardinal exponentiation can be defined in
terms of the gimel function:
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Corollary 5.21. For every κ and λ, the value of κλ is either 2λ, or κ, or (µ)ג
for some µ such that cf µ ≤ λ < µ.

Proof. If κλ > 2λ · κ, let µ be the least cardinal such that µλ = κλ, and by
Theorem 5.20 (for µ and λ), µλ = µcf µ. ��

In the Exercises, we list some properties of the gimel function.
A cardinal κ is a strong limit cardinal if

2λ < κ for every λ < κ.

Obviously, every strong limit cardinal is a limit cardinal. If the GCH holds,
then every limit cardinal is a strong limit.

It is easy to see that if κ is a strong limit cardinal, then

λν < κ for all λ, ν < κ.

An example of a strong limit cardinal is ℵ0. Actually, the strong limit cardi-
nals form a proper class: If α is an arbitrary cardinal, then the cardinal

κ = sup{α, 2α, 22α

, . . . }

(of cofinality ω) is a strong limit cardinal.
Another fact worth mentioning is:

(5.23) If κ is a strong limit cardinal, then 2κ = κcf κ.

We recall that κ is weakly inaccessible if it is uncountable, regular, and
limit. We say that a cardinal κ is inaccessible (strongly) if κ > ℵ0, κ is
regular, and κ is strong limit.

Every inaccessible cardinal is weakly inaccessible. If the GCH holds, then
every weakly inaccessible cardinal κ is inaccessible.

The inaccessible cardinals owe their name to the fact that they cannot be
obtained from smaller cardinals by the usual set-theoretical operations.

If κ is inaccessible and |X | < κ, then |P (X)| < κ. If |S| < κ and if |X | < κ
for every X ∈ S, then |

⋃
S| < κ.

In fact, ℵ0 has this property too. Thus we can say that in a sense an
inaccessible cardinal is to smaller cardinals what ℵ0 is to finite cardinals.
This is one of the main themes of the theory of large cardinals.

The Singular Cardinal Hypothesis

The Singular Cardinal Hypothesis (SCH) is the statement: For every singular
cardinal κ, if 2cf κ < κ, then κcf κ = κ+.

Obviously, the Singular Cardinals Hypothesis follows from GCH. If 2cf κ ≥
κ then κcf κ = 2cf κ. If 2cf κ < κ, then κ+ is the least possible value of κcf κ.
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We shall prove later in the book that if SCH fails then a large cardinal
axiom holds. In fact, the failure of SCH is equiconsistent with the existence
of a certain large cardinal.

Under the assumption of SCH, cardinal exponentiation is determined by
the continuum function on regular cardinals:

Theorem 5.22. Assume that SCH holds.

(i) If κ is a singular cardinal then
(a) 2κ = 2<κ if the continuum function is eventually constant below κ,
(b) 2κ = (2<κ)+ otherwise.

(ii) If κ and λ are infinite cardinals, then:
(a) If κ ≤ 2λ then κλ = 2λ.
(b) If 2λ < κ and λ < cf κ then κλ = κ.
(c) If 2λ < κ and cf κ ≤ λ then κλ = κ+.

Proof. (i) If κ is a singular cardinal, then by Theorem 5.16, 2κ is either λ
or λcf κ where λ = 2<κ. The latter occurs if 2α is not eventually constant
below κ. Then cf λ = cf κ, and since 2cf κ < 2<κ = λ, we have λcf λ = λ+ by
the Singular Cardinals Hypothesis.

(ii) We proceed by induction on κ, for a fixed λ. Let κ > 2λ. If κ is
a successor cardinal, κ = ν+, then νλ ≤ κ (by the induction hypothesis), and
κλ = (ν+)λ = ν+ · νλ = κ, by the Hausdorff formula.

If κ is a limit cardinal, then νλ < κ for all ν < κ. By Theorem 5.20, κλ = κ
if λ < cf κ, and κλ = κcf κ if λ ≥ cf κ, In the latter case, 2cf κ ≤ 2λ < κ, and
by the Singular Cardinals Hypothesis, κcf κ = κ+. ��

Exercises

5.1. There exists a set of reals of cardinality 2ℵ0 without a perfect subset.
[Let 〈Pα : α < 2ℵ0〉 be an enumeration of all perfect sets of reals. Construct

disjoint A = {aα : α < 2ℵ0} and B = {bα : α < 2ℵ0} as follows: Pick aα such that
aα /∈ {aξ : ξ < α} ∪ {bξ : ξ < α}, and bα such that bα ∈ Pα − {aξ : ξ ≤ α}. Then
A is the set.]

5.2. If X is an infinite set and S is the set of all finite subsets of X, then |S| = |X|.
[Use |X| = ℵα.]

5.3. Let (P, <) be a linear ordering and let κ be a cardinal. If every initial segment
of P has cardinality < κ, then |P | ≤ κ.

5.4. If A can be well-ordered then P (A) can be linearly ordered.
[Let X < Y if the least element of X � Y belongs to X.]

5.5. Prove the Axiom of Choice from Zorn’s Lemma.
[Let S be a family of nonempty sets. To find a choice function on S, let P = {f :

f is a choice function on some Z ⊂ S}, and apply Zorn’s Lemma to the partially
ordered set (P,⊂).]
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5.6. The countable AC implies that every infinite set has a countable subset.
[If A is infinite, let An = {s : s is a one-to-one sequence in A of length n} for

each n. Use a choice function for S = {An : n ∈ N} to obtain a countable subset
of A.]

5.7. Use DC to prove the countable AC.
[Given S = {An : n ∈ N}, consider the set A of all choice functions on some

Sn = {Ai : i ≤ n}, with the binary relation ⊃.]

5.8 (The Milner-Rado Paradox). For every ordinal α < κ+ there are sets
Xn ⊂ α (n ∈ N ) such that α =

S

n Xn, and for each n the order-type of Xn

is ≤ κn.
[By induction on α, choosing a sequence cofinal in α.]

5.9. If {Xi : i ∈ I} and {Yi : i ∈ I} are two disjoint families such that |Xi| = |Yi|
for each i ∈ I , then |Si∈I Xi| = |

S

i∈I Yi|.
[Use AC.]

5.10. If {Xi : i ∈ I} and {Yi : i ∈ I} are such that |Xi| = |Yi| for each i ∈ I , then
|Qi∈I Xi| = |

Q

i∈I Yi|.
[Use AC.]

5.11.
Q

0<n<ω n = 2ℵ0 .

5.12.
Q

n<ω ℵn = ℵℵ0
ω .

5.13.
Q

α<ω+ω ℵα = ℵℵ0
ω+ω.

5.14. If GCH holds then

(i) 2<κ = κ for all κ, and
(ii) κ<κ = κ for all regular κ.

5.15. If β is such that 2ℵα = ℵα+β for every α, then β < ω.
[Let β ≥ ω. Let α be least such that α + β > β. We have 0 < α ≤ β, and

α is limit. Let κ = ℵα+α; since cf κ = cf α ≤ α < κ, κ is singular. For each
ξ < α, ξ + β = β, and so 2ℵα+ξ = ℵα+ξ+β = ℵα+β. By Corollary 5.17, 2κ = ℵα+β,
a contradiction, since ℵα+β < ℵα+α+β.]

5.16.
Q

α<ω1+ω ℵα = ℵℵ1
ω1+ω.

[ℵℵ1
ω1+ω ≤ (

Q∞
n=0 ℵω1+n)ℵ1 =

Q

n ℵ
ℵ1
ω1+n =

Q

n(ℵℵ1
ω1 ·ℵω1+n) = ℵℵ1

ω1 ·
Q

n ℵω1+n =
Q

α<ω1+ω ℵα.]

5.17. If κ is a limit cardinal and λ < cf κ, then κλ =
P

α<κ |α|λ.

5.18. ℵℵ1
ω = ℵℵ0

ω · 2ℵ1 .

5.19. If α < ω1, then ℵℵ1
α = ℵℵ0

α · 2ℵ1 .

5.20. If α < ω2, then ℵℵ2
α = ℵℵ1

α · 2ℵ2 .

5.21. If κ is regular and limit, then κ<κ = 2<κ. If κ is regular and strong limit
then κ<κ = κ.

5.22. If κ is singular and is not strong limit, then κ<κ = 2<κ > κ.
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5.23. If κ is singular and strong limit, then 2<κ = κ and κ<κ = κcf κ.

5.24. If 2ℵ0 > ℵω, then ℵℵ0
ω = 2ℵ0 .

5.25. If 2ℵ1 = ℵ2 and ℵℵ0
ω > ℵω1 , then ℵℵ1

ω1 = ℵℵ0
ω .

5.26. If 2ℵ0 ≥ ℵω1 , then (ℵω)ג = 2ℵ0 and (ℵω1)ג = 2ℵ1 .

5.27. If 2ℵ1 = ℵ2, then ℵℵ0
ω �= ℵω1 .

5.28. If κ is a singular cardinal and if κ < (λ)ג for some λ < κ such that cf κ ≤ cf λ
then (κ)ג ≤ .(λ)ג

5.29. If κ is a singular cardinal such that 2cf κ < κ ≤ λcf κ for some λ < κ, then
(κ)ג = (λ)ג where λ is the least λ such that κ ≤ λcf κ.

Historical Notes

The Axiom of Choice was formulated by Zermelo, who used it to prove the Well-
Ordering Theorem in [1904]. Zorn’s Lemma is as in Zorn [1935]; for a related prin-
ciple, see Kuratowski [1922]. (Hausdorff in [1914], pp. 140–141, proved that every
partially ordered set has a maximal linearly ordered subset.) The Principle of De-
pendent Choices was formulated by Bernays in [1942].

König’s Theorem 5.10 appeared in J. König [1905]. Corollary 5.17 was found
independently by Bukovský [1965] and Hechler. The discovery that cardinal expo-
nentiation is determined by the gimel function was made by Bukovský; cf. [1965].
The inductive computation of κλ in Theorem 5.20 is as in Jech [1973a].

The Hausdorff formula (5.22): Hausdorff [1904].
Inaccessible cardinals were introduced in the paper by Sierpiński and Tar-

ski [1930]; see Tarski [1938] for more details.
Exercise 5.1: Felix Bernstein.
Exercise 5.8: Milner and Rado [1965].
Exercise 5.15: L. Patai.
Exercise 5.17: Tarski [1925b].
Exercises 5.28–5.29: Jech [1973a].



6. The Axiom of Regularity

The Axiom of Regularity states that the relation ∈ on any family of sets is
well-founded:

Axiom of Regularity. Every nonempty set has an ∈-minimal element :

∀S (S �= ∅ → (∃x ∈ S)S ∩ x = ∅).

As a consequence, there is no infinite sequence

x0 � x1 � x2 � . . . .

(Consider the set S = {x0, x1, x2, . . .} and apply the axiom.) In particular,
there is no set x such that

x ∈ x

and there are no “cycles”

x0 ∈ x1 ∈ . . . ∈ xn ∈ x0.

Thus the Axiom of Regularity postulates that sets of certain type do no
exist. This restriction on the universe of sets is not contradictory (i.e., the
axiom is consistent with the other axioms) and is irrelevant for the devel-
opment of ordinal and cardinal numbers, natural and real numbers, and in
fact of all ordinary mathematics. However, it is extremely useful in the meta-
mathematics of set theory, in construction of models. In particular, all sets
can be assigned ranks and can be arranged in a cumulative hierarchy.

We recall that a set T is transitive if x ∈ T implies x ⊂ T .

Lemma 6.1. For every set S there exists a transitive set T ⊃ S.

Proof. We define by induction

S0 = S, Sn+1 =
⋃

Sn

and

(6.1) T =
∞⋃

n=0
Sn.

Clearly, T is transitive and T ⊃ S. ��
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Since every transitive set must satisfy
⋃

T ⊂ T , it follows that the set
in (6.1) is the smallest transitive T ⊃ S; it is called transitive closure of S:

TC(S) =
⋂
{T : T ⊃ S and T is transitive}.

Lemma 6.2. Every nonempty class C has an ∈-minimal element.

Proof. Let S ∈ C be arbitrary. If S ∩ C = ∅, then S is a minimal element
of C; if S ∩ C �= ∅, we let X = T ∩ C where T = TC(S). X is a nonempty
set and by the Axiom of Regularity, there is x ∈ X such that x ∩ X = ∅.
It follows that x ∩ C = ∅; otherwise, if y ∈ x and y ∈ C, then y ∈ T since
T is transitive, and so y ∈ x∩ T ∩C = x∩ X . Hence x is a minimal element
of C. ��

The Cumulative Hierarchy of Sets

We define, by transfinite induction,

V0 = ∅, Vα+1 = P (Vα),

Vα =
⋃

β<α

Vβ if α is a limit ordinal.

The sets Vα have the following properties (by induction):

(i) Each Vα is transitive.
(ii) If α < β, then Vα ⊂ Vβ .
(iii) α ⊂ Vα.

The Axiom of Regularity implies that every set is in some Vα:

Lemma 6.3. For every x there is α such that x ∈ Vα:

(6.2)
⋃

α∈Ord

Vα = V.

Proof. Let C be the class of all x that are not in any Vα. If C is nonempty,
then C has an ∈-minimal element x. That is, x ∈ C, and z ∈

⋃
α Vα for every

z ∈ x. Hence x ⊂
⋃

α∈Ord Vα. By Replacement, there exists an ordinal γ such
that x ⊂

⋃
α<γ Vα. Hence x ⊂ Vγ and so x ∈ Vγ+1. Thus C is empty and we

have (6.2). ��

Since every x is in some Vα, we may define the rank of x:

(6.3) rank(x) = the least α such that x ∈ Vα+1.

Thus each Vα is the collection of all sets of rank less than α, and we have

(i) If x ∈ y, then rank(x) < rank(y).
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(ii) rank(α) = α.

One of the uses of the rank function is a definition of equivalence classes
for equivalence relations on a proper class. The basic trick is the following:

Given a class C, let

(6.4) Ĉ = {x ∈ C : (∀z ∈ C) rankx ≤ rank z}.

Ĉ is always a set, and if C is nonempty, then Ĉ is nonempty. Moreover,
(6.4) can be applied uniformly.

Thus, for example, if ≡ is an equivalence on a proper class C, we ap-
ply (6.4) to each equivalence class of ≡, and define

[x] = {y ∈ C : y ≡ x and ∀z ∈ C (z ≡ x → rank y ≤ rank z)}

and
C/≡ = {[x] : x ∈ C}.

In particular, this trick enables us to define isomorphism types for a given
isomorphism. For instance, one can define order-types of linearly ordered sets,
or cardinal numbers (even without AC).

We use the same argument to prove the following.

Collection Principle.

(6.5) ∀X ∃Y (∀u ∈ X)[∃v ϕ(u, v, p) → (∃v ∈ Y )ϕ(u, v, p)]

(p is a parameter).

The Collection Principle is a schema of formulas. We can formulate it as
follows:

Given a “collection of classes” Cu, u ∈ X (X is a set), then there is a set Y
such that for every u ∈ X ,

if Cu �= ∅, then Cu ∩ Y �= ∅.

To prove (6.5), we let
Y =

⋃
u∈X

Ĉu

where Cu = {v : ϕ(u, v, p)}, i.e.,

v ∈ Y ↔ (∃u ∈ X)(ϕ(u, v, p) and ∀z (ϕ(u, z, p) → rankv ≤ rank z)).

That Y is a set follows from the Replacement Schema.
Note that the Collection Principle implies the Replacement Schema:

Given a function F , then for every set X we let Y be a set such that

(∀u ∈ X)(∃v ∈ Y )F (u) = v.

Then
F �X = F ∩ (X × Y )

is a set by the Separation Schema.
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∈-Induction

The method of transfinite induction can be extended to an arbitrary transitive
class (instead of Ord), both for the proof and for the definition by induction:

Theorem 6.4 (∈-Induction). Let T be a transitive class, let Φ be a prop-
erty. Assume that

(i) Φ(∅);
(ii) if x ∈ T and Φ(z) holds for every z ∈ x, then Φ(x).

Then every x ∈ T has property Φ.

Proof. Let C be the class of all x ∈ T that do not have the property Φ. If
C is nonempty, then it has an ∈-minimal element x; apply (i) or (ii). ��

Theorem 6.5 (∈-Recursion). Let T be a transitive class and let G be
a function (defined for all x). Then there is a function F on T such that

(6.6) F (x) = G(F �x)

for every x ∈ T .
Moreover, F is the unique function that satisfies (6.6).

Proof. We let, for every x ∈ T ,

F (x) = y ↔ there exists a function f such that
dom(f) is a transitive subset of T and:

(i) (∀z ∈ dom(f)) f(z) = G(f�z),

(ii) f(x) = y.

That F is a (unique) function on T satisfying (6.6) is proved by ∈-induction.
��

Corollary 6.6. Let A be a class. There is a unique class B such that

(6.7) B = {x ∈ A : x ⊂ B}.

Proof. Let

F (x) =
{

1 if x ∈ A and F (z) = 1 for all z ∈ x,

0 otherwise.

Let B = {x : F (x) = 1}. The uniqueness of B is proved by ∈-induction. ��

We say that each x ∈ B is hereditarily in A.
One consequence of the Axiom of Regularity is that the universe does not

admit nontrivial ∈-automorphisms. More generally:
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Theorem 6.7. Let T1, T2 be transitive classes and let π be an ∈-isomorphism
of T1 onto T2; i.e., π is one-to-one and

(6.8) u ∈ v ↔ πu ∈ πv.

Then T1 = T2 and πu = u for every u ∈ T1.

Proof. We show, by ∈-induction, that πx = x for every x ∈ T1. Assume that
πz = z for each z ∈ x and let y = πx.

We have x ⊂ y because if z ∈ x, then z = πz ∈ πx = y.
We also have y ⊂ x: Let t ∈ y. Since y ⊂ T2, there is z ∈ T1 such that

πz = t. Since πz ∈ y, we have z ∈ x, and so t = πz = z. Thus t ∈ x.
Therefore πx = x for all x ∈ T1, and T2 = T1. ��

Well-Founded Relations

The notion of well-founded relations that was introduced in Chapter 2 can
be generalized to relations on proper classes, and one can extend the method
of induction to well-founded relations.

Let E be a binary relation on a class P . For each x ∈ P , we let

extE(x) = {z ∈ P : z E x}

the extension of x.

Definition 6.8. A relation E on P is well-founded, if:

(i) every nonempty set x ⊂ P has an E-minimal element;
(ii) extE(x) is a set, for every x ∈ P .

(6.9)

(Condition (ii) is vacuous if P is a set.) Note that the relation ∈ is well-
founded on any class, by the Axiom of Regularity.

Lemma 6.9. If E is a well-founded relation on P , then every nonempty class
C ⊂ P has an E-minimal element.

Proof. We follow the proof of Lemma 6.2; we are looking for x ∈ C such that
extE(x) ∩ C = ∅. Let S ∈ C be arbitrary and assume that extE(S) ∩ C �= ∅.
We let X = T ∩ C where

T =
∞⋃

n=0
Sn

and
S0 = extE S, Sn+1 =

⋃
{extE(z) : z ∈ Sn}.

As in Lemma 6.2, it follows that an E-minimal element x of X is E-minimal
in C. ��
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Theorem 6.10 (Well-Founded Induction). Let E be a well-founded re-
lation on P . Let Φ be a property. Assume that :

(i) every E-minimal element x has property Φ;
(ii) if x ∈ P and if Φ(z) holds for every z such that z E x, then Φ(x).

Then every x ∈ P has property Φ.

Proof. A modification of the proof of Theorem 6.4. ��

Theorem 6.11 (Well-Founded Recursion). Let E be a well-founded rela-
tion on P . Let G be a function (on V ×V ). Then there is a unique function F
on P such that

(6.10) F (x) = G(x, F � extE(x))

for every x ∈ P .

Proof. A modification of the proof of Theorem 6.5. ��

(Note that if F (x) = G(F � ext(x)) for some G, then F (x) = F (y) when-
ever ext(x) = ext(y); in particular, F (x) is the same for all minimal elements.)

Example 6.12 (The Rank Function). We define, by induction, for all
x ∈ P :

ρ(x) = sup{ρ(z) + 1 : z E x}
(compare with (2.7)). The range of ρ is either an ordinal or the class Ord .
For all x, y ∈ P ,

x E y → ρ(x) < ρ(y). ��

Example 6.13 (The Transitive Collapse). By induction, let

π(x) = {π(z) : z E x}

for every x ∈ P . The range of π is a transitive class, and for all x, y ∈ P ,

x E y → π(x) ∈ π(y). ��

The transitive collapse of a well-founded relation is not necessarily a one-
to-one function. It is one-to-one if E satisfies an additional condition, exten-
sionality.

Definition 6.14. A well-founded relation E on a class P is extensional if

(6.11) extE(X) �= extE(Y )

whenever X and Y are distinct elements of P .
A class M is extensional if the relation ∈ on M is extensional, i.e., if for

any distinct X and Y ∈ M , X ∩ M �= Y ∩ M .
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The following theorem shows that the transitive collapse of an extensional
well-founded relation is one-to-one, and that every extensional class is ∈-
isomorphic to a transitive class.

Theorem 6.15 (Mostowski’s Collapsing Theorem).

(i) If E is a well-founded and extensional relation on a class P , then there
is a transitive class M and an isomorphism π between (P, E) and
(M,∈). The transitive class M and the isomorphism π are unique.

(ii) In particular, every extensional class P is isomorphic to a transitive
class M . The transitive class M and the isomorphism π are unique.

(iii) In case (ii), if T ⊂ P is transitive, then πx = x for every x ∈ T .

Proof. Since (ii) is a special case of (i) (E = ∈ in case (ii)), we shall prove
the existence of an isomorphism in the general case.

Since E is a well-founded relation, we can define π by well-founded induc-
tion (Theorem 6.11), i.e., π(x) can be defined in terms of the π(z)’s, where
z E x. We let, for each x ∈ P

(6.12) π(x) = {π(z) : z E x}.

In particular, in the case E = ∈, (6.12) becomes

(6.13) π(x) = {π(z) : z ∈ x ∩ P}.

The function π maps P onto a class M = π(P ), and it is immediate from the
definition (6.12) that M is transitive.

We use the extensionality of E to show that π is one-to-one. Let z ∈ M
be of least rank such that z = π(x) = π(y) for some x �= y. Then extE(x) �=
extE(y) and there is, e.g., some u ∈ extE(x) such that u /∈ extE(y). Let
t = π(u). Since t ∈ z = π(y), there is v ∈ extE(y) such that t = π(v). Thus
we have t = π(u) = π(v), u �= v, and t is of lesser rank than z (since t ∈ z).
A contradiction.

Now it follows easily that

(6.14) x E y ↔ π(x) ∈ π(y).

If x E y, then π(x) ∈ π(y) by definition (6.12). On the other hand, if π(x) ∈
π(y), then by (6.12), π(x) = π(z) for some z E y. Since π is one-to-one, we
have x = z and so x E y.

The uniqueness of the isomorphism π, and the transitive class M = π(P ),
follows from Theorem 6.7. If π1 and π2 are two isomorphisms of P and M1,
M2, respectively, then π2π

−1
1 is an isomorphism between M1 and M2, and

therefore the identity mapping. Hence π1 = π2.
It remains to prove (iii). If T ⊂ P is transitive, then we first observe that

x ⊂ P for every x ∈ T and so x ∩ P = x, and we have

π(x) = {π(z) : z ∈ x}

for all x ∈ T . It follows easily by ∈-induction that π(x) = x for all x ∈ T . ��
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The Bernays-Gödel Axiomatic Set Theory

There is an alternative axiomatization of set theory. We consider two types
of objects: sets (for which we use lower case letters) and classes (denoted by
capital letters).

A. 1. Extensionality: ∀u (u ∈ X ↔ y ∈ Y ) → X = Y .
2. Every set is a class.
3. If X ∈ Y , then X is a set.
4. Pairing: For any sets x and y there is a set {x, y}.

B. Comprehension:

∀X1 . . . ∀Xn ∃Y Y = {x : ϕ(x, X1, . . . , Xn)}

where ϕ is a formula in which only set variables are quantified.
C. 1. Infinity: There is an infinite set.

2. Union: For every set x the set
⋃

x exists.
3. Power Set: For every set x the power set P (x) of x exists.
4. Replacement: If a class F is a function and x is a set, then {F (z) :

z ∈ x} is a set.
D. Regularity.
E. Choice: There is a function F such that F (x) ∈ x for every nonempty

set x.

Let BG denote the axiomatic theory A–D and let BGC denote BG +
Choice.

If a set-theoretical statement is provable in ZF (ZFC), then it is provable
in BG (BGC).

On the other hand, a theorem of Shoenfield (using proof-theoretic meth-
ods) states that if a sentence involving only set variables is provable in BG,
then it is provable in ZF. This result can be extended to BGC/ZFC using
the method of forcing.

Exercises

6.1. rank(x) = sup{rank(z) + 1 : z ∈ x}.
6.2. |Vω| = ℵ0, |Vω+α| = �α.

6.3. If κ is inaccessible, then |Vκ| = κ.

6.4. If x and y have rank ≤ α then {x, y}, 〈x, y〉, x ∪ y,
S

x, P (x), and xy have
rank < α + ω

6.5. The sets Z, Q, R are in Vω+ω.

6.6. Let B be the class of all x that are hereditarily in the class A. Show that

(i) x ∈ B if and only if TC(x) ⊂ A,
(ii) B is the largest transitive class B ⊂ A.
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Historical Notes

The Axiom of Regularity was introduced by von Neumann in [1925], although a sim-
ilar principle had been considered previously by Skolem (see [1970], pp. 137–152).
The concept of rank appears first in Mirimanov [1917]. The transitive collapse is
defined in Mostowski [1949]. Induction on well-founded relations (Theorems 6.10,
6.11) was formulated by Montague in [1955].

The axiomatic system BG was introduced by Bernays in [1937]. Shoenfield’s
result was published in [1954].

For more references on the history of axioms of set theory consult Fraenkel et
al. [1973].



7. Filters, Ultrafilters and Boolean Algebras

Filters and Ultrafilters

Filters and ideals play an important role in several mathematical disciplines
(algebra, topology, logic, measure theory). In this chapter we introduce the
notion of filter (and ideal) on a given set. The notion of ideal extrapolates
the notion of small sets: Given an ideal I on S, a set X ⊂ S is considered
small if it belongs to I.

Definition 7.1. A filter on a nonempty set S is a collection F of subsets
of S such that

(i) S ∈ F and ∅ /∈ F ,
(ii) if X ∈ F and Y ∈ F , then X ∩ Y ∈ F ,
(iii) If X, Y ⊂ S, X ∈ F , and X ⊂ Y , then Y ∈ F .

(7.1)

An ideal on a nonempty set S is a collection I of subsets of S such that:

(i) ∅ ∈ I and S /∈ I,
(ii) if X ∈ I and Y ∈ I, then X ∪ Y ∈ I,
(iii) if X, Y ⊂ S, X ∈ I, and Y ⊂ X , then Y ∈ I.

(7.2)

If F is a filter on S, then the set I = {S − X : X ∈ F} is an ideal on S; and
conversely, if I is an ideal, then F = {S −X : X ∈ I} is a filter. If this is the
case we say that F and I are dual to each other.

Examples. 1. A trivial filter: F = {S}.
2. A principal filter. Let X0 be a nonempty subset of S. The filter F =

{X ⊂ S : X ⊃ X0} is a principal filter. Note that every filter on a finite set
is principal.

The dual notions are a trivial ideal and a principal ideal.
3. The Fréchet filter. Let S be an infinite set, and let I be the ideal of all

finite subsets of S. The dual filter F = {X ⊂ S : S − X is finite} is called
the Fréchet filter on S. Note that the Fréchet filter is not principal.

4. Let A be an infinite set and let S = [A]<ω be the set of all finite subsets
of A. For each P ∈ S, let P̂ = {Q ∈ S : P ⊂ Q}. Let F be the set of all
X ⊂ S such that X ⊃ P̂ for some P ∈ S. Then F is a nonprincipal filter
on S.
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5. A set A ⊂ N has density 0 if limn→∞ |A ∩ n|/n = 0. The set of all A
of density 0 is an ideal on N .

A family G of sets has the finite intersection property if every finite H =
{X1, . . . , Xn} ⊂ G has a nonempty intersection X1 ∩ . . . ∩ Xn �= ∅. Every
filter has the finite intersection property.

Lemma 7.2.

(i) If F is a nonempty family of filters on S, then
⋂
F is a filter on S.

(ii) If C is a ⊂-chain of filters on S, then
⋃
C is a filter on S.

(iii) If G ⊂ P (S) has the finite intersection property, then there is a filter F
on S such that G ⊂ F .

Proof. (i) and (ii) are easy to verify.
(iii) Let F be the set of all X ⊂ S such that there is a finite H = {X1, . . . ,

Xn} ⊂ G with X1 ∩ . . . ∩ Xn ⊂ X . Then F is a filter and F ⊃ G. ��

Since every filter F ⊃ G must contain all finite intersections of sets in G,
it follows that the filter F constructed in the proof of Lemma 7.2(iii) is the
smallest filter on S that extends G:

F =
⋂
{D : D is a filter on S and G ⊂ D}.

We say that the filter F is generated by G.

Definition 7.3. A filter U on a set S is an ultrafilter if

(7.3) for every X ⊂ S, either X ∈ U or S − X ∈ U .

The dual notion is a prime ideal : For every X ⊂ S, either X ∈ I or S−X ∈ I.
Note that I = P (S) − U .

A filter F on S is maximal if there is no filter F ′ on S such that F ⊂ F ′

and F �= F ′.

Lemma 7.4. A filter F on S is an ultrafilter if and only if it is maximal.

Proof. (a) An ultrafilter U is clearly a maximal filter: Assume that U ⊂ F
and X ∈ F − U . Then S − X ∈ U , and so both S − X ∈ F and X ∈ F ,
a contradiction.

(b) Let F be a filter that is not an ultrafilter. We will show that F is not
maximal. Let Y ⊂ S be such that neither Y nor S − Y is in F . Consider the
family G = F ∪ {Y }; we claim that G has the finite intersection property.
If X ∈ F , then X ∩ Y �= ∅, for otherwise we would have S − Y ⊃ X and
S − Y ∈ F . Thus, if X1, . . . , Xn ∈ F , we have X1 ∩ . . . ∩ Xn ∈ F and so
Y ∩ X1 ∩ . . . ∩ Xn �= ∅. Hence G has the finite intersection property, and by
Lemma 7.2(iii) there is a filter F ′ ⊃ G. Since Y ∈ F ′ −F , F is not maximal.

��
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Theorem 7.5 (Tarski). Every filter can be extended to an ultrafilter.

Proof. Let F0 be a filter on S. Let P be the set of all filters F on S such
that F ⊃ F0 and consider the partially ordered set (P,⊂). If C is a chain
in P , then by Lemma 7.2(ii),

⋃
C is a filter and hence an upper bound of C

in P . By Zorn’s Lemma there exists a maximal element U in P . This U is an
ultrafilter by Lemma 7.4. ��

For every a ∈ S, the principal filter {X ⊂ S : a ∈ X} is an ultrafilter. If
S is finite, then every ultrafilter on S is principal.

If S is infinite, then there is a nonprincipal ultrafilter on S: If U extends
the Fréchet filter, then U is nonprincipal.

The proof of Theorem 7.5 uses the Axiom of Choice. We shall see later
that the existence of nonprincipal ultrafilters cannot be proved without AC.

If S is an infinite set of cardinality κ, then because every ultrafilter on S
is a subset of P (S), there are at most 22κ

ultrafilters on S. The next theorem
shows that the number of ultrafilters on κ is exactly 22κ

. To get a slightly
stronger result, let us call an ultrafilter D on κ uniform if |X | = κ for all
X ∈ D.

Theorem 7.6 (Posṕı̌sil). For every infinite cardinal κ, there exist 22κ

uni-
form ultrafilters on κ.

We prove first the following lemma. Let us call a family A of subsets
of κ independent if for any distinct sets X1, . . . , Xn, Y1, . . . , Ym in A, the
intersection

(7.4) X1 ∩ . . . ∩ Xn ∩ (κ − Y1) ∩ . . . ∩ (κ − Ym)

has cardinality κ.

Lemma 7.7. There exists an independent family of subsets of κ of cardinal-
ity 2κ.

Proof. Let us consider the set P of all pairs (F,F) where F is a finite subset
of κ and F is a finite set of finite subsets of κ. Since |P | = κ, it suffices to
find an independent family A of subsets of P , of size 2κ.

For each u ⊂ κ, let

Xu = {(F,F) ∈ P : F ∩ u ∈ F}

and let A = {Xu : u ⊂ κ}. If u and v are distinct subsets of κ, then Xu �= Xv:
For example, if α ∈ u but α /∈ v, then let F = {α}, F = {F}, and (F,F) ∈ Xu

while (F,F) /∈ Xv. Hence |A| = 2κ.
To show that A is independent, let u1, . . . , un, v1, . . . , vm be distinct

subsets of κ. For each i ≤ n and each j ≤ m, let αi,j be some element of κ
such that either αi,j ∈ ui − vj or αi,j ∈ vj − ui. Now let F be any finite
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subset of κ such that F ⊃ {αi,j : i ≤ n, j ≤ m} (note that there are κ many
such finite sets). Clearly, we have F ∩ ui �= F ∩ vj for any i ≤ n and j ≤ m.
Thus if we let F = {F ∩ ui : i ≤ n}, we have (F,F) ∈ Xui for all i ≤ n and
(F,F) /∈ Xvj for all j ≤ m. Consequently, the intersection

Xu1 ∩ . . . ∩ Xun ∩ (P − Xv1) ∩ . . . ∩ (P − Xvm)

has cardinality κ. ��

Proof of Theorem 7.6. Let A be an independent family of subsets of κ. For
every function f : A → {0, 1}, consider this family of subsets of κ:

(7.5) Gf = {X : |κ − X | < κ} ∪ {X : f(X) = 1} ∪ {κ− X : f(X) = 0}.

By (7.4), the family Gf has the finite intersection property, and so there
exists an ultrafilter Df such that Df ⊃ Gf . If follows from (7.5) that Df is
uniform. If f �= g, then for some X ∈ A, f(X) �= g(X); e.g., f(X) = 1 and
g(X) = 0 and then X ∈ Df , while κ − X ∈ Dg. Thus we obtain 22κ

distinct
uniform ultrafilters on κ. ��

Ultrafilters on ω

We present two properties of ultrafilters on ω that are frequently used in
set-theoretic topology.

Let D be a nonprincipal ultrafilter on ω. D is called a p-point if for every
partition {An : n ∈ ω} of ω into ℵ0 pieces such that An /∈ D for all n, there
exists X ∈ D such that X ∩ An is finite, for all n ∈ ω.

First we notice that it is easy to find a nonprincipal ultrafilter that is not
a p-point: Let {An : n ∈ ω} be any partition of ω into ℵ0 infinite pieces, and
let F be the following filter on ω:

X ∈ F if and only if except for finitely many n, X ∩ An contains all
but finitely many elements of An.

(7.6)

If D is any ultrafilter extending F , then D is not a p-point.
Theorem 7.8 below shows that existence of p-points follows from the Con-

tinuum Hypothesis. By a result of Shelah there exists a model of ZFC in which
there are no p-points.

A nonprincipal ultrafilter D on ω is a Ramsey ultrafilter if for every
partition {An : n ∈ ω} of ω into ℵ0 pieces such that An /∈ D for all n, there
exists X ∈ D such that X ∩ An has one element for all n ∈ ω.

Every Ramsey ultrafilter is a p-point.

Theorem 7.8. If 2ℵ0 = ℵ1, then a Ramsey ultrafilter exists.
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Proof. Let Aα, α < ω1, enumerate all partitions of ω and let us construct
an ω1-sequence of infinite subsets of ω as follows: Given Xα, let Xα+1 ⊂ Xα

be such that either Xα+1 ⊂ A for some A ∈ Aα, or that |Xα+1 ∩ A| ≤ 1
for all A ∈ Aα. If α is a limit ordinal, let Xα be such that Xα − Xβ is
finite for all β < α. (Such a set Xα exists because α is countable.) Then
D = {X : X ⊃ Xα for some α < ω1} is a Ramsey ultrafilter. ��

κ-Complete Filters and Ideals

A filter F on S is countably complete (σ-complete) if whenever {Xn : n ∈ N}
is a countable family of subsets of S and Xn ∈ F for every n, then

(7.7)
∞⋂

n=0
Xn ∈ F.

A countably complete ideal (a σ-ideal) is such that if Xn ∈ I for every n,
then

∞⋃
n=0

Xn ∈ I.

More generally, if κ is a regular uncountable cardinal, and F is a filter on S,
then F is called κ-complete if F is closed under intersection of less than κ
sets, i.e., if whenever {Xα : α < γ} is a family of subsets of S, γ < κ, and
Xα ∈ F for every α < γ, then

(7.8)
⋂

α<γ
Xα ∈ F.

The dual notion is a κ-complete ideal.
An example of a κ-complete ideal is I = {X ⊂ S : |X | < κ}, on any set S

such that |S| ≥ κ.
A σ-complete filter is the same as an ℵ1-complete filter.
There is no nonprincipal σ-complete filter on a countable set S. If S is

uncountable, then
{X ⊂ S : |X | ≤ ℵ0}

is a σ-ideal on S.
Similarly, if κ > ω is regular and |S| ≥ κ, then

{X ⊂ S : |X | < κ}

is the smallest κ-complete ideal on S containing all singletons {a}.
The question whether a nonprincipal ultrafilter on a set can be σ-complete

gives rise to deep investigations of the foundations of set theory. In particular,
if such ultrafilters exist, then there exist large cardinals (inaccessible, etc.).
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Boolean Algebras

An algebra of sets (see Definition 4.9) is a collection of subsets of a given
nonempty set that is closed under unions, intersections and complements.
These properties of algebras of sets are abstracted in the notion of Boolean
algebra:

Definition 7.9. A Boolean algebra is a set B with at least two elements, 0
and 1, endowed with binary operations + and · and a unary operation − .

The Boolean operations satisfy the following axioms:

(7.9) u + v = v + u, u · v = v · u, (commutativity)

u + (v + w) = (u + v) + w, u · (v · w) = (u · v) · w, (associativity)

u · (v + w) = u · v + u · w, u + (v · w) = (u + v) · (u + w),
(distributivity)

u · (u + v) = u, u + (u · v) = u, (absorption)

u + (−u) = 1, u · (−u) = 0. (complementation)

An algebra of sets S, with
⋃
S = S, is a Boolean algebra, with Boolean

operations X∪Y , X∩Y and S−X , and with ∅ and S being 0 and 1. If follows
from Stone’s Representation Theorem below that every Boolean algebra is
isomorphic to an algebra of sets.

From the axioms (7.9) one can derive additional Boolean algebraic rules
that correspond to rules for the set operations ∪, ∩ and − . Among others,
we have

u + u = u, u · u = u, u + 0 = u, u · 0 = 0, u + 1 = 1, u · 1 = u

and the De Morgan laws

−(u + v) = −u · −v, −(u · v) = −u + −v.

Two elements u, v ∈ B are disjoint if u · v = 0. Let us define

u − v = u · (−v),

and

(7.10) u ≤ v if and only if u − v = 0.

It is easy to see that ≤ is a partial ordering of B and that

u ≤ v if and only if u + v = v if and only if u · v = u.

Moreover, 1 is the greatest element of B and 0 is the least element. Also, for
any u, v ∈ B, u+ v is the least upper bound of {u, v} and u · v is the greatest
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lower bound of {u, v}. Since −u is the unique v such that u + v = 1 and
u · v = 0, it follows that all Boolean-algebraic operations can be defined in
terms of the partial ordering of B.

We shall now give an example showing the relation between Boolean al-
gebras and logic:

Let L be a first order language and let S be the set of all sentences of L. We
consider the equivalence relation � ϕ ↔ ψ on S. The set B of all equivalence
classes [ϕ] is a Boolean algebra under the following operations:

[ϕ] + [ψ] = [ϕ ∨ ψ], 0 = [ϕ ∧ ¬ϕ],

[ϕ] · [ψ] = [ϕ ∧ ψ], 1 = [ϕ ∨ ¬ϕ].

−[ϕ] = [¬ϕ],

This algebra is called the Lindenbaum algebra.
A subset A of a Boolean algebra B is a subalgebra if it contains 0 and 1

and is closed under the Boolean operations:

(i) 0 ∈ A, 1 ∈ A;
(ii) if u, v ∈ A, then u + v ∈ A, u · v ∈ A, −u ∈ A.

(7.11)

If X ⊂ B, then there is a smallest subalgebra A of B that contains X ; A can
be described either as

⋂
{A : X ⊂ A ⊂ B and A is a subalgebra}, or as the

set of all Boolean combinations in B of elements of X . The subalgebra A is
generated by X . If X is infinite, then |A| = |X |. See Exercises 7.18–7.20.

If B is a Boolean algebra, let B+ = B −{0} denote the set of all nonzero
elements of B. If a ∈ B+, the set B�a = {u ∈ B : u ≤ a} with the partial
order inherited from B, is a Boolean algebra; its + and · are the same as in B,
and the complement of u is a − u. An element a ∈ B is called an atom if it is
a minimal element of B+; equivalently, if there is no x such that 0 < x < a.
A Boolean algebra is atomic if for every u ∈ B+ there is an atom a ≤ u; B is
atomless if it has no atoms.

Let B and C be two Boolean algebras. A mapping h : B → C is a homo-
morphism if it preserves the operations:

(i) h(0) = 0, h(1) = 1,
(ii) h(u + v) = h(u) + h(v), h(u · v) = h(u) · h(v), h(−u) = −h(u).

(7.12)

Note that the range of a homomorphism is a subalgebra of C and that
h(u) ≤ h(v) whenever u ≤ v. A one-to-one homomorphism of B onto C
is called an isomorphism. An embedding of B in C is an isomorphism of B
onto a subalgebra of C. Note that if h : B → C is a one-to-one mapping
such that u ≤ v if and only if h(u) ≤ h(v), then h is an isomorphism. An
isomorphism of a Boolean algebra onto itself is called an automorphism.
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Ideals and Filters on Boolean Algebras

The definition of filter (and ideal) given earlier in this chapter generalizes to
arbitrary Boolean algebras. Let B be a Boolean algebra. An ideal on B is
a subset I of B such that:

(i) 0 ∈ I, 1 /∈ I;
(ii) if u ∈ I and v ∈ I, then u + v ∈ I;
(iii) if u, v ∈ B, u ∈ I and v ≤ u, then v ∈ I.

(7.13)

A filter on B is a subset F of B such that:

(i) 1 ∈ F , 0 /∈ F ;
(ii) if u ∈ F and v ∈ F , then u · v ∈ F ;
(iii) if u, v ∈ B, u ∈ F and u ≤ v, then v ∈ F .

(7.14)

The trivial ideal is the ideal {0}; an ideal is principal if I = {u ∈ B :
u ≤ u0} for some u0 �= 1. Similarly for filters.

A subset G of B − {0} has the finite intersection property if for every
finite {u1, . . . , un} ⊂ G, u1 · . . . · un �= 0. Every G ⊂ B that has the finite
intersection property generates a filter on B; this and the other two clauses
of Lemma 7.2 hold also for Boolean algebras.

There is a relation between ideals and homomorphisms. If h : B → C is
a homomorphism, then

(7.15) I = {u ∈ B : h(u) = 0}

is an ideal on B (the kernel of the homomorphism). On the other hand, let
I be an ideal on B. Let us consider the following equivalence relation on B:

(7.16) u ∼ v if and only if u  v ∈ I

where
u  v = (u − v) + (v − u).

Let C be the set of all equivalence classes, C = B/∼, and endow C with the
following operations:

(7.17) [u] + [v] = [u + v], 0 = [0],

[u] · [v] = [u · v], 1 = [1].

−[u] = [−u],

Then C is a Boolean algebra, the quotient of B mod I, and is a homomorphic
image of B under the homomorphism

(7.18) h(u) = [u].

The quotient algebra is denoted B/I.
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An ideal I on B is a prime ideal if

(7.19) for every u ∈ B, either u ∈ I or −u ∈ I.

The dual of a prime ideal is an ultrafilter.
Lemma 7.4 holds in general: An ideal is a prime ideal (and a filter is an

ultrafilter) if and only if it is maximal. Also, an ideal I on B is prime if and
only if the quotient of B mod I is the trivial algebra {0, 1}.

Tarski’s Theorem 7.5 easily generalizes to Boolean algebras:

Theorem 7.10 (The Prime Ideal Theorem). Every ideal on B can be
extended to a prime ideal. ��

The proof of the Prime Ideal Theorem uses the Axiom of Choice. It is
known that the theorem cannot be proved without using the Axiom of Choice.
However, it is also known that the Prime Ideal Theorem is weaker than the
Axiom of Choice.

Theorem 7.11 (Stone’s Representation Theorem). Every Boolean al-
gebra is isomorphic to an algebra of sets.

Proof. Let B be a Boolean algebra. We let

(7.20) S = {p : p is an ultrafilter on B}.

For every u ∈ B, let Xu be the set of all p ∈ S such that u ∈ p. Let

(7.21) S = {Xu : u ∈ B}.

Let us consider the mapping π(u) = Xu from B onto S. Clearly, π(1) = S
and π(0) = ∅. It follows from the definition of ultrafilter that

π(u · v) = π(u) ∩ π(v), π(u + v) = π(u) ∪ π(v), π(−u) = S − π(u).

Thus π is a homomorphism of B onto the algebra of sets S. It remains to
show that π is one-to-one.

If u �= v, then using the Prime Ideal Theorem, one can find an ultrafilter p
on B containing one of these two elements but not the other. Thus π is an
isomorphism. ��

Complete Boolean Algebras

The partial ordering ≤ of a Boolean algebra can be used to define infinitary
operations on B, generalizing + and · . Let us recall that u + v = sup{u, v}
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and u · v = inf{u, v} in the partial ordering of B. Thus for any nonempty
X ⊂ B, we define

(7.22)
∑

{u : u ∈ X} = sup X and
∏
{u : u ∈ X} = inf X,

provided that the least upper bound (the greatest lower bound) exists. We
also define

∑
∅ = 0 and

∏
∅ = 1.

If the infinitary sum and product is defined for all X ⊂ B, the Boolean al-
gebra is called complete. Similarly, we call B κ-complete (where κ is a regular
uncountable cardinal) if sums and products exist for all X of cardinality < κ.
An ℵ1-complete Boolean algebra is called σ-complete or countably complete.

An algebra of sets S is κ-complete if it is closed under unions and inter-
sections of < κ sets. A κ-complete algebra of sets is a κ-complete Boolean
algebra and for every X ⊂ S such that |X | < κ,

∑
X =

⋃
X .

An ideal I on a κ-complete Boolean algebra is κ-complete if∑
{u : u ∈ X} ∈ I

whenever X ⊂ I and |X | < κ. A κ-complete filter is the dual notion.
If I is a κ-complete ideal on a κ-complete Boolean algebra B, then B/I is

κ-complete, and ∑
{[u] : u ∈ X} = [

∑
{u : u ∈ X}]

for every X ⊂ B, |X | < κ. Similarly for products.
An ℵ1-complete ideal is called a σ-ideal.
There are two important examples of σ-ideals on the Boolean algebra of

all Borel sets of reals: the σ-ideal of Borel sets of Lebesgue measure 0, and
the σ-ideal of meager Borel sets. (Exercises 7.14 and 7.15.)

Let A be a subalgebra of a Boolean algebra B. A is a dense subalgebra
of B if for every u ∈ B+ there is a v ∈ A+ such that v ≤ u.

A completion of a Boolean algebra B is a complete Boolean algebra C
such that B is a dense subalgebra of C.

Lemma 7.12. The completion of a Boolean algebra B is unique up to iso-
morphism.

Proof. Let C and D be completions of B. We define an isomorphism π : C →
D by

(7.23) π(c) =
∑D{u ∈ B : u ≤ c}.

To verify that π is an isomorphism, one uses the fact that B is a dense
subalgebra of both C and D. For example, to show that π(c) �= 0 whenever
c �= 0: There is u ∈ B such that 0 < u ≤ c, and we have 0 < u ≤ π(c). ��

Theorem 7.13. Every Boolean algebra has a completion.
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Proof. We use a construction similar to the method of Dedekind cuts. Let A
be a Boolean algebra. Let us call a set U ⊂ A+ a cut if

(7.24) p ≤ q and q ∈ U implies p ∈ U .

For every p ∈ A+, let Up denote the cut {x : x ≤ p}.
A cut U is regular if

(7.25) whenever p /∈ U , then there exists q ≤ p such that Uq ∩ U = ∅.

Note that every Up is regular, and that every cut includes some Up.
We let B be the set of all regular cuts in A+. We claim that B, under the

partial ordering by inclusion, is a complete Boolean algebra. Note that the
intersection of any collection of regular cuts is a regular cut, and hence each
cut U is included in a least regular cut U . In fact,

U = {p : (∀q ≤ p)U ∩ Uq �= ∅}.

Thus for u, v ∈ B we have

u · v = u ∩ v, u + v = u ∪ v.

The complement of u ∈ B is the regular cut

−u = {p : Up ∩ u = ∅}.

And, of course, ∅ and A+ are the zero and the unit of B. It is not difficult to
verify that B is a complete Boolean algebra, and we leave the verification to
the reader.

Furthermore, for all p, q ∈ A+ we have Up + Uq = Up+q, Up · Uq = Up·q
and −Up = U−p. Thus A embeds in B as a dense subalgebra. ��

Complete and Regular Subalgebras

Let B be a complete Boolean algebra. A subalgebra A of B is a complete
subalgebra if

∑
X ∈ A and

∏
X ∈ A for all X ⊂ A. (Caution: A subalgebra A

of B that is itself complete is not necessarily a complete subalgebra of B.)
Similarly, a complete homomorphism is a homomorphism h of B into C such
that for all X ⊂ B,

(7.26) h(
∑

X) =
∑

h(X), h(
∏

X) =
∏

h(X).

A complete embedding is an embedding that satisfies (7.26). Note that every
isomorphism is complete.

Since the intersection of any collection of complete subalgebras of B is
a complete subalgebra, every X ⊂ B is included in a smallest complete sub-
algebra of B. This algebra is called the complete subalgebra of B completely
generated by X .
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Definition 7.14. A set W ⊂ B+ is an antichain in a Boolean algebra B if
u · v = 0 for all distinct u, v ∈ W .

If W is an antichain and if
∑

W = u then we say that W is a partition
of u. A partition of 1 is just a partition, or a maximal antichain.

If B is a Boolean algebra and A is a subalgebra of B then an antichain
in A that is maximal in A need not be maximal in B. If every maximal
antichain in A is also maximal in B, then A is called a regular subalgebra
of B.

If A is a complete subalgebra of a complete Boolean algebra B then A is
a regular subalgebra of B. Also, if A is a dense subalgebra of B then A is
a regular subalgebra. See also Exercise 7.31.

Saturation

Let κ be an infinite cardinal. A Boolean algebra B is κ-saturated if there is
no partition W of B such that |W | = κ, and

(7.27) sat(B) = the least κ such that B is κ-saturated.

B is also said to satisfy the κ-chain condition; this is because if B is complete,
B is κ-saturated if and only if there exists no descending κ-sequence u0 >
u1 > . . . > uα > . . ., α < κ, of elements of B. The ℵ1-chain condition is
called the countable chain condition (c.c.c.).

Theorem 7.15. If B is an infinite complete Boolean algebra, then sat(B) is
a regular uncountable cardinal.

Proof. Let κ = sat(B). It is clear that κ is uncountable. Let us assume that
κ is singular; we shall obtain a contradiction by constructing a partition of
size κ.

For u ∈ B, u �= 0, let sat(u) denote sat(Bu). Let us call u ∈ B stable if
sat(v) = sat(u) for every nonzero v ≤ u. The set S of stable elements is dense
in B; otherwise, there would be a descending sequence u0 > u1 > u2 > . . .
with decreasing cardinals sat(u0) > sat(u1) > . . .. Let T be a maximal set of
pairwise disjoint elements of S. Thus T is a partition of B, and |T | < κ.

First we show that sup{sat(u) : u ∈ T } = κ. For every regular λ < κ such
that λ > |T |, consider a partition W of B of size λ. Then at least one u ∈ T
is partitioned by W into λ pieces.

Thus we consider two cases:

Case I. There is u ∈ T such that sat(u) = κ. Since cf κ < κ, there is a par-
tition W of u of size cf κ: W = {uα : α < cf κ}. Let κα, α < cf κ, be an
increasing sequence with limit κ. For each α, sat(uα) = sat(u) = κ and so let
Wα be a partition of uα of size κα. Then

⋃
α<cf κ Wα is a partition of u of

size κ.
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Case II. For all u ∈ T , sat(u) < κ, but sup{sat(u) : u ∈ T } = κ. Again, let
κα → κ, α < cf κ. For each α < cf κ (by induction), we find uα ∈ T , distinct
from all uβ, β < α, which admits a partition Wα of size κα. Then

⋃
α<cf κ Wα

is an antichain in B of size κ. ��

Distributivity of Complete Boolean Algebras

The following distributive law holds for every complete Boolean algebra:∑
i∈I

u0,i ·
∑
u∈J

u1,j =
∑

(i,j)∈I×J

u0,i · u1,j .

To formulate a general distributive law, let κ be a cardinal, and let us
call B κ-distributive if

(7.28)
∏

α<κ

∑
i∈Iα

uα,i =
∑

f∈Q

α<κ Iα

∏
α<κ

uα,f(α).

(Every complete algebra of sets satisfies (7.28).) We shall see later that dis-
tributivity plays an important role in generic models. For now, let us give
two equivalent formulations of κ-distributivity.

If W and Z are partitions of B, then W is a refinement of Z if for every
w ∈ W there is z ∈ Z such that w ≤ z. A set D ⊂ B is open dense if it is
dense in B and 0 �= u ≤ v ∈ D implies u ∈ D.

Lemma 7.16. The following are equivalent, for any complete Boolean alge-
bra B:

(i) B is κ-distributive.
(ii) The intersection of κ open dense subsets of B is open dense.
(iii) Every collection of κ partitions of B has a common refinement.

Proof. (i) → (ii). Let Dα, α < κ, be open dense, D =
⋂

α<κ Dα. D is
certainly open; thus let u �= 0. If we let {uα,i : i ∈ Iα} = {u · v : v ∈ Dα},
then

∑
i uα,i = u for every α and the left-hand side of (7.28) is u. For each

f ∈
∏

α Iα, let uf =
∏

α uα,f(α); clearly, each nonzero uf is in D. However,∑
f uf = u, by (7.28), and so some uf is nonzero.
(ii) → (iii). Let Wα, α < κ be partions of B. For each α, let Dα = {u :

u ≤ v for some v ∈ Wα}; each Dα is open dense. Let D =
⋂

α<κ Dα, and
let W be a maximal set of pairwise disjoint elements of D. Since D is dense,
W is a partition of B, and clearly, W is a refinement of each Wα.

(iii) → (i). Let {uα,i : α < κ, i ∈ Iα} be a collection of elements of B.
First we show that the right-hand side of (7.28) is always ≤ the left-hand
side. For each f ∈

∏
α<κ Iα, let uf =

∏
α<κ uα,f(α); we have uf ≤ uα,f(α)

and so uf ≤
∑

i∈Iα
uα,i for each α. Thus, for each α,∑

f

uf ≤
∑
i

uα,i
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and so ∑
f

∏
α

uα,f(α) =
∑
f

uf ≤
∏
α

∑
i

uα,i.

To prove (7.28), assume that (iii) holds, and let u =
∏

α

∑
i uα,i; we want

to show that
∑

f

∏
α uα,f(α) = u. Without loss of generality, we can assume

that u = 1 (otherwise we argue in the algebra B�u). For each α, let us
replace {uα,i : i ∈ Iα} by pairwise disjoint {vα,i : i ∈ Iα} = Wα such that
vα,i ≤ uα,i and

∑
i vα,i =

∑
i uα,i (some of the vα,i may be 0). Clearly∑

f

∏
α vα,f(α) ≤

∑
f

∏
α uα,f(α). Each Wα is a partition of B and so there

is a partition W that is a refinement of each Wα. Now for each w ∈ W there
exists f such that w ≤

∏
α vα,f(α), and so

∑
f

∏
α vα,f(α) = 1. ��

Exercises

7.1. If F is a filter and X ∈ F , then P (X) ∩ F is a filter on X.

7.2. The filter in Example 4 is generated by the sets {a}∧, a ∈ A.

7.3. If U is an ultrafilter and X ∪ Y ∈ U , then either X ∈ U or Y ∈ U .

7.4. Let U be an ultrafilter on S. Then the set of all X ⊂ S×S such that {a ∈ S :
{b ∈ S : (a, b) ∈ X} ∈ U} ∈ U is an ultrafilter on S × S.

7.5. Let U be an ultrafilter on S and let f : S → T . Then the set f∗(U) = {X ⊂ T :
f−1(X) ∈ U} is an ultrafilter on T .

7.6. Let U be an ultrafilter on N and let 〈an〉∞n=0 be a bounded sequence of real
numbers. Prove that there exists a unique U-limit a = limU an such that for every
ε > 0, {n : |an − a| < ε} ∈ U .

7.7. A nonprincipal ultrafilter D on ω is a p-point if and only if it satisfies the
following: If A0 ⊃ A1 ⊃ . . . ⊃ An ⊃ . . . is a decreasing sequence of elements of D,
then there exists X ∈ D such that for each n, X −An is finite.

7.8. If (P, <) is a countable linearly ordered set and if D is a p-point on P , then
there exists X ∈ D such that the order-type of X is either ω or ω∗. (X has order-
type ω∗ if and only if X = {xn}∞n=0 and x0 > x1 . . . > xn > . . ..)

7.9. An ultrafilter D on ω is Ramsey if and only if every function f : ω → ω is
either one-to-one on a set in D, or constant on a set in D.

If D and E are ultrafilters on ω, then D ≤ E means that for some function
f : ω → ω, D = f∗(E) (the Rudin-Keisler ordering, see Exercise 7.5).

D ≡ E means that there is a one-to-one function of ω onto ω such that E =
f∗(D).

7.10. If D = f∗(D), then {n : f(n) = n} ∈ D.
[Let X = {n : f(n) < n}, Y = {n : f(n) > n}. For each n ∈ X, let l(n)

be the length of the maximal sequence such that n > f(n) > f(f(n)) > . . .. Let
X0 = {n ∈ X : l(n) is even} and X1 = {n ∈ X : l(n) is odd}. Neither X0 nor
X1 can be in D since, e.g., X0 ∩ f−1(X0) = ∅. The set Y is handled similarly,
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except that it remains to show that the set Z of all n such that the sequence
n < f(n) < f2(n) < f3(n) < . . . is infinite cannot be in D. For x, y ∈ Z let
x ≡ y if fk(x) = fm(y) for some k and m. For each x ∈ Z, let ax be a fixed
representative of the class {y : y ≡ x}; let l(x) be the least k + m such that
fk(x) = fm(ax). Let Z0 = {x ∈ Z : l(x) is even} and Z1 = {x ∈ Z : l(x) is odd}.
Clearly f−1(Z1) ∩ Z = Z0.]

7.11. If D ≤ E and E ≤ D, then D ≡ E.
[Use Exercise 7.10.]

Thus ≤ is a partial ordering of ultrafilters on ω. A nonprincipal ultrafilter D is
minimal if there is no nonprincipal E such that E ≤ D and E �≡ D.

7.12. An ultrafilter D on ω is minimal if and only if it is Ramsey.
[If D is Ramsey and E = f∗(D) is nonprincipal, then f is unbounded mod D,

hence one-to-one mod D and consequently, E ≡ D. If D is minimal and f is
unbounded mod D, then D ≤ f∗(D) and hence D = g∗(f∗(D)) for some g. It
follows, by Exercise 7.10, that f is one-to-one mod D.]

7.13. If ωα is singular, then there is no nonprincipal ωα-complete ideal on ωα.

7.14. The set of all sets X ⊂ R that have Lebesgue measure 0 is a σ-ideal.

A set X ⊂ R is meager if it is the union of a countable collection of nowhere
dense sets.

7.15. The set of all meager sets X ⊂ R is a σ-ideal.
[By the Baire Category Theorem, R is not meager.]

7.16. Let κ be a regular uncountable cardinal, let |A| ≥ κ and let S = Pκ(A). Let
F be the set of all X ⊂ S such that X ⊃ P̂ for some P ∈ S, where P̂ = {Q ∈ S :
P ⊂ Q}. Then F is a κ-complete filter on S.

7.17. Let B be a Boolean algebra and define

u⊕ v = (u− v) + (v − u).

Then B with operations ⊕ and · is a ring (with zero 0 and unit 1).

7.18. Every element of the subalgebra generated by X is equal to u1 + . . . + un

where each us is of the form us = ±x1 · ±x2 · . . . · ±xk with xi ∈ X.

7.19. If A is a subalgebra of B and u ∈ B, then the subalgebra generated by
A ∪ {u} is equal to {a · u + (b− u) : a, b ∈ A}.

7.20. A finitely generated Boolean algebra is finite. If A has k generators, then

|A| ≤ 22k

.

7.21. Every finite Boolean algebra is atomic. If A = {a1, . . . , an} are the atoms
of B, then B is isomorphic to the field of sets P (A). Hence B has 2n elements.

7.22. Any two countable atomless Boolean algebras are isomorphic.

7.23. B�a is isomorphic to B/I where I is the principal ideal {u : u ≤ −a}.
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7.24. Let A be a subalgebra of a Boolean algebra B and let u ∈ B−A. Then there
exist ultrafilters F , G on B such that u ∈ F , u /∈ G, and F ∩ A = G ∩A.

7.25. Let B be an infinite Boolean algebra, |B| = κ. There are at least κ ultrafilters
on B.

[Assume otherwise. For each pair (F, G) ∈ S×S pick u ∈ F−G, and let these u’s
generate a subalgebra A. Since |A| ≤ |S| < κ, let u ∈ B −A. Use Exercise 7.24 to
get a contradiction.]

7.26. For B to be complete it is sufficient that all the sums
P

X exist.
[
Q

X =
P{u : u ≤ x for all x ∈ X}.]

7.27. Let B be a complete Boolean algebra.

(i) Verify the distributive laws:

a ·P{u : u ∈ X} =
P{a · u : u ∈ X},

a +
Q{u : u ∈ X} =

Q{a + u : u ∈ X}.

(ii) Verify the De Morgan laws:

−P{u : u ∈ X} =
Q{−u : u ∈ X},

−Q{u : u ∈ X} =
P{−u : u ∈ X}.

7.28. Let A and B be σ-complete Boolean algebras. If A is isomorphic to B�b and
B is isomorphic to A�a, then A and B are isomorphic.

[Follow the proof of the Cantor-Bernstein Theorem.]

7.29. Let A be a subalgebra of a Boolean algebra B, let u ∈ B and let A(u) be
the algebra generated by A ∪ {u}. If h is a homomorphism from A into a complete
Boolean algebra C then h extends to a homomorphism from A(u) into C.

[Let v ∈ C be such that
P{h(a) : a ∈ A, a ≤ u} ≤ v ≤ P{h(b) : b ∈ A, u ≤ b}.

Define h(a · u + b · (−u)) = h(a) · v + h(b) · (−v).]

7.30 (Sikorski’s Extension Theorem). Let A be a subalgebra of a Boolean
algebra B and let h be a homomorphism from A into a complete Boolean algebra C.
Then h can be extended to a homomorphism from B into C.

[Use Exercise 7.29 and Zorn’s Lemma.]

7.31. If B is a Boolean algebra and A is a regular subalgebra of B then the inclusion
mapping extends to a (unique) complete embedding of the completion of A into
the completion of B.

[Use Sikorski’s Extension Theorem.]

7.32. If B is an infinite complete Boolean algebra, then |B|ℵ0 = |B|.
[First consider the case when |B�a| = |B| for all a �= 0: There is a partition W

such that |W | = ℵ0, and |B| = Q{|B�a| : a ∈ W} = |B|ℵ0 . In general, call a �= 0
stable if |B�x| = |B�a| for all x ≤ a, x �= 0. The set of all stable a ∈ B is dense, and
|B�a| = 2 or |B�a|ℵ0 = |B�a| if a is stable. Let W be a partition of B such that
each a ∈ W is stable; we have |B| = Q{|B�a| : a ∈W} and the theorem follows.]

7.33. If B is a κ-complete, κ-saturated Boolean algebra, then B is complete.
[It suffices to show that

P

X exists for every open X (i.e., u ≤ v ∈ X implies
u ∈ X). If X ⊂ B is open, show that

P

X =
P

W where W is a maximal subset
of X that is an antichain.]
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Historical Notes

The notion of filter is, according to Kuratowski’s book [1966], due to H. Cartan.
Theorem 7.5 was first proved by Tarski in [1930].

Theorem 7.6 is due to Posṕı̌sil [1937]; the present proof uses independent sets
(Lemma 7.7); cf. Fichtenholz and Kantorovich [1935] (κ = ω) and Hausdorff [1936b].

W. Rudin [1956] proved that p-points exist if 2ℵ0 = ℵ1, a recent result of Shelah
shows that existence of p-points is unprovable in ZFC. Galvin showed that 2ℵ0 = ℵ1

implies the existence of Ramsey ultrafilters.
Facts about Boolean algebras can be found in Handbook of Boolean alge-

bras [1989] which also contains an extensive bibliography. The Representation The-
orem for Boolean algebras as well as the existence of the completion (Theorems 7.11
and 7.13) are due to Stone [1936]. Theorem 7.15 on saturation was proved by Erdős
and Tarski [1943].

Exercise 7.8: Booth [1970/71].
Exercise 7.10: Froĺık [1968], M. E. Rudin [1971].
The Rudin-Keisler equivalence was first studied by W. Rudin in [1956]; the

study of the Rudin-Keisler ordering was initiated by M. E. Rudin [1966].
Exercise 7.25: Makinson [1969].
Exercises 7.29 and 7.30: Sikorski [1964].
Exercise 7.32: Pierce [1958]. The assumption can be weakened to “σ-complete,”

see Comfort and Hager [1972].



8. Stationary Sets

In this chapter we develop the theory of closed unbounded and stationary
subsets of a regular uncountable cardinal, and its generalizations.

Closed Unbounded Sets

If X is a set of ordinals and α > 0 is a limit ordinal then α is a limit point
of X if sup(X ∩ α) = α.

Definition 8.1. Let κ be a regular uncountable cardinal. A set C ⊂ κ is
a closed unbounded subset of κ if C is unbounded in κ and if it contains all
its limit points less than κ.

A set S ⊂ κ is stationary if S∩C �= ∅ for every closed unbounded subset C
of κ.

An unbounded set C ⊂ κ is closed if and only if for every sequence
α0 < α1 < . . . < αξ < . . . (ξ < γ) of elements of C, of length γ < κ, we have
limξ→γ αξ ∈ C.

Lemma 8.2. If C and D are closed unbounded, then C ∩ D is closed un-
bounded.

Proof. It is immediate that C∩D is closed. To show that C∩D is unbounded,
let α < κ. Since C is unbounded, there exists an α1 > α with α1 ∈ C.
Similarly there exists an α2 > α1 with α2 ∈ D. In this fashion, we construct
an increasing sequence

(8.1) α < α1 < α2 < . . . < αn < . . .

such that α1, α3, α5, . . . ∈ C, α2, α4, α6, . . . ∈ D. If we let β be the limit of
the sequence (8.1), then β < κ, and β ∈ C and β ∈ D. ��

The collection of all closed unbounded subsets of κ has the finite inter-
section property. The filter generated by the closed unbounded sets consists
of all X ⊂ κ that contain a closed unbounded subset. We call this filter the
closed unbounded filter on κ.
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The set of all limit ordinals α < κ is closed unbounded in κ. If A is an
unbounded subset of κ, then the set of all limit points α < κ of A is closed
unbounded.

A function f : κ → κ is normal if it is increasing and continuous (f(α) =
limξ→α f(ξ) for every nonzero limit α < κ). The range of a normal function
is a closed unbounded set. Conversely, if C is closed unbounded, there is
a unique normal function that enumerates C.

The closed unbounded filter on κ is κ-complete:

Theorem 8.3. The intersection of fewer than κ closed unbounded subsets
of κ is closed unbounded.

Proof. We prove, by induction on γ < κ, that the intersection of a sequence
〈Cα : α < γ〉 of closed unbounded subsets of κ is closed unbounded. The
induction step works at successor ordinals because of Lemma 8.2. If γ is
a limit ordinal, we assume that the assertion is true for every α < γ; then we
can replace each Cα by

⋂
ξ≤α Cξ and obtain a decreasing sequence with the

same intersection. Thus assume that

C0 ⊃ C1 ⊃ . . . ⊃ Cα ⊃ . . . (α < γ)

are closed unbounded, and let C =
⋂

α<γ Cα.
It is easy to see that C is closed. To show that C is unbounded, let α < κ.

We construct a γ-sequence

(8.2) β0 < β1 < . . . βξ < . . . (ξ < γ)

as follows: We let β0 ∈ C0 be such that β0 > α, and for each ξ < γ, let
βξ ∈ Cξ be such that βξ > sup{βν : ν < ξ}. Since κ is regular and γ < κ,
such a sequence (8.2) exists and its limit β is less than κ. For each η < γ,
β is the limit of a sequence 〈βξ : η ≤ ξ < γ〉 in Cη, and so β ∈ Cη. Hence
β ∈ C. ��

Let 〈Xα : α < κ〉 be a sequence of subsets of κ. The diagonal intersection
of Xα, α < κ, is defined as follows:

(8.3) 
α<κ

Xα = {ξ < κ : ξ ∈
⋂

α<ξ

Xα}.

Note that Xα = Yα where Yα = {ξ ∈ Xα : ξ > α}. Note also that
Xα =

⋂
α(Xα ∪ {ξ : ξ ≤ α}).

Lemma 8.4. The diagonal intersection of a κ-sequence of closed unbounded
sets is closed unbounded.

Proof. Let 〈Cα : α < κ〉 be a sequence of closed unbounded sets. It is clear
from the definition that if we replace each Cα by

⋂
ξ≤α Cξ, the diagonal
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intersection is the same. In view of Theorem 8.3 we may thus assume that

C0 ⊃ C1 ⊃ . . . ⊃ Cα ⊃ . . . (α < κ).

Let C = α<κ Cα. To show that C is closed, let α be a limit point of C.
We want to show that α ∈ C, or that α ∈ Cξ for all ξ < α. If ξ < α, let
X = {ν ∈ C : ξ < ν < α}. Every ν ∈ X is in Cξ, by (8.3). Hence X ⊂ Cξ

and α = sup X ∈ Cξ. Therefore α ∈ C and C is closed.
To show that C is unbounded, let α < κ. We construct a sequence 〈βn :

n < ω〉 as follows: Let β0 > α be such that β0 ∈ C0, and for each n, let
βn+1 > βn be such that βn+1 ∈ Cβn . Let us show that β = limn βn is in C: If
ξ < β, let us show that β ∈ Cξ. Since ξ < β, there is an n such that ξ < βn.
Each βk, k > n, belongs to Cβn and so β ∈ Cβn . Therefore β ∈ Cξ. Thus
β ∈ C, and C is unbounded. ��

Corollary 8.5. The closed unbounded filter on κ is closed under diagonal
intersections. ��

The dual of the closed unbounded filter is the ideal of nonstationary sets,
the nonstationary ideal INS. INS is κ-complete and is closed under diagonal
unions : ∑

α<κ
Xα = {ξ < κ : ξ ∈

⋃
α<ξ

Xα}.

The quotient algebra B = P (κ)/INS is a κ-complete Boolean algebra,
where the Boolean operations

∑
α<γ and

∏
α<γ for γ < κ are induced by⋃

α<γ and
⋂

α<γ . As a consequence of Lemma 8.4, B is κ+-complete: If
{Xα : α < κ} is a collection of subsets of κ then the equivalence classes of
α<κ Xα and

∑
α<κ Xα are, respectively, the greatest lower bound and the

least upper bound of the equivalence classes [Xα] in B. It also follows that if
〈Xα : α < κ〉 and 〈Yα : α < κ〉 are two enumerations of the same collection,
then α<κ Xα and α<κ Yα differ only by a nonstationary set.

Definition 8.6. An ordinal function f on a set S is regressive if f(α) < α
for every α ∈ S, α > 0.

Theorem 8.7 (Fodor). If f is a regressive function on a stationary set
S ⊂ κ, then there is a stationary set T ⊂ S and some γ < κ such that
f(α) = γ for all α ∈ T .

Proof. Let us assume that for each γ < κ, the set {α ∈ S : f(α) = γ} is
nonstationary, and choose a closed unbounded set Cγ such that f(α) �= γ
for each α ∈ S ∩ Cγ . Let C = γ<κ Cγ . The set S ∩ C is stationary and if
α ∈ S ∩C, we have f(α) �= γ for every γ < α; in other words, f(α) ≥ α. This
is a contradiction. ��
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For a regular uncountable cardinal κ and a regular λ < κ, let

(8.4) Eκ
λ = {α < κ : cf α = λ}.

It is easy to see that each Eκ
λ is a stationary subset of κ.

The closed unbounded filter on κ is not an ultrafilter. This is because
there is a stationary subset of κ whose complement is stationary. If κ > ω1,
this is clear: The sets Eκ

ω and Eκ
ω1

are disjoint. If κ = ω1, the decomposition
of ω1 into disjoint stationary sets uses the Axiom of Choice.

The use of AC is necessary: It is consistent (relative to large cardinals)
that the closed unbounded filter on ω1 is an ultrafilter.

In Theorem 8.10 below we show that every stationary subset of κ is the
union of κ disjoint stationary sets. In the following lemma we prove a weaker
result that illustrates a typical use of Fodor’s Theorem.

Lemma 8.8. Every stationary subset of Eκ
ω is the union of κ disjoint sta-

tionary sets.

Proof. Let W ⊂ {α < κ : cf α = ω} be stationary. For every α ∈ W , we
choose an increasing sequence 〈aα

n : n ∈ N〉 such that limn aα
n = α. First we

show that there is an n such that for all η < κ, the set

(8.5) {α ∈ W : aα
n ≥ η}

is stationary. Otherwise there is ηn and a closed unbounded set Cn such that
aα

n < ηn for all α ∈ Cn ∩ W , for every n. If we let η be the supremum
of the ηn and C the intersection of the Cn, we have aα

n < η for all n and
all α ∈ C ∩ W . This is a contradiction. Now let n be such that (8.5) is
stationary for every η < κ. Let f be the following function on W : f(α) = aα

n.
The function f is regressive; and so for every η < κ, we find by Fodor’s
Theorem a stationary subset Sη of (8.5) and γη ≥ η such that f(α) = γη

on Sη. If γη �= γη′ , then Sη ∩ Sη′ = ∅, and since κ is regular, we have
|{Sη : η < κ}| = |{γη : η < κ}| = κ. ��

The proof easily generalizes to the case when λ > ω: Every stationary
subset of Eκ

λ the union of κ stationary sets. From that it follows that every
stationary subset W of the set {α < κ : cf α < α} admits such a decompo-
sition: By Fodor’s Theorem, there exists some λ < κ such that W ∩ Eκ

λ is
stationary. The remaining case in Theorem 8.10 is when the set {α < κ : α is
a regular cardinal} is stationary and the following lemma plays the key role.

Lemma 8.9. Let S be a stationary subset of κ and assume that every α ∈ S
is a regular uncountable cardinal. Then the set T = {α ∈ S : S ∩ α is not
a stationary subset of α} is stationary.

Proof. We prove that T intersects every closed unbounded subset of κ. Let
C be closed unbounded. The set C ′ of all limit points of C is also closed
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unbounded, and hence S∩C′ �= ∅. Let α be the least element of S∩C′. Since
α is regular and a limit point of C, C ∩α is a closed unbounded subset of α,
and so is C′ ∩ α. As α is the least element of S ∩ C′, C′ ∩ α is disjoint from
S ∩ α and so S ∩ α is a nonstationary subset of α. Hence α ∈ T ∩ C. ��

Theorem 8.10 (Solovay). Let κ be a regular uncountable cardinal. Then
every stationary subset of κ is the disjoint union of κ stationary subsets.

Proof. We follow the proof of Lemma 8.8 as much as possible. Let A be
a stationary subset of κ. By Lemma 8.8, by the subsequent discussion and
by Lemma 8.9, we may assume that the set W of all α ∈ A such that α is
a regular cardinal and A ∩ α is not stationary, is stationary. There exists for
each α ∈ W a continuous increasing sequence 〈aα

ξ : ξ < α〉 such that aα
ξ /∈ W ,

for all α and ξ, and α = limξ→α aα
ξ .

First we show that there is ξ such that for all η < κ, the set

(8.6) {α ∈ W : aα
ξ ≥ η}

is stationary. Otherwise, there is for each ξ some η(ξ) and a closed unbounded
set Cξ such that aα

ξ < η(ξ) for all α ∈ Cξ ∩ W if aα
ξ is defined. Let C be

the diagonal intersection of the Cξ. Thus if α ∈ C ∩ W , then aα
ξ < η(ξ) for

all ξ < α. Now let D be the closed unbounded set of all γ ∈ C such that
η(ξ) < γ for all ξ < γ. Since W is stationary, W ∩ D is also stationary; let
γ < α be two ordinals in W ∩ D. Now if ξ < γ, then aα

ξ < η(ξ) < γ and it
follows that aα

γ = γ. This is a contradiction since γ ∈ W and aα
γ /∈ W .

Once we have found ξ such that (8.6) is stationary for all η < κ, we
proceed as in Lemma 8.8. Let f be the function on W defined by f(α) = aα

ξ .
The function f is regressive; and so for every η < κ, we find by Fodor’s
Theorem a stationary subset Sη of (8.6) and γη ≥ η such that f(α) = γη

on Sη. If γη �= γη′ , then Sη ∩ Sη′ = ∅; and since κ is regular, we have
|{Sη : η < κ}| = |{γη : η < κ}| = κ. ��

Mahlo Cardinals

Let κ be an inaccessible cardinal. The set of all cardinals below κ is a closed
unbounded subset of κ, and so is the set of its limit points, the set of all
limit cardinals. In fact, the set of all strong limit cardinals below κ is closed
unbounded.

If κ is the least inaccessible cardinal, then all strong limit cardinals below κ
are singular, and so the set of all singular strong limit cardinals below κ is
closed unbounded. If κ is the αth inaccessible, where α < κ, then still the set
of all regular cardinals below κ is nonstationary.

An inaccessible cardinal κ is called a Mahlo cardinal if the set of all regular
cardinals below κ is stationary.
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(Then the set of all inaccessibles below κ is stationary, and κ is the κth
inaccessible cardinal.)

Similarly, we define a weakly Mahlo cardinal as a cardinal κ that is weakly
inaccessible and the set of all regular cardinals bellow κ is stationary (then
the set of all weakly inaccessibles is stationary in κ).

Normal Filters

Let F be a filter on a cardinal κ; F is normal if it is closed under diagonal
intersections:

(8.7) if Xα ∈ F for all α < κ, then α<κ Xα ∈ F .

An ideal I on κ is normal if the dual filter is normal.
The closed unbounded filter is κ-complete and normal, and contains all

complements of bounded sets. It is the smallest such filter on κ:

Lemma 8.11. If κ is regular and uncountable and if F is a normal filter
on κ that contains all final segments {α : α0 < α < κ}, then F contains all
closed unbounded sets.

Proof. First we note that the set C0 of all limit ordinals is in F : C0 is the
diagonal intersection of the sets Xα = {ξ : α + 1 < ξ < κ}. Now let C
be a closed unbounded set, and let C = {aα : α < κ} be its increasing
enumeration. We let Xα = {ξ : aα < ξ < κ}. Then C ⊃ C0 ∩α<κ Xα. ��

Silver’s Theorem

We shall now apply the techniques using ultrafilters and stationary sets to
prove the following theorems.

Theorem 8.12 (Silver). Let κ be a singular cardinal such that cf κ > ω. If
2α = α+ for all cardinals α < κ, then 2κ = κ+.

Theorem 8.13 (Silver). If the Singular Cardinals Hypothesis holds for all
singular cardinals of cofinality ω, then it holds for all singular cardinals.

The proofs of both theorems use the following lemma:

Lemma 8.14. Let κ be a singular cardinal, let cf κ > ω, and assume that
λcf κ < κ for all λ < κ. If 〈κα : α < cf κ〉 is a normal sequence of cardinals
such that limκα = κ, and if the set {α < cf κ : κcf κα

α = κ+
α} is stationary

in cf κ, then κcf κ = κ+.
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If GCH holds below κ then the assumptions of Lemma 8.14 are satisfied,
and 2κ = κcf κ. Thus Theorem 8.12 follows from Lemma 8.14.

Proof of Theorem 8.13. We prove by induction on the cofinality of κ that
2cf κ < κ implies κcf κ = κ+. The assumption of the theorem is that this
holds for each κ of cofinality ω. Thus let κ be of uncountable cofinality and
let 2cf κ < κ. Using the induction hypothesis and the proof of Theorem 5.22(ii)
one verifies, by induction on λ, that λcf κ < κ for all λ < κ.

Let 〈κα : α < cf κ〉 be any normal sequence of cardinals such that lim κα =
κ. The set S = {α < cf κ : cf κα = ω and 2ℵ0 < κα} is clearly stationary
in cf κ, and for every α ∈ S, κcf κα

α = κ+
α by the assumption. Hence κcf κ = κ+.

��

We now proceed toward a proof of Lemma 8.14. To simplify the notation,
we shall consider the special case when

κ = ℵω1 .

The general case is proved in a similar way.
Let f and g be two functions on ω1. We say that f and g are almost

disjoint if there is α0 < ω1 such that f(α) �= g(α) for all α ≥ α0. A family F
of functions on ω1 is an almost disjoint family if any two distinct f, g ∈ F
are almost disjoint.

Lemma 8.14 follows from

Lemma 8.15. Assume that ℵℵ1
α < ℵω1 for all α < ω1. Let F be an almost

disjoint family of functions

F ⊂
∏

α<ω1

Aα,

such that the set

(8.8) {α < ω1 : |Aα| ≤ ℵα+1}

is stationary. Then |F | ≤ ℵω1+1.

[In the general case, we consider almost disjoint functions on cf κ.]

Proof of Lemma 8.14 from Lemma 8.15. We assume that ℵℵ1
α < ℵω1 and

that ℵcf ℵα
α = ℵα+1 for a stationary set of α’s; we want to show that

ℵℵ1
ω1

= ℵω1+1. For every h : ω1 → ℵω1 , we let fh = 〈hα : α < ω1〉, where
domhα = ω1 and

hα(ξ) =
{

h(ξ) if h(ξ) < ℵα,

0 otherwise,

and let F = {fh : h ∈ ℵω1
ω1}. If h �= g, then fh and fg are almost disjoint.

Moreover,
F ⊂

∏
α<ω1

ℵα
ω1 .
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Since for a stationary set of α’s, ℵℵ1
α = ℵα+1 (namely for all α such that

ℵα > 2ℵ1 and ℵℵ0
α = ℵα+1), we have |F | ≤ ℵω1+1, and so |ℵω1

ω1 | = ℵω1+1.
[In the general case of Lemma 8.14 we have to show that

{α < cf κ : κcf κα
α = κ+

α}

is stationary. Note that the set

C = {α : α is a limit ordinal and (∀λ < κα)λcf κ < κα}

is closed unbounded in cf κ; if α ∈ C, then cf κα < cf κ and we have κcf κ
α =

κcf α
α .] ��

The first step in the proof of Lemma 8.15 is

Lemma 8.16. Assume that ℵℵ1
α < ℵω1 for all α < ω1. Let F be an almost

disjoint family of functions

F ⊂
∏

α<ω1

Aα

such that the set

(8.9) {α < ω1 : |Aα| ≤ ℵα}

is stationary. Then |F | ≤ ℵω1 .

(The assumption (8.8) is replaced by (8.9) and the bound for |F | is ℵω1

rather than ℵω1+1.)

Proof. We may as well assume that each Aα is a set of ordinals and that
Aα ⊂ ωα for all α in some stationary subset of ℵ1. Let

S0 = {α < ω1 : α is a limit ordinal and Aα ⊂ ωα}.

Thus if f ∈ F , then f(α) < ωα for all α ∈ S0. Given f ∈ F , we can find for
each α > 0 in S0 some β < α such that f(α) < ωβ ; call this β = g(α). The
function g is regressive on S, and by Fodor’s Theorem there is a stationary
S ⊂ S0 such that g is constant on S. In other words, the function f is bounded
on S, by some ωγ < ωω1 .

We assign to each f a pair (S, f�S) where S ⊂ S0 is a stationary set and
f�S is a bounded function. For any S, if f�S = g�S, then f = g since any
two distinct functions in F are almost disjoint. Thus the correspondence

f �→ (S, f�S)

is one-to-one.
For a given S, the number of bounded functions on S is at most∑

γ<ω1

ℵ|S|
γ = supγ<ω1

ℵℵ1
γ = ℵω1 .

Since |P (ω1)| = 2ℵ1 < ℵω1 , the number of pairs (S, f�S) is at most ℵω1 .
Hence |F | ≤ ℵω1 . ��
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Proof of Lemma 8.15. Let U be an ultrafilter on ω1 that extends the closed
unbounded filter. Every S ∈ U is stationary.

We may assume that each Aα is a subset of ωα+1. For every f, g ∈ F , let

(8.10) f < g if and only if {α < ω1 : f(α) < g(α)} ∈ U .

Since U is a filter, the relation f < g is transitive. Since U is an ultrafilter,
and {α : f(α) = g(α)} /∈ U for distinict f, g ∈ F , the relation f < g is a linear
ordering of F . For every f ∈ F , let Ff = {g ∈ F : for some stationary set T ,
g(α) < f(α) for all α ∈ T }. By Lemma 8.16, |Ff | ≤ ℵω1 . If g < f , then
g ∈ Ff , and so |{g ∈ F : g < f}| ≤ ℵω1 . It follows that |F | ≤ ℵω1+1. ��

A Hierarchy of Stationary Sets

If α is a limit ordinal of uncountable cofinality, it still makes sense to
talk about closed unbounded and stationary subsets of α. Since cf α > ω,
Lemma 8.2 holds, and the closed unbounded sets generate a filter on α. The
closed unbounded filter is cf α-complete. A set S ⊂ α is stationary if and only
if for some (or for any) normal function f : cf α → α, f−1(S) is a stationary
subset of cf α.

Let κ be a regular uncountable cardinal, and let us consider the following
operation (the Mahlo operation) on stationary sets:

Definition 8.17. If S ⊂ κ is stationary, the trace of S is the set

Tr(S) = {α < κ : cf α > ω and S ∩ α is stationary}.

The Mahlo operation is invariant under equivalence mod INS and can
thus be considered as an operation on the Boolean algebra P (κ)/INS (see
Exercise 8.11).

In the context of closed unbounded and stationary sets we use the phrase
for almost all α ∈ S to mean that the set of all contrary α ∈ S is nonsta-
tionary.

Definition 8.18. Let S and T be stationary subsets of κ.

S < T if and only if S ∩ α is stationary for almost all α ∈ T .

(It is implicit in the definition that almost all α ∈ T have uncountable cofi-
nality.)

As an example, if λ < µ are regular, then Eκ
λ < Eκ

µ . The following prop-
erties are easily verified:

Lemma 8.19.

(i) A < Tr(A),
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(ii) if A < B and B < C then A < C,
(iii) if A < B, A � A′ mod INS and B � B′ mod INS then A′ < B′. ��

Thus < is a transitive relation on P (κ)/INS. The next theorem shows that
it is a well-founded partial ordering:

Theorem 8.20 (Jech). The relation < is well-founded.

Proof. Assume to the contrary that there exist stationary sets such that
A1 > A2 > A3 . . .. Therefore there exist closed unbounded sets Cn such that
An ∩ Cn ⊂ Tr(An+1) for n = 1, 2, 3, . . . . For each n, let

Bn = An ∩ Cn ∩ Lim(Cn+1) ∩ Lim(Lim(Cn+2)) ∩ . . .

where Lim(C) is the set of all limit points of C.
Each Bn is stationary, and for every n, Bn ⊂ Tr(Bn+1). Let αn = min Bn.

Since Bn+1∩αn is stationary, we have αn+1 < αn and therefore, a decreasing
sequence α1 > α2 > . . .. A contradiction. ��

The rank of a stationary set A ⊂ κ in the well-founded relation < is called
the order of the set A, and the height of < is the order of the cardinal κ:

o(A) = sup{o(X) + 1 : X < A},
o(κ) = sup{o(A) + 1 : A ⊂ κ is stationary}.

We also define o(ℵ0) = 0, and o(α) = o(cf α) for every limit ordinal α. Note
that o(Eκ

ω) = 0, o(Eκ
ω1

) = 1, o(ℵ1) = 1, o(ℵ2) = 2, etc. See Exercises 8.13
and 8.14.

The Closed Unbounded Filter on Pκ(λ)

We shall now consider a generalization of closed unbounded and stationary
sets, to the space Pκ(λ). This generalization replaces (κ, <) with the structure
(Pκ(λ),⊂).

Let κ be a regular uncountable cardinal and let A be a set of cardinality
at least κ.

Definition 8.21. A set X ⊂ Pκ(A) is unbounded if for every x ∈ Pκ(A)
there exists a y ⊃ x such that y ∈ X .

A set X ⊂ Pκ(A) is closed if for any chain x0 ⊂ x1 ⊂ . . . ⊂ xξ ⊂ . . .,
ξ < α, of sets in X , with α < κ, the union

⋃
ξ<α xξ is in X .

A set C ⊂ Pκ(A) is closed unbounded if it is closed and unbounded.
A set S ⊂ Pκ(A) is stationary if S ∩ C �= ∅ for every closed unbounded

C ⊂ Pκ(A).
The closed unbounded filter on Pκ(A) is the filter generated by the closed

unbounded sets.
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When |A| = |B| then Pκ(A) and Pκ(B) are isomorphic, with closed un-
bounded and stationary sets corresponding to closed unbounded and sta-
tionary sets, and so it often suffices to consider such sets in Pκ(λ) where λ is
a cardinal ≥ κ.

When |A| = κ, then the set κ ⊂ Pκ(κ) is closed unbounded, and the
closed unbounded filter on κ is the restriction to κ of the closed unbounded
filter on Pκ(κ).

Theorem 8.22 (Jech). The closed unbounded filter on Pκ(A) is κ-complete.

Proof. This is a generalization of Theorem 8.3. First we proceed as in
Lemma 8.2 and show that if C and D are closed unbounded then C ∩ D
is closed unbounded. Both proofs have straightforward generalizations from
(κ, <) to (Pκ(A),⊂). ��

Fodor’s Theorem also generalizes to Pκ(A); with regressive functions re-
placed by choice functions. The diagonal intersection of subsets of Pκ(A) is
defined as follows


a∈A

Xa = {x ∈ Pκ(A) : x ∈
⋂

a∈x
Xa}.

Lemma 8.23. If {Ca : a ∈ A} is a collection of closed unbounded subsets
of Pκ(A) then its diagonal intersection is closed unbounded.

Proof. Let C = a∈A Ca. First we show that C is closed. Let x0 ⊂ x1 ⊂
. . . ⊂ xξ ⊂ . . ., ξ < α, be a chain in C, with α < κ, and let x be its union. To
show that x ∈ C, let a ∈ x and let us show that x ∈ Ca. There is some η < α
such that a ∈ xξ for all ξ ≥ η; hence xξ ∈ Ca for all ξ ≥ η, and so x ∈ Ca.

Now we show that C is unbounded. Let x0 ∈ Pκ(A), we shall find an
x ∈ C such that x ⊃ x0. By induction, we find x0 ⊂ x1 ⊂ . . . ⊂ xn ⊂ . . .,
n ∈ N , such that xn+1 ∈

⋂
a∈xn

Ca; this is possible because each
⋂

a∈xn
Ca

is closed unbounded. Then we let x =
⋃∞

n=0 xn and show that x ∈ Ca for
all a ∈ x. But if a ∈ x then a ∈ xk for some k, and then xn ∈ Ca for all
n ≥ k + 1. Hence x ∈ Ca. ��

Theorem 8.24 (Jech). If f is a function on a stationary set S ⊂ Pκ(λ)
and if f(x) ∈ x for every nonempty x ∈ S, then there exist a stationary set
T ⊂ S and some a ∈ A such that f(x) = a for all a ∈ T .

Proof. The proof uses Lemma 8.23 and generalizes the proof of Theorem 8.7.
��

Let us call a set D ⊂ Pκ(A) directed if for all x and y in D there is a z ∈ D
such that x ∪ y ⊂ z.

Lemma 8.25. If C is a closed subset of Pκ(A) then for every directed set
D ⊂ C with |D| < κ,

⋃
D ∈ C.
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Proof. By induction on |D|. Let |D| = γ, D = {xα : α < γ}, and assume
the lemma holds for every directed set of cardinality < γ. By induction on
α < γ, let Dα be a smallest directed subset of D such that xα ∈ Dα and
Dα ⊃

⋃
β<α Dβ . Letting yα =

⋃
Dα, we have yα ∈ C for all α < γ, and

yβ ⊂ yα if β < α. It follows that
⋃

D =
⋃

α<γ yα ∈ C. ��

Consider a function f : [A]<ω → Pκ(A); a set x ∈ Pκ(A) is a closure point
of f if f(e) ⊂ x whenever e ⊂ x. The set Cf of all closure points x ∈ Pκ(A) is
a closed unbounded set. Moreover, the sets Cf generate the closed unbounded
filter:

Lemma 8.26. For every closed unbounded set C in Pκ(A) there exists
a function f : [A]<ω → Pκ(A) such that Cf ⊂ C.

Proof. By induction on |e| we find for each e ∈ [A]<ω an infinite set f(e) ∈ C
such that e ⊂ f(e) and that f(e1) ⊂ f(e2) whenever e1 ⊂ e2. We will show
that Cf ⊂ C. Let x be a closure point of f . As x =

⋃
{f(e) : e ∈ [x]<ω} is

the union of a directed subset of C (of cardinality < κ), by Lemma 8.25 we
have x ∈ C. ��

Let A ⊂ B (and |A| ≥ κ). For X ∈ Pκ(B), the projection of X to A is
the set

X�A = {x ∩ A : x ∈ X}.
For Y ∈ Pκ(A), the lifting of Y to B is the set

Y B = {x ∈ Pκ(B) : x ∩ A ∈ Y }.

Theorem 8.27 (Menas). Let A ⊂ B.

(i) If S is stationary in Pκ(B), then S�A is stationary in Pκ(A).
(ii) If S is stationary in Pκ(A), then SB is stationary in Pκ(B).

Proof. (i) holds because if C is a closed unbounded set in Pκ(A), then CB

is closed unbounded in Pκ(B). For (ii), it suffices to prove that if C is closed
unbounded in Pκ(B), then C�A contains a closed unbounded set.

If C ⊂ Pκ(B) is closed unbounded, then by Lemma 8.26, C ⊃ Cf for
some f : [B]<ω → Pκ(B). Let g : [A]<ω → Pκ(A) be the following function:
For e ∈ [A]<ω, let x be the smallest closure point of f such that x ⊃ e, and
let g(e) = x ∩ A. Then Cf �A = Cg (where Cf is defined in Pκ(B) and Cg

in Pκ(A)), and we have Cg ⊂ C�A. ��

When κ = ω1, Lemma 8.26 can be improved to give the following basis
theorem for [A]ω = {x ⊂ A : |x| = ℵ0}. An operation on A is a function
F : [A]<ω → A. A set x is closed under F if f(e) ∈ x for all e ∈ [x]<ω .

Theorem 8.28 (Kueker). For every closed unbounded set C ⊂ [A]ω there
is an operation F on A such that C ⊃ CF = {x ∈ [A]ω : x is closed under F}.
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Proof. We may assume that A = λ is an infinite cardinal, and let C be
a closed unbounded subset of [λ]ω . As in the proof of Lemma 8.26 there
exists a function f : [λ]<ω → C such that e ⊂ f(e) and f(e1) ⊂ f(e2) if
e1 ⊂ e2. As each f(e) is countable, there exist functions fk, k ∈ N , such that
f(e) = {fk(e) : k ∈ N} for all e. Let n �→ (kn, mn) be a pairing function.

Now we define an operation F on λ as follows: Let F ({α}) = α + 1, and
if α1 < . . . < αn, let F ({α1, . . . , αn}) = fkn({α1, . . . , αmn}). It is enough to
show that if x ∈ [λ]ω is closed under F then x is a closure point of f , and so
CF ⊂ Cf ⊂ C.

Let x be closed under F , let k ∈ N and let e ∈ [x]<ω ; we want to show
that fk(e) ∈ x. If e = {α1, . . . , αm} with α1 < . . . < αm, let n ≥ m be such
that k = kn and m = mn. As x does not have a greatest element (because
F ({α}) = α + 1), there are αm+1, . . . , αn ∈ x such that fk({α1, . . . , αm}) =
F ({α1, . . . , αn}) ∈ x. ��

Theorem 8.28 does not generalize outright to Pκ(A) for κ > ω1 (see
Exercise 8.18); we shall return to the subject in Part III.

Exercises

8.1. The set of all fixed points (i.e., f(α) = α) of a normal function is closed
unbounded.

8.2. If f : κ → κ, then the set of all α < κ such that f(ξ) < α for all ξ < α is
closed unbounded.

8.3. If S is stationary and C is closed unbounded, then S ∩ C is stationary.

8.4. If X ⊂ κ is nonstationary, then there exists a regressive function f on X such
that {α : f(α) ≤ γ} is bounded, for every γ < κ.

[Let C ∩X = ∅, and let f(α) = sup(C ∩ α).]

8.5. For every stationary S ⊂ ω1 and every α < ω1 there is a closed set of ordinals A
of length α such that A ⊂ S.

[By induction on α: ∀γ ∃closed A ⊂ S of length α such that γ < min A. The
nontrivial step: If true for a limit α, find a closed A ⊂ S of length α such that
sup A ∈ S. Let Aξ, ξ < ω1, be closed subsets of S, of length α, such that λξ =
sup

S

ν<ξ Aν < min Aξ. There is ξ such that λξ ∈ S. Let ξ = limn ξn. Pick initial
segments Bξn ⊂ Aξn of length αn + 1 where limn αn = α. Let A =

S∞
n=0 Bξn .]

Exercise 8.5 does not generalize to closed sets of uncountable length. It is not
provable in ZFC that given X ⊂ ω2, either X or ω2 − X contains a closed set
of length ω1. On the other hand, this statement is consistent, relative to large
cardinals.

8.6. Let κ be the least inaccessible cardinal such that κ is the κth inaccessible
cardinal. Then κ is not Mahlo.

[Use f(λ) = α where λ is the αth inaccessible.]
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8.7. If κ is a limit (weakly inaccessible, weakly Mahlo) cardinal and the set of
all strong limit cardinals below κ is unbounded in κ, then κ is a strong limit
(inaccessible, Mahlo) cardinal.

8.8. A κ-complete ideal I on κ is normal if and only if for every S0 /∈ I and any
regressive f on S0 there is S ⊂ S0, S /∈ I , such that f is constant on S.

[One direction is like Fodor’s Theorem. For the other direction, let Xα ∈ F for
each α < κ. If �Xα /∈ F , let S0 = κ−�Xα and let f(α) = some ξ < α such that
α /∈ Xξ . If f(α) = γ for all α ∈ S, then Xγ ∩ S = ∅, a contradiction.]

8.9. There is no normal nonprincipal filter on ω.
[Use the regressive function f(n + 1) = n.]

8.10. If κ is singular, then there is no normal ideal on κ that contains all bounded
subsets of κ.

8.11. (i) If S ⊂ T then Tr(S) ⊂ Tr(T ),

(ii) Tr(S ∪ T ) = Tr(S) ∪ Tr(T ),

(iii) Tr(Tr(S)) ⊂ Tr(S),

(iv) if S � T mod INS then Tr(S) � Tr(T ) mod INS.

8.12. Show that Tr(Eκ
λ) = {α < κ : cf α ≥ λ+}.

8.13. If λ < κ is the αth regular cardinal cardinal, then o(Eκ
λ) = α.

8.14. o(κ) ≥ κ if and only if κ is weakly inaccessible; o(κ) ≥ κ + 1 if and only if
κ is weakly Mahlo.

8.15. For each a ∈ Pκ(A), the set {x ∈ Pκ(A) : x ⊃ a} is closed unbounded.

A κ-complete filter F on Pκ(A) is normal if for every a ∈ A, {x ∈ Pκ(A) :
a ∈ x} ∈ F , and if F is closed under diagonal intersections. A set X ⊂ Pκ(A) is
F-positive if its complement is not in F .

8.16. Let F be a normal κ-complete filter on Pκ(A). If g is a function on an F -
positive set such that g(x) ∈ [x]<ω for all x, then g is constant on an F -positive
set.

8.17. If F is a normal κ-complete filter on Pκ(A) then F contains all closed un-
bounded sets.

[Use Lemma 8.26 and Exercise 8.16.]

8.18. If κ > ω1 then the set {x ∈ Pκ(A) : |x| ≥ ℵ1} is closed unbounded.

Contrast this with the fact that for every F : [A]<ω → A there exists a count-
able x closed under A.

8.19. The set {x ∈ Pκ(λ) : x ∩ κ ∈ κ} is closed unbounded.
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Historical Notes

The definition of stationary set is due to Bloch [1953], and the fundamental theo-
rem (Theorem 8.7) was proved by Fodor [1956]. (A precursor of Fodor’s Theorem
appeared in Aleksandrov-Urysohn [1929].) The concept of stationary sets is implicit
in Mahlo [1911].

Theorem 8.10 was proved by Solovay [1971] using the technique of saturated
ideals.

Mahlo cardinals are named after P. Mahlo, who in 1911–1913 investigated what
is now called weakly Mahlo cardinals. Theorems 8.12 and 8.13 are due to Sil-
ver [1975]. Silver’s proof uses generic ultrapowers; the elementary proof given here
is as in Baumgartner-Prikry [1976, 1977]. Lemma 8.16: Erdös, Hajnal, and Mil-
ner [1968].

Definition 8.18 and Theorem 8.20 are due to Jech [1984]. The generalization of
closed unbounded and stationary sets (Definition 8.21 and Theorems 8.22 and 8.24)
was given by Jech [1971b] and [1972/73]; Kueker [1972, 1977] also formulated
these concepts for κ = ω1 and proved Theorem 8.28. Theorem 8.27 is due to
Menas [1974/75].

Exercise 8.5: Friedman [1974].
Exercise 8.17: Carr [1982].



9. Combinatorial Set Theory

In this chapter we discuss topics in infinitary combinatorics such as trees and
partition properties.

Partition Properties

Let us consider the following argument (the pigeonhole principle): If seven
pigeons occupy three pigeonholes, then at least one pigenhole is occupied by
three pigeons. More generally: If an infinite set is partitioned into finitely
many pieces, then at least one piece is infinite.

Recall that a partition of a set S is a pairwise disjoint family P = {Xi :
i ∈ I} such that

⋃
i∈I Xi = S. With the partition P we can associate a func-

tion F : S → I such that F (x) = F (y) if and only if x and y are in the same
X ∈ P . Conversely, any function F : S → I determines a partition of S. (We
shall sometimes say that F is a partition of S.)

For any set A and any natural number n > 0,

(9.1) [A]n = {X ⊂ A : |X | = n}

is the set of all subsets of A that have exactly n elements. It is sometimes
convenient, when A is a set of ordinals, to identify [A]n with the set of all
sequences 〈α1, . . . , αn〉 in A such that α1 < . . . < αn. We shall consider
partitions of sets [A]n for various infinite sets A and natural numbers n. Our
starting point is the theorem of Ramsey dealing with finite partitions of [ω]n.

If {Xi : i ∈ I} is a partition of [A]n, then a set H ⊂ A is homogeneous for
the partition if for some i, [H ]n is included in Xi; that is, if all the n-element
subsets of H are in the same piece of the partition.

Theorem 9.1 (Ramsey). Let n and k be natural numbers. Every partition
{X1, . . . , Xk} of [ω]n into k pieces has an infinite homogeneous set.

Equivalently, for every F : [ω]n → {1, . . . , k} there exists an infinite H ⊂
ω such that F is constant on [H ]n.

Proof. By induction on n. If n = 1, the theorem is trivial, so we assume
that it holds for n and prove for n + 1. Let F be a function from [ω]n+1 into
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{1, . . . , k}. For each a ∈ ω, let Fa be the function on [ω − {a}]n defined as
follows:

Fa(X) = F ({a} ∪ X).

By the induction hypothesis, there exists for each a ∈ ω and each infinite
S ⊂ ω an infinite set HS

a ⊂ S − {a} such that Fa is constant on [HS
a ]n. We

construct an infinite sequence 〈ai : i = 0, 1, 2, . . .〉: We let S0 = ω and a0 = 0,
and

Si+1 = HSi
ai

, ai+1 = the least element of Si+1 greater than ai.

It is clear that for each i ∈ ω, the function Fai is constant on [{am : m > i}]n;
let G(ai) be its value. Now there is an infinite subset H ⊂ {ai : i ∈ ω}
such that G is constant on H . It follows that F is constant on [H ]n+1;
this is because for x1 < . . . < xn+1 in H we have F ({x1, . . . , xn+1}) =
Fx1({x2, . . . , xn+1}). ��

The following lemma explains the terminology introduced in Chapter 7
where Ramsey ultrafilters were defined:

Lemma 9.2. Let D be a nonprincipal ultrafilter on ω. D is Ramsey if and
only if for all natural numbers n and k, every partition F : [ω]n → {1, . . . , k}
has a homogeneous set H ∈ D.

Proof. First assume that D has the partition property stated in the lemma.
Let A be a partition of ω such that A /∈ D for all A ∈ A; we shall find
X ∈ D such that |X ∩ A| ≤ 1 for all A ∈ A. Let F : [ω]2 → {0, 1} be as
follows: F (x, y) = 1 if x and y are in different members of A. If H ∈ D is
homogeneous for F , then clearly H has at most one element common with
each A ∈ A.

Now let us assume that D is a Ramsey ultrafilter. We shall first prove
that D has the following property:

(9.2) if X0 ⊃ X1 ⊃ X2 ⊃ . . . are sets in D, then there is a sequence
a0 < a1 < a2 < . . . such that {an}∞n=0 ∈ D, a0 ∈ X0 and an+1 ∈ Xan

for all n.

Thus let X0 ⊃ X1 ⊃ . . . be sets in D. Since D is a p-point, there exists Y ∈ D
such that each Y − Xn is finite. Let us define a sequence y0 < y1 < . . . in Y
as follows:

y0 = the least y0 ∈ Y such that {y ∈ Y : y > y0} ⊂ X0,

y1 = the least y1 ∈ Y such that y1 > y0 and {y ∈ Y : y > y1} ⊂ Xy0 ,

. . .

yn = the least yn ∈ Y such that yn > yn−1 and {y ∈ Y : y > yn} ⊂ Xyn−1.

For each n, let An = {y ∈ Y : yn < y ≤ yn+1}. Since D is Ramsey, there
exists a set {zn}∞n=0 ∈ D such that zn ∈ An for all n.



9. Combinatorial Set Theory 109

We observe that for each n, zn+2 ∈ Xzn : Since zn+2 > yn+2, we have
zn+2 ∈ Xyn+1, and since yn+1 ≥ zn, we have Xyn+1 ⊂ Xzn and hence
zn+2 ∈ Xzn .

Thus if we let an = z2n and bn = z2n+1, for all n, then either {an}∞n=0 ∈ D
or {bn}∞n=0 ∈ D; and in either case we get a sequence that satisfies (9.2).

Now we use the property (9.2) to prove the partition property; we proceed
by induction on n and follow closely the proof of Ramsey’s Theorem. Let F
be a function from [ω]n+1 into {1, . . . , k}. For each a ∈ ω, let Fa be the
function on [ω − {a}]n defined by Fa(x) = F (x ∪ {a}). By the induction
hypothesis, there exists for each a ∈ ω a set Ha ∈ D such that Fa is constant
on [Ha]n. There exists X ∈ D such that the constant value of Fa is the same
for all a ∈ X ; say Fa(x) = r for all a ∈ X and all x ∈ [Ha]n.

For each n, let Xn = X∩H0∩H1∩. . .∩Hn. By (9.2) there exists a sequence
a0 < a1 < a2 < . . . such that a0 ∈ X0 and an+1 ∈ Xan for each n, and that
{an}∞n=0 ∈ D. Let H = {an}∞n=0. It is clear that for each i ∈ ω, ai ∈ X and
{am : m > i} ⊂ Hai . Hence Fai(x) = r for all x ∈ [{am : m > i}]n, and it
follows that F is constant on [H ]n+1. ��

To facilitate our investigation of generalizations of Ramsey’s Theorem,
we shall now introduce the arrow notation. Let κ and λ be infinite cardinal
numbers, let n be a natural number and let m be a (finite or infinite) cardinal.
The symbol

(9.3) κ → (λ)n
m

(read: κ arrows λ) denotes the following partition property : Every partition
of [κ]n into m pieces has a homogeneous set of size λ. In other words, every
F : [κ]n → m is constant on [H ]n for some H ⊂ κ such that |H | = λ. Using
the arrow notation, Ramsey’s Theorem is expressed as follows:

(9.4) ℵ0 → (ℵ0)n
k (n, k ∈ ω).

The subscript m in (9.3) is usually deleted when m = 2, and so

κ → (λ)n

is the same as κ → (λ)n
2 .

The relation κ → (λ)n
m remains true if κ is made larger or if λ or m are

made smaller. A moment’s reflection is sufficient to see that the relation also
remains true when n is made smaller.

Obviously, the relation (9.3) makes sense only if κ ≥ λ and κ > m; if
m = κ, then it is clearly false. Thus we always assume 2 ≤ m < κ and λ ≤ κ.
If n = 1, then (9.3) holds just in case either κ > λ, or κ = λ and cf κ > m.
We shall concentrate on the nontrivial case: n ≥ 2.

We start with two negative partition relations.
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Lemma 9.3. For all κ,
2κ �→ (ω)2κ.

In other words, there is a partition of 2κ into κ pieces that does not have an
infinite homogeneous set.

Proof. In fact, we find a partition that has no homogeneous set of size 3. Let
S = {0, 1}κ and let F : [S]2 → κ be defined by F ({f, g}) = the least α < κ
such that f(α) �= g(α). If f , g, h are distinct elements of S, it is impossible
to have F ({f, g}) = F ({f, h}) = F ({g, h}). ��

Lemma 9.4. For every κ,
2κ �→ (κ+)2.

(Thus the obvious generalization of Ramsey’s Theorem, namely ℵ1 →
(ℵ1)22, is false.)

To construct a partition of [2κ]2 that violates the partition property, let
us consider the linearly ordered set (P, <) where P = {0, 1}κ, and f < g if
and only if f(α) < g(α) where α is the least α such that f(α) �= g(α) (the
lexicographic ordering of P ).

Lemma 9.5. The lexicographically ordered set {0, 1}κ has no increasing or
decreasing κ+-sequence.

Proof. Assume that W = {fα : α < κ+} ⊂ {0, 1}κ is such that fα < fβ

whenever α < β (the decreasing case is similar). Let γ ≤ κ be the least γ
such that the set {fα�γ : α < κ+} has size κ+, and let Z ⊂ W be such that
|Z| = κ+ and f�γ �= g�γ for f, g ∈ Z. We may as well assume that Z = W ,
so let us do so.

For each α < κ+, let ξα be such that fα�ξα = fα+1�ξα and fα(ξα) = 0,
fα+1(ξα) = 1; clearly ξα < γ. Hence there exists ξ < γ such that ξ = ξα

for κ+ elements fα of W . However, if ξ = ξα = ξβ and fα�ξ = fβ�ξ, then
fβ < fα+1 and fα < fβ+1; hence fα = fβ. Thus the set {fα�ξ : α < κ+} has
size κ+, contrary to the minimality assumption on γ. ��

Proof of Lemma 9.4. Let 2κ = λ and let {fα : α < λ} be an enumeration
of the set P = {0, 1}κ. Let ≺ be a linear ordering of λ induced by the
lexicographic ordering of P : α ≺ β if fα < fβ.

Now we define a partition F : [λ]2 → {0, 1} by letting F ({α, β}) = 1
when the ordering ≺ of {α, β} agrees with the natural ordering; and letting
F ({α, β}) = 0 otherwise. If H ⊂ λ is a homogeneous set of order-type κ+,
then {fα : α ∈ H} constitutes an increasing or decreasing κ+-sequence
in (P, <); a contradiction. ��

By Lemma 9.4, the relation κ → (ℵ1)2 is false if κ ≤ 2ℵ0 . On the other
hand, if κ > 2ℵ0 , then κ → (ℵ1)2 is true, as follows from this more general
theorem:
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Theorem 9.6 (Erdős-Rado).

�+
n → (ℵ1)n+1

ℵ0
.

In particular, (2ℵ0)+ → (ℵ1)2ℵ0
.

Proof. We shall first prove the case n = 1 since the induction step parallels
closely this case. Thus let κ = (2ℵ0)+ and let F : [κ]2 → ω be a partition
of [κ]2 into ℵ0 pieces. We want to find a homogeneous H ⊂ κ of size ℵ1.

For each a ∈ κ, let Fa be a function on κ − {a} defined by Fa(x) =
F ({a, x}). We shall first prove the following claim: There exists a set A ⊂ κ
such that |A| = 2ℵ0 and such that for every countable C ⊂ A and every
u ∈ κ − C there exists v ∈ A − C such that Fv agrees with Fu on C.

To prove the claim, we construct an ω1-sequence A0 ⊂ A1 ⊂ . . . ⊂ Aα ⊂
. . ., α < ω1, of subsets of κ, each of size 2ℵ0 , as follows: Let A0 be arbitrary,
and for each limit α, let Aα =

⋃
β<α Aβ . Given Aα, there exists a set Aα+1 ⊃

Aα of size 2ℵ0 such that for each countable C ⊂ Aα and every u ∈ κ − C
there exists v ∈ Aα+1 − C such that Fv agrees with Fu on C (because the
number of such functions is ≤ 2ℵ0). Then we let A =

⋃
α<ω1

Aα, and clearly
A has the required property.

Next we choose some a ∈ κ − A, and construct a sequence 〈xα : α < ω1〉
in A as follows: Let x0 be arbitrary, and given {xβ : β < α} = C, let xα be
some v ∈ A − C such that Fv agrees with Fa on C. Let X = {xα : α < ω1}.

Now we consider the function G : X → ω defined by G(x) = Fa(x). It is
clear that if α < β, then F ({xα, xβ}) = Fxβ

(xα) = Fa(xα) = G(xα). Since
the range of G is countable, there exists H ⊂ X of size ℵ1 such that G is
constant on H . It follows that F is constant on [H ]2.

Thus we have proved the theorem for n = 1. The general case is proved
by induction. Let us assume that �+

n−1 → (ℵ1)n
ℵ0

and let F : [κ]n+1 → ω,
where κ = �+

n . For each a ∈ κ, let Fa : [κ − {a}]n → ω be defined by
Fa(x) = F (x∪ {a}). As in the case n = 1, there exists a set A ⊂ κ of size �n

such that for every C ⊂ A of size |C| ≤ �n−1 and every u ∈ κ − C there
exists v ∈ A − C such that Fv agrees with Fu on [C]n.

Next we choose a ∈ κ−A and construct a set X = {xα : α < �+
n−1} ⊂ A

such that for each α, Fxα agrees with Fa on [{xβ : β < α}]n.
Then we consider G : [X ]n → ω where G(x) = Fa(x). As before, if

α1 < . . . < αn+1, then F ({xα1 , . . . , xαn+1}) = G({xα1 , . . . , xαn}). By the
induction hypothesis, there exists H ⊂ X of size ℵ1 such that G is constant
on [H ]n. It follows that F is constant on [H ]n+1. ��

Erdős and Rado proved that for each n, the partition property �+
n →

(ℵ1)n+1
ℵ0

is best possible. The property also generalizes easily to larger cardi-
nals.

A natural generalization of the partition property (9.3) is when we allow λ
to be a limit ordinal, not just a cardinal. Let κ, n and m be as in (9.3) and
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let α > 0 be a limit ordinal. The symbol

(9.5) κ → (α)n
m

stands for: For every F : [κ]n → m there exists an H ⊂ κ of order-type α
such that F is constant on [H ]n.

There are various results about the partition relation (9.5). For instance,
Baumgartner and Hajnal proved in [1973] that ℵ1 → (α)2 for all α < ω1.
The analogous case for ℵ2 is different: If 2ℵ0 = ℵ1, then ℵ2 → (ω1)2 (by
Erdős-Rado), but it is consistent (with 2ℵ0 = ℵ1) that ℵ2 �→ (ω1 + ω)2.

Among other generalizations of (9.3), we mention the following:

(9.6) κ → (α, β)n

means that for every F : [κ]n → {0, 1}, either there exists an H1 ⊂ κ of order-
type α such that F = 0 on [H1]n or there exists and H2 ⊂ κ of order-type β
such that F = 1 on [H2]n.

Theorem 9.7 (Dushnik-Miller). For every infinite cardinal κ,

κ → (κ, ω)2.

Proof. Let {A, B} be a partition of [κ]2. For every x ∈ κ, let Bx = {y ∈ κ :
x < y and {x, y} ∈ B}. First let us assume that in every set X ⊂ κ of
cardinality κ there exists an x ∈ X such that |Bx ∩ X | = κ. In this case, we
construct an infinite H with [H ]2 ⊂ B as follows:

Let X0 = κ and x0 ∈ X0 such that |Bx0 ∩X0| = κ. For each n, let Xn+1 =
Bxn ∩Xn and let xn+1 ∈ Xn+1 be such that xn+1 > xn and |Bxn+1∩Xn+1| =
κ. Then let H = {xn}∞n=0; it is clear that [H ]2 ⊂ B.

Thus let us assume, for the rest of the proof, that there exists a set S ⊂ κ
of cardinality κ such that

(9.7) for every x ∈ S, |Bx ∩ S| < κ.

If κ is regular, then we construct (by induction) an increasing κ-sequence
〈xα : α < κ〉 in S such that {xα, xβ} ∈ A for all α < β; this is possible
by (9.7).

Thus let us assume that κ is singular, let λ = cf κ and let 〈κξ : ξ < λ〉 be
an increasing sequence of regular cardinals > λ with limit κ. Furthermore,
we assume that there is no infinite H with [H ]2 ⊂ B, and that κξ → (κξ, ω)2

holds for every ξ < λ. We shall find a set H ⊂ κ of cardinality κ such that
[H ]2 ⊂ A.

Let {Sξ : ξ < λ} be a partition of S into disjoint sets such that Sξ = κξ.
It follows from our assumptions that there exist sets Kξ ⊂ Sξ, |Kξ| = κξ,
such that [Kξ]2 ⊂ A.

For every x ∈ Kξ there exists, by (9.7), some α < λ such that |Bx ∩ S| <
κα; since λ < κξ, there exists an α(ξ) such that the set Zξ = {x ∈ Kξ :
|Bx ∩ S| < κα(ξ)} has cardinality κξ.
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Let 〈ξν : ν < λ〉 be an increasing sequence of ordinals < λ such that if
ν1 < ν2 then α(ξν1 ) < ξν2 . We define, by induction on ν,

Hν = Zξ(ν) −
⋃
{Bx : x ∈

⋃
η<ν Zξ(η)}.

Clearly, |Hν | = κξ(ν), and [Hν ]2 ⊂ A.
Finally, we let H =

⋃
ν<λ Hν . It follows from the construction of H that

[H ]2 ⊂ A. ��

Weakly Compact Cardinals

In the positive results given by the Erdős-Rado Theorem, the size of the ho-
mogeneous set is smaller than the size of the set being partitioned. A natural
question arises, whether the relation κ → (κ)2 can hold for cardinals other
than κ = ω.

Definition 9.8. A cardinal κ is weakly compact if it is uncountable and
satisfies the partition property κ → (κ)2.

The reason for the name “weakly compact” is that these cardinals satisfy
a certain compactness theorem for infinitary languages; we shall investigate
weakly compact cardinals further in Part II.

Lemma 9.9. Every weakly compact cardinal is inaccessible.

Proof. Let κ be a weakly compact cardinal. To show that κ is regular, let
us assume that κ is the disjoint union

⋃
{Aγ : γ < λ} such that λ < κ

and |Aγ | < κ for each γ < λ. We define a partition F : [κ]2 → {0, 1} as
follows: F ({α, β}) = 0 just in case α and β are in the same Aγ . Obviously,
this partition does not have a homogeneous set H ⊂ κ of size κ.

That κ is a strong limit cardinal follows from Lemma 9.4: If κ ≤ 2λ

for some λ < κ, then because 2λ �→ (λ+)2, we have κ �→ (λ+)2 and hence
κ �→ (κ)2. ��

We shall prove in Chapter 17 that every weakly compact cardinal κ is the
κth inaccessible cardinal.

Trees

Many problems in combinatorial set theory can be formulated as problems
about trees.

In this chapter we discuss Suslin’s Problem as well as the use of trees in
partition calculus and large cardinals.
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Definition 9.10. A tree is a partially ordered set (T, <) with the property
that for each x ∈ T , the set {y : y < x} of all predecessors of x is well-ordered
by <.

The αth level of T consists of all x ∈ T such that {y : y < x} has order-
type α. The height of T is the least α such that the αth level of T is empty;
in other words, it is the height of the well-founded relation <:

(9.8) o(x) = the order-type of {y : y < x},
αth level = {x : o(x) = α},
height(T ) = sup{o(x) + 1 : x ∈ T }.

A branch in T is a maximal linearly ordered subset of T . The length of
a branch b is the order-type of b. An α-branch is a branch of length α.

We shall now turn our attention to Suslin’s Problem introduced in Chap-
ter 4. In Lemma 9.14 below we show that the problem can be restated as
a question about the existence of certain trees of height ω1.

Suslin’s Problem asks whether the real line is the only complete dense
unbounded linearly ordered set that satisfies the countable chain condition.
An equivalent question is whether every dense linear ordering that satisfies
the countable chain condition is separable, i.e., has a countable dense subset.

Definition 9.11. A Suslin line is a dense linearly ordered set that satisfies
the countable chain condition and is not separable.

Thus Suslin’s Problem asks whether a Suslin line exists. We shall show
that the existence of a Suslin line is equivalent to the existence of a Suslin
tree.

Let T be a tree. An antichain in T is a set A ⊂ T such that any two
distinct elements x, y of A are incomparable, i.e., neither x < y nor y < x.

Definition 9.12. A tree T is a Suslin tree if

(i) the height of T is ω1;
(ii) every branch in T is at most countable;
(iii) every antichain in T is at most countable.

For the formulation of Suslin’s Problem in terms of trees it is useful to
consider Suslin trees that are called normal.

Let α be an ordinal number, α ≤ ω1. A normal α-tree is a tree T with
the following properties:

(i) height(T ) = α;
(ii) T has a unique least point (the root);
(iii) each level of T is at most countable;
(iv) if x is not maximal in T , then there are infinitely many y > x at

the next level (immediate successors of x);

(9.9)
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(v) for each x ∈ T there is some y > x at each higher level less
than α;

(vi) if β < α is a limit ordinal and x, y are both at level β and if
{z : z < x} = {z : z < y}, then x = y.

See Exercise 9.6 for a representation of normal trees.

Lemma 9.13. If there exists a Suslin tree then there exists a normal Suslin
tree.

Proof. Let T be a Suslin tree. T has height ω1, and each level of T is count-
able. We first discard all points x ∈ T such that Tx = {y ∈ T : y ≥ x} is at
most countable, and let T1 = {x ∈ T : Tx is uncountable}. Note that if x ∈ T1

and α > o(x), then |Ty| = ℵ1 for some y > x at level α. Hence T1 satisfies
condition (v). Next, we satisfy property (vi): For every chain C = {z : z < y}
in T1 of limit length we add an extra node aC and stipulate that z < aC for
all z ∈ C, and aC < x for every x such that x > z for all z ∈ C. The resulting
tree T2 satisfies (iii), (v) and (vi). For each x ∈ T2 there are uncountably
many branching points z > x, i.e., points that have at least two immediate
successors (because there is no uncountable chain and T2 satisfies (v)). The
tree T3 = {the branching points of T2} satisfies (iii), (v) and (vi) and each
x ∈ T3 is a branching point. To get property (iv), let T4 consists of all z ∈ T3

at limit levels of T3. The tree T4 satisfies (i), (iii), (iv), and (v); and then
T5 ⊂ T4 satisfying (ii) as well is easily obtained. ��

Lemma 9.14. There exists a Suslin line if and only if there exists a Suslin
tree.

Proof. (a) Let S be a Suslin line. We shall construct a Suslin tree. The tree
will consist of closed (nondegenerate) intervals on the Suslin line S. The
partial ordering of T is by inverse inclusion: If I, J ∈ T , then I ≤ J if and
only if I ⊃ J .

The collection T of intervals is constructed by induction on α < ω1. We
let I0 = [a0, b0] be arbitrary (such that a0 < b0). Having constructed Iβ ,
β < α, we consider the countable set C = {aβ : β < α} ∪ {bβ : β < α} of
endpoints of the intervals Iβ , β < α. Since S is a Suslin line, C is not dense
in S and so there exists an interval [a, b] disjoint from C; we pick some such
[aα, bα] = Iα. The set T = {Iα : α < ω1} is uncountable and partially ordered
by ⊃. If α < β, then either Iα ⊃ Iβ or Iα is disjoint from Iβ . It follows that
for each α, {I ∈ T : I ⊃ Iα} is well-ordered by ⊃ and thus T is a tree.

We shall show that T has no uncountable branches and no uncountable
antichains. Then it is immediate that the height of T is at most ω1; and since
every level is an antichain and T is uncountable, we have height(T ) = ω1.

If I, J ∈ T are incomparable, then they are disjoint intervals of S; and
since S satisfies the countable chain condition, every antichain in T is at most
countable. To show that T has no uncountable branch, we note first that if
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b is a branch of length ω1, then the left endpoints of the intervals I ∈ B
form an increasing sequence {xα : α < ω1} of points of S. It is clear that the
intervals (xα, xα+1), α < ω1, form a disjoint uncountable collection of open
intervals in S, contrary to the assumption that S satisfies the countable chain
condition.

(b) Let T be a normal Suslin tree. The line S will consist of all branches
of T (which are all countable). Each x ∈ T has countably many immediate
successors, and we order these successors as rational numbers. Then we order
the elements of S lexicographically: If α is the least level where two branches
a, b ∈ S differ, then α is a successor ordinal and the points aα ∈ a and bα ∈ b
are both successors of the same point at level α − 1; we let a < b or b < a
according to whether aα < bα or bα < aα.

It is easy to see that S is linearly ordered and dense. If (a, b) is an open
interval in S, then one can find x ∈ T such that Ix ⊂ (a, b), where Ix is the
interval Ix = {c ∈ S : x ∈ c}. And if Ix and Iy are disjoint, then x and y are
incomparable points of T . Thus every disjoint collection of open intervals of S
must be at most countable, and so S satisfies the countable chain condition.

The line S is not separable: If C is a countable set of branches of T , let α
be a countable ordinal bigger than the length of any branches b ∈ C. Then if
x is any point at level α, the interval Ix does not contain any b ∈ C, and so
C is not dense in S. ��

Lemma 9.14 reduces Suslin’s Problem to a purely combinatorial problem.
In Part II we shall return to it and show that the problem is independent of
the axioms of set theory.

We now turn our attention to the following problem, related to Suslin
trees.

Definition 9.15. An Aronszajn tree is a tree of height ω1 all of whose levels
are at most countable and which has no uncountable branches.

Theorem 9.16 (Aronszajn). There exists an Aronszajn tree.

Proof. We construct a tree T whose elements are some bounded increasing
transfinite sequences of rational numbers. If x, y ∈ T are two such sequences,
then we let x ≤ y just in case y extends x, i.e., x ⊂ y. Also, if y ∈ T and x is
an initial segment of y, then we let x ∈ T ; thus the αth level of T will consist
of all those x ∈ T whose length is α.

It is clear that an uncountable branch in T would yield an increasing
ω1-sequence of rational numbers, which is impossible. Thus T will be an
Aronszajn tree, provided we arrange that T has ℵ1 levels, all of them at
most countable. We construct T by induction on levels. For each α < ω1

we construct a set Uα of increasing α-sequences of rationals; Uα will be the
αth level of T . We construct the Uα so that for each α, |Uα| ≤ ℵ0, and that:

For each β < α, each x ∈ Uβ and each q > sup x there is y ∈ Uα such
that x ⊂ y and q ≥ sup y.

(9.10)
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Condition (9.10) enables us to continue the construction at limit steps.
To start, we let U0 = {∅}. The successor steps of the construction are also

fairly easy. Given Uα, we let Uα+1 be the set of all extensions x�r of sequences
in Uα such that r > sup x. It is clear that since Uα satisfies condition (9.10),
Uα+1 satisfies it also (for α + 1), and it is equally clear that Uα+1 is at most
countable.

Thus let α be a limit ordinal (α < ω1) and assume that we have con-
structed all levels Uγ , γ < α, of T below α, and that all the Uγ satisfy (9.10);
we shall construct Uα. The points x ∈ T below level α form a (normal) tree Tα

of length α. We claim that Tα has the following property:

For each x ∈ Tα and each q > sup x there is an increasing α-sequence
of rationals y such that x ⊂ y and q ≥ sup y and that y�β ∈ Tα for
all β < α.

(9.11)

The last condition means that {y�β : β < α} is a branch in Tα. To prove the
claim, we let αn, n = 0, 1, . . . , be an increasing sequence of ordinals such
that x ∈ Uα0 and limn αn = α, and let {qn}∞n=0 be an increasing sequence
of rational numbers such that q0 > sup x and limn qn ≤ q. Using repeatedly
condition (9.10), for all αn (n = 0, 1, . . . ), we can construct a sequence
y0 ⊂ y1 ⊂ . . . ⊂ yn . . . such that y0 = x, yn ∈ Uαn , and sup yn ≤ qn for
each n. Then we let y =

⋃∞
n=0 yn; clearly, y satisfies (9.11).

Now we construct Uα as follows: For each x ∈ Tα and each rational
number q such that q > sup x, we choose a branch y in Tα that satisfies (9.11),
and let Uα consists of all these y : α → Q. The set Uα so constructed is
countable and satisfies condition (9.10).

Then T =
⋃

α<ω1
Uα is an Aronszajn tree. ��

The Aronszajn tree constructed in Theorem 9.16 has the property that
there exists a function f : T → R such that f(x) < f(y) whenever x < y
(Exercise 9.8). With a little more care, one can construct T so that there is
a function f : T → Q such that f(x) < f(y) if x < y. Such trees are called
special Aronszajn trees. In Part II we’ll show that it is consistent that all
Aronszajn trees are special.

Almost Disjoint Sets and Functions

In combinatorial set theory one often consider families of sets that are as
much different as possible; a typical example is an almost disjoint family of
infinite sets—any two intersect in a finite set. Here we present a sample of
results and problems of this kind.

Definition 9.17. A collection of finite sets Z is called a ∆-system if there
exists a finite set S such that X ∩ Y = S for any two distinct sets X, Y ∈ Z.
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The following theorem is often referred to as the ∆-Lemma:

Theorem 9.18 (Shanin). Let W be an uncountable collection of finite sets.
Then there exists an uncountable Z ⊂ W that is a ∆-system.

Proof. Since W is uncountable, it is clear that uncountably many X ∈ W
have the same size; thus we may assume that for some n, |X | = n for all
X ∈ W . We prove the theorem by induction on n. If n = 1, the theorem is
trivial. Thus assume that the theorem holds for n, and let W be such that
|X | = n + 1 for all X ∈ W .

If there is some element a that belongs to uncountably many X ∈ W ,
we apply the induction hypothesis to the collection {X − {a} : X ∈ W and
a ∈ X}, and obtain Z ⊂ W with the required properties.

Otherwise, each a belongs to at most countably many X ∈ W , and we
construct a disjoint collection Z = {Xα : α < ω1} as follows, by induction
on α. Given Xξ, ξ < α, we find X = Xα ∈ W that is disjoint from all Xξ,
ξ < α. ��

For an alternative proof, using Fodor’s Theorem, see Exercise 9.10. The-
orem 9.18 generalizes to greater cardinals, under the assumption of GCH:

Theorem 9.19. Assume κ<κ = κ. Let W be a collection of sets of cardi-
nality less than κ such that |W | = κ+. Then there exist a collection Z ⊂ W
such that |Z| = κ+ and a set A such that X ∩ Y = A for any two distinct
elements X, Y ∈ Z. ��

Definition 9.20. If X and Y are infinite subsets of ω then X and Y are
almost disjoint if X ∩ Y is finite.

Let κ be a regular cardinal. If X∩Y are subsets of κ of cardinality κ then
X and Y are almost disjoint if |X ∩ Y | < κ.

An almost disjoint family of sets is a family of pairwise almost disjoint
sets.

Lemma 9.21. There exists an almost disjoint family of 2ℵ0 subsets of ω.

Proof. Let S be the set of all finite 0–1 sequences: S =
⋃∞

n=0{0, 1}n. For every
f : ω → {0, 1}, let Af ⊂ S be the set Af = {s ∈ S : s ⊂ f} = {f�n : n ∈ ω}.
Clearly, Af ∩ Ag is finite if f �= g; thus {Af : f ∈ {0, 1}ω} is a family of
2ℵ0 almost disjoint subsets of the countable set S, and the lemma follows.

��

A generalization from ω to arbitrary regular κ is not provable in ZFC (al-
though under GCH the generalization is straightforward; see Exercise 9.11).
Without assuming the GCH, the best one can do is to find an almost disjoint
family of κ+ subsets of κ; this follows from Lemma 9.23 below.

Definition 9.22. Let κ be a regular cardinal. Two functions f and g on κ
are almost disjoint if |{α : f(α) = g(α)}| < κ.
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Lemma 9.23. For every regular cardinal κ, there exists an almost disjoint
family of κ+ functions from κ to κ.

Proof. It suffices to show that given κ almost disjoint functions {fν : ν < κ},
then there exists f : κ → κ almost disjoint from all fν , ν < κ; this we do by
diagonalization: Let f(α) �= fν(α) for all ν < α. ��

Let us consider the special case when κ = ω1.

Definition 9.24. A tree (T, <) is a Kurepa tree if:

(i) height(T ) = ω1;
(ii) each level of T is at most countable;
(iii) T has at least ℵ2 uncountable branches.

If T is a Kurepa tree, then the family of all ω1-branches is an almost
disjoint family of uncountable subsets of T . In fact, since the levels of T are
countable, we can identify the ω1-branches with the functions from ω1 into ω
and get the following result: There exists an almost disjoint family of ℵ2

functions f : ω1 → ω.

Lemma 9.25. A Kurepa tree exists if and only if there exists a family F of
subsets of ω1 such that :

(i) |F| ≥ ℵ2;
(ii) for each α < ω1, |{X ∩ α : X ∈ F}| ≤ ℵ0.

(9.12)

Proof. (a) Let (T, <T ) be a Kurepa tree. Since T has size ℵ1, we may assume
that T = ω1, and moreover that α < β whenever α <T β. If we let F be the
family of all ω1-branches of T , then F satisfies (9.12).

(b) Let F be a family of subsets of ω1 such that (9.12) holds. For each
X ∈ F , let fX be the functions on ω1 defined by

fX(α) = X ∩ α (α < ω1).

For each α < ω1, let Uα = {fX�α : X ∈ F} and let T =
⋃

α<ω1
Uα. Then

(T,⊂) is a tree, the Uα are the levels of T and the functions fX correspond
to branches of T . By (9.12)(ii), every Uα is countable, and it follows that T is
a Kurepa tree. ��

The existence of a Kurepa tree is independent of the axioms of set theory.
In fact, the nonexistence of Kurepa trees is equiconsistent with an inaccessible
cardinal.
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The Tree Property and Weakly Compact Cardinals

Generalizing the concept of Aronszajn tree to cardinals > ω1 we say that
a regular uncountable cardinal κ has the tree property if every tree of height κ
whose levels have cardinality < κ has a branch of cardinality κ.

Lemma 9.26.

(i) If κ is weakly compact, then κ has the tree property.
(ii) If κ is inaccessible and has the tree property, then κ is weakly compact,

and in fact κ → (κ)2m for every m < κ.

Proof. (i) Let κ be weakly compact and let (T, <T ) be a tree of height κ such
that each level of T has size < κ. Since κ is inaccessible, |T | = κ and we
may assume that T = κ. We extend the partial ordering <T of κ to a linear
ordering ≺: If α <T β, then we let α ≺ β; if α and β are incomparable and if
ξ is the first level where the predecessors αξ, βξ of α and β are distinct, we
let α ≺ β if and only if αξ < βξ.

Let F : [κ]2 → {0, 1} be the partition defined by F ({α, β}) = 1 if and
only if ≺ agrees with < on {α, β}. By weak compactness, let H ⊂ κ be
homogeneous for F , |H | = κ.

We now consider the set B ⊂ κ of all x ∈ κ such that {α ∈ H : x <T α}
has size κ. Since every level has size < κ, it is clear that at each level there
is at least one x in B. Thus if we show that any two elements of B are
<T -comparable, we shall have proved that B is a branch in T of size κ.

Thus assume that x, y are incomparable elements of B; let x ≺ y. Since
both x and y have κ successors in H , there exist α < β < γ in H such that
x <T α, y <T β, and x <T γ. By the definition of ≺, we have α ≺ β and
γ ≺ β. Thus F ({α, β}) = 1 and F ({γ, β}) = 0, contrary to the homogeneity
of H .

(ii) Let κ be an inaccessible cardinal with the tree property, and let F :
[κ]2 → I be a partition such that |I| < κ. We shall find a homogeneous H ⊂ κ
of size κ.

We construct a tree (T,⊂) whose elements are some functions t : γ → I,
γ < κ. We construct T by induction: At step α < κ, we put into T one more
element t, calling it tα. Let t0 = ∅. Having constructed t0, . . . , tβ , . . . , β < α,
let us construct tα as follows, by induction on ξ. Having constructed tα�ξ, we
look first whether tα�ξ is among the tβ , β < α (note that for ξ = 0 we have
tα�0 = t0). If not, then we consider tα constructed: tα = tα�ξ. If tα�ξ = tβ
for some β < α, then we let tα(ξ) = i where i = F ({β, α}).

(T,⊂) is a tree of size κ; and since κ is inaccessible, each level of T has
size < κ and the height of T is κ. It follows from the construction that if
tβ ⊂ tα, then β < α and F ({β, α}) = tα(length(tβ)). By the assumption,
T has a branch B of size κ. If we now let, for each i ∈ I,

(9.13) Hi = {α : tα ∈ B and t�α i ∈ B},
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then each Hi is homogeneous for the partition F , and at least one Hi has
size κ. ��

It should be mentioned that an argument similar to the one above, only
more complicated, shows that if κ is inaccessible and has the tree property,
then κ → (κ)n

m for all n ∈ ω, m < κ.

Ramsey Cardinals

Let us consider one more generalization of Ramsey’s Theorem. Let κ be an
infinite cardinal, let α be an infinite limit ordinal, α ≤ κ, and let m be
a cardinal, 2 ≤ m < κ. The symbol

(9.14) κ → (α)<ω
m

denotes the property that for every partition F of the set [κ]<ω =
⋃∞

n=0[κ]n

into m pieces, there exists a set H ⊂ κ of order-type α such that for each
n ∈ ω, F is constant on [H ]n. (Again, the subscript m is deleted when m = 2.)

It is not difficult to see that the partition property ω → (ω)<ω is false
(see Exercise 9.13).

A cardinal κ is a Ramsey cardinal if κ → (κ)<ω. Clearly, every Ram-
sey cardinal is weakly compact. We shall investigate Ramsey cardinals and
property (9.14) in general in Part II.

Exercises

9.1. (i) Every infinite partially ordered set either has an infinite chain or has
an infinite set of mutually incomparable elements.

(ii) Every infinite linearly ordered set either has an infinite increasing sequence
of elements or has an infinite decreasing sequence of elements.

[Use Ramsey’s Theorem.]

For each κ, let exp0(κ) = κ and expn+1(κ) = 2expn(κ).

9.2. For every κ, (expn(κ))+ → (κ+)n+1
κ . In particular, we have (2κ)+ → (κ+)2.

9.3. ω1 → (ω1, ω + 1)2.
[Let {A, B} be a partition of [ω1]

2. For every limit ordinal α let Kα be a maximal
subset of α such that [Kα∪{α}]2 ⊂ B. If Kα is finite for each α, use Fodor’s Theorem
to find a stationary set S such that all Kα, α ∈ S, are the same. Then [S]2 ⊂ A.]

If A is an infinite set of ordinals and α an ordinal, let [A]α denote the set of all
increasing α-sequences in A. The symbol

κ→ (λ)α

stands for: For every partition F : [κ]α → {0, 1} of [κ]α into two pieces, there exists
a set H of order-type λ such that F is constant on [H ]α.
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9.4. For all infinite cardinals κ, κ �→ (ω)ω.
[For s, t ∈ [κ]ω let s ≡ t if and only if {n : s(n) �= t(n)} is finite. Pick a repre-

sentative in each equivalence class. Let F (s) = 0 if s differs from the representative
of its class at an even number of places; let F (s) = 1 otherwise. F has no infinite
homogeneous set.]

9.5 (König’s Lemma). If T is a tree of height ω such that each level of T is
finite, then T has an infinite branch.

[To construct a branch {x0, x1, . . . , xn, . . .} in T , pick x0 at level 0 such that
{y : y > x0} is infinite. Then pick x1, x2, . . . similarly.]

9.6. If T is a normal α-tree, then T is isomorphic to a tree T whose elements are
β-sequences (β < α), ordered by extension; if t ⊂ s and s ∈ T , then t ∈ T , and the

βth level of T is the set {t ∈ T : dom t = β}.

9.7. If T is a normal ω1-tree and if T has uncountable branch, then T has an
uncountable antichain.

[For each x in the branch B pick a successor zx of x such that zx /∈ B. Let
A = {zx : x ∈ B}.]

9.8. Show that if T is the tree in Theorem 9.16 then there exists some f : T → R
such that f(x) < f(y) whenever x < y.

9.9. An Aronszajn tree is special if and only if T is the union of ω antichains.
[If T =

S∞
n=0 An, where each An is an antichain, define π : T → Q by induction

on n, constructing π�An at stage n, so that the range of π remains finite.]

9.10. Prove Theorem 9.18 using Fodor’s Theorem.
[Let W = {Xα : α < ω1} with Xα ⊂ ω1. For each α, let f(α) = Xα ∩ α.

By Fodor’s Theorem, f is constant on a stationary set S; by induction construct
a ∆-system W ⊂ {Xα : α ∈ S}.]

9.11. If 2<κ = κ, then there exists an almost disjoint family of 2κ subsets of κ.
[As in Lemma 9.21, let S =

S

α<κ{0, 1}α; |S| = κ.]

9.12. Given a family F of ℵ2 almost disjoint functions f : ω1 → ω, there exists
a collection S of ℵ2 pairwise disjoint stationary subsets of ω1.

[Each f ∈ F is constant on a stationary set Sf with value nf . There is G ⊂ F
of size ℵ2 such that nf is the same for all f ∈ G. Let S = {Sf : f ∈ G}.]

9.13. ω �→ (ω)<ω.
[For x ∈ [ω]<ω, let F (x) = 1 if |x| ∈ x, and F (x) = 0 otherwise. If H ⊂ ω is

infinite, pick n ∈ H and show that F is not constant on [H ]n.]

Historical Notes

Theorem 9.1 is due to Ramsey [1929/30]. Ramsey ultrafilters are investigated in
Booth [1970/71]. The theory of partition relations has been developed by Erdős,
who has written a number of papers on the subject, some coauthored by Rado,
Hajnal, and others. The arrow notation is introduced in Erdős and Rado [1956].
Other major comprehensive articles on partition relations are Erdős, Hajnal, and
Rado [1965] and Erdős and Hajnal [1971].
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Theorem 9.6 appears in Erdős and Rado [1956]. Lemma 9.4 is due to Sierpiń-
ski [1933]. Theorem 9.7 is in Dushnik-Miller [1941].

Weakly compact cardinals (as in Definition 9.8 as well as the tree property)
were introduced by Erdős and Tarski in [1961].

The equivalence of Suslin’s Problem with the tree formulation (Lemma 9.14) is
due to Kurepa [1935]; this paper also presents Aronszajn’s construction and Kurepa
trees, with Lemma 9.25.

Theorems 9.18 and 9.19: Shanin [1946] and Erdős-Rado [1960].
Ramsey cardinals were first studied by Erdős and Hajnal in [1962].
Exercise 9.2: Erdős-Rado [1956], Exercises 9.4 and 9.13: Erdős-Rado [1952].
Exercise 9.5: D. König [1927].
Exercise 9.9: Galvin.



10. Measurable Cardinals

The theory of large cardinals owes its origin to the basic problem of measure
theory, the Measure Problem of H. Lebesgue.

The Measure Problem

Let S be an infinite set. A (nontrivial σ-additive probabilistic) measure on S
is a real-valued function µ on P (S) such that:

(i) µ(∅) = 0 and µ(S) = 1;
(ii) if X ⊂ Y , then µ(X) ≤ µ(Y );
(iii) µ({a}) = 0 for all a ∈ S (nontriviality);
(iv) if Xn, n = 0, 1, 2, . . . , are pairwise disjoint, then

µ
( ∞⋃

n=0
Xn

)
=

∞∑
n=0

µ(Xn) (σ-additivity).

(10.1)

It follows from (ii) that µ(X), the measure of X , is nonnegative for every
X ⊂ S; in a special case of (iv) we get µ(X ∪ Y ) = µ(X) + µ(Y ) whenever
X ∩ Y = ∅ (finite additivity).

More generally, let A be a σ-complete algebra of sets. A measure on A
is a real-valued function µ on A satisfying (i)–(iv). Thus a measure on S is
a measure on P (S).

An example of a measure on a σ-complete algebra of sets is the Lebesgue
measure on the algebra of all Lebesgue measurable subsets of the unit in-
terval [0, 1]. The Lebesgue measure has, in addition to (i)–(iv), the following
property:

If X is congruent by translation to a measurable set Y , then X is
measurable and µ(X) = µ(Y ).

(10.2)

It is well known that there exist sets of reals that are not Lebesgue mea-
surable, and in fact that there is no measure on [0, 1] with the property (10.2)
(translation invariant measure); see Exercise 10.1.

The natural question to ask is whether the Lebesgue measure can be
extended to some measure (not translation invariant) such that all subsets
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of [0, 1] are measurable, or whether there exists any measure on [0, 1]. Or,
whether there exists a measure on some set S.

The investigation of this problem has lead to important discoveries in set
theory, opening up a new field, the theory of large cardinal numbers, which
has far-reaching consequences both in pure set theory and in descriptive set
theory.

A measure µ on S is two-valued if µ(X) is either 0 or 1 for all X ⊂ S. If
µ is a two-valued measure on S, let

(10.3) U = {X ⊂ S : µ(X) = 1}.

It is easy to verify that U is an ultrafilter on S. (For instance, if X ∈ U and
Y ∈ U , then X∩Y ∈ U . If µ(X) = µ(Y ) = 1, then X = (X−Y )∪(X∩Y ) and
Y = (Y −X)∪(X∩Y ). If µ(X∩Y ) were not 1, then µ(X−Y ) = µ(Y −X) = 1,
and we would have µ(X ∪ Y ) = 2.)

Next we note that the ultrafilter U is σ-complete. This is so because µ is
σ-additive, and an ultrafilter U on S is σ-complete if and only if there is no
partition of S into countably many disjoint parts S =

⋃∞
n=0 Xn such that

Xn /∈ U , for all n.
Thus if µ is a two-valued measure on S, U is a σ-complete ultrafilter on S.

Conversely, if U is a σ-complete ultrafilter on S, then the following function
is a two-valued measure on S:

(10.4) µ(X) =
{

1 if X ∈ U,

0 if X /∈ U.

Let µ be a measure on S. A set A ⊂ S is an atom of µ if µ(A) > 0 and if
for every X ⊂ A, we have either µ(X) = 0 or µ(X) = µ(A).

If µ has an atom A, then

(10.5) U = {X ⊂ S : µ(X ∩ A) = µ(A)}

is again a σ-complete ultrafilter on S.
A measure µ on S is atomless if it has no atoms. Then every set X ⊂ S

of positive measure can be split into two disjoint sets of positive measure:
X = Y ∪ Z, and µ(Y ) > 0, µ(Z) > 0.

We shall eventually prove various strong consequences of the existence of
a nontrivial σ-additive measure and establish the relationship between the
Measure Problem and large cardinals. Our starting point is the following
theorem which shows that if a measure exists, then there exists at least
a weakly inaccessible cardinal.

Theorem 10.1 (Ulam). If there is a σ-additive nontrivial measure on S,
then either there exists a two-valued measure on S and |S| is greater than
or equal to the least inaccessible cardinal, or there exists an atomless mea-
sure on 2ℵ0 and 2ℵ0 is greater than or equal to the least weakly inaccessible
cardinal.
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Theorem 10.1 will be proved in a sequence of lemmas, which will also
provide additional information on the Measure Problem and introduce ba-
sic notions and methods of the theory of large cardinals. First we make the
following observation. Let κ be the least cardinal that carries a nontrivial
σ-additive two-valued measure. Clearly, κ is uncountable and is also the least
cardinal that has a nonprincipal countably complete ultrafilter. And we ob-
serve that such an ultrafilter is in fact κ-complete:

Lemma 10.2. Let κ be the least cardinal with the property that there is
a nonprincipal σ-complete ultrafilter on κ, and let U be such an ultrafilter.
Then U is κ-complete.

Proof. Let U be a σ-complete ultrafilter on κ, and let us assume that U is
not κ-complete. Then there exists a partition {Xα : α < γ} of κ such that
γ < κ, and Xα /∈ U for all α < γ. We shall now use this partition to construct
a nonprincipal σ-complete ultrafilter on γ, thus contradicting the choice of κ
as the least cardinal that carries such an ultrafilter.

Let f be the mapping of κ onto γ defined as follows:

f(x) = α if and only if x ∈ Xα (x ∈ κ).

The mapping f induces a σ-complete ultrafilter on γ: we define D ⊂ P (γ) by

(10.6) Z ∈ D if and only if f−1(Z) ∈ U.

The ultrafilter D is nonprincipal: Assume that {α} ∈ D for some α < γ. Then
Xα ∈ U , contrary to our assumption on Xα. Thus γ carries a σ-complete
nonprincipal ultrafilter. ��

Measurable and Real-Valued Measurable Cardinals

We are now ready to define the central notion of this chapter.

Definition 10.3. An uncountable cardinal κ is measurable if there exists
a κ-complete nonprincipal ultrafilter U on κ.

By Lemma 10.2, the least cardinal that carries a nontrivial two-valued σ-
additive measure is measurable. Note that if U is a κ-complete nonprincipal
ultrafilter on κ, then every set X ∈ U has cardinality κ because every set of
smaller size is the union of fewer than κ singletons. For similar reasons, κ is
a regular cardinal because if κ is singular, then it is the union of fewer than
κ small sets. The next lemma gives a first link of the Measure Problem with
large cardinals.

Lemma 10.4. Every measurable cardinal is inaccessible.
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Proof. We have just given an argument why a measurable cardinal is regular.
Let us show that measurable cardinals are strong limit cardinals. Let κ be
measurable, and let us assume that there exists λ < κ such that 2λ ≥ κ; we
shall reach a contradiction.

Let S be a set of functions f : λ → {0, 1} such that |S| = κ, and let U be
a κ-complete nonprincipal ultrafilter on S. For each α < λ, let Xα be that
one of the two sets {f ∈ S : f(α) = 0}, {f ∈ S : f(α) = 1} which is in U , and
let εα be 0 or 1 accordingly. Since U is κ-complete, the set X =

⋂
α<λ Xα is

in U . However, X has at most one element, namely the function f that has
the values f(α) = εα. A contradiction. ��

Let us now turn our attention to measures that are not necessarily two-
valued. Let µ be a nontrivial σ-additive measure on a set S. In analogy
with (10.3) we consider the ideal of all null sets :

(10.7) Iµ = {X ⊂ S : µ(X) = 0}.

Iµ is a nonprincipal σ-complete ideal on S. Moreover, it has these properties:

(i) {x} ∈ I for every x ∈ S;
(ii) every family of pairwise disjoint sets X ⊂ S that are not in I is

at most countable.

(10.8)

To see that (ii) holds, note that if W is a disjoint family of set of positive
measure, then for each integer n > 0, there are only finitely many sets X ∈ W
of measure ≥ 1/n.

A σ-complete nonprincipal ideal I on S is called σ-saturated if it satis-
fies (10.8).

The following lemma is an analog of Lemma 10.2:

Lemma 10.5.

(i) Let κ be the least cardinal that carries a nontrivial σ-additive measure
and let µ be such a measure on κ. Then the ideal Iµ of null sets is
κ-complete.

(ii) Let κ be the least cardinal with the property that there is a σ-complete
σ-saturated ideal on κ, and let I be such an ideal. Then I is κ-complete.

Proof. (i) Let us assume that Iµ is not κ-complete. There exists a collection
of null sets {Xα : α < γ} such that γ < κ and that their union X has positive
measure. We may assume without loss of generality that the sets Xα, α < γ,
are pairwise disjoint; let m = µ(X).

Let f be the following mapping of X onto γ:

f(x) = α if and only if x ∈ Xα (x ∈ X).

The mapping f induces a measure ν on γ:

(10.9) ν(Z) =
1
m

· µ(f−1(Z)).
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The measure ν is σ-additive and is nontrivial since ν({α}) = µ(Xα) = 0 for
each α ∈ γ. This contradicts the choice of κ as the least cardinal that carries
a measure.

(ii) The proof is similar. We define an ideal J on γ by: Z ∈ J if and only
if f−1(Z) ∈ I. The induced ideal J is σ-complete and σ-saturated. ��

Let {ri : i ∈ I} be a collection of nonnegative real numbers. We define

(10.10)
∑
i∈I

ri = sup
{ ∑

i∈E

ri : E is a finite subset of I
}
.

Note that if the sum (10.10) is not ∞, then at most countably many ri are
not equal to 0.

Let κ be an uncountable cardinal. A measure µ on S is called κ-additive
if for every γ < κ and for every disjoint collection Xα, α < γ, of subsets of S,

(10.11) µ
( ⋃

α<γ
Xα

)
=

∑
α<γ

µ(Xα).

If µ is a κ-additive measure, then the ideal Iµ of null sets is κ-complete.
The converse is also true and we get a better analog of Lemma 10.2 for
real-valued measures:

Lemma 10.6. Let µ be a measure on S, and let Iµ be the ideal of null sets.
If Iµ is κ-complete, then µ is κ-additive.

Proof. Let γ < κ, and let Xα, α < γ, be disjoint subsets of S. Since the Xα

are disjoint, at most countably many of them have positive measure. Thus
let us write

{Xα : α < γ} = {Yn : n = 0, 1, 2, . . .} ∪ {Zα : α < γ},

where each Zα has measure 0. Then we have

µ
( ⋃

α<γ
Xα

)
= µ

( ∞⋃
n=0

Yn

)
+ µ

( ⋃
α<γ

Zα

)
.

Now first µ is σ-additive, and we have

µ
( ∞⋃

n=0
Yn

)
=

∞∑
n=0

µ(Yn),

and secondly Iµ is κ-complete and

µ
( ⋃

α<γ
Zα

)
= 0 =

∑
α<γ

µ(Zα).

Thus µ(
⋃

α Xα) =
∑

α µ(Xα). ��
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Corollary 10.7. Let κ be the least cardinal that carries a nontrivial σ-addi-
tive measure and let µ be such a measure. Then µ is κ-additive. ��

Definition 10.8. An uncountable cardinal κ is real-valued measurable if
there exists a nontrivial κ-additive measure µ on κ.

By Corollary 10.7, the least cardinal that carries a nontrivial σ-additive
measure is real-valued measurable. We shall show that if a real-valued mea-
surable cardinal κ is not measurable, then κ ≤ 2ℵ0 . Note that if µ is a non-
trivial κ additive measure on κ, then every set of size < κ has measure 0,
and moreover κ cannot be the union of fewer than κ sets of size < κ. Thus
a real-valued measurable cardinal is regular. We shall show that it is weakly
inaccessible.

We shall first prove the first claim made in the preceding paragraph.

Lemma 10.9.

(i) If there exists an atomless nontrivial σ-additive measure, then there
exists a nontrivial σ-additive measure on some κ ≤ 2ℵ0 .

(ii) If I is a σ-complete σ-saturated ideal on S, then either there exists
Z ⊂ S, such that I�Z = {X ⊂ Z : X ∈ I} is a prime ideal, or there
exists a σ-complete σ-saturated ideal on some κ ≤ 2ℵ0 .

Proof. (i) Let µ be such a measure on S. We construct a tree T of subsets
of S, partially ordered by reverse inclusion. The 0th level of T is {S}. Each
level of T consists of pairwise disjoint subsets of S of positive measure. Each
X ∈ T has two immediate successors: We choose two sets Y , Z of positive
measure such that Y ∪ Z = X and Y ∩ Z = ∅. If α is a limit ordinal, then
the αth level consists of all intersections X =

⋂
ξ<α Xξ such that each Xξ is

on the ξth level of T and such that X has positive measure.
We observe that every branch of T has countable length: If {Xξ : ξ < α} is

a branch in T , then the set {Yξ : ξ < α}, where Yξ = Xξ −Xξ+1, is a disjoint
collection of sets of positive measure. Consequently, T has height at most ω1.
Similarly, each level of T is at most countable, and it follows that T has at
most 2ℵ0 branches.

Let {bα : α < κ}, κ ≤ 2ℵ0 , be an enumeration of all branches b = {Xξ :
ξ < γ} such that

⋂
ξ<γ Xξ is nonempty; for each α < κ, let Zα =

⋂
{X : X ∈

bα}. The collection {Zα : α < κ} is a partition of S into κ sets of measure 0.
We induce a measure ν on κ as follows: Let f be the mapping of S onto κ

defined by
f(x) = α if and only if x ∈ Zα (x ∈ S),

and let
ν(Z) = µ(f−1(Z))

for all Z ⊂ κ. It follows that ν is a nontrivial σ-additive measure on κ.
(ii) The proof is similar. We define a tree T as above and then induce an

ideal J on κ by letting Z ∈ J if and only if f−1(Z) ∈ I. ��



10. Measurable Cardinals 131

The proof of Lemma 10.9 shows that if µ is atomless, then there is a par-
tition of S into at most 2ℵ0 null sets; in other words, µ is not (2ℵ0)+-additive.
Hence if κ carries an atomless κ-additive measure, then κ ≤ 2ℵ0 and we have:

Corollary 10.10. If κ is a real-valued measurable cardinal, then either κ is
measurable or κ ≤ 2ℵ0 .

More generally, if κ carries a κ-complete σ-saturated ideal, then either
κ is measurable or κ ≤ 2ℵ0 . ��

The measure ν obtained in Lemma 10.9(i) is atomless; this follows from
the fact that κ ≤ 2ℵ0 and Lemma 10.4. If there exists an atomless σ-additive
measure, then there is one on some κ ≤ 2ℵ0 . Clearly, such a measure can
be extended to a measure on 2ℵ0 : For X ⊂ 2ℵ0 , we let µ(X) = µ(X ∩ κ).
Thus we conclude that there exists an atomless σ-additive measure on the
set R of all reals. It turns out that using the same assumption, we can obtain
a σ-additive measure on R that extends Lebesgue measure. This can be done
by a slight modification of the proof of Lemma 10.9:

Using Exercise 10.3, we construct for each finite 0–1 sequence s, a set
Xs ⊂ S such that X∅ = S, and for every s ∈ Seq, Xs�0 ∪ Xs�1 = Xs,
Xs�0 ∩ Xs�1 = ∅, and µ(Xs�0) = µ(Xs�1) = 1

2 · µ(Xs�0). Then we define
a measure ν1 on 2ω by

ν1(Z) = µ(
⋃
{Xf : f ∈ Z}),

where Xf =
⋂∞

n=0 Xf�n for each f ∈ 2ω. Using the mapping F : 2ω → [0, 1]
defined by

F (f) =
∞∑

n=0
f(n)/2n+1

we obtain a nontrivial σ-additive measure ν on [0, 1]. This measure agrees
with the Lebesgue measure on all intervals [k/2n, (k + 1)/2n], and hence on
all Borel sets. Every set of Lebesgue measure 0 is included in a Borel (in fact,
Gδ) set of Lebesgue measure 0 and hence has ν-measure 0. Every Lebesgue
measurable set X can be written as X = (B−N1)∪N2, where N1 and N2 have
Lebesgue measure 0, and hence the Lebesgue measure of X is equal to ν(X).
Thus ν agrees with the Lebesgue measure on all Lebesgue measurable subsets
of [0, 1].

We shall now show that a real-valued measurable cardinal is weakly in-
accessible. The proof is by a combinatorial argument, using matrices of sets.

Definition 10.11. An Ulam matrix (more precisely, an Ulam (ℵ1,ℵ0)-
matrix) is a collection {Aα,n : α < ω1, n < ω} of subsets of ω1 such that:

(i) if α �= β, then Aα,n ∩ Aβ,n = ∅ for every n < ω;
(ii) for each α, the set ω1 −

⋃∞
n=0 Aα,n is at most countable.

(10.12)

An Ulam matrix has ℵ1 rows and ℵ0 columns. Each column consists of
pairwise disjoint sets, and the union of each row contains all but countably
many elements of ω1.



132 Part I. Basic Set Theory

Lemma 10.12. An Ulam matrix exists.

Proof. For each ξ < ω1, let fξ be a function on ω such that ξ ⊂ ran(fξ). Let
us define Aα,n for α < ω1 and n < ω by

(10.13) ξ ∈ Aα,n if and only if fξ(n) = α.

If n < ω, then for each ξ ∈ ω1 there is only one α such that ξ ∈ Aα,n, namely
α = fξ(n); and we have property (i) of (10.12). If α < ω1, then for each ξ > α
there is an n such that fξ(n) = α and hence (ω1 −

⋃∞
n=0 Aα,n) ⊂ α + 1; that

verifies property (ii). ��

Using an Ulam matrix, we can show that there is no measure on ω1:

Lemma 10.13. There is no nontrivial σ-additive measure on ω1. More gen-
erally, there is no σ-complete σ-saturated ideal on ω1.

Proof. Let {Aα,n : α < ω1, n < ω} be an Ulam matrix. Assuming that we
have a measure on ω1, there is for each α some n = nα such that Aα,n has
positive measure (because of (10.12)(ii)). Hence there exist an uncountable
set W ⊂ ω1 and some n < ω such that nα = n for all α ∈ W . Then
{Aα,n : α ∈ W} is an uncountable, pairwise disjoint (by (10.12)(i)) family of
sets of positive measure; a contradiction. ��

A straightforward generalization of Lemmas 10.12 and 10.13 gives the
result mentioned above:

Lemma 10.14. If κ = λ+, then there is no κ-complete σ-saturated ideal
on κ.

Proof. For each ξ < λ+, we let fξ be a function on λ such that ξ ⊂ ran(fξ),
and let

ξ ∈ Aα,η if and only if fξ(η) = α.

Then {Aα,η : α < λ+, η < λ} is an Ulam (λ+, λ)-matrix, that is a collection
of subsets of λ+ such that:

(i) Aα,η ∩ Aβ,η = ∅ whenever α �= β < λ+, and η < λ;
(ii) |λ+ −

⋃
η<λ Aα,η| ≤ λ for each α < λ+.

(10.14)

The proof of Lemma 10.13 generalizes to show that there is no κ-complete
σ-saturated ideal on κ. ��

Corollary 10.15. Every real-valued measurable cardinal is weakly inacces-
sible. ��
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Lemma 10.14 completes the proof of Theorem 10.1: If there is a σ-additive
nontrivial measure on S, then either the measure has an atom A and we can
construct a two-valued measure on S via a σ-complete nonprincipal ultrafilter
on A, and then |S| ≥ the least measurable cardinal, which is inaccessible; or
the measure on S is atomless and we construct, as in Lemma 10.9, an atomless
measure on 2ℵ0 , and then 2ℵ0 ≥ the least real-valued measurable cardinal,
which is weakly inaccessible. ��

Prior to Ulam’s work, Banach and Kuratowski proved that if the Con-
tinuum Hypothesis holds then there exists no σ-additive measure on R. We
present their proof below; in fact, Lemma 10.16 gives a slightly more general
result.

If f and g are functions from ω to ω, let f < g mean that f(n) < g(n) for
all but finitely many n ∈ ω. A κ-sequence of functions 〈fα : α < κ〉 is called
a κ-scale if fα < fβ whenever α < β, and if for every g : ω → ω there exists
an α such that g < fα.

Lemma 10.16. If there exists a κ-scale, then κ is not a real-valued measur-
able cardinal.

Proof. Let fα, α < κ, be a κ-scale. We define an (ℵ0,ℵ0)-matrix of subsets
of κ as follows: For n, k < ω, let

(10.15) α ∈ An,k if and only if fα(n) = k (α ∈ κ).

Since for each n and each α there is k such that α ∈ An,k, we have

∞⋃
k=0

An,k = κ

for every n = 0, 1, 2, . . . .
Now assume that µ is a nontrivial κ-additive measure on κ. For each n,

let kn be such that

µ(An,0 ∪ An,1 ∪ . . . ∪ An,kn) ≥ 1 − (1/2n+2),

and let Bn = An,0 ∪ . . .∪An,kn . If we let B =
⋂∞

n=0 Bn, then we clearly have
µ(B) ≥ 1/2.

Let g : ω → ω be the function g(n) = kn. If α ∈ B, then by the definition
of B and by (10.15), we have

fα(n) ≤ g(n)

for all n = 0, 1, 2, . . . ; hence g �< fα. However, since B has positive measure,
B has size κ, and therefore we have g �< fα for cofinally many α < κ. This
contradicts the assumption that the fα form a scale. ��

Corollary 10.17. If there is a measure on 2ℵ0 , then 2ℵ0 > ℵ1.
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Proof. If 2ℵ0 = ℵ1, then there exists an ω1-scale; a scale 〈fα : α < ω1〉 is
constructed by transfinite induction to ω1:

Let {gα : α < ω1} enumerate all functions from ω to ω. At stage α, we
construct, by diagonalization, a function fα such that for all β < α, fα > fβ

and fα > gβ . Then 〈fα : α < ω1〉 is an ω1-scale. ��

Measurable Cardinals

By Lemma 10.4, every measurable cardinal is inaccessible. While we shall
investigate measurable cardinals extensively in Part II, we now present a few
basic results that establish the relationship of measurable cardinals and the
large cardinals introduced in Chapter 9.

We recall that by Lemma 9.26, a cardinal κ is weakly compact if and only
if it is inaccessible and has the tree property.

Lemma 10.18. Every measurable cardinal is weakly compact.

Proof. Let κ be a measurable cardinal. To show that κ is weakly compact,
it suffices to prove the tree property. Let (T, <) be a tree of height κ with
levels of size < κ. We consider a nonprincipal κ-complete ultrafilter U on T .
Let B be the set of all x ∈ T such that the set of all successors of x is in U .
It is clear that B is a branch in T and it is easy to verify that each level of T
has one element in B; thus B is a branch of size κ. ��

Normal Measures

In Chapter 8 we defined the notion of a normal κ-complete filter, namely
a filter closed under diagonal intersections (8.7).

Thus we call a normal κ-complete nonprincipal ultrafilter a normal mea-
sure on κ. Note that by Exercise 8.8, a measure is normal if and only if every
regressive function on a set of measure one is constant on a set of measure
one.

Lemma 10.19. If D is a normal measure on κ, then every set in D is sta-
tionary.

Proof. By Lemma 8.11, every closed unbounded set is in D, and the lemma
follows. ��

Theorem 10.20 below shows that if κ is measurable cardinal then a normal
measure exists.

Theorem 10.20. Every measurable cardinal carries a normal measure. If
U is a nonprincipal κ-complete ultrafilter on κ then there exists a function
f : κ → κ such that f∗(U) = {X ⊂ κ : f−1(X) ∈ U} is a normal measure.
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Proof. Let U be a nonprincipal κ-complete ultrafilter on κ. For f and g in κκ,
let

f ≡ g if and only if {α < κ : f(α) = g(α)} ∈ U.

It is easily seen that ≡ is an equivalence relation on κκ. Let [f ] denote the
equivalence class of f ∈ κκ. Furthermore, if we let

f < g if and only if {α < κ : f(α) < g(α)} ∈ U,

then < is a linear ordering of (the equivalence classes of) κκ.
There exists no infinite descending sequence f0 > f1 > . . . > fn > . . .:

Otherwise, let Xn = {α : fn(α) > fn+1(α)}, and let X =
⋂∞

n=0 Xn. X is
nonempty, and if α ∈ X , we would have f0(α) > f1(α) > . . . > fn(α) > . . .,
a contradiction.

Thus < is a well-ordering of κκ/≡.
Now let f : κ → κ be the least function (in this well-ordering) with the

property that for all γ < κ, {α : f(α) > γ} ∈ U . Such functions exist: for
instance, the diagonal function d(α) = α has this property.

Let D = f∗(U) = {X ⊂ κ : f−1(X) ∈ U}. We claim that D is a normal
measure.

It is easy to verify that D is a κ-complete ultrafilter. For every γ < κ, we
have f−1({γ}) /∈ U , and so {γ} /∈ D, and so D is nonprincipal.

In order to show that D is normal, let h be a regressive function on a set
X ∈ D. We shall show that h is constant on a set in D. Let g be the function
defined by g(α) = h(f(α)). As g(α) < f(α) for all α ∈ f−1(X), we have
g < f , and it follows by the minimality of f that g is constant on some
Y ∈ U . Hence h is constant on f(Y ) and f(Y ) ∈ D. ��

As an application of normal measures we show that every measurable
cardinal is a Mahlo cardinal, and improve Lemma 10.18 by showing that
every measurable cardinal is a Ramsey cardinal.

Lemma 10.21. Every measurable cardinal is a Mahlo cardinal.

Proof. Let κ be a measurable cardinal. We shall show that the set of all
inaccessible cardinals α < κ is stationary. As κ is strong limit, the set of all
strong limit cardinals α < κ is closed unbounded, and it suffices to show that
the set of all regular cardinals α < κ is stationary.

Let D be a normal measure on κ. We claim that {α < κ : α is regu-
lar} ∈ D; this will complete the proof, since every set in D is stationary, by
Lemma 10.19.

Toward a contradiction, assume that {α : cf α < α} ∈ D. By normality,
there is some λ < κ such that Eλ = {α : cf α = λ} ∈ D. For each α ∈ Eλ,
let 〈xα,ξ : ξ < λ〉 be an increasing sequence with limit α. For each ξ < λ
there exist yξ and Aξ ∈ D such that xα,ξ = yξ for all α ∈ Aξ. Let A =⋂

ξ<λ Aξ. Then A ∈ D, but A contains only one element, namely limξ→λ yξ;
a contradiction. ��
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Theorem 10.22. Let κ be a measurable cardinal, let D be a normal measure
on κ, and let F be a partition of [κ]<ω into less than κ pieces. Then there
exists a set H ∈ D homogeneous for F . Hence every measurable cardinal is
a Ramsey cardinal.

Proof. Let D be a normal measure on κ, and let F be a partition of [κ]<ω

into fewer than κ pieces. It suffices to show that for each n = 1, 2, . . . ,
there is Hn ∈ D such that F is constant on [Hn]n; then H =

⋂∞
n=1 Hn is

homogeneous for F .
We prove, by induction on n, that every partition of [κ]n into fewer than κ

pieces is constant on [H ]n for some H ∈ D. The assertion is trivial for n = 1,
so we assume that it is true for n and prove that it holds also for n + 1. Let
F : [κ]n+1 → I, where |I| < κ. For each α < κ, we define Fα on [κ − {α}]n
by Fα(x) = F ({α} ∪ x).

By the induction hypothesis, there exists for each α < κ a set Xα ∈ D
such that Fα is constant on [Xα]n; let ia be its constant value. Let X be the
diagonal intersection X = {α < κ : α ∈

⋂
γ<α Xγ}. We have X ∈ D since

D is normal; also, if γ < α1 < . . . < αn are in X , then {α1, . . . , αn} ∈ [Xγ ]n

and so F ({γ, α1, . . . , αn}) = Fγ({α1, . . . , αn}) = iγ . Now, there exist i ∈ I
and H ⊂ X in D such that iγ = i for all γ ∈ H . It follows that F (x) = i for
all x ∈ [H ]n+1. ��

Strongly Compact and Supercompact Cardinals

Among the various large cardinals that we shall investigate in more detail
in Part II there are two that are immediate generalizations of measurable
cardinals.

Definition 10.23. An uncountable cardinal κ is strongly compact if for any
set S, every κ-complete filter on S can be extended to a κ-complete ultrafilter
on S.

Clearly, every strongly compact cardinal is measurable.
Let A be a set of size at least κ, and let us consider the filter F on Pκ(A)

generated by the sets P̂ = {Q ∈ Pκ(A) : P ⊂ Q}. F is a κ-complete filter and
if κ is strongly compact, F can be extended to a κ-complete ultrafilter U .
A κ-complete ultrafilter U on Pκ(A) that extends F is called a fine measure.
In Part II we prove that if a fine measure on Pκ(A) exists for every A, then
κ is strongly compact.

A fine measure U on P<κ(A) is normal if whenever f : Pκ(A) → A is
such that f(P ) ∈ P for all P in a set in U , then f is constant on a set
in U . Equivalently, U is normal if it is closed under diagonal intersections
a∈A Xa = {x ∈ Pκ(A) : x ∈

⋂
a∈x Xa}.

Definition 10.24. An uncountable cardinal κ is supercompact if for every A
such that |A| ≥ κ there exists a normal measure on Pκ(A).
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We return to the subject of strongly compact and supercompact cardinals
in Part II.

Exercises

10.1 (Vitali). Let M be maximal (under ⊂) subset of [0, 1] with the property that
x− y is not a rational number, for any pair of distinct x, y ∈ M . Show that M is
not Lebesgue measurable.

[Consider the sets Mq = {x + q : x ∈M} where q is rational. They are pairwise
disjoint and [0, 1] ⊂

S

{Mq : q ∈ Q ∩ [−1, 1]} ⊂ [−1, 2].]

10.2. Prove directly that the measure ν defined in the proof of Lemma 10.9(i) is
atomless.

[Assume that Z is an atom of ν, and let Y = f−1(Z). If X ∈ T is such that
µ(Y ∩ X) �= 0 and if X1, X2 are the two immediate successors of X, then either
µ(Y ∩X1) = 0 or µ(Y ∩X2) = 0. Prove by induction that on each level of T there
is a unique X such that µ(Y ∩X) �= 0, and that these X’s constitute a branch in T
of length ω1; a contradiction.]

10.3. If µ is an atomless measure on S, there exists Z ⊂ S such that µ(Z) = 1/2.
More generally, given Z0 ⊂ S, there exists Z ⊂ Z0 such that µ(Z) = (1/2) · µ(Z0).

[Construct a sequence S = S0 ⊃ S1 ⊃ . . . ⊃ Sα ⊃ . . ., α < ω1, such that
µ(Sα) ≥ 1/2, and if µ(Sα) > 1/2, then 1/2 ≤ µ(Sα+1) < µ(Sα); if α is a limit
ordinal, let Sα =

T

β<α Sβ. There exists α < ω1 such that µ(Sα) = 1/2.]

10.4. Let µ be a two-valued measure and U the ultrafilter of all sets of measure
one. Then µ is κ-additive if and only if U is κ-complete.

10.5. A measure U on κ is normal if and only if the diagonal function d(α) = α is
the least function f with the property that for all γ < κ, {α : f(α) > γ} ∈ U .

10.6. Let D be a normal measure on κ and let f : [κ]<ω → κ be such that f(x) = 0
or f(x) < min x for all x ∈ [κ]<ω. Then there is H ∈ D such that for each n, f is
constant on [H ]n.

[By induction, as in Theorem 10.22. Given f on [κ]n+1, let fα(s) = f({α} ∪ s)
for α < min s; fα is constant on [Xα]n with value γα < α. Let X be the diagonal
intersection of Xα, α < κ, and let γ and H ⊂ X be such that H ∈ D and γα = γ
for all α ∈ H .]

10.7. If κ is measurable then there exists a normal measure on Pκ(κ).

Historical Notes

The study of measurable cardinals originated around 1930 with the work of Banach,
Kuratowski, Tarski, and Ulam. Ulam showed in [1930] that measurable cardinals are
large, that the least measurable cardinal is at least as large as the least inaccessible
cardinal.

The main result on measurable and real-valued measurable cardinals (Theo-
rem 10.1) is due to Ulam [1930]. The fact that a measurable cardinal is inaccessible
(Lemma 10.4) was discovered by Ulam and Tarski (cf. Ulam [1930]). Prior to Ulam,
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Banach and Kuratowski proved in [1929] that if 2ℵ0 = ℵ1, then there is no mea-
sure on the continuum; their proof is as in Lemma 10.16. Real-valued measurable
cardinals were introduced by Banach in [1930].

Lemma 10.18: Erdős and Tarski [1943]. Hanf [1963/64a] proved that the least
inaccessible cardinal is not measurable. That every measurable cardinal is a Ram-
sey cardinal was proved by Erdős and Hajnal [1962]; the stronger version (Theo-
rem 10.22) is due to Rowbottom [1971].

Strongly compact cardinals were introduced by Keisler and Tarski in [1963/64];
supercompact cardinals were defined by Reinhardt and Solovay, cf. Solovay et
al. [1978].

Exercise 10.1: Vitali [1905].



11. Borel and Analytic Sets

Descriptive set theory deals with sets of reals that are described in some
simple way: sets that have a simple topological structure (e.g., continuous
images of closed sets) or are definable in a simple way. The main theme is
that questions that are difficult to answer if asked for arbitrary sets of reals,
become much easier when asked for sets that have a simple description. An
example of that is the Cantor-Bendixson Theorem (Theorem 4.6): Every
closed set of reals is either at most countable or has size 2ℵ0 .

Since properties of definable sets can usually be established effectively,
without use of the Axiom of Choice, we shall work in set theory ZF without
the Axiom of Choice. When some statement depends on the Axiom of Choice,
we shall explicitly say so. However, we shall assume a weak form of the Axiom
of Choice. The reason is that in descriptive set theory one frequently considers
unions and intersections of countably many sets of reals, and we shall often
use facts like “the union of countably many countable sets is countable.” Thus
we shall work, throughout this chapter, in set theory ZF + the Countable
Axiom of Choice.

In this chapter we develop the basic theory of Borel and analytic sets in
Polish spaces. A Polish space is a topological space that is homeomorphic to
a complete separable metric space (Definition 4.12).

A canonical example of a Polish space is the Baire space N . The following
lemma shows that every Polish space is a continuous image of N :

Lemma 11.1. Let X be a Polish space. Then there exists a continuous map-
ping from N onto X.

Proof. Let X be a complete separable metric space; we construct a mapping f
of N onto X as follows: It is easy to construct, by induction on the length of
s ∈ Seq, a collection {Cs : s ∈ Seq} of closed balls such that C∅ = X and

(i) diameter(Cs) ≤ 1/n where n = length(s),
(ii) Cs ⊂

⋃∞
k=0 Cs�k (all s ∈ Seq),

(iii) if s ⊂ t then center(Ct) ∈ Cs.

(11.1)

For each a ∈ N , let f(a) be the unique point in
⋂
{Cs : s ⊂ a}; it is easily

checked that f is continuous and that X = f(N ). ��
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Borel Sets

Let X be a Polish space. A set A ⊂ X is a Borel set if it belongs to the
smallest σ-algebra of subsets of X containing all closed sets. We shall now
give a more explicit description of Borel sets. For each α < ω1, let us define
the collections Σ0

α and Π0
α of subsets of X :

(11.2) Σ0
1 = the collection of all open sets;

Π0
1 = the collection of all closed sets;

Σ0
α = the collection of all sets A =

⋃∞
n=0 An, where each An

belongs to Π0
β for some β < α;

Π0
α = the collection of all complements of sets in Σ0

α

= the collection of all sets A =
⋂∞

n=0 An, where each An

belongs to Σ0
β for some β < α.

It is clear (by induction on α) that the elements of each Σ0
α and each Π0

α are
Borel sets. Since every open set is the union of countably many closed sets,
we have Σ0

1 ⊂ Σ0
2, and consequently, if α < β, then

Σ0
α ⊂ Σ0

β , Σ0
α ⊂ Π0

β, Π0
α ⊂ Π0

β , Π0
α ⊂ Σ0

β .

Hence

(11.3)
⋃

α<ω1

Σ0
α =

⋃
α<ω1

Π0
α

and it is easy to verify that the collection (11.3) is a σ-algebra (here we
use the Countable Axiom of Choice). Hence every Borel set is in some Σ0

α,
α < ω1.

Note that each Σ0
α (and each Π0

α) is closed under finite unions, finite
intersections, and inverse images by continuous functions (i.e., if A ∈ Σ0

α

in Y , then f−1(A) ∈ Σ0
α in X whenever f : X → Y is a continuous function).

If the Polish space X is countable, then of course every A ∈ X is a Borel
set, in fact an Fσ set. Uncountable Polish spaces are more interesting: Not
all sets are Borel, and the collections Σ0

α form a hierarchy. We show below
that for each α, Σ0

α �⊂ Π0
α, and hence Σ0

α �= Σ0
α+1 for all α < ω1.

While we prove the next lemma for the special case when X is the Baire
space, the proof can be modified to prove the same result for any uncountable
Polish space.

Lemma 11.2. For each α ≥ 1 there exists a set U ⊂ N 2 such that U is Σ0
α

(in N 2), and that for every Σ0
α set A in N there exists some a ∈ N such

that

(11.4) A = {x : (x, a) ∈ U}.
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U is a universal Σ0
α set.

Proof. By induction on α. To construct a universal open set in N 2, let G1, . . . ,
Gk, . . . be an enumeration of all basic open sets in N , and let G0 = ∅. Let

(11.5) (x, y) ∈ U if and only if x ∈ Gy(n) for some n.

Since U =
⋃∞

n=0 Hn where each Hn = {(x, y) : x ∈ Gy(n)} is an open set
in N 2, we see that U is open. Now if G is an open set in N , we let a ∈ N be
such that G =

⋃∞
n=0 Ga(n); then G = {x : (x, a) ∈ U}.

Next let U be a universal Σ0
α set, and let us construct a universal

Σ0
α+1 set V . Let us consider some continuous mapping of N onto the product

space Nω; for each a ∈ N and each n, let a(n) be the nth coordinate of the
image of a. [For instance, let us define a(n) as follows: a(n)(k) = a(Γ(n, k)),
where Γ is the canonical one-to-one pairing function Γ : N ×N → N .] Now
let

(11.6) (x, y) ∈ V if and only if for some n, (x, y(n)) /∈ U .

Since V =
⋃∞

n=0 Hn where each Hn = {(x, y) : (x, y(n)) /∈ U} is a Π0
α set,

we see that V is Σ0
α+1. If A is a Σ0

α+1 set in N , then A =
⋃∞

n=0 An where
each An is Π0

α. For each n, let an be such that N − An = {x : (x, an) ∈ U},
and let a be such that a(n) = an for all n. Then A = {x : (x, a) ∈ V }.

Finally, let α be a limit ordinal, and let Uβ , 1 ≤ β ≤ α, be universal
Σ0

β sets. Let 1 ≤ α0 < α1 < . . . < αn < . . . be an increasing sequence of
ordinals such that limn→∞ αn = α. Let

(11.7) (x, y) ∈ U if and only if for some n, (x, y(n)) /∈ Uαn

(where a(n) has the same meaning as above). The set U is Σ0
α. If A is a Σ0

α set
in N then A =

⋃∞
n=0 An where each An is Π0

αn
. For each n, let an be such

that N − An = {x : (x, an) ∈ Uαn}, and let a be such that a(n) = an for
all n. Then A = {x : (x, a) ∈ U}. ��

Corollary 11.3. For every α ≥ 1, there is a set A ⊂ N that is Σ0
α but

not Π0
α.

Proof. Let U ⊂ N 2 be a universal Σ0
α set. Let us consider the set

(11.8) A = {x : (x, x) ∈ U}.

Clearly, A is a Σ0
α set. If A were Π0

α, then its complement would be Σ0
α and

there would be some a such that

A = {x : (x, a) /∈ U}.

But this contradicts (11.8): Simply let x = a. ��
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Analytic Sets

While the collection of Borel sets of reals is closed under Boolean operations,
and countable unions and intersections, it is not closed under continuous
images: As we shall learn presently, the image of a Borel set by a continuous
function need not be a Borel set. We shall now investigate the continuous
images of Borel sets.

Definition 11.4. A subset of A of a Polish space X is analytic if there exists
a continuous function f : N → X such that A = f(N ).

Definition 11.5. The projection of a set S ⊂ X × Y (into X) is the set
P = {x ∈ X : ∃y (x, y) ∈ S}.

The following lemma gives equivalent definitions of analytic sets.

Lemma 11.6. The following are equivalent, for any set A in a Polish
space X :

(i) A is the continuous image of N .
(ii) A is the continuous image of a Borel set B (in some Polish space Y ).
(iii) A is the projection of a Borel set in X × Y , for some Polish space Y .
(iv) A is the projection of a closed set in X ×N .

Proof. We shall prove that every closed set (in any Polish space) is analytic
and that every Borel set is the projection of a closed set in X × N . Then
the lemma follows: Since the projection map π : X × Y → X defined by
π(x, y) = x is continuous, it follows that every Borel set is analytic and that
the continuous image of a Borel set is analytic. Conversely, if A ⊂ X is an
analytic set, A = f(N ), then A is the projection of the set {(f(x), x) : x ∈ N}
which is a closed set in X ×N .

In order to prove that every closed set is analytic, note that every closed
set in a Polish space is itself a Polish space, and thus a continuous image
of N by Lemma 11.1.

In order to prove that every Borel set in X is the projection of a closed
set in X ×N , it suffices to show that the family P of all subsets of X that
are such projections contains all closed sets, all open sets, and is closed under
countable unions and intersections.

Clearly, the family P contains all closed sets. Moreover, every open set
is a countable union of closed sets; thus it suffices to show that P is closed
under

⋃∞
n=0 and

⋂∞
n=0.

Recall the continuous mapping a �→ 〈a(n) : n ∈ N〉 of N onto Nω from
Lemma 11.2, and also recall that the inverse image of a closed set under
a continuous function is closed. Let An, n < ω, be projections of closed sets
in X×N ; we shall show that

⋃∞
n=0 An and

⋂∞
n=0 An are projections of closed

sets.
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For each n, let Fn ⊂ X ×N be a closed set such that

An = {x : ∃a (x, a) ∈ Fa}.

Thus

x ∈
∞⋃

n=0
An ↔ ∃n ∃a (x, a) ∈ Fn

↔ ∃a ∃b (x, a) ∈ Fb(0)

↔ ∃c (x, c(0)) ∈ Fc(1)(0),

and
x ∈

∞⋂
n=0

An ↔ ∀n ∃a (x, a) ∈ Fn

↔ ∃c ∀n (x, c(n)) ∈ Fn

↔ ∃c (x, c) ∈
∞⋂

n=0
{(x, c) : (x, c(n)) ∈ Fn}.

Hence
⋃∞

n=0 An is the projection of the closed set

{(x, c) : (x, c(0)) ∈ Fc(1)(0)}

and
⋂∞

n=0 An is the projection of an intersection of closed sets. ��

The Suslin Operation A
For each a ∈ ωω, a�n is the finite sequence 〈ak : k < n〉. For each s ∈ Seq,
O(s) is the basic open set {a ∈ N : a�n = s} of the Baire space. O(s) is both
open and closed. For every set A in a Polish space, A denotes the closure
of A.

Let {As : s ∈ Seq} be a collection of sets indexed by elements of Seq. We
define

(11.9) A{As : s ∈ Seq} =
⋃

a∈ωω

∞⋂
n=0

Aa�n

Note that if {Bs : s ∈ Seq} is arbitrary, then

⋃
a∈ωω

∞⋂
n=0

Ba�n =
⋃

a∈ωω

∞⋂
n=0

(Ba�0 ∩ Ba�1 ∩ . . . ∩ Ba�n)

and hence A{Bs : s ∈ Seq} = A{As : s ∈ Seq} where the sets As are finite
intersections of the sets Bs and satisfy the following condition:

(11.10) if s ⊂ t, then As ⊃ At.

Thus we shall restrict our use of A to families that satisfy condi-
tion (11.10). The operation A is called the Suslin operation.
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Lemma 11.7. A set A in a Polish space is analytic if and only if A is the
result of the operation A applied to a family of closed sets.

Proof. First we show that if Fs, s ∈ Seq, are closed sets in a Polish space X ,
then A = A{Fs : s ∈ Seq} is analytic. We have

x ∈ A ↔ ∃a ∈ N x ∈
∞⋂

n=0

Fa�n

↔ ∃a (x, a) ∈
∞⋂

n=0
Bn

where Bn = {(x, a) : x ∈ Fa�n}. Clearly, each Bn is a Borel set in X ×N and
hence A is analytic.

Conversely, let A ⊂ X be analytic. There is a continuous function f :
N → X such that A = f(N ). Notice that for every a ∈ N ,

(11.11)
∞⋂

n=0
f(O(a�n)) =

∞⋂
n=0

f(O(a�n)) = {f(a)}.

Thus
A = f(N ) =

⋃
a∈ωω

∞⋂
n=0

f(O(a�n)),

and hence A is the result of the operation A applied to the closed sets f(O(s))
(which satisfy the condition (11.10)). ��

It follows from the preceding lemmas that the collection of all analytic
sets in a Polish space is closed under countable unions and intersections,
continuous images, and inverse images, and the Suslin operation (the last
statement is proved like the first part of Lemma 11.7). It is however not the
case that the complement of an analytic set is analytic (if X is an uncountable
Polish space). In the next section we establish exactly that; we show that
there exists an analytic set (in N ) whose complement is not analytic.

The Hierarchy of Projective Sets

For each n ≥ 1, we define the collections Σ1
n, Π1

n, and ∆1
n of subsets of

a Polish space X as follows:

(11.12) Σ1
1 = the collection of all analytic sets,

Π1
1 = the complements of analytic sets,

Σ1
n+1 = the collection of the projections of all Π1

n sets in X ×N ,

Π1
n = the complements of the Σ1

n sets in X ,

∆1
n = Σ1

n ∩ Π1
n.
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The sets belonging to one of the collections Σ1
n or Π1

n are called projective
sets. It is easily seen that for every n, ∆1

n ⊂ Σ1
n ⊂ ∆1

n+1 and ∆1
n ⊂ Π1

n ⊂
∆1

n+1.
We shall show that for each n there is a Σ1

n set in N that is not Π1
n; thus

the above inclusions are proper inclusions.

Lemma 11.8. For each n ≥ 1, there exists a universal Σ1
n set in N 2; i.e.,

a set U ⊂ N 2 such that U is Σ1
n and that for every Σ1

n set A in N there
exists some v ∈ N such that

A = {x : (x, v) ∈ U}.

Proof. Let h be a homeomorphism of N × N onto N . If n = 1, let V be
a universal Σ0

1 set; if n > 1, let V be, by the induction hypothesis, a universal
Σ1

n−1 set. Let

(11.13) (x, y) ∈ U if and only if ∃a ∈ N (h(x, a), y) /∈ V.

Since the set {(x, y, a) : (h(x, a), y) /∈ V } is closed (if n = 1) or Π1
n−1 (if

n > 1), U is Σ1
n.

If A ⊂ N is Σ1
n, there is a closed (or Π1

n−1) set B such that

(11.14) x ∈ A if and only if ∃a ∈ N (x, a) ∈ B.

The set C = N − h(B) is open (or Σ1
n−1) in N and since V is universal,

there exists a v such that C = {u : (u, v) ∈ V }. Then by (11.13), we have

x ∈ A ↔ (∃a ∈ N ) (x, a) ∈ B ↔ (∃a ∈ N )h(x, a) /∈ C

↔ (∃a ∈ N ) (h(x, a), v) /∈ V ↔ (x, v) ∈ U.

Hence U is a universal Σ1
n set. ��

Corollary 11.9. For each n ≥ 1, there is a set A ⊂ N that is Σ1
n but

not Π1
n.

Proof. Let U ⊂ N 2 be a universal Σ1
n set and let

A = {x : (x, x) ∈ U} ��

The collection of all ∆1
1 sets in a Polish space is a σ-algebra and contains

all Borel sets. It turns out that ∆1
1 is exactly the collection of all Borel sets.

Theorem 11.10 (Suslin). Every analytic set whose complement is also an-
alytic is a Borel set. Thus ∆1

1 is the collection of all Borel sets.

Let X be a Polish space and let A and B be two disjoint analytic sets
in X . We say that A and B are separated by a Borel set if there exists a Borel
set D such that A ⊂ D and B ⊂ X − D.
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Lemma 11.11. Any two disjoint analytic sets are separated by a Borel set.

This lemma is often called “the Σ1
1-Separation Principle.” It clearly im-

plies Suslin’s Theorem since if A is an analytic set such that B = X − A is
also analytic, A and B are separated by a Borel set D and we clearly have
D = A.

Proof. First we make the following observation: If A =
⋃∞

n=0 An and B =⋃∞
m=0 Bm are such that for all n and m, An and Bm are separated, then A

and B are separated. This is proved as follows: For each n and each m, let
Dn,m be a Borel set such that An ⊂ Dn,m ⊂ X − Bm. Then A and B are
separated by the Borel set D =

⋃∞
n=0

⋂∞
m=0 Dn,m.

Let A and B be two disjoint analytic sets in X . Let f and g be continuous
functions such that A = f(N ) and B = g(N ). For each s ∈ Seq, let As =
f(O(s)) and Bs = g(O(s)); the sets As and Bs are all analytic sets. For each s
we have As =

⋃∞
n=0 As�n and Bs =

⋃∞
m=0 Bs�m. If a ∈ ωω, then

{f(a)} =
∞⋂

n=0
f(O(a�n)) =

∞⋂
n=0

Aa�n,

and similarly for the sets Bs.
Let a, b ∈ ωω be arbitrary. Since f(N ) and g(N ) are disjoint, we have

f(a) �= g(b). Let Ga and Gb be two disjoint open neighbourhoods of f(a)
and g(b), respectively. By the continuity of f and g there exists some n such
that Aa�n ⊂ Ga and Bb�n ⊂ Gb. It follows that the sets Aa�n and Bb�n are
separated by a Borel set.

We shall now show, by contradiction, that the sets A and B are separated
by a Borel set. If A and B are not separated, then because A =

⋃∞
n=0 A〈n〉 and

B =
⋃∞

m=0 B〈m〉, there exist n0 and m0 such that the sets A〈n0〉 and B〈m0〉
are not separated. Then similarly there exist n1 and m1 such that the sets
A〈n0,n1〉 and B〈m0,m1〉 are not separated, and so on. In other words, there
exist a = 〈n0, n1, n2, . . .〉 and b = 〈m0, m1, m2, . . .〉 such that for every k,
the sets A〈n0,...,nk〉 and B〈m0,...,mk〉 are not separated. This is a contradiction
since in the preceding paragraph we proved exactly the opposite: There is k
such that Aa�k and Bb�k are separated. ��

Lebesgue Measure

We shall now review basic properties of Lebesgue measure on the n-dimen-
sional Euclidean space.

The standard way of defining Lebesgue measure is to define first the
outer measure µ∗(X) of a set X ⊂ Rn as the infimum of all possible sums∑

{v(Ik) : k ∈ N} where {Ik : k ∈ N} is a collection of n-dimensional
intervals such that X ⊂

⋃∞
k=0 Ik, and v(I) denotes the volume of I. For

each X , µ∗(X) ≥ 0 and possibly = ∞. A set X is null if µ∗(X) = 0.
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A set A ⊂ Rn is Lebesgue measurable if for each X ⊂ Rn,

µ∗(X) = µ∗(X ∩ A) + µ∗(X − A).

For a measurable set A, we write µ(A) instead of µ∗(A) and call µ(A) the
Lebesgue measure of A.

The standard development of the theory of Lebesgue measure gives the
following facts:

(i) Every interval is Lebesgue measurable, and its measure is equal
to its volume.

(ii) The Lebesgue measurable sets form a σ-algebra; hence every
Borel set is measurable.

(iii) µ is σ-additive: If An, n < ω, are pairwise disjoint and mea-
surable, then

µ
( ∞⋃

n=0
An

)
=

∞∑
n=0

µ(An).

(iv) µ is σ-finite: If A is measurable, then there exist measurable
sets An, n < ω, such that A =

⋃∞
n=0 An, and µ(An) < ∞ for

each n.
(v) Every null set is measurable. The null sets form a σ-ideal and

contain all singletons.
(vi) If A is measurable, then

µ(A) = sup{µ(K) : K ⊂ A is compact}.

(vii) If A is measurable, then there is an Fσ set F and a Gδ set G
such that F ⊂ A ⊂ G and G − F is null.

(11.15)

This last property gives this characterization of Lebesgue measurable sets:
A set A ⊂ Rn is measurable if and only if there is a Borel set B such that
the symmetric difference A  B = (A − B) ∪ (B − A) is null.

One consequence of this is that if we denote by B the σ-algebra of Borel
sets and by M the σ-algebra of measurable sets, and if Iµ is the ideal of all
null sets, then B/Iµ = M/Iµ. The Boolean algebra B/Iµ is σ-complete; and
since a familiar argument shows that Iµ is (as an ideal in M) σ-saturated,
we conclude that B/Iµ is a complete Boolean algebra. We shall return to this
in Part II.

Assuming the Axiom of Choice one can show that there exists a set of reals
that is not Lebesgue measurable. One such example is the Vitali set in Exer-
cise 10.1. As another example there exists a set X ⊂ Rn such that neither X
nor its complement has a perfect subset (see Exercise 5.1 for a construc-
tion of such a set). The set X is not measurable: Otherwise, e.g., µ(X) > 0
and by (11.15)(vi) there is a closed K ⊂ X such that µ(K) > 0; thus K is
uncountable and hence contains a perfect subset, a contradiction.

However, we shall show in Part II that it is consistent (with ZF + DC)
that all sets or reals are Lebesgue measurable.
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We conclude this review of Lebesgue measurability with two lemmas.
One is the well-known Fubini Theorem, and we state it here, without proof,
for the sake of completeness. The other lemma will be used in the proof of
Theorem 11.18 below.

If A is a subset of the plane R2 and x ∈ R, let Ax denote the set {y :
(x, y) ∈ A}.

Lemma 11.12. Let A ⊂ R2 be a measurable set. Then A is null if and only
if for almost all x, Ax is null (i.e., the set {x : Ax is not null} is null). ��

Lemma 11.13. For any set X ⊂ Rn there exists a measurable set A ⊃ X
with the property that whenever Z ⊂ A − X is measurable, then Z is null.

Proof. If µ∗(X) < ∞, then because µ∗(X) = inf{µ(A) : A is measurable
and A ⊃ X}, there is a measurable A ⊃ X such that µ(A) = µ∗(X); clearly
such an A will do. If µ∗(X) = ∞, there exist pairwise disjoint Xn such that
X =

⋃∞
n=0 Xn and that for each n, µ∗(Xn) < ∞. Let An ⊃ Xn, n < ω, be

measurable sets such that µ(An) = µ∗(Xn), and let A =
⋃∞

n=0 An. ��

It should be mentioned that the main results of descriptive set theory on
Lebesgue measure can be proved in a more general context, namely for rea-
sonable σ-additive measures on Polish spaces. An example of such a measure
is the product measure in the Cantor space {0, 1}ω.

The Property of Baire

In Chapter 4 we proved the Baire Category Theorem (Theorem 4.8): The
intersection of countably many dense open sets of reals is nonempty. It is
fairly easy to see that the proof works not only for the real line R but for
any Polish space.

Let us consider a Polish space X . Let us call a set A ⊂ X nowhere dense
if the complement of A contains a dense open set. Note that A is nowhere
dense just in case for every nonempty open set G, there is a nonempty open
set H ⊂ G such that A ∩ H = ∅. A set A is nowhere dense if and only if its
closure A is nowhere dense.

A set A ⊂ X is meager (or of first category) if A is the union of countably
many nowhere dense sets. A nonmeager set is called a set of second category.

The Baire Category Theorem states in effect that in a Polish space every
nonempty open set is of second category.

The meager sets form a σ-ideal. Moreover, in case of Rn, N , or the Cantor
space, every singleton {x} is nowhere dense and so the ideal of meager sets
contains all countable sets.

Definition 11.14. A set A has the Baire property if there exists an open
set G such that A  G is meager.
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Clearly, every meager set has the Baire property. Note that if G is open,
then G − G is nowhere dense. Hence if A  G is meager then (X − A) 
(X −G) = AG is meager, and it follows that the complement of a set with
the Baire property also has the Baire property. It is also easy to see that the
union of countably many sets with the Baire property has the Baire property
and we have:

Lemma 11.15. The sets having the Baire property form a σ-algebra; hence
every Borel set has the Baire property. ��

If B denotes the σ-algebra of Borel sets, and if we denote by C the σ-
algebra of sets with the Baire property, and if I is the σ-ideal of meager
sets, we have B/I = C/I. Note that the algebra B/I is σ-saturated: Let O
be a countable topology base for X . For each nonmeager set X with the
Baire property there exists G ∈ O such that G − X is meager. Thus the set
D = {[G] : G ∈ O} of equivalence classes is a dense set in B/I. Hence B/I is
σ-saturated and is a complete Boolean algebra.

The Axiom of Choice implies that sets without the Baire property exist.
For instance, the Vitali set (Exercise 10.1) is such, see Exercise 11.7.

If X ⊂ Rn is such that neither X nor its complement has a perfect
subset, then X does not have the Baire property: Otherwise, e.g., X is of
second category and hence X contains a Gδ subset G of second category.
Now G is uncountable, and this is a contradiction since as we shall prove
in Theorem 11.18, every uncountable Borel set (even analytic) has a perfect
subset.

The following two lemmas are analogs of Lemmas 11.12 and 11.13. The
first one, although not very difficult to prove, is again stated without proof.

Lemma 11.16. Let A ⊂ R2 have the property of Baire. Then A is meager
if and only if Ax is meager for all x except a meager set. ��

Lemma 11.17. For any set S in a Polish space X , there exists a set A ⊃ S
that has the Baire property and such that whenever Z ⊂ A−S has the Baire
property, then Z is meager.

Proof. Let us consider a fixed countable topology basis O for X . Let S ⊂ X .
Let

D(S) = {x ∈ X : for every U ∈ O such that x ∈ U , U ∩ S is not meager}.

Note that the complement of D(S) is the union of open sets and hence open;
thus D(S) is closed.

The set S − D(S) is the union of all S ∩ U where U ∈ O and S ∩ U is
meager; since O is countable, X − D(S) is meager. Let

A = S ∪ D(S).

Since A = (S−D(S))∪D(S) is the union of a meager and a closed set, A has
the Baire property.
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Let Z ⊂ A − S have the Baire property; we shall show that Z is meager.
Otherwise there is U ∈ O such that U −Z is meager; hence U ∩S is meager.
Since U ∩ Z �= ∅ and Z ⊂ D(S), there is x ∈ U such that x ∈ D(S), and
hence U ∩ S is not meager, a contradiction. ��

Although both “null” and “meager” mean in a sense “negligible,” see
Exercise 11.8 that shows that the real line can be decomposed into a null set
and a meager set.

Analytic Sets: Measure, Category, and the Perfect Set
Property

Theorem 11.18.

(i) Every analytic set of reals is Lebesgue measurable.
(ii) Every analytic set has the Baire property.
(iii) Every uncountable analytic set contains a perfect subset.

Corollary 11.19. Every Π1
1 set of reals is Lebesgue measurable and has the

Baire property. ��

Corollary 11.20. Every analytic (and in particular every Borel) set is ei-
ther at most countable or has cardinality c. ��

We prove (ii) and (iii) for an arbitrary Polish space. The proof of (i) is
general enough to work for other measures (in Polish spaces) as well.

Proof. The proof of (i) and (ii) is exactly the same and uses either Lem-
ma 11.13 or Lemma 11.17 (and basic facts on Lebesgue measure and the
Baire property). We give the proof of (i) and leave (ii) to the reader.

Let A be an analytic set of reals (or a subset of Rn). Let f : N → R
be a continuous function such that A = f(N ). For each s ∈ Seq, let As =
f(O(s)). We have

(11.16) A = A{As : s ∈ Seq} = A{As : s ∈ Seq},

and for every s ∈ Seq,

(11.17) As =
∞⋃

n=0
As�n.

By Lemma 11.13, there exists for each s ∈ Seq a measurable set Bs ⊃ As

such that every measurable Z ⊂ Bs − As is null. Since As is measurable, we
may actually find Bs such that As ⊂ Bs ⊂ As.
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Let B = B∅. Since B is measurable, it suffices to show that B−A is a null
set. Notice that because As ⊂ Bs ⊂ As, and because (11.16) holds, we have

A = A{Bs : s ∈ Seq}.

Thus
B − A = B −

⋃
a∈ωω

∞⋂
n=0

Ba�n.

We claim that

(11.18) B −
⋃

a∈ωω

∞⋂
n=0

Ba�n ⊂
⋃

s∈Seq

(
Bs −

∞⋃
k=0

Bs�k

)
.

To prove (11.18), assume that x ∈ B is such that x is not a member of the
right-hand side. Then for every s, if x ∈ Bs, then x ∈ Bs�k for some k. Hence
there is k0 such that x ∈ B〈k0〉, then there is k1 such that x ∈ B〈k0,k1〉, etc.
Let a = 〈k0, k1, k2, . . .〉; we have x ∈

⋂∞
n=0 Ba�n and hence x is not a member

of the left-hand side.
Thus we have

B − A ⊂
⋃

s∈Seq

(
Bs −

∞⋃
k=0

Bs�k

)
.

Since Seq is a countable set, it suffices to show that each Bs −
⋃∞

k=0 Bs�k is
null. Let s ∈ Seq, and let Z = Bs −

⋃∞
k=0 Bs�k. We have

Z = Bs −
∞⋃

k=0

Bs�k ⊂ Bs −
∞⋃

k=0

As�k = Bs − As.

Now because Z ⊂ Bs −As and because Z is measurable, Z must be null.
(iii) The proof is a variant of the Cantor-Bendixson argument for closed

sets in the Baire space. Recall that every closed set F in N is of the form
F = [T ] = {a : ∀n a�n ∈ T }, where T is a tree, T ⊂ Seq. For each tree
T ⊂ Seq and each s ∈ Seq, let Ts denote the tree {t ∈ T : t ⊂ s or s ⊂ t};
note that [Ts] = [T ] ∩ O(s).

Let A be an analytic set (in a Polish space X), and let f be a continuous
function such that A = f(N ). For each tree T ⊂ Seq, we define

T ′ = {s ∈ T : f([Ts]) is uncountable}.

For each α < ω1, we define T (α) as follows:

T (0) = Seq, T (α+1) = (T (α))′,

T (α) =
⋂

β<α

T (β) if α is a limit ordinal.

Let α < ω1 be the least ordinal such that T (α+1) = T (α). If T (α) = ∅, then

A =
⋃

β<α

{f([T (β)
s ]) : s ∈ T (β) − T (β+1)},
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and hence A is countable. Thus if A is uncountable, T (α) is nonempty and for
every s ∈ T (α), f([T (α)

s ]) is uncountable. In this case, we shall find a perfect
subset of A.

Let s ∈ T (α) be arbitrary. Since f([T (α)
s ]) has at least two elements,

there exist s〈0〉 ⊃ s and s〈1〉 ⊃ s (in T (α)) such that f([T (α)
s〈0〉 ]) and f([T (α)

s〈1〉 ])
are disjoint. Then there are s〈0,0〉 ⊃ s〈0〉 and s〈0,1〉 ⊃ s〈0〉, and s〈1,0〉 ⊃ s〈1〉,
s〈1,1〉 ⊃ s〈1〉 such that the four sets f([T (α)

s〈i,j〉 ]), i, j = 0, 1 are pairwise disjoint.
In this fashion we construct st ∈ T (α) for each finite 0–1 sequence t. These
elements st generate a subtree U = {s : s ⊂ st for some t} of T (α) such
that (1) U is perfect, (2) every s has at most two immediate successors in U
(hence [U ] is a compact set in N ), and (3) f is one-to-one on [U ].

Let P be the image of [U ] under the function f . Since [U ] is compact and
f is continuous, P is also compact, and hence closed. Moreover, P has no
isolated points because [U ] is perfect and f is continuous. Thus P is a perfect
subset of A. ��

Exercises

11.1. The operations
S∞

n=0 and
T∞

n=0 are special cases of the operation A.

11.2. Let As, s ∈ Seq , be Borel sets satisfying (11.10) and the additional condition:
For each s ∈ Seq and all n �= m, As�n∩As�m = ∅. Then A{As : s ∈ Seq} is a Borel
set.

[
S

a∈ωω

T∞
n=0 Aa�n =

T∞
n=0

S{As : length(s) = n}.]

11.3. Let An, n = 0, 1, 2, . . . , be pairwise disjoint analytic sets. Then there exist
pairwise disjoint Borel sets Dn such that An ⊂ Dn for all n.

[Modify the proof of Lemma 11.11.]

11.4. If A is a null set and a0 ≥ a1 ≥ . . . ≥ an ≥ . . . is a sequence of positive
numbers with limn an = 0, then there exists a sequence Gn, n = 0, 1, . . . , of finite
unions of open intervals such that A ⊂ S∞

n=0 Gn and µ(Gn) < an for each n.
Moreover, the intervals can be required to have rational endpoints.

[First find a sequence of open intervals Ik such that A ⊂ S∞
k=0 Ik and

P∞
k=0 µ(Ik) ≤ a0.]

11.5. For every set A with the Baire property, there exist a Gδ set G and an
Fσ set F such that G ⊂ A ⊂ F and such that F −G is meager.

[Note that every meager set is included in a meager Fσ set.]

11.6. For every set A with the Baire property, there exists a unique regular open
set U such that A� U is meager.

[An open set U is regular if U = int(U).]

11.7. The Vitali set M from Exercise 10.1 does not have the Baire property.
[“Meager” and “Baire property” are invariant under translation. If M has the

Baire property, then there is an interval (a, b) such that (a, b)−M is meager. Then
(a, b)∩Mq is meager for all rational q �= 0, hence each M ∩ (a− q, b− q) is meager,
hence M is meager, hence each Mq is meager; a contradiction since R =

S

q∈Q Mq.]
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11.8. There is a null set of reals whose complement is meager.
[Let q1, q2, . . . be an enumeration of the rationals. For each n ≥ 1 and k ≥ 1, let

In,k be the open interval with center qn and length 1/(k · 2n). Let Dk =
S∞

n=1 In,k,
and A =

T∞
k=1 Dk. Each Dk is open and dense, and µ(Dk) ≤ 1/k. Hence A is null

and R −A is meager.]

Historical Notes

Borel sets were introduced by Borel in [1905]. Lebesgue in [1905] proved in effect
Lemma 11.2. Suslin’s discovery of an error in a proof in Lebesgue’s article led to
a construction of an analytic non-Borel set and introduction of the operation A.
The basic results on analytic sets as well as Theorem 11.10 appeared in Suslin’s
article [1917].

Projective sets were introduced by Luzin [1925] and [1927a], and Sierpiński
[1925] and [1927]. The present notation (Σ and Π) appeared first in the paper
[1959] of Addison who noticed the analogy between Luzin’s hierarchy of projective
sets and Kleene’s hierarchy of analytic predicates [1955].

Lemma 11.8: Luzin [1930].
Lemma 11.11: Luzin [1927b].
For detailed treatment of Lebesgue measure, we refer the reader to Halmos’

book [1950]; Lebesgue introduced his measure and integral in his thesis [1902]. Sets
of first and second category were introduced by Baire [1899].

Lemmas 11.13 and 11.17: Marczewski [1930a].
Lemma 11.16: Kuratowski and Ulam [1932].
Theorem 11.18(i) (measurability of analytic sets) is due to Luzin [1917]. The-

orem 11.18(ii) (Baire property) is due to Luzin and Sierpiński [1923] and Theo-
rem 11.18(iii) (perfect subsets) is due to Suslin; cf. Luzin [1930]. The present proof
of (i) and (ii) follows Marczewski [1930a]. Prior to Suslin (and following the Cantor-
Bendixson Theorem for closed sets) Young proved in [1906] the perfect subset result
for Gδ and Fσ sets; and Hausdorff [1916] and Aleksandrov [1916] proved the same
for Borel sets.



12. Models of Set Theory

Modern set theory uses extensively construction of models to establish rela-
tive consistency of various axioms and conjectures. As the techniques often
involve standard model-theoretic concepts, we assume familiarity with basic
notions of models and satisfaction, submodels and embeddings, as well as
Skolem functions, direct limit and ultraproducts. We shall review the basic
notions, notation and terminology of model theory.

Review of Model Theory

A language is a set of symbols: relation symbols, function symbols, and con-
stant symbols:

L = {P, . . . , F, . . . , c, . . .}.
Each P is assumed to be an n-placed relation for some integer n ≥ 1; each F
is an m-placed function symbol for some m ≥ 1.

Terms and formulas of a language L are certain finite sequences of sym-
bols of L, and of logical symbols (identity symbol, parentheses, variables,
connectives, and quantifiers). The set of all terms and the set of all formulas
are defined by recursion. If the language is countable (i.e., if |L| ≤ ℵ0), then
we may identify the symbols of L, as well as the logical symbols, with some
hereditarily finite sets (elements of Vω); then formulas are also hereditarily
finite.

A model for a given language L is a pair A = (A, I), where A is the
universe of A and I is the interpretation function which maps the symbols
of L to appropriate relations, functions, and constants in A. A model for L
is usually written in displayed form as

A = (A, P A, . . . , FA, . . . , cA, . . .)

By recursion on length of terms and formulas one defines the value of a term

tA[a1, . . . , an]

and satisfaction
A � ϕ[a1, . . . , an]

where t is a term, ϕ is a formula, and 〈a1, . . . , an〉 is a finite sequence in A.
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Two models A = (A, P, . . . , F, . . . , c, . . .) and A′ = (A′, P ′, . . . , F ′, . . . ,
c′, . . .) are isomorphic if there is an isomorphism between A and A′, that is
a one-to-one function f of A onto A′ such that

(i) P (x1, . . . , xn) if and only if P ′(f(x1), . . . , f(xn)),
(ii) f(F (x1, . . . , xn)) = F ′(f(x1), . . . , f(xn)),
(iii) f(c) = c′,

for all relations, functions, and constants of A. If f is an isomorphism, then
f(tA[a1, . . . , an]) = tA

′
[f(a1), . . . , f(an)] for each term, and

A � ϕ[a1, . . . , an] if and only if A′ � ϕ[f(a1), . . . , f(an)]

for each formula ϕ and all a1, . . . , an ∈ A.
A submodel of A is a subset B ⊂ A endowed with the relations PA ∩ Bn,

. . . , functions FA�Bm, . . . , and constants cA, . . . ; all cA belong to B, and
B is closed under all FA (if (x1, . . . , xm) ∈ Bm, then FA(x1, . . . , xm) ∈ B).

An embedding of B into A is an isomorphism between B and a submodel
B′ ⊂ A.

A submodel B ⊂ A is an elementary submodel

B ≺ A

if for every formula ϕ, and every a1, . . . , an ∈ B,

(12.1) B � ϕ[a1, . . . , an] if and only if A � ϕ[a1, . . . , an].

Two models A, B are elementarily equivalent if they satisfy the same
sentences.

The key lemma in construction of elementary submodels is this: A subset
B ⊂ A forms an elementary submodel of A if and only if for every formula
ϕ(u, x1, . . . , xn), and every a1, . . . , an ∈ B,

if ∃a ∈ A such that A � ϕ[a, a1, . . . , an], then ∃a ∈ B such that
A � ϕ[a, a1, . . . , an].

(12.2)

A function h : An → A is a Skolem function for ϕ if

(∃a ∈ A)A � ϕ[a, a1, . . . , an] implies A � ϕ[h(a1, . . . , an), a1, . . . , an]

for every a1, . . . , an. Using the Axiom of Choice, one can construct a Skolem
function for every ϕ. If a subset B ⊂ A is closed under (some) Skolem func-
tions for all formulas, then B satisfies (12.2) and hence forms an elementary
submodel of A.

Given a set of Skolem functions, one for each formula of L, the closure of
a set X ⊂ A is a Skolem hull of X . It is clear that the Skolem hull of X is
an elementary submodel of A, and has cardinality at most |X | · |L| · ℵ0. In
particular, we have the following:
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Theorem 12.1 (Löwenheim-Skolem). Every infinite model for a count-
able language has a countable elementary submodel. ��

An elementary embedding is an embedding whose range is an elementary
submodel.

A set X ⊂ A is definable over A if there exist a formula ϕ and some
a1, . . . , an ∈ A such that

X = {x ∈ A : A � ϕ[x, a1, . . . , an]}.

We say that X is definable in A from a1, . . . , an. If ϕ is a formula of x only,
without parameters a1, . . . , an, then X is definable in A. An element a ∈ A
is definable (from a1, . . . , an) if the set {a} is definable (from a1, . . . , an).

Gödel’s Theorems

The cornerstone of modern logic are Gödel’s theorems: the Completeness
Theorem and two incompleteness theorems.

A set Σ of sentences of a language L is consistent if there is no formal
proof of contradiction from Σ. The Completeness Theorem states that every
consistent set of sentences has a model.

The First Incompleteness Theorem shows that no consistent (recursive)
extension of Peano Arithmetic is complete: there exists a statement that is
undecidable in the theory. In particular, if ZFC is consistent (as we believe),
no additional axioms can prove or refute every sentence in the language of
set theory.

The Second Incompleteness Theorem proves that sufficiently strong math-
ematical theories such as Peano Arithmetic or ZF (if consistent) cannot prove
its own consistency. Gödel’s Second Incompleteness Theorem implies that it
is unprovable in ZF that there exists a model of ZF. This fact is significant for
the theory of large cardinals, and we shall return to it later in this chapter.

Direct Limits of Models

An often used construction in model theory is the direct limit of a directed
system of models. A directed set is a partially ordered set (D, <) such that
for every i, j ∈ D there is a k ∈ D such that i ≤ k and j ≤ k.

First consider a system of models {Ai : i ∈ D}, indexed by a directed
set D, such that for all i, j ∈ D, if i < j then Ai ≺ Aj. Let A =

⋃
i∈D Ai; i.e.,

the universe of A is the union of the universes of the Ai, PA =
⋃

i∈D PAi , etc.
It is easily proved by induction on the complexity of formulas that Ai ≺ A
for all i.

In general, we consider a directed system of models which consists of
models {Ai : i ∈ D} together with elementary embeddings ei,j : Ai → Aj

such that ei,k = ej,k ◦ ei,j for all i < j < k.
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Lemma 12.2. If {Ai, ei,j : i, j ∈ D} is a directed system of models, there
exists a model A, unique up to isomorphism, and elementary embeddings ei :
Ai → A such that A =

⋃
i∈D ei(Ai) and that ei = ej ◦ ei,j for all i < j.

The model A is called the direct limit of {Ai, ei,j}i,j∈D.

Proof. Consider the set S of all pairs (i, a) such that i ∈ D and a ∈ Ai, and
define an equivalence relation on S by

(i, a) ≡ (j, b) ↔ ∃k (i ≤ k, j ≤ k and ei,k(a) = ej,k(b)).

Let A = S/≡ be the set of all equivalence classes, and let ei(a) = [(i, a)] for
all i ∈ D and a ∈ Ai. The rest is routine. ��

In set theory, a frequent application of direct limits involves the case when
D is an ordinal number (and < is its well-ordering).

Reduced Products and Ultraproducts

An important method in model theory uses filters and ultrafilters. Let S be
a nonempty set and let {Ax : x ∈ S} be a system of models (for a language L).
Let F be a filter on S. Consider the set

A =
∏

x∈S

Ax/=F

where =F is the equivalence relation on
∏

x∈x Ax defined as follows:

(12.3) f =F g if and only if {x ∈ S : f(x) = g(x)} ∈ F.

It follows easily that =F is an equivalence relation.
The model A with universe A is obtained by interpreting the language as

follows:
If P (x1, . . . , xn) is a predicate, let

PA([f1], . . . , [fn]) if and only if {x ∈ S : PAx(f1(x), . . . , fn(x))} ∈ F .(12.4)

If F (x1, . . . , xn) is a function, let

FA([f1], . . . , [fn]) = [f ] where f(x) = FAx(f1(x), . . . , fn(x)) for all
x ∈ S.

(12.5)

If c is a constant, let

cA = [f ] where f(x) = cAx for all x ∈ S.(12.6)

(Note that (12.4) and (12.5) does not depend on the choice of representatives
from the equivalence classes [f1], . . . , [fn]).
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The model A is called a reduced product of {Ax : x ∈ S} (by F ).
Reduced products are particularly important in the case when the filter

is an ultrafilter. If U is an ultrafilter on S then the reduced product defined
in (12.3)–(12.6) is called the ultraproduct of {Ax : x ∈ S} by U :

A = UltU{Ax : x ∈ S}.

The importance of ultraproducts is due mainly to the following funda-
mental property.

Theorem 12.3 (�Loś). Let U be an ultrafilter on S and let A be the ultra-
product of {Ax : x ∈ S} by U .

(i) If ϕ is a formula, then for every f1, . . . , fn ∈
∏

x∈S Ax,

A � ϕ([f1], . . . , [fn]) if and only if {x ∈ S : Ax � ϕ[f1(x), . . . , fn(x)]} ∈ U.

(ii) If σ is a sentence, then

A � σ if and only if {x ∈ S : Ax � σ} ∈ U.

Part (ii) is a consequence of (i). Note that by the theorem, the satisfaction
of ϕ at [f1], . . . , [fn] does not depend on the choice of representatives f1,
. . . , fn for the equivalence classes [f1], . . . , [fn]. Thus we may further abuse
the notation and write

A � ϕ[f1, . . . , fn].

It will also be convenient to adopt a measure-theoretic terminology. If

{x ∈ S : Ax � ϕ[f1(x), . . . , fn(x)]} ∈ U

we say that Ax satisfies ϕ(f1(x), . . . , fn(x)) for almost all x, or that Ax �
ϕ(f1(x), . . . , fn(x)) holds almost everywhere. In this terminology, �Loś’s The-
orem states that ϕ(f1, . . . , fn) holds in the ultraproduct if and only if for
almost all x, ϕ(f1(x), . . . , fn(x)) holds in Ax.

Proof. We shall prove (i) by induction on the complexity of formulas. We
shall prove that (i) holds for atomic formulas, and then prove the induction
step for ¬, ∧, and ∃.

Atomic formulas. First we consider the formula u = v, and we have

(12.7) A � [f ] = [g] ↔ [f ] = [g]

↔ f =U g

↔ {x : f(x) = g(x)} ∈ U

↔ {x : Ax � f(x) = g(x)} ∈ U.
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For a predicate P (v1, . . . , vn) we have

(12.8) A � P ([f1], . . . , [fn]) ↔ PA([f1], . . . , [fn])

↔ {x : PAx(f1(x), . . . , fn(x))} ∈ U

↔ {x : Ax � P (f1(x), . . . , fn(x))} ∈ U.

Both (12.7) and (12.8) remain true if variables are replaced by terms, and so
(i) holds for all atomic formulas.

Logical connectives. First we assume that (i) holds for ϕ and show that it
also holds for ¬ϕ (here we use that X ∈ U if and only if S − X /∈ U).

A � ¬ϕ[f ] ↔ not A � ϕ[f ]
↔ {x : Ax � ϕ[f(x)]} /∈ U

↔ {x : Ax � ϕ[f(x)]} ∈ U

↔ {x : Ax � ¬ϕ[f(x)]} ∈ U.

Similarly, if (i) is true for ϕ and ψ, we have

A � ϕ ∧ ψ ↔ A � ϕ and A � ψ

↔ {x : Ax � ϕ} ∈ U and {x : Ax � ψ} ∈ U

↔ {x : Ax � ϕ ∧ ψ} ∈ U

(The last equivalence uses this: X ∈ U and Y ∈ U if and only if X ∩Y ∈ U .)

Existential quantifier. We assume that (i) is true for ϕ(u, v1, . . . , vn) and
show that it remains true for the formula ∃u ϕ. Let us assume first that

(12.9) A � ∃u ϕ[f1, . . . , fn].

Then there is g ∈
∏

x∈S Ax such that A � ϕ[g, f1, . . . , fn], and therefore

(12.10) {x : Ax � ϕ[g(x), f1(x), . . . , fn(x)]} ∈ U,

and it clearly follows that

(12.11) {x : Ax � ∃u ϕ[u, f1(x), . . . , fn(x)]} ∈ U.

Now let us assume that (12.11) holds. For each x ∈ S, let ux ∈ Ax be such
that Ax � [ux, f1(x), . . . , fn(x)] if such ux exists, and arbitrary otherwise. If
we define g ∈

∏
x∈S Ax by g(x) = ux, then we have (12.10), and therefore

A � ϕ[g, f1, . . . , fn].

Now (12.9) follows. ��
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Let us consider now the special case of ultraproducts, when each Ax is
the same model A. Then the ultraproduct is called an ultrapower of A; de-
noted UltU A.

Corollary 12.4. An ultrapower of a model A is elementarily equivalent to A.

Proof. By Theorem 12.3(ii) we have UltU A � σ if and only if {x : A � σ} is
either S or empty, according to whether A � σ or not. ��

We shall now show that a model A is elementarily embeddable in its
ultrapower. If U is an ultrafilter on S, we define the canonical embedding
j : A → UltU A as follows: For each a ∈ A, let ca be the constant function
with value a:

(12.12) ca(x) = a (for every x ∈ S),

and let

(12.13) j(a) = [ca].

Corollary 12.5. The canonical embedding j : A → UltU A is an elementary
embedding.

Proof. Let a ∈ A. By �Loś’s Theorem, UltU A � ϕ[j(a)] if and only if UltU A �
ϕ[ca] if and only if A � ϕ[a] for almost all x if and only if A � ϕ[a]. ��

Models of Set Theory and Relativization

The language of set theory consists of one binary predicate symbol ∈, and
so models of set theory are given by its universe M and a binary relation E
on M that interprets ∈.

We shall also consider models of set theory that are proper classes. How-
ever, due to Gödel’s Second Incompleteness Theorem, we have to be careful
how the generalization is formulated.

Definition 12.6. Let M be a class, E a binary relation on M and let
ϕ(x1, . . . , xn) be a formula of the language of set theory. The relativization
of ϕ to M , E is the formula

(12.14) ϕM,E(x1, . . . , xn)

defined inductively as follows:

(12.15) (x ∈ y)M,E ↔ x E y

(x = y)M,E ↔ x = y

(¬ϕ)M,E ↔ ¬ϕM,E

(ϕ ∧ ψ)M,E ↔ ϕM,E ∧ ψM,E

(∃xϕ)M,E ↔ (∃x ∈ M)ϕM,E

and similarly for the other connectives and ∀.
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When E is ∈, we write ϕM instead of ϕM,∈.

When using relativization ϕM,E(x1, . . . , xn) it is implicitly assumed that
the variables x1, . . . , xn range over M . We shall often write

(M, E) � ϕ(x1, . . . , xn)

instead of (12.14) and say that the model (M, E) satisfies ϕ. We point out
however that while this is a legitimate statement in every particular case of ϕ,
the general satisfaction relation is formally undefinable in ZF.

Let Form denote the set of all formulas of the language {∈}. As with any
actual (metamathematical) natural number we can associate the correspond-
ing element of N , we can similarly associate with any given formula of set
theory the corresponding element of the set Form . To make the distinction,
if ϕ is a formula, let �ϕ� denote the corresponding element of Form .

If M is a set and E is a binary relation on M and if a1, . . . , an are
elements of M , then

(12.16) ϕM,E(a1, . . . , an) ↔ (M, E) � �ϕ�[a1, . . . , an]

as can easily be verified. Thus in the case when M is a set and ϕ a particular
(metamathematical) formula, we shall not make a distinction between the
two meanings of the symbol �. We note however that the left-hand side
of (12.16) (relativization) is not defined for ϕ ∈ Form , and the right-hand
side (satisfaction) is not defined if M is a proper class.

Below we sketch a proof of a theorem of Tarski, closely related to Gödel’s
Second Incompleteness Theorem. The theorem states that there is no set-
theoretical property T (x) such that if σ is a sentence that T (�σ�) holds if and
only if σ holds.

Let us arithmetize the syntax and consider some fixed effective enumera-
tion of all expressions by natural numbers (Gödel numbering). In particular,
if σ is a sentence, then #σ is the Gödel number of σ, a natural number. We
say that T (x) is a truth definition if:

(i) ∀x (T (x) → x ∈ ω);
(ii) if σ is a sentence, then σ ↔ T (#σ).

(12.17)

Theorem 12.7 (Tarski). A truth definition does not exist.

Proof. Let us assume that there is a formula T (x) satisfying (12.17). Let

ϕ0, ϕ1, ϕ2, . . .

be an enumeration of all formulas with one free variable. Let ψ(x) be the
formula

x ∈ ω ∧ ¬T (#(ϕx(x))).

There is a natural number k such that ψ is ϕk. Let σ be the sentence ψ(k).
Then we have

σ ↔ ψ(k) ↔ ¬T (#(ϕk(k))) ↔ ¬T (#σ)
which contradicts (12.17). ��
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Relative Consistency

By Gödel’s Second Incompleteness Theorem it is impossible to show the
consistency of ZF (or related theories) by means limited to ZF alone.

Once we assume that ZF (or ZFC) is consistent, we may ask whether the
theory remains consistent if we add an additional axiom A.

Let T be a mathematical theory (in our case, T is either ZF or ZFC), and
let A be an additional axiom. We say that T + A is consistent relative to T
(or that A is consistent with T) if the following implication holds:

if T is consistent, then so is T + A.

If both A and ¬A are consistent with T, we say that A is independent of T.
The question whether A is consistent with T is equivalent to the question

whether the negation of A is provable in T (provided T is consistent); this is
because T + A is consistent if and only if ¬A is not provable in T.

The way to show that an axiom A is consistent with ZF (ZFC) is to
use models. For assume that we have a model M (possibly a proper class)
of ZF such that M � A. (More precisely, the relativizations σM hold for all
axioms σ of ZF, as well as AM .) Then A is consistent with ZF: If it were not,
then ¬A would be provable in ZF, and since M is a model of ZF, M would
satisfy ¬A. However, (¬A)M contradicts AM .

Transitive Models and ∆0 Formulas

If M is a transitive class then the model (M,∈) is called a transitive model.
We note that transitive models satisfy the Axiom of Extensionality (see Ex-
ercise 12.4) and that every well-founded extensional model is isomorphic to
a transitive model (Theorem 6.15).

Definition 12.8. A formula of set theory is a ∆0-formula if

(i) it has no quantifiers, or
(ii) it is ϕ∧ψ, ϕ∨ψ, ¬ϕ, ϕ → ψ or ϕ ↔ ψ where ϕ and ψ are ∆0-formulas,

or
(iii) it is (∃x ∈ y)ϕ or (∀x ∈ y)ϕ where ϕ is a ∆0-formula.

Lemma 12.9. If M is a transitive class and ϕ is a ∆0-formula, then for all
x1, . . . , xn,

(12.18) ϕM (x1, . . . , xn) ↔ ϕ(x1, . . . , xn).

If (12.18) holds, we say that the formula ϕ is absolute for the transitive
model M .
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Proof. If ϕ is an atomic formula, then (12.18) holds. If (12.18) holds for ϕ
and ψ, then it holds for ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ, and ϕ ↔ ψ.

Let ϕ be the formula (∃u ∈ x)ψ(u, x, . . .) and assume that (12.18) is true
for ψ. We show that (12.18) is true for ϕ (the proof for ∀u ∈ x is similar).

If ϕM holds then we have (∃u (u ∈ x∧ψ))M , i.e., (∃u ∈ M)(u ∈ x∧ψM ).
Since ψM ↔ ψ, it follows that (∃u ∈ x)ψ. Conversely, if (∃u ∈ x)ψ, then
since M is transitive, u belongs to M , and since ψ(u, x, . . .) ↔ ψM (u, x, . . .),
we have ∃u (u ∈ M ∧ u ∈ x ∧ ψM ) and so ((∃u ∈ x)ψ)M . ��

Lemma 12.10. The following expressions can be written as ∆0-formulas
and thus are absolute for all transitive models.

(i) x = {u, v}, x = (u, v), x is empty, x ⊂ y, x is transitive, x is an
ordinal, x is a limit ordinal, x is a natural number, x = ω.

(ii) Z = X × Y , Z = X − Y , Z = X ∩ Y , Z =
⋃

X , Z = dom X ,
Z = ranX.

(iii) X is a relation, f is a function, y = f(x), g = f�X.

Proof.

(i) x = {u, v} ↔ u ∈ x ∧ v ∈ x ∧ (∀w ∈ x)(w = u ∨ w = v).
x = (u, v) ↔ (∃w ∈ x)(∃z ∈ x)(w = {u} ∧ z = {u, v})

∧ (∀w ∈ x)(w = {u} ∨ w = {u, v}).
x is empty ↔ (∀u ∈ x)u �= u.
x ⊂ y ↔ (∀u ∈ x)u ∈ y.
x is transitive ↔ (∀u ∈ x)u ⊂ x.
x is an ordinal ↔ x is transitive∧(∀u ∈ x)(∀v ∈ x)(u ∈ v∨v ∈ u∨u = v)

∧ (∀u ∈ x)(∀v ∈ x)(∀w ∈ x)(u ∈ v ∈ w → u ∈ w).
x is a limit ordinal ↔ x is an ordinal ∧ (∀u ∈ x)(∃v ∈ x)u ∈ v.
x is a natural number ↔ x is an ordinal ∧ (x is not a limit ∨ x = 0)

∧ (∀u ∈ x)(u = 0 ∨ u is not a limit).
x = ω ↔ x is a limit ordinal ∧ x �= 0 ∧ (∀u ∈ x)x is a natural number.

(ii) Z = X × Y ↔ (∀z ∈ Z)(∃x ∈ X)(∃y ∈ Y ) z = (x, y)
∧ (∀x ∈ X)(∀y ∈ Y )(∃z ∈ Z) z = (x, y).

Z = X − Y ↔ (∀z ∈ Z)(z ∈ X ∧ z /∈ Y ) ∧ (∀z ∈ X)(z /∈ Y → z ∈ Z).
Z = X ∩ Y . . . similar.
Z =

⋃
X ↔ (∀z ∈ Z)(∃x ∈ X) z ∈ x ∧ (∀x ∈ X)(∀z ∈ x) z ∈ Z.

Z = dom(X) ↔ (∀z ∈ Z) z ∈ domX ∧ (∀z ∈ domX) z ∈ Z,

and we show that:

(a) z ∈ domX is a ∆0-formula;
(b) if ϕ is ∆0, then (∀z ∈ domX)ϕ is ∆0.

(12.19)

(a) z ∈ domX ↔ (∃x ∈ X)(∃u ∈ X)(∃v ∈ u)x = (z, v).
(b) (∀z ∈ domX)ϕ ↔ (∀x ∈ X)(∀u ∈ x)(∀z, v ∈ u)(x = (z, v) → ϕ).
An assertion similar to (12.19) holds for ran(X), and for ∃.
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(iii) X is a relation ↔ (∀x ∈ X)(∃u ∈ domX)(∃v ∈ ranX)x = (u, v).
f is a function ↔ f is a relation ∧

(∀x ∈ dom f)(∀y, z ∈ ran f)((x, y) ∈ f ∧ (x, z) ∈ f → y = z)
where

(x, y) ∈ f ↔ (∃u ∈ f)u = (x, y).

g = f�X ↔ g is a function ∧ g ⊂ f ∧ (∀x ∈ dom g)x ∈ X
∧ (∀x ∈ X)(x ∈ dom f → x ∈ dom g). ��

It should be emphasized that cardinal concepts are generally not absolute.
In particular, the following expressions are known not to be absolute:

Y = P (X), |Y | = |X |, α is a cardinal, β = cf(α), α is regular.

Compare with Exercise 12.6.

Consistency of the Axiom of Regularity

As an application of the theory of transitive models we show that the Axiom
of Regularity is consistent with the other axioms of ZF. In this section only
we work in the theory ZF minus Regularity, i.e., axioms 1.1–1.7.

The cumulative hierarchy Vα is defined as in Chapter 6, and we denote (in
the present section only) V not the universal class but the class

⋃
α∈Ord Vα.

We shall show that V is a transitive model of ZF. Thus the Axiom of Regu-
larity is consistent relative to the theory 1.1–1.7.

Theorem 12.11. In ZF minus Regularity, σV holds for every axiom σ
of ZF.

Proof. We use absoluteness of ∆0-formulas and the fact that for every set x,
if x ⊂ V , then x ∈ V .

Extensionality. The formula

((∀u ∈ X)u ∈ Y ∧ (∀u ∈ Y )u ∈ X) → X = Y

is ∆0.

Pairing. Given a, b ∈ V , let c = {a, b}. The set c is in V and since “c = {a, b}”
is ∆0 (see Lemma 12.10), the Pairing Axiom holds in V .

Separation. Let ϕ be a formula; we shall show that

V � ∀X ∀p ∃Y ∀u (u ∈ Y ↔ u ∈ X ∧ ϕ(u, p)).

Given X, p ∈ V , we let Y = {u ∈ X : ϕV (u, p)}. Since Y ⊂ X and X ∈ V ,
we have Y ∈ V , and

V � ∀u (y ∈ Y ↔ u ∈ X ∧ ϕ(u, p)).
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Union. Given X ∈ V , let Y =
⋃

X . The set Y is in V and since “Y =
⋃

X”
is ∆0, the Axiom of Union holds in V .

Power Set. Given X ∈ V , let Y = P (X). The set Y is in V , and we claim
that V � ∀u ϕ(u) where ϕ(u) is the formula u ∈ Y ↔ u ⊂ X . Since ϕ(u)
is ∆0 and because ϕ(u) holds for all u, we have ϕV (u) for all u ∈ V , as
claimed.

Infinity. We want to show that

(12.20) V � ∃S (∅ ∈ S ∧ (∀x ∈ S)x ∪ {x} ∈ S).

The formula in (12.20) contains defined notions, { }, ∪, and ∅; and strictly
speaking, we should first eliminate these symbols and use a formula in which
they are replaced by their definitions, using only ∈ and =. However, we have
already proved that both pairing and union are the same in the universe as
in V , and similarly one shows that X ∈ V is empty if and only if (X is
empty)V . In other words,

{a, b}V = {a, b},
⋃V

X =
⋃

X, ∅V = ∅

where {a, b}V ,
⋃V , and ∅V denote pairing, union, and the empty set in the

model V .
Since ω ∈ V , we easily verify that (12.20) holds when S = ω.

Replacement. Let ϕ be a formula; we shall show that

V � ∀x∀y ∀z (ϕ(x, y, p) ∧ ϕ(x, z, p) → y = z)

→ ∀X ∃Y ∀y (y ∈ Y ↔ (∃x ∈ X)ϕ(x, y, p)).

Given p ∈ V , assume that V � ∀x∀y ∀z ( . . . ). Thus

F = {(x, y) ∈ V : ϕV (x, y, p)}

is a function, and we let Y = F (X). Since Y ⊂ V , we have Y ∈ V , and one
verifies that for every y ∈ V ,

V � y ∈ Y ↔ (∃x ∈ X)ϕ(x, y, p).

Regularity. We want to show that V � ∀S ϕ(S), where ϕ is the formula

S �= ∅ → (∃x ∈ S)S ∩ x = ∅.

If S ∈ V is nonempty, then let x ∈ S be of least rank; then S ∩ x = ∅.
Hence ϕ(S) is true for any S; moreover, (S ∩x)V = S ∩x, and ϕ is ∆0. Thus
V � ∀S ϕ(S). ��
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Inaccessibility of Inaccessible Cardinals

Theorem 12.12. The existence of inaccessible cardinals is not provable
in ZFC. Moreover, it cannot be shown that the existence of inaccessible car-
dinals is consistent with ZFC.

We shall prove the first assertion and invoke Gödel’s Second Incomplete-
ness Theorem to obtain the second part.

First we prove (in ZFC):

Lemma 12.13. If κ is an inaccessible cardinal, then Vκ is a model of ZFC.

Proof. The proof of all axioms of ZFC except Replacement is as in the proof
of consistency of the Axiom of Regularity (see Exercises 12.7 and 12.8). To
show that Vκ � Replacement, it is enough to show:

(12.21) If F is a function from some X ∈ Vκ into Vκ, then F ∈ Vκ.

Since κ is inaccessible, we have |Vκ| = κ and |X | < κ for every X ∈ Vκ. If
F is a function from X ∈ Vκ into Vκ, then |F (X)| ≤ |X | < κ and (since κ is
regular) F (X) ⊂ Vα for some α < κ. It follows that F ∈ Vκ. ��
Proof of Theorem 12.12. If κ is an inaccessible cardinal, then not only is Vκ

a model of ZFC, but in addition

(α is an ordinal)Vκ ↔ α is an ordinal.

(α is a cardinal)Vκ ↔ α is a cardinal.

(α is a regular cardinal)Vκ ↔ α is a regular cardinal.

(α is an inaccessible cardinal)Vκ ↔ α is an inaccessible cardinal.

We leave the details to the reader.
In particular, if κ is inaccessible cardinal, then

Vκ � there is no inaccessible cardinal.

Thus we have a model of ZFC+“there is no inaccessible cardinal” (if there is
no inaccessible cardinal, we take the universe as the model). Hence it cannot
be proved in ZFC that inaccessible cardinals exist.

To prove the second part, assume that it can be shown that the existence
of inaccessible cardinals is consistent with ZFC; in other words, we assume

if ZFC is consistent, then so is ZFC + I

where I is the statement “there is an inaccessible cardinal.”
We naturally assume that ZFC is consistent. Since I is consistent with

ZFC, we conclude that ZFC + I is consistent. It is provable in ZFC + I that
there is a model of ZFC (Lemma 12.13). Thus the sentence “ZFC is consis-
tent” is provable in ZFC + I. However, we have assumed that “I is consistent
with ZFC” is provable, and so “ZFC+I is consistent” is provable in ZFC+I.
This contradicts Gödel’s Second Incompleteness Theorem. ��
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The wording of the second part of Theorem 12.12 (and its proof) is some-
what vague; “it cannot be shown” means: It cannot be shown by methods
formalizable in ZFC.

Reflection Principle

The theorem that we prove below is the analog of the Löwenheim-Skolem
Theorem. While that theorem states that every model has a small elemen-
tary submodel, the Reflection Principle provides, for any finite number of
formulas, a set M that is like an “elementary submodel” of the universe,
with respect to the given formulas. The theorem is proved without the use
of the Axiom of Choice, but using the Axiom of Choice, one can obtain
countable model.

Theorem 12.14 (Reflection Principle).

(i) Let ϕ(x1, . . . , xn) be a formula. For each M0 there exists a set M ⊃ M0

such that

(12.22) ϕM (x1, . . . , xn) ↔ ϕ(x1, . . . , xn)

for every x1, . . . , xn ∈ M . (We say that M reflects ϕ.)
(ii) Moreover, there is a transitive M ⊃ M0 that reflects ϕ; moreover,

there is a limit ordinal α such that M0 ⊂ Vα and Vα reflects ϕ.
(iii) Assuming the Axiom of Choice, there is an M ⊃ M0 such that M re-

flects ϕ and |M | ≤ |M0| · ℵ0. In particular, there is a countable M
that reflects ϕ.

Remarks. 1. We may require either that M be transitive or that |M | ≤
|M0| · ℵ0 but not both.

2. The proof works for any finite number of formulas, not just one. Thus
if ϕ1, . . . , ϕn are formulas, then there exists a set M that reflects each of ϕ1,
. . . , ϕn.

3. If σ is a true sentence, then the Reflection Principle yields a set M that
is a model of σ; using the Axiom of Choice, one can get a countable transitive
model of σ.

4. As a consequence of the Reflection Principle, and of Gödel’s Second
Incompleteness Theorem, it follows that the theory ZF is not finitely axiom-
atizable: Any finite number of theorems of ZF have a model (a set) by the
Reflection Principle, while the existence of a model of ZF is not provable. (By
the same argument, no consistent extension of ZF is finitely axiomatizable.)

The key step in the proof of Theorem 12.14 is the following lemma, which
we prove first.
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Lemma 12.15.

(i) Let ϕ(u1, . . . , un, x) be a formula. For each set M0 there exists a set
M ⊃ M0 such that

(12.23) if ∃xϕ(u1, . . . , un, x) then (∃x ∈ M)ϕ(u1, . . . , un, x)

for every u1, . . . , un ∈ M . Assuming the Axiom of Choice, there is
M ′ ⊃ M0 such that (12.23) holds for M ′ and |M ′| ≤ |M0| · ℵ0.

(ii) If ϕ1, . . . , ϕk are formulas, then for each M0 there is an M ⊃ M0

such that (12.23) holds for each ϕ1, . . . , ϕk.

Proof. We shall give a detailed proof of (i). An obvious modification of the
proof gives (ii); we leave that to the reader.

Note that the operation H(u1, . . . , un) defined below plays the same role
as Skolem functions in the Löwenheim-Skolem Theorem.

Let us recall the definition (6.4):

(12.24) Ĉ = {x ∈ C : (∀z ∈ C) rankx ≤ rank z}.

For every u1, . . . , un, let

(12.25) H(u1, . . . , un) = Ĉ

where

(12.26) C = {x : ϕ(u1, . . . , un, x)}.

Thus H(u1, . . . , un) is a set with the property

(12.27) if ∃xϕ(u1, . . . , un, x), then (∃x ∈ H(u1, . . . , un))ϕ(u1, . . . , un, x).

We construct the set M by induction. We let M =
⋃∞

i=0 Mi where for each
i ∈ N ,

(12.28) Mi+1 = Mi ∪
⋃
{H(u1, . . . , un) : u1, . . . , un ∈ Mi}.

Now, if u1, . . . , un ∈ M , then there is an i ∈ N such that u1, . . . , un ∈ Mi

and if ϕ(u1, . . . , un, x) holds for some x, then it holds for some x ∈ Mi+1, by
(12.27) and (12.28).

Assuming the Axiom of Choice, let F be a choice function on P (M).
For every u1, . . . , un ∈ M , let h(u1, . . . , un) = F (H(u1, . . . , un)) (and let
h(u1, . . . , un) remain undefined if H(u1, . . . , un) is empty). Let us define M ′ =⋃∞

i=0 M ′
i , where M ′

0 = M0 and for each i ∈ N ,

M ′
i+1 = M ′

i ∪ {h(u1, . . . , un) : u1, . . . , un ∈ M ′
i}.

Condition (12.23) can be verified for M ′ in the same way as for M . Moreover,
each M ′

i has cardinality at most |M0| · ℵ0, and so does M ′. ��
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Proof of Theorem 12.14. Let ϕ(x1, . . . , xn) be a formula. We may assume
that the universal quantifier does not occur in ϕ (∀x . . . can be replaced by
¬∃x¬ . . . ). Let ϕ1, . . . , ϕk be all the subformulas of the formula ϕ.

Given a set M0, there exists, by Lemma 12.15(ii), a set M ⊃ M0, such
that

(12.29) ∃xϕj(u, . . . , x) → (∃x ∈ M)ϕj(u, . . . , x), j = 1, . . . , k

for all u, . . . ∈ M . We claim that M reflects each ϕj , j = 1, . . . , k, and in
particular M reflects ϕ. This is proved by induction on the complexity of ϕj .

It is easy to see that (every) M reflects atomic formulas, and that if
M reflects formulas ψ and χ, then M reflects ¬ψ, ψ ∧ χ, ψ ∨ χ, ψ → χ, and
ψ ↔ χ. Thus assume that M reflects ϕj(u1, . . . , um, x) and let us prove that
M reflects ∃xϕj .

If u1, . . . , um ∈ M , then

M � ∃xϕj(u1, . . . , um, x) ↔ (∃x ∈ M)ϕM
j (u1, . . . , um, x)

↔ (∃x ∈ M)ϕj(u1, . . . , um, x)

↔ ∃xϕj(u1, . . . , um, x).

The last equivalence holds by (12.29).
This proves part (i) of the theorem. Part (iii) is proved by taking M of

size ≤ |M0| · ℵ0. To prove (ii), one has to modify the proof of Lemma 12.15
so that the set M used in (12.29) is transitive (or M = Vα). This is done as
follows: In (12.28), we replace Mi+1 by its transitive closure (or by the least
Vγ ⊃ Mi+1). Then M is transitive (or M = Vα). ��

Exercises

12.1. Let U be a principal ultrafilter on S, such that {a} ∈ U . Show that the
ultraproduct UltU{Ax : x ∈ S} is isomorphic to Aa.

12.2. If U is a principal ultrafilter, then the canonical embedding j is an isomor-
phism between A and UltU A.

12.3. Let κ be a measurable cardinal and let U be an ultrafilter on κ. Let (A, <∗)
be the ultrapower of (κ, <) by U , and let j : κ→ A be the canonical embedding.

(i) (A,<∗) is a linear ordering.
(ii) If U is σ-complete then (A,<∗) is a well-ordering; (A, <∗) is isomorphic,

and can be identified with, (γ, <), where γ is an ordinal.
(iii) If U is κ-complete then j(α) = α for all α < κ
(iv) If d is the diagonal function, [d] ≥ κ. The measure U is normal if and only

if [d] = κ.
[Compare with Exercise 10.5.]

12.4. A class M is extensional if and only if σM holds where σ is the Axiom of
Extensionality.
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12.5. The following can be written as ∆0-formulas: x is an ordered pair, x is
a partial (linear) ordering of y, x and y are disjoint, z = x ∪ y, y = x ∪ {x}, x is
an inductive set, f is a one-to-one function of X into (onto) Y , f is an increasing
ordinal function, f is a normal function.

12.6. Let M be a transitive class.

(i) If M � |X| ≤ |Y |, then |X| ≤ |Y |.
(ii) If α ∈M and if α is a cardinal, then M � α is a cardinal.

[ |X| ≤ |Y | ↔ ∃f ϕ(f, X, Y ); α is a cardinal ↔ ¬∃f (∃β ∈ α) ψ(α, β, f), where
ϕ and ψ are ∆0-formulas.]

12.7. If α is a limit ordinal, then Vα is a model of Extensionality, Pairing, Separa-
tion, Union, Power Set, and Regularity. If AC holds, then Vα is a model of AC.

12.8. If α > ω, then Vα is a model of Infinity.

12.9. Vω, the set of all hereditarily finite sets, is a model of ZFC minus Infinity.

12.10. The existence of an infinite set is not provable in ZFC minus Infinity. More-
over, it cannot be shown that the existence of an infinite set is consistent with ZFC
minus Infinity.

12.11. If κ is an inaccessible cardinal then Vκ � there is a countable model of ZFC.
[Since 〈Vκ,∈〉 is a model of ZFC, there is a countable model (by the Löwenheim-

Skolem Theorem). Thus there is E ⊂ ω×ω such that A = (ω,E) is a model of ZFC.
Verify that Vκ � (A is a countable model of ZFC).]

12.12. If κ is an inaccessible cardinal, then there is α < κ such that 〈Vα,∈〉 ≺
〈Vκ,∈〉 Moreover, the set {α < κ : 〈Vα,∈〉 ≺ 〈Vκ,∈〉} is closed unbounded.

[Construct Skolem functions h for Vκ, and let α = limn αn, where αn+1 < κ is
such that h(Vαn) ⊂ Vαn+1 for each h.]

For every infinite regular cardinal κ let Hκ be the set of all x such that
|TC(x)| < κ. The sets in Hω are hereditarily finite sets. The sets in Hω1 are
hereditarily countable sets. Each Hκ is transitive and Hκ ⊂ Vκ.

12.13. If κ is a regular uncountable cardinal then Hκ is a model of ZFC minus the
Power Set Axiom.

12.14. For every formula ϕ, there is a closed unbounded class Cϕ of ordinals such
that for each α ∈ Cϕ, Vα reflects ϕ.

[Cϕ∧ψ = Cϕ ∩ Cψ, C∃x ϕ = Cϕ ∩Kϕ, where Kϕ is the closed unbounded class
{α ∈ Ord : ∀x1, . . . , xn ∈ Vα (∃x ϕ(x, x1, . . . , xn)→ (∃x ∈ Vα)ϕ(x, x1, . . . , xn))}.]
12.15. Let M be a transitive class and let ϕ be a formula. For each M0 ⊂ M
there exists a set M1 ⊃ M0 such that M1 ⊂ M and that ϕM (x1, . . . , xn) ↔
ϕM1(x1, . . . , xn) for all x1, . . . , xn ∈M1.

A transfinite sequence 〈Wα : α ∈ Ord〉 is called a cumulative hierarchy if W0 = ∅
and

(i) Wα ⊂Wα+1 ⊂ P (Wα),
(ii) if α is limit, then Wα =

S

β<α Wβ.
(12.30)

Each Wα is transitive and Wα ⊂ Vα.

12.16. Let 〈Wα : α ∈ Ord〉 be a cumulative hierarchy, and let W =
S

α∈Ord Wα.
Let ϕ be a formula. Show that there are arbitrary large limit ordinals α such that
ϕW (x1, . . . , xn)↔ ϕWα (x1, . . . , xn) for all x1, . . . , xn ∈ Wα.
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Historical Notes

For concepts of model theory, the history of the subject and for model-theoretical
terminology, I refer the reader to Chang and Keisler’s book [1973].

Reduced products were first investigated by �Loś in [1955], who also proved
Theorem 12.3 on ultraproducts.

For Tarski’s Theorem 12.7, see Tarski [1939].
The impossibility of a consistency proof of the existence of inaccessible cardinals

follows from Gödel’s Theorem [1931]. An argument that more or less establishes
the consistency of the Axiom of Regularity appeared in Skolem’s work in 1923 (see
Skolem [1970], pp. 137–152).

The study of transitive models of set theory originated with Gödel’s work on
constructible sets. The Reflection Principle was introduced by Montague; see [1961]
and Lévy [1960b].

Exercise 12.12: Montague and Vaught [1959].
Exercise 12.14: Galvin.



Part II

Advanced Set Theory



13. Constructible Sets

Constructible sets were introduced by Gödel in his proof of consistency of
the Axiom of Choice and of the Generalized Continuum Hypothesis. The
class L of all constructible sets (the constructible universe) is a transitive
model of ZFC, and is the smallest transitive model of ZF that contains all
ordinal numbers. In this chapter we study constructible sets and some related
concepts.

The Hierarchy of Constructible Sets

Recall that a set X is definable over a model (M,∈) (where M is a set) if
there exist a formula ϕ ∈ Form (the set of all formulas of the language {∈})
and some a1, . . . , an ∈ M such that X = {x ∈ M : (M,∈) � ϕ[x, a1, . . . , an]}.
Let

def(M) = {X ⊂ M : X is definable over (M,∈)}.

Clearly, M ∈ def(M) and M ⊂ def(M) ⊂ P (M).

Definition 13.1. We define by transfinite induction

(i) L0 = ∅, Lα+1 = def(Lα),
(ii) Lα =

⋃
β<α Lβ if α is a limit ordinal, and

(iii) L =
⋃

α∈Ord Lα.

The (definable) class L is the class of constructible sets. The statement V = L,
i.e., “every set is constructible,” is the Axiom of Constructibility.

It follows from Definition 13.1 that 〈Lα : α ∈ Ord〉 is a cumulative hier-
archy (see (12.30)); in particular, each Lα is transitive, Lα ⊂ Lβ if α < β,
and L is a transitive class.

Lemma 13.2. For every α, α ⊂ Lα (and Lα ∩ Ord = α).

Proof. By induction on α. At stage α + 1, we need to show that α ∈ Lα+1,
or that α is a definable subset of Lα. Since α = {x ∈ Lα : x is an ordinal},
and “x is an ordinal” is a ∆0 formula, we have α = {x ∈ Lα : Lα � x is an
ordinal}. ��
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Theorem 13.3. L is a model of ZF.

Proof. We show that σL holds for every axiom σ of ZF. Since L is a transitive
class, every ∆0 formula is absolute for L.
Extensionality. L is transitive and therefore extensional.
Pairing. Given a, b ∈ L, let c = {a, b}. Let α be such that a ∈ Lα and b ∈ Lα.
Since {a, b} is definable over Lα, we have c ∈ Lα+1, and since “c = {a, b}”
is ∆0, the Pairing Axiom holds in L.
Separation. Let ϕ be a formula. Given X, p ∈ L, we wish to show that the set
Y = {u ∈ X : ϕL(u, p)} is in L. By the Reflection Principle (applied to the
cumulative hierarchy Lα, cf. Exercise 12.6), there exists an α such that X, p ∈
Lα and Y = {u ∈ X : ϕLα(u, p)}. Thus Y = {u ∈ Lα : Lα � u ∈ X ∧ϕ(u, p)}
and so Y ∈ L.
Union. Given X ∈ L, let Y =

⋃
X . As L is transitive, we have Y ⊂ L; let α

be such that X ∈ Lα and Y ⊂ Lα. Y is definable over Lα by the ∆0 formula
“x ∈

⋃
X” and so Y ∈ L. Since “Y =

⋃
X” is ∆0, the Axiom of Union holds

in L.
Power Set. Given X ∈ L, let Y = P (X) ∩ L. Let α be such that Y ⊂ Lα.
Y is definable over Lα by the ∆0 formula “x ⊂ X” and so Y ∈ L. We
claim that Y = P L(X), i.e., that “Y is the power set of X” holds in L. But
“x ∈ Y ↔ x ⊂ X” is a ∆0 formula true for every x ∈ L.
Infinity. We can repeat the proof from Theorem 12.11 as ω ∈ L.
Replacement. The easiest way to verify these axioms is to refer to Exer-
cise 1.15, specifically to (1.10). If a class F is a function in L then for every
X ∈ L there exists an α such that {F (x) : x ∈ X} ⊂ Lα. Since Lα ∈ L, this
suffices.
Regularity. If S ∈ L is nonempty, let x ∈ S be such that x ∩ S = ∅. Then
x ∈ L and the ∆0 formula “x ∩ S = ∅” holds in L. ��

We will show that the model L satisfies both the Axiom of Choice and the
Generalized Continuum Hypothesis, thus establishing the consistency of AC
and GCH (relative to ZF). This will be done by showing that L is a model
of the Axiom of Constructibility (V = L), and that V = L implies both AC
and GCH.

It is rather clear that V = L implies AC: it is relatively straightforward to
define a well-ordering of L (by transfinite induction, using some enumeration
of the set Form of all formulas).

It may appear that L is trivially a model of “every set is constructible.”
However, to verify V = L in L, we have to prove first that the property
“x is constructible” is absolute for L, i.e., that for every x ∈ L we have
(x is constructible)L. We shall do this by analyzing the complexity of the
property “constructible.” While this can be done working directly with the
model-theoretic concepts involved, we prefer to use an alternative approach
(also due to Gödel).
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Gödel Operations

The Axiom Schema of Separation states that given a formula ϕ(x), for ev-
ery X there exists a set Y = {u ∈ X : ϕ(u)}. It turns out that for ∆0 for-
mulas, the construction of Y from X can be described by means of a finite
number of elementary operations.

Theorem 13.4 (Gödel’s Normal Form Theorem). There exist opera-
tions G1, . . . , G10 such that if ϕ(u1, . . . , un) is a ∆0 formula, then there is
a composition G of G1, . . . , G10 such that for all X1, . . . , Xn,
(13.1)
G(X1, . . . , Xn) = {(u1, . . . , un) : u1 ∈ X1, . . . , un ∈ Xn and ϕ(u1, . . . , un)}.

The operations G1, . . . , G10 will be defined below. Compositions of
G1, . . . , G10 are called Gödel operations.

We call the following sentence an instance of ∆0-Separation:

(13.2) ∀p1 . . . ∀pn ∀X ∃Y ∀u (u ∈ Y ↔ u ∈ X ∧ ϕ(u, p1, . . . , pn))

where ϕ is a ∆0 formula. We say that a transitive class M satisfies ∆0-
Separation if for every ∆0 formula ϕ, M satisfies (13.2).

A class C is closed under an operation F if F (x1, . . . , xn) ∈ C whenever
x1, . . . , xn ∈ C. If a class M is closed under the operations G1, . . . , G10 then
M is closed under all Gödel operations.

Corollary 13.5. If M is a transitive class closed under Gödel operations
then M satisfies ∆0-Separation.

Proof. Let ϕ(u, p1, . . . , pn) be a ∆0 formula, and let X, p1, . . . , pn ∈ M . Let

Y = {u ∈ X : ϕ(u, p1, . . . , pn)}.

By Lemma 12.9 it suffices to show that Y ∈ M , in order that M satisfy (13.2).
By Gödel’s Normal Form Theorem, there is a Gödel operation G such that

G(X, {p1}, . . . , {pn}) = {(u, p1, . . . , pn) : u ∈ X ∧ ϕ(u, p1, . . . , pn)}.

It follows that

Y = {u : ∃u1 . . . ∃un (u, u1, . . . , un) ∈ G(X, {p1}, . . . , {pn})}
= dom . . .dom︸ ︷︷ ︸

n times

G(X, {p1}, . . . , {pn}).

Since both {x, y} and dom(x) are Gödel operations (see below) and since
M is closed under Gödel operations, we have Y ∈ M . ��



178 Part II. Advanced Set Theory

Definition 13.6 (Gödel Operations).

G1(X, Y ) = {X, Y },
G2(X, Y ) = X × Y,

G3(X, Y ) = ε(X, Y ) = {(u, v) : u ∈ X ∧ v ∈ Y ∧ u ∈ v},
G4(X, Y ) = X − Y,

G5(X, Y ) = X ∩ Y,

G6(X) =
⋃

X,

G7(X) = dom(X),
G8(X) = {(u, v) : (v, u) ∈ X},
G9(X) = {(u, v, w) : (u, w, v) ∈ X},

G10(X) = {(u, v, w) : (v, w, u) ∈ X}.

Proof of Theorem 13.4. The theorem is proved by induction on the complex-
ity of ∆0 formulas. To simplify matters, we consider only formulas of this
form:

(i) the only logical symbols in ϕ are ¬, ∧, and restricted ∃;
(ii) = does not occur;
(iii) the only occurrence of ∈ is ui ∈ uj where i �= j;
(iv) the only occurrence of ∃ is

(∃um+1 ∈ ui)ψ(u1, . . . , um+1)

where i ≤ m.

(13.3)

Every ∆0 formula can be rewritten in this form: The use of logical symbols
can be restricted to ¬, ∧, and ∃; x = y can be replaced by (∀u ∈ x)u ∈ y ∧
(∀v ∈ y) v ∈ x, x ∈ x can be replaced by (∃u ∈ x)u = x and the bound vari-
ables in ϕ(u1, . . . , un) can be renamed so that the variable with the highest
index is quantified.

Note that we allow dummy variables, so that for instance ϕ(u1, . . . , u5) =
u3 ∈ u2 and ϕ(u1, . . . , u6) = u3 ∈ u2 are considered separately.

Thus let ϕ(u1, . . . , un) be a formula in the form (13.3) and let us assume
that the theorem holds for all subformulas of ϕ.

Case I. ϕ(u1, . . . , un) is an atomic formula ui ∈ uj (i �= j). We prove this
case by induction on n.

Case Ia. n = 2. Here we have

{(u1, u2) : u1 ∈ X1 ∧ u2 ∈ X2 ∧ u1 ∈ u2} = ε(X1, X2)

and
{(u1, u2) : u1 ∈ X1 ∧ u2 ∈ X2 ∧ u2 ∈ u1} = G8(ε(X2, X1)).
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Case Ib. n > 2 and i, j �= n. By the induction hypothesis, there is a G such
that

{(u1, . . . , un−1) : u1 ∈ X1, . . . , un−1 ∈ Xn−1 ∧ ui ∈ uj} = G(X1, . . . , Xn−1).

Obviously

{(u1, . . . , un) : u1 ∈ X1, . . . , un ∈ Xn ∧ ui ∈ uj} = G(X1, . . . , Xn−1) × Xn.

Case Ic. n > 2 and i, j �= n− 1. By the induction hypothesis (Case Ib) there
is a G such that

{(u1, . . . , un−2, un, un−1) : u1 ∈ X1, . . . , un ∈ Xn and ui ∈ uj}
= G(X1, . . . , Xn).

Noting that

(u1, . . . , un−2, un, un−1) = ((u1, . . . , un−2), un, un−1)

we get

{(u1, . . . , un) : u1 ∈ X1, . . . , un ∈ Xn and ui ∈ uj} = G9(G(X1, . . . , Xn)).

Case Id. i = n − 1, j = n. By Ia, we have

{(un−1, un) : un−1 ∈ Xn−1 ∧ un ∈ Xn ∧ un−1 ∈ un} = ε(Xn−1, Xn)

and so

{((un−1, un), (u1, . . . , un−2)) : u1 ∈ X1, . . . , un ∈ Xn and un−1 ∈ un}
= ε(Xn−1, Xn) × (X1 × . . . × Xn−2) = G(X1, . . . , Xn).

Now we note that

((un−1, un), (u1, . . . , un−2)) = (un−1, un, (u1, . . . , un−2))

and
(u1, . . . , un) = ((u1, . . . , un−2), un−1, un)

and thus

{(u1, . . . , un) : u1 ∈ X1, . . . , un ∈ Xn andun−1 ∈ un} = G10(G(X1, . . . , Xn)).

Case Ie. i = n, j = n − 1. Similar to Case Id.
Case II. ϕ(u1, . . . , un) is a negation, ¬ψ(u1, . . . , un). By the induction hy-
pothesis, there is a G such that

{(u1, . . . , un) : u1 ∈ X1, . . . , un ∈ Xn and ψ(u1, . . . , un)} = G(X1, . . . , Xn).

Clearly,

{(u1, . . . , un) : u1 ∈ X1, . . . , un ∈ Xn and ϕ(u1, . . . , un)}
= X1 × . . . × Xn − G(X1, . . . , Xn).
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Case III. ϕ is a conjunction, ψ1 ∧ ψ2. By the induction hypothesis,

{(u1, . . . , un) : u1 ∈ X1, . . . , un ∈ Xn andψi(u1, . . . , un)} = G(i)(X1, . . . , Xn)

(i = 1, 2). Hence

{(u1, . . . , un) : u1 ∈ X1, . . . , un ∈ Xn and ϕ(u1, . . . , un)}
= G(1)(X1, . . . , Xn) ∩ G(2)(X1, . . . , Xn).

Case IV. ϕ(u1, . . . , un) is the formula (∃un+1 ∈ ui)ψ(u1, . . . , un+1). Let
χ(u1, . . . , un+1) be the formula ψ(u1, . . . , un+1)∧un+1 ∈ ui. By the induction
hypothesis (we consider χ less complex than ϕ), there is a G such that

{(u1, . . . , un+1) : u1 ∈ X1, . . . , un+1 ∈ Xn+1 and χ(u1, . . . , un+1)}
= G(X1, . . . , Xn+1)

for all X1, . . . , Xn+1. We claim that

(13.4) {(u1, . . . , un) : u1 ∈ X1, . . . , un ∈ Xn and ϕ(u1, . . . , un)}
= (X1 × . . . × Xn) ∩ dom(G(X1, . . . , Xn,

⋃
Xi)).

Let us denote u = (u1, . . . , un) and X = X1 × . . . × Xn. For all u ∈ X , we
have

ϕ(u) ↔ (∃v ∈ ui)ψ(ui, v)

↔ ∃v (v ∈ ui ∧ ψ(u, v) ∧ v ∈
⋃

Xi)

↔ u ∈ dom{(u, v) ∈ X ×
⋃

Xi : χ(u, v)}
and (13.4) follows. This completes the proof of Theorem 13.4. ��

The following lemma shows that Gödel operations are absolute for tran-
sitive models.

Lemma 13.7. If G is a Gödel operation then the property Z = G(X1, . . . ,
Xn) can be written as a ∆0 formula.

Proof. We show, by induction on the complexity of G (a composition of G1,
. . . , G10):

(i) u ∈ G(X, . . .) is ∆0.
(ii) If ϕ is ∆0, then so are ∀u ∈ G(X, . . .)ϕ and ∃u ∈ G(X, . . .)ϕ.
(iii) Z = G(X, . . .) is ∆0.
(iv) If ϕ is ∆0, then so is ϕ(G(X, . . .)).

(13.5)

We proved (iii) for most of the G1, . . . , G10 in Lemma 12.10; the rest of
the Gi are handled similarly, e.g.,

Z = G8(X)

↔ (∀z ∈ Z)(∃x ∈ X)(∃u ∈ ranX)(∃v ∈ domX)(x = (v, u) ∧ z = (u, v))

∧ (∀x ∈ X)(∀u ∈ ranX)(∀v ∈ domX)(∃z ∈ Z)(x = (v, u) → z = (u, v)).



13. Constructible Sets 181

We shall prove (i) and (ii) only for a typical example and leave the full proof
to the reader (see also (12.19)). In (i) consider the formula

u ∈ F (X, . . .) × G(X, . . .).

This can be written as

∃x ∈ F (X, . . .)∃y ∈ G(X, . . .)u = (x, y).

In (ii), consider the formula

∀u ∈ {F (X, . . .), G(X, . . .)}ϕ(u),

which can be written as

ϕ(F (X, . . .)) ∧ ϕ(G(X, . . .)).

(iii) follows from (i) and (ii):

Z = G(X, . . .) ↔ (∀u ∈ Z)u ∈ G(X, . . .) ∧ ∀u ∈ G(X, . . .)u ∈ Z.

To prove (iv), let ϕ be a ∆0 formula. Then G(X, . . .) occurs in ϕ(G(X, . . .))
in the form u ∈ G(X, . . .), G(X, . . .) ∈ u, Z = G(X, . . .), ∀u ∈ G(X, . . .),
or ∃u ∈ G(X, . . .). Since G(X, . . .) ∈ u can be replaced by (∃v ∈ u) v =
G(X, . . .), we use (i)–(iii) to show that ϕ(G(X, . . .)) is a ∆0 property. ��

If ϕ is a formula then ϕM is a ∆0 formula, and so by Theorem 13.4 there
is a Gödel operation G such that for every transitive set M and all a1, . . . , an,

{x ∈ M : M � ϕ[x, a1, . . . , an]} = {x ∈ M : ϕM (x, a1, . . . , an)}
= G(M, a1, . . . , an).

The same argument, by induction on the complexity of ϕ, shows that for
every ϕ ∈ Form, the set {x ∈ M : M � ϕ[x, a1, . . . , an]} is in the closure of
M ∪ {M} under G1, . . . , G10.

Conversely, if G is a composition of G1, . . . , G10 then by Lemma 13.7
there is a ∆0 formula ϕ such that for all M and all a1, . . . , an, if X =
G(M, a1, . . . , an) then X = {x : ϕ(M, x, a1, . . . , an)}. If, moreover, M is
transitive and X ⊂ M , then X = {x ∈ M : M � ψ[x, a1, . . . , an]} (where ψ is
an obvious modification of ϕ, e.g., replacing ∃u ∈ M by ∃u). Thus we have
the following description of def(M):

Corollary 13.8. For every transitive set M ,

def(M) = cl(M ∪ {M}) ∩ P (M),

where cl denotes the closure under G1, . . . , G10. ��
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Inner Models of ZF

An inner model of ZF is a transitive class that contains all ordinals and
satisfies the axioms of ZF. The constructible universe L is an inner model
of ZF, and as we show later in this chapter, L is the smallest inner model
of ZF.

In Chapter 12 we proved that ∆0 formulas are absolute for all transitive
models, i.e., ϕM is equivalent to ϕ, for every transitive class M . One can ex-
tend the use of superscripts to concepts other than formulas, namely classes,
operations and constants:

If C is a class {x : ϕ(x)} then CM denotes the class {x : ϕM (x)}. As
an example, OrdM is either Ord (if M contains all ordinals), or is the least
ordinal not in M .

If F is an operation then FM is the corresponding operation in M (if
x ∈ M then FM (x) is defined if M satisfies the statement that F (x) ex-
ists). If F M (x) = F (x) for all x for which FM (x) is defined, we say that
F is absolute for M . By Lemma 13.7, all Gödel operations are absolute for
transitive models. As an example, PM (X) = P (X) ∩M , and V M

α = Vα ∩ M
(Exercise 13.6).

Similarly, if c is a constant symbol then cM , if it exists, is the correspond-
ing constant in M . Thus ∅M = ∅ (if ∅ ∈ M), ωM = ω (if ω ∈ M), etc.

The following theorem gives a necessary and sufficient condition for a tran-
sitive class to be an inner model of ZF:

Theorem 13.9. A transitive class M is an inner model of ZF if and only if
it is closed under Gödel operations and is almost universal, i.e., every subset
X ⊂ M is included in some Y ∈ M .

Proof. As Gödel operations are absolute for transitive models, an inner model
is necessarily closed under G1, . . . , G10. If X is a subset of an inner model M ,
then X ⊂ Vα ∩ M for some α, and Vα ∩ M is in M because α ∈ M and
Vα ∩ M = V M

α . Thus the condition is necessary.
Now let M be a transitive almost universal class that is closed under Gödel

operations. Except for the Separation Schema, the verification of the axioms
of ZF in M follows closely the proof of Theorem 13.3 (or of Theorem 12.11),
but using almost universality. For example, if X ∈ M then P (X) ∩ M is
included in some Y ∈ M , verifying the weak version (1.9) of the Power Set
Axiom. We leave the details to the reader.

Separation. We will show that for every X ∈ M the set Y = {u ∈ X : ϕM (u)}
is in M . (For simplicity, we disregard the parameter in the formula ϕ.)

Let ϕ(u1, . . . , un) be a formula with k quantifiers. We let ϕ̄(u1, . . . , un,
Y1, . . . , Yk) be the ∆0 formula obtained by replacing each ∃x (or ∀x) in ϕ by
∃x ∈ Yj (or ∀x ∈ Yj) for j = 1, . . . , k. We shall prove, by induction on k,
that for every ϕ(u1, . . . , un) with k quantifiers, for every X ∈ M there exist
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Y1, . . . , Yk ∈ M such that

ϕM (u1, . . . , un) if and only if ϕ̄(u1, . . . , un, Y1, . . . , Yk)

for all u1, . . . , un ∈ X . Then it follows that Y = {u ∈ X : ϕ̄(u, Y1, . . . , Yk)},
and since M satisfies ∆0-Separation (by Corollary 13.5), we have verified that
Y ∈ M , completing the proof.

If k = 0 then ϕ̄ = ϕ. For the induction step, let ϕ(u) be ∃v ψ(u, v) where
ψ has k quantifiers. Thus ϕ̄ is (∃v ∈ Yk+1) ψ̄(u, v, Y1, . . . , Yk).

Let X ∈ M . We look for Y1, . . . , Yk, Yk+1 ∈ M such that for every u ∈ X ,

(13.6) (∃v ψ(u, v))M if and only if (∃v ∈ Yk+1) ψ̄(u, v, Y1, . . . , Yk).

By the Collection Principle (6.5) (applied to the formula v ∈ M ∧
ψM (u, v)), there exists a set M1 such that X ⊂ M1 ⊂ M and that for
every u ∈ X ,

(13.7) (∃v ∈ M)ψM (u, v) if and only if (∃v ∈ M1)ψM (u, v).

Since M is almost universal, there exists a set Y ∈ M such that M1 ⊂ Y . It
follows from (13.7) that for every u ∈ X ,

(∃v ∈ M)ψM (u, v) if and only if (∃v ∈ Y )ψM (u, v).

By the induction hypothesis, given Y ∈ M , there exist Y1, . . . , Yk ∈ M such
that for all u, v ∈ Y ,

ψM (u, v) if and only if ψ̄(u, v, Y1, . . . , Yk).

Thus we let Yk+1 = Y , and since X ⊂ Y , we have for all u ∈ X ,

(∃v ψ(u, v))M if and only if (∃v ∈ M)ψM (u, v)

if and only if (∃v ∈ Y )ψM (u, v)

if and only if (∃v ∈ Y ) ψ̄(u, v, Y1, . . . , Yk). ��

The Lévy Hierarchy

Definable concepts can be classified by means of the following hierarchy of
formulas, introduced by Azriel Lévy:

A formula is Σ0 and Π0 if its only quantifiers are bounded, i.e., a ∆0 for-
mula. Inductively, a formula is Σn+1 if it is of the form ∃xϕ where ϕ is Πn,
and Πn+1 if its is of the form ∀xϕ where ϕ is Σn.

We say that a property (class, relation) is Σn (or Πn) if it can be expressed
by a Σn (or Πn) formula. A function F is Σn (Πn) if the relation y = F (x)
is Σn (Πn).
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This classification of definable concepts is not syntactical: To verify that
a concept can be expressed in a certain way may need a proof (in ZF). To
illustrate this, consider the proof of Lemma 13.10 bellow: To contract two
like quantifiers into one uses an application of the Pairing Axiom.

Whenever we say that a property P is Σn we always mean P can be
expressed by a Σn formula in ZF, unless we specifically state which axioms
of ZF are assumed. Since every proof uses only finitely many axioms, every
specific property requires a finite set Σ of axioms of ZF for its classification
in the hierarchy. This finite set is implicit in the use of the defining formula.
When M is a transitive model of Σ then the relativization PM is unambigu-
ous, namely the formula ϕM . We call such transitive models adequate for P .
A property is ∆n if it is both Σn and Πn.

Lemma 13.10. Let n ≥ 1.

(i) If P , Q are Σn properties, then so are ∃xP , P ∧Q, P ∨Q, (∃u ∈ x)P ,
(∀u ∈ x)P .

(ii) If P , Q are Πn properties, then so are ∀xP , P ∧Q, P ∨Q, (∀u ∈ x)P ,
(∃u ∈ x)P .

(iii) If P is Σn, then ¬P is Πn; if P is Πn, then ¬P is Σn.
(iv) If P is Πn and Q is Σn, then P → Q is Σn; if P is Σn and Q is Πn,

then P → Q is Πn

(v) If P and Q are ∆n, then so are ¬P , P ∧ Q, P ∨ Q, P → Q, P ↔ Q,
(∀u ∈ x)P , (∃u ∈ x)P .

(vi) If F is a Σn function, then dom(F ) is a Σn class.
(vii) If F is a Σn function and dom(F ) is ∆n, then F is ∆n.
(viii) If F and G are Σn functions, then so is F ◦ G.
(ix) If F is a Σn function and if P is a Σn property, then P (F (x)) is Σn.

Proof. Let us prove the lemma for n = 1. The general case follows easily by
induction.

(i) Let
P (x, . . .) ↔ ∃z ϕ(z, x, . . .),

Q(x, . . .) ↔ ∃u ψ(u, x, . . .)

where ϕ and ψ are ∆0 formulas. We have

(13.8) ∃xP (x, . . .) ↔ ∃x∃z ϕ(z, x, . . .)

↔ ∃v ∃w ∈ v ∃x ∈ w ∃z ∈ w (v = (x, z) ∧ ϕ(z, x, . . .)).

The right-hand side of (13.8) is a Σ1 formula. Furthermore,

P (x, . . .) ∧ Q(x, . . .) ↔ ∃z ∃u (ϕ(z, x, . . .) ∧ ψ(u, x, . . .)),

P (x, . . .) ∨ Q(x, . . .) ↔ ∃z ∃u (ϕ(z, x, . . .) ∨ ψ(u, x, . . .)),

(∃u ∈ x)P (u, . . .) ↔ ∃z ∃u (u ∈ x ∧ ϕ(z, u, . . .)).
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To show that (∀u ∈ x)P is a Σ1 property, we use the Collection Principle:

(∀u ∈ x)P (u, . . .) ↔ (∀u ∈ x)∃z ϕ(z, u, . . .)

↔ ∃y (∀u ∈ x)(∃z ∈ y)ϕ(z, u, . . .).

(ii) follows from (i) and (iii).
(iii)

¬∃z ϕ(z, x, . . .) ↔ ∀z ¬ϕ(z, x, . . .),

¬∀z ϕ(z, x, . . .) ↔ ∃z ¬ϕ(z, x, . . .).

(iv)
(P → Q) ↔ (¬P ∨ Q).

(v) follows from (i)–(iv).
(vi)

x ∈ dom(F ) ↔ ∃y y = F (x).

(vii) Since F is a function, we have

(13.9) y = F (x) ↔ x ∈ dom(F ) ∧ ∀z (z = F (x) → y = z).

If z = F (x) is Σn and x ∈ dom(F ) is Πn, then the right-hand side of (13.9)
is Πn.

(viii)
y = F (G(x)) ↔ ∃z (z = G(x) ∧ y = F (z)).

(ix)
P (F (x)) ↔ ∃y (y = F (x) ∧ P (y)). ��

Since ∆0 properties are absolute for all transitive models, it is clear that
Σ1 properties are upward absolute: If P (x) is Σ1 and if M is a transitive
model (adequate for P ) then for all x ∈ M , PM (x) implies P (x). Similarly,
Π1 properties are downward absolute, and consequently, ∆1 properties are
absolute for transitive models.

As an example of a ∆1 property we show

Lemma 13.11. “E is a well-founded relation on P” is a ∆1 property.

Proof. The following is a Π1 formula: E is a relation on P and ∀X ϕ(E, P, X),
where ϕ(E, P, X) is the formula

∅ �= X ⊂ P → (∃a ∈ X) a is E-minimal in X .

(Both “E is a relation on P” and ϕ(E, P, X) are ∆0 formulas.)
On the other hand, E is well-founded if and only if there exists a function f

from P into Ord such that f(x) < f(y) whenever x E y. Thus we have an
equivalent Σ1 formula: E is a relation on P and ∃f (f is a function ∧ (∀u ∈
ran(f))u is an ordinal ∧ (∀x, y ∈ P )(x E y → f(x) < f(y))). ��
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Other examples of ∆1 concepts are given in the Exercises.

Lemma 13.12. Let n ≥ 1, let G be a Σn function (on V ), and let F be
defined by induction:

F (α) = G(F �α).

Then F is a Σn function on Ord.

Proof. Since Ord is a Σ0 class, it is enough to verify that the following ex-
pression is Σn:

(13.10) y = F (α) if and only if ∃f (f is a function ∧ dom(f) = α

∧ (∀ξ < α) f(ξ) = G(f�ξ) ∧ y = G(f)).

All the properties and operations in (13.10) are Σ0 and G is Σn, and hence
y = F (α) is Σn. ��

The power set operation P (X) is obviously Π1; since it is not absolute as
we shall see in Chapter 14, it is not Σ1. Similarly, cardinal concepts are Π1

but not Σ1:

Lemma 13.13. “α is a cardinal,” “α is a regular cardinal,” and “α is a limit
cardinal” are Π1.

Proof. (a) ¬∃f (f is a function and dom(f) ∈ α and ran(f) = α).
(b) α > 0 is a limit ordinal and

¬∃f (f is a function and dom(f) ∈ α and
⋃

ran(f) = α).
(c) (∀β < α)(∃γ < α)(β < γ and γ is a cardinal). ��

Consequently, if M is an inner model of ZF, then every cardinal (regular
cardinal, limit cardinal) is a cardinal (regular cardinal, limit cardinal) in M ,
and if |X |M = |Y |M then |X | = |Y |.

In Chapter 12 we pointed out that the satisfaction relation (V,∈) �
ϕ[a1, . . . , an] (for ϕ ∈ Form) is not formalizable in ZF; this follows from
Theorem 12.7. For any particular n, the satisfaction relation �n restricted
to Σn formulas is formalizable: For n = 0, we can use the absoluteness of
∆0 formulas for transitive models,

�0 ϕ[a1, . . . , ak] if and only if

ϕ ∈ Form , ϕ is ∆0, and ∃M (M is transitive and (M,∈) � ϕ[a1, . . . , ak]);

then inductively

�n+1 (∃xϕ)[a1, . . . , ak] if and only if

ϕ ∈ Form , ϕ is Πn, and ∃a¬ �n (¬ϕ)[a, a1, . . . , ak].

Similarly, we can define �M
n for any particular n and any transitive class M .

Even more generally, we can define �(M,∈)
n for any class M (transitive or not).
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If M ⊂ N , we say that (M,∈) is a Σn-elementary submodel of (N,∈),

(M,∈) ≺Σn (N,∈),

if for every Σn formula ϕ ∈ Form and all a1, . . . , ak ∈ M , �M
n ϕ[a1, . . . , ak] ↔

�N
n ϕ[a1, . . . , ak].

Absoluteness of Constructibility

We prove in this section that the property “x is constructible” is absolute for
inner models of ZF.

Lemma 13.14. The function α �→ Lα is ∆1.

Proof. The function Lα is defined by transfinite induction and so by Lem-
ma 13.12 it suffices to show that the induction step is Σ1. In view of Corol-
lary 13.8 it suffices to verify that

(13.11) Y = cl(M)

(where cl denotes closure under Gödel operations) is Σ1. But (13.11) is equiv-
alent to

∃W [W is a function ∧ dom(W ) = ω ∧ Y =
⋃

ran(W ) ∧ W (0) = M

∧ (∀n ∈ dom(W ))(W (n + 1) = W (n) ∪ {Gi(x, y) : x ∈ W (n), y ∈ W (n),

i = 1, . . . , 10})].
��

Corollary 13.15. The property “x is constructible” is absolute for inner
models of ZF.

Proof. Let M be an inner model of ZF. Since M ⊃ Ord , we have for all
x ∈ M

(x is constructible)M ↔ ∃α ∈ M x ∈ LM
α ↔ ∃α x ∈ Lα ↔ x is constructible.

��

As an immediate consequence we have.

Theorem 13.16 (Gödel).

(i) L satisfies the Axiom of Constructibility (V = L).
(ii) L is the smallest inner model of ZF.

Proof. (i) For every x ∈ L, (x is constructible)L if and only if x is con-
structible, and hence “every set is constructible” holds in L.

(ii) If M is an inner model then LM (the class of all constructible sets
in M) is L and so L ⊂ M . ��
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A detailed analysis of absoluteness of Lα for transitive models reveals
that the following concept of adequacy suffices: Let us call a transitive set M
adequate if

(i) M is closed under G1, . . . , G10,
(ii) for all U ∈ M , {Gi(x, y) : x, y ∈ U and i = 1, . . . , 10} ∈ M ,
(iii) if α ∈ M then 〈Lβ : β < α〉 ∈ M .

(13.12)

It follows that the ∆1 function α �→ Lα is absolute for every adequate tran-
sitive set M . Also, we can verify that for every limit ordinal δ, the transitive
set Lδ is adequate. Moreover, adequacy can by formulated as follows: There
is a sentence σ such that for every transitive set M , M is adequate if and
only if (M,∈) � σ. Therefore there exists a sentence σ (which is Π2) such
that for every transitive set M

(13.13) (M,∈) � σ if and only if M = Lδ for some limit ordinal δ.

This leads to the following:

Lemma 13.17 (Gödel’s Condensation Lemma). For every limit ordi-
nal δ, if M ≺ (Lδ,∈) then the transitive collapse of M is Lγ for some γ ≤ δ.

��

We wish to make two remarks at this point. First, it is enough to assume
only M ≺Σ1 Lδ for the Condensation Lemma to hold (as the sentence σ
in (13.13)) is Π2. Secondly, the careful analysis of the definition of Lα makes
it possible to find a Π2 sentence σ such that (13.13) holds even for (infinite)
successor ordinals δ. Thus Gödel’s Condensation Lemma holds for all infinite
ordinals δ, a fact that is useful in some applications of L.

Consistency of the Axiom of Choice

Theorem 13.18 (Gödel). There exists a well-ordering of the class L. Thus
V = L implies the Axiom of Choice.

Combining Theorems 13.16 and 13.18, we conclude that the Axiom of
Choice holds in the model L, and so it is consistent with ZF.

Proof. We will show that L has a definable well-ordering.
By induction, we construct for each α a well-ordering <α of Lα. We do it

in such a way that if α < β, then <β is an end-extension of <α, i.e.,

(i) if x <α y, then x <β y;
(ii) if x ∈ Lα and y ∈ Lβ − Lα, then x <β y.

(13.14)

Notice that (13.14) implies that if x ∈ y ∈ Lα, then x <α y.
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First let us assume that α is a limit ordinal and that we have con-
structed <β for all β < α and that if β1 < β2 < α, then <β2 is an end-
extension of <β1 . In this case we simply let

<α =
⋃

β<α

<β,

i.e., if x, y ∈ Lα, we let

x <α y if and only if (∃β < α)x <β y.

Thus assume that we have defined <α and let us construct <α+1, a well-
ordering of Lα+1. We recall the definition of Lα+1:

Lα+1 = P (Lα) ∩ cl(Lα ∪ {Lα}) = P (Lα) ∩
∞⋃

n=0
Wα

n ,

where
Wα

0 = Lα ∪ {Lα},
Wα

n+1 = {Gi(X, Y ) : X, Y ∈ Wα
n , i = 1, . . . , 10}.

The idea of the construction of <α+1 is now as follows: First we take the ele-
ments of Lα, then Lα, then the remaining elements of Wα

1 , then the remaining
elements of Wα

2 , etc. To order the elements of Wα
n+1, we use the already de-

fined well-ordering of Wα
n since every x ∈ Wα

n+1 is equal to Gi(u, v) for some
i = 1, . . . , 10 and some u, v ∈ Wα

n . We let

(i) <0
α+1 is the well-ordering of Lα ∪ {Lα} that extends <α and

such that Lα is the last element.
(ii) <n+1

α+1 is the following well-ordering of Wα
n+1:

x <n+1
α+1 y if and only if either: x <n

α+1 y,
or: x ∈ Wα

n and y /∈ Wα
n ,

or: x /∈ Wα
n and y /∈ Wα

n and
(a) the least i such that ∃u, v ∈ Wα

n (x = Gi(u, v)) < the
least j such that ∃s, t ∈ Wα

n (x = Gi(s, t)), or
(b) the least i = the least j and

[the <n
α+1-least u ∈ Wα

n such that ∃v ∈ Wα
n (x = Gi(u, v))]

<n
α+1 [the <n

α+1-least s ∈ Wα
n such that ∃t ∈ Wα

n (x =
Gi(s, t))], or

(c) the least i = the least j and the least u = the least s and
[the <n

α+1-least v ∈ Wα
n such that x = Gi(u, v)] <n

α+1

[the <n
α+1-least t ∈ Wα

n such that x = Gi(u, t)].

(13.15)

Now we let

(13.16) <α+1 =
∞⋃

n=0
<n

α+1 ∩ (P (Lα) × P (Lα)),

and it is clear that <α+1 is an end-extension of <α and is a well-ordering
of Lα+1.
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Having defined <α for all α, we let

x <L y if and only if ∃α x <α y.

The relation <L is a well-ordering of L. ��

We call <L the canonical well-ordering of L.
The proof of Theorem 13.18 gives additional information about the com-

plexity of the canonical well-ordering of L.

Lemma 13.19. The relation <L is Σ1 and moreover, for every limit ordi-
nal δ and every y ∈ Lδ, x <L y if and only if x ∈ Lδ and (Lδ,∈) � x <L y.

Proof. It suffices to prove that the function, α �→ <α which assigns to each α
the canonical well-ordering of Lα is Σ1.

The function α �→ <α is defined by induction and thus it suffices to show
that the induction step is Σ1. In fact, <α+1 is defined by induction from <α

(see (13.15) and (13.16)). It suffices to verify that <α+1 is obtained from <α

by means of a ∆1 operation (similar to the way in which Lα+1 is obtained
from Lα by Lα+1 = def(Lα)). The operation that yields <α+1 when applied
to <α is described in detail in (13.15). It can be written in a Σ1 fashion in
very much the same way as (13.11). The only potential difficulty might be
the use of the words “the <-least,” and that can be overcome as follows: For
example, in (13.15)(ii)(c)

the <n
α+1-least v ∈ Wα

n such that x = Gi(u, v)

<n
α+1 the <n

α+1-least t ∈ Wα
n such that y = Gi(u, t)

can be written as

(∃v ∈ W α
n )[x = Gi(u, v) ∧ (∀t ∈ W α

n )(y = Gi(u, t) → v <n
α+1 t)].

The function α �→<α is absolute for every adequate M (see (13.12)) and
therefore for every Lδ where δ is a limit ordinal. ��

Consistency of the Generalized Continuum Hypothesis

Theorem 13.20 (Gödel). If V = L then 2ℵα = ℵα+1 for every α.

Proof. We shall prove that if X is a constructible subset of ωα then there
exists a γ < ωα+1 such that X ∈ Lγ . Therefore PL(ωα) ⊂ Lωα+1, and
since |Lωα+1| = ℵα+1 (this is easy to show; see Exercise 13.19), we have
|PL(ωα)| ≤ ℵα+1.

Thus let X ⊂ ωα. There exists a limit ordinal δ > ωα such that X ∈ Lδ.
Let M be an elementary submodel of Lδ such that ωα ⊂ M and X ∈ M , and
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that |M | = ℵα. (As we can construct M within L which satisfies AC, this
can be done even if AC does not hold in the universe.)

By the Condensation Lemma 13.17, the transitive collapse N of M is Lγ

for some γ ≤ δ. Clearly, γ is a limit ordinal, and γ < ωα+1 because |N | =
|γ| = ℵα. As ωα ⊂ M , the collapsing map π is the identity on ωα and so
π(X) = X . Hence X ∈ Lγ . ��

The next theorem illustrates further the significance of Gödel’s Conden-
sation Lemma. The combinatorial principle ♦ was formulated by Ronald
Jensen.

Theorem 13.21 (Jensen). V = L implies the Diamond Principle:

(♦) There exists a sequence of sets 〈Sα : α < ω1〉 with Sα ⊂ α, such that
for every X ⊂ ω1, the set {α < ω1 : X∩α = Sα} is a stationary subset
of ω1.

The sequence 〈Sα : α < ω1〉 is called a ♦-sequence.

Proof. Assume V = L. By induction on α < ω1, we define a sequence of pairs
(Sα, Cα), α < ω1, such that Sα ⊂ α and Cα is a closed unbounded subset
of α. We let S0 = C0 = ∅ and Sα+1 = Cα+1 = α + 1 for all α. If α is a limit
ordinal, we define:

(13.17) (Sα, Cα) is the <L-least pair such that Sα ⊂ α, Cα is a closed
unbounded subset of α, and Sα ∩ ξ �= Sξ for all ξ ∈ Cα; if no such
pair exists, let Sα = Cα = α.

We are going to show that the sequence 〈Sα : α < ω1〉 is a ♦-sequence. Thus
assume the contrary; then for some X ⊂ ω1, there exists a closed unbounded
set C such that

(13.18) X ∩ α �= Sα for all α ∈ C.

Let (X, C) be the <L-least pair such that X ⊂ ω1, C is a closed unbounded
subset of ω1, and such that (13.18) holds.

Since 〈(Sα, Cα) : α < ω1〉 is a ω1-sequence of pairs of subsets of ω1, it
belongs to Lω2 , and moreover, it satisfies the same definition (13.17) in the
model (Lω2 ,∈). Also, (X, C) ∈ Lω2 , and (X, C) is, in (Lω2 ,∈), the <L-least
pair such that X ⊂ ω1, C is a closed unbounded subset of ω1, and such
that (13.18) holds.

Let N be a countable elementary submodel of (Lω2 ,∈). Since (X, C) and
〈(Sα, Cα) : α < ω1〉 are definable in (Lω2 ,∈), they belong to N . The set
ω1 ∩ N is an initial segment of ω1 (see Exercise 13.18), thus let δ = ω1 ∩ N .

The transitive collapse of N is Lγ , for some γ < ω1, and let π : N → Lγ

be the isomorphism. We have π(ω1) = δ, π(X) = X ∩ δ, π(C) = C ∩ δ and
π(〈(Sα, Cα) : α < ω1〉) = 〈(Sα, Cα) : α < δ〉.



192 Part II. Advanced Set Theory

Therefore (Lδ,∈) satisfies

(13.19) (X ∩ δ, C ∩ δ) is the <L-least pair (Z, D) such that Z ⊂ δ, D ⊂ δ is
closed unbounded and Z ∩ ξ �= Sξ for all ξ ∈ D.

By absoluteness, (13.19) holds (in L, and L = V ) and therefore, by (13.17),
X ∩ δ = Sδ. Since C ∩ δ is unbounded in δ, and C is closed, it follows that
δ ∈ C. This contradicts (13.18). ��

Relative Constructibility

Constructibility can be generalized by considering sets constructible relative
to a given set A, resulting in an inner model L[A]. The idea is to relativize
the hierarchy Lα by using the generalization

(13.20) defA(M) = {X ⊂ M : X is definable over (M,∈, A ∩ M)}

where A ∩ M is considered a unary predicate. A generalization of Corol-
lary 13.8 provides an alternative description of defA: For every transitive
set M ,

(13.21) defA(M) = cl(M ∪ {M} ∪ {A ∩ M}) ∩ P (M).

The class of all sets constructible from A is defined as follows:

(13.22) L0[A] = ∅, Lα+1[A] = defA(Lα[A]),

Lα[A] =
⋃

β<α

Lβ[A] if α is a limit ordinal,

L[A] =
⋃

α∈Ord

Lα[A].

The following theorem is the generalization of the relevant theorem on con-
structible sets:

Theorem 13.22. Let A be an arbitrary set.

(i) L[A] is a model of ZFC.
(ii) L[A] satisfies the axiom ∃X (V = L[X ]).
(iii) If M is an inner model of ZF such that A∩M ∈ M , then L[A] ⊂ M .
(iv) There exists α0 such that for all α ≥ α0,

L[A] � 2ℵα = ℵα+1.

Proof. The proof follows closely the corresponding proofs for L, but some
additional arguments are needed.

Lemma 13.23. Let Ā = A ∩ L[A]. Then L[Ā] = L[A] and moreover Ā ∈
L[Ā].
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Proof. We show by induction on α that Lα[Ā] = Lα[A]. The induction step
is obvious if α is a limit ordinal; thus assume that Lα[Ā] = Lα[A] and let us
prove Lα+1[Ā] = Lα+1[A].

If we denote U = Lα[A], then we have

A ∩ U = A ∩ U ∩ L[A] = Ā ∩ U,

and since defA(U) = defA∩U (U), we have

Lα+1[A] = defA(U) = defA∩U (U) = defĀ(U) = Lα+1[Ā].

Thus L[Ā] = L[A]. Moreover, there is α such that A∩L[A] = A∩Lα[A] and
thus Ā ∈ Lα+1[A]. ��

By Lemma 13.23 we may assume that A ∈ L[A]. In this case, L[A] can
be well-ordered by a relation that is definable from A.

In analogy with (13.13) there exists a Π2 sentence (in the language {∈, A}
where A is a unary predicate) such that for every transitive set M

(13.23) (M,∈, A ∩ M) � σ if and only if M = Lδ for some limit ordinal δ.

The Condensation Lemma is generalized as follows:

Lemma 13.24. If M ≺ (Lδ[A],∈, A∩Lδ[A]) where δ is a limit ordinal, then
the transitive collapse of M is Lγ [A] for some γ ≤ δ. ��

Consequently, if A ⊂ Lωα [A] then for every X ⊂ ωα in L[A] there exists
a γ < ωα+1 such that X ∈ Lγ [A], completing the proof of Theorem 13.22. ��

A consequence of Theorem 13.22(iv) is that if V = L[A] and A ⊂ ω, then
the Generalized Continuum Hypothesis holds. For a slightly better result, see
Exercise 13.26.

A different generalization yields for every set A the smallest inner model
L(A) that contains A. (As an example, L(R) is the smallest inner model that
contains all reals.) The model L(A) need not, however, satisfy the Axiom of
Choice.

We define L(A) as follows: Let T = TC({A}) be transitive closure of A
(to ensure that the resulting class L(A) is transitive), and let

(13.24) L0(A) = T, Lα+1(A) = def(Lα(A)),

Lα(A) =
⋃

β<α

Lβ(A) if α is a limit ordinal, and

L(A) =
⋃

α∈Ord

Lα(A).

The transitive class L(A) is an inner model of ZF, contains A, and is the
smallest such inner model.
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Ordinal-Definable Sets

A set X is ordinal-definable if there is a formula ϕ such that

(13.25) X = {u : ϕ(u, α1, . . . , αn)}

for some ordinal numbers α1, . . . , αn.
It is not immediate clear that the property “ordinal-definable” is express-

ible in the language of set theory. Thus we give a different definition of ordinal
definable sets and show that it is equivalent to (13.25).

We recall that cl(M) denotes the closure of a set M under Gödel opera-
tions. The class OD of all ordinal-definable sets is define as follows:

(13.26) OD =
⋃

α∈Ord

cl{Vβ : β < α}.

In other words, OD is the Gödel closure of {Vα : α ∈ Ord}, that is, ordinal
definable sets are obtained from the Vα by applications of Gödel operations.
We shall show that the elements of the class OD are exactly the sets satisfy-
ing (13.25).

Lemma 13.25. There exists a definable well-ordering of the class OD (and
a one-to-one definable mapping F of Ord onto OD).

Proof. Earlier we described how to construct from a given well-ordering of
a set M , a well-ordering of the set cl(M). For every α, the set {Vβ : β < α}
has an obvious well-ordering, which induces a well-ordering of cl{Vβ : β < α}.
Thus we get a well-ordering of the class OD , and denote F the corresponding
(definable) one-to-one mapping of Ord onto OD . ��

Now it follows that every X ∈ OD has the form (13.25). There exists α
such that X = {u : ϕ(u, α)} where ϕ(u, α) is the formula u ∈ F (α).

We shall show that on the other hand, if ϕ is a formula and X is the set
in (13.25), then X ∈ OD . By the Reflection Principle, let β be such that
X ⊂ Vβ , α1, . . . , αn < β and that Vβ reflects ϕ. Then we have

X = {u ∈ Vβ : ϕVβ (u, α1, . . . , αn)}.

Since ϕVβ is a ∆0 formula, we apply the normal form theorem and find a Gödel
operation G such that X = G(Vβ , α1, . . . , αn). Since every α is obtained (uni-
formly) from Vα by a Gödel operation (because α = {x ∈ Vα : x is an ordi-
nal}), there exists a Gödel operation H such that X = H(Vα1 , . . . , Vαn , Vβ)
and therefore X ∈ OD .

Thus let HOD denote the class of hereditarily ordinal-definable sets

HOD = {x : TC({x}) ⊂ OD}.

The class HOD is transitive and contains all ordinals.
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Theorem 13.26. The class HOD is a transitive model of ZFC.

Proof. The class HOD is transitive, and it is easy to see that it is closed
under Gödel operations. Thus to show that HOD is a model of ZF, it suffices
to show that HOD is almost universal. For that, it is enough to verify that
Vα∩HOD ∈ HOD , for all α. For any α, the set Vα∩HOD is a subset of HOD ,
and so it is sufficient to prove that Vα ∩ HOD is ordinal-definable. This is
indeed true because Vα ∩ HOD is the set of all u satisfying the formula

u ∈ Vα ∧ (∀z ∈ TC({u}))∃β [z ∈ cl{Vγ : γ < β}]

and thus Vα ∩HOD ∈ OD .
It remains to prove that HOD satisfies the Axiom of Choice. We shall show

that for each α there exists a one-to-one function g ∈ HOD of Vα∩HOD into
the ordinals. Since every such function is a subset of HOD , it suffices to find
g ∈ OD .

By Lemma 13.25, there is a definable one-to-one mapping G of the
class OD onto the ordinals. If we let g be the restriction of G to the or-
dinal-definable set Vα ∩ HOD , then g is ordinal-definable. ��

A set X is ordinal-definable from A, X ∈ OD [A], if there is a formula ϕ
such that

(13.27) X = {u : ϕ(u, α1, . . . , αn, A)}

for some ordinal numbers α1, . . . , αn.
As above, this notion is expressible in the language of set theory:

(13.28) OD [A] = cl({Vα : α ∈ Ord} ∪ {A}).

The class OD [A] has a well-ordering definable from A and thus every set
in OD [A] is of the form (13.27). Conversely (using the Reflection Principle),
every set X in (13.27) belongs to OD [A].

The proof of Theorem 13.26 generalizes easily to the case of HOD [A].
Thus HOD [A], the class of all sets hereditarily ordinal-definable from A, is
a transitive model of ZFC.

As a further generalization, we call X ordinal-definable over A, X ∈
OD(A), if it belongs to the Gödel closure of {Vα : α ∈ Ord} ∪ {A} ∪ A. If
X ∈ OD(A), then X ∈ cl({Vα : α ∈ Ord}∪{A}∪E), where E = {x0, . . . , xk}
is a finite subset of A. Hence there is a finite sequence s = 〈x0, . . . , xk〉 in A
such that X is ordinal-definable from A and s. On the other hand, if s is
a finite sequence in A, then obviously s ∈ OD(A) and thus we have

OD(A) = {X : X ∈ OD [A, s] for some finite sequence s in A}.

In other words, X ∈ OD(A) if and only if there is a formula ϕ such that

X = {u : ϕ(u, α1, . . . , αn, A, 〈x0, . . . , xk〉)}

for some ordinal numbers α1, . . . , αn and a finite sequence 〈x0, . . . , xk〉 in A.
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The class HOD(A) of all sets hereditarily ordinal-definable over A is
a transitive model of ZF. To show that HOD(A) is almost universal, it
suffices to verify that Vα ∩ HOD(A) ∈ OD(A). In fact, Vα ∩ HOD(A) is
ordinal-definable from A: It is the set

{u ∈ Vα : (∀z ∈ TC({u})) z ∈ cl({Vβ : β ∈ Ord} ∪ {A} ∪ A)}.

More on Inner Models

We conclude this chapter with some comments on inner models of ZF.
As we remarked earlier, cardinal concepts are generally not absolute. The

following theorem summarizes the relations between some of the concepts
and their relativizations (see also Lemma 13.13):

Theorem 13.27. Let M be an inner model of ZF. Then

(i) PM (X) = P (X) ∩ M , V M
α = Vα ∩ M .

(ii) If |X |M = |Y |M then |X | = |Y |.
(iii) If α is a cardinal then α is a cardinal in M ; if α is a limit cardinal,

then α is a limit cardinal in M .
(iv) |α| ≤ |α|M , cf(α) ≤ cfM (α).
(v) If α is a regular cardinal, then α is a regular cardinal in M ; if α is

weakly inaccessible, then α is weakly inaccessible in M .
(vi) If M is a model of ZFC and κ is inaccessible, then κ is inaccessible

in M . ��

Concerning (vi), if α < κ, then since M � AC, we must have either
(2α)M < κ or (2α)M ≥ κ and the latter is impossible since 2α < κ.

If M is a transitive model of ZFC, then the Axiom of Choice in M enables
us to code all sets in M by sets of ordinals and the model is determined by
its sets or ordinals. The precise statement of this fact is: If M and N are
two transitive models of ZFC with the same sets of ordinals, then M = N .
In fact, a slightly stronger assertion is true. (On the other hand, one cannot
prove that M = N if neither model satisfies AC.)

Theorem 13.28. Let M and N be transitive models of ZF and assume that
the Axiom of Choice holds in M . If M and N have the same sets of ordinals,
i.e., P M (OrdM ) = P N(OrdN ), then M = N .

Proof. We start with a rather trivial remark: M and N have the same sets of
pairs of ordinals. To see this, use the absolute canonical one-to-one function
Γ : Ord × Ord → Ord . If X ⊂ Ord2 and X ∈ M , then Γ(X) is both in M
and in N , and we have X = Γ−1(Γ(X)) ∈ N .
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First we prove that M ⊂ N . Let X ∈ M . Since M satisfies AC, there is
a one-to-one mapping f ∈ M of some ordinal θ onto TC({X}). Let E ∈ M
be the following relation on θ:

α E β if and only if f(α) ∈ f(β).

E is a set of pairs of ordinals and thus we have E ∈ N . In M , E is well-founded
and extensional. However, these properties are absolute and so E is well-
founded and extensional in N . Applying the Collapsing Theorem (in N), we
get a transitive set T ∈ N such that (T,∈) is isomorphic to (θ, E). Hence T is
isomorphic to TC({X}) and since both are transitive, we have T = TC({X}).
It follows that TC({X}) ∈ N and so X ∈ N .

Now we prove M = N by ∈-induction. Let X ∈ N and assume that
X ⊂ M ; we prove that X ∈ M . Let Y ∈ M be such that X ⊂ Y (for instance
let Y = V M

α where α = rank(X); the rank function is absolute). Let f ∈ M
be a one-to-one function of Y into the ordinals. Since M ⊂ N , f is in N and
so f(X) ∈ N . Since M ⊂ N , f is in N and so f(X) ∈ N . However, f(X) is
a set of ordinals and so f(X) ∈ M , and we have X = f−1(f(X)) ∈ M . ��

Exercises

13.1. If M is a transitive set then its closure under Gödel operations is transitive.

13.2. If M is closed under Gödel operations and extensional and if X ∈M is finite,
then X ⊂M . In particular, if (x, y) ∈M , then x ∈M and y ∈M .

13.3. If M is closed under Gödel operations and extensional, and π is the transitive
collapse of M , then π(Gi(X, Y )) = Gi(πX, πY ), (i = 1, . . . , 10) for all X, Y ∈M .

[Use the Normal Form Theorem.]

13.4. The operations G5 and G8 are compositions of the remaining Gi.
[G8(X) = dom(G10(G10(G9(G10(X ×X))))).]

13.5. The Axioms of Comprehension in the Bernays-Gödel set theory can be
proved from a finite number of axioms of the form

∀X ∀Y ∃Z Z = G(X, Y )

where the G’s are operations analogous to G1, . . . , G10. Thus the theory BG is
finitely axiomatizable.

[Formulate and prove an analog of the Normal Form Theorem.]

13.6. Prove that for every transitive M , V M
α = Vα ∩M (for all α ∈M).

13.7. Show that “X is finite” is ∆1.
[To get a Π1 formulation, use T -finiteness from Chapter 1.]

13.8. The functions α + β and α · β are ∆1.

13.9. The canonical well-ordering of Ord × Ord is a ∆0 relation. The function Γ
is ∆1.
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13.10. The function S �→ TC(S) is ∆1.

13.11. The function x �→ rank(x) is ∆1.

13.12. “X is countable” is Σ1.

13.13. |X| ≤ |Y |, |X| = |Y | are Σ1.

13.14. The relation �0 is Σ1; for each n ≥ 1, �n is Σn.

13.15. M ≺Σ0 V holds for every transitive set M .

13.16. Let n be a natural number. For every M0 there exists a set M ⊃ M0 such
that M ≺Σn V .

[Use the Reflection Principle.]

13.17. If M ≺ (Lω1 ,∈), then M = Lα for some α.
[Show that M is transitive. Let X ∈ M . Let f be the <-least mapping of ω

onto X. Since f is definable in (Lω1 ,∈) from X, f is in M . Hence f(n) ∈ M for
each n and we get X ⊂M .]

13.18. If M ≺ (Lω2 ,∈), then ω1 ∩M = α for some α ≤ ω1.
[Same argument as in Exercise 13.17: If γ < ω1 and γ ∈M , then γ ⊂M .]

13.19. For all α ≥ ω, |Lα| = |α|.

13.20. If α ≥ ω and X is a constructible subset of α, then X ∈ Lβ , where β is the
least cardinal in L greater than α.

13.21. The canonical well-ordering of L, restricted to the set RL = R ∩ L of all
constructible reals, has order-type ωL

1 .
[R ∩ L ⊂ LωL

1
.]

13.22. If κ is a regular uncountable cardinal in L, then Lκ is a model of ZF−

(Zermelo-Fraenkel without the Power Set Axiom).
[Prove it in L. Replacement: (i) If X ∈ Lκ, then |X| < κ; (ii) if Y ⊂ Lκ and

|Y | < κ, then Y ∈ Lκ.]

13.23. If κ is inaccessible in L, then Lκ = V L
κ = Vκ ∩ L and Lκ is a model of

ZFC + (V = L).

13.24. If δ is a limit ordinal, then the model (Lδ,∈) has definable Skolem functions.
Therefore, for every X ⊂ Lδ, there exists a smallest M ≺ (Lδ ,∈) such that X ⊂ M .

[The well-ordering <δ is definable in (Lδ ,∈). Let hϕ(x) = the <δ-least y such
that (Lδ,∈) � ϕ[x, y].]

13.25. If ♦ holds, then there exists a family F of stationary subsets of ω1 such
that |F| = 2ℵ1 and |S1 ∩ S2| ≤ ℵ0 whenever S1 and S2 are distinct elements of F .

[Let F = {SX : X ⊂ ω1}, where SX = {α : X ∩ α = Sα}.]

13.26. If V = L[A] where A ⊂ ω1, then 2ℵ0 = ℵ1. (Consequently, GCH holds.)
[Show that if X ⊂ ω, then X ∈ Lα[A∩ξ] for some α < ω1 and ξ < ω1. It follows

that |P (ω)| = ℵ1.]
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13.27. For every X there is a set of ordinals A such that L[X] = L[A].
[Let X̄ = X ∩ L[X], and let (θ, E) be isomorphic to TC({X̄}) (in L[X]). Let

A = Γ(E) where Γ is the canonical mapping of Ord2 onto Ord . Then A ∈ L[X]
and X ∈ L[A], and hence L[A] = L[X].]

13.28. Let α ≥ ω be a countable ordinal. There exists A ⊂ ω such that α is
countable in L[A].

[Let W ⊂ ω×ω be a well-ordering of ω of order-type α; let A ⊂ ω be such that
L[A] = L[W ].]

13.29. If ω1 (in V ) is not a limit cardinal in L, then there exists A ⊂ ω such that
ω1 = ωL[A]

1 .
[There exists α < ω1 such that in L, ω1 is the successor of α. Let A be such

that α is countable in L[A].]

13.30 (ZFC). There exists A ⊂ ω1 such that ω1 = ωL[A]
1 .

[For each α < ω1, choose Aα ⊂ ω such that α is countable in L[Aα]. Let
A ⊂ ω1 × ω1 be such that Aα = {ξ : (α, ξ) ∈ A} for all α; then ωL[A]

1 = ω1.]

13.31 (ZFC). If ω2 is not inaccessible in L, then there exists A ⊂ ω1 such that
ωL[A]

1 = ω1 and ωL[A]
2 = ω2.

If A is a class, let us define L[A] as in (13.22) where defA(M) is defined as
in (13.20).

13.32. L[A] = L[Ā], where Ā = A ∩ L[A], and L[A] is a model of ZFC. Moreover,
L[A] is the smallest inner model M such that V M

α ∩A ∈M for all α.

13.33. Assume that there exists a choice function F on V . Then there is a class
A ⊂ Ord such that V = L[A].

13.34. Let M be a transitive model of ZF, M ⊃ Ord , and let X be a subset of M .
Then there is a least model M [X] of ZF such that M ⊂ M [X] and X ∈ M [X]. If
M � AC, then M [x] � AC.

[Modify the construction in (13.24).]

13.35. If X ∈ OD, then there exists γ such that X is a definable subset of (Vγ ,∈)
(without parameters). Hence OD is the class of all X definable in some Vγ .

[If X = {u ∈ Vβ : ϕVβ (u, α)}, consider γ = Γ(α, β).]

13.36. If F is a definable function on Ord , then ran(F ) ⊂ OD. Thus: OD is the
largest class for which there exists a definable one-to-one correspondence with the
class of all ordinals.

13.37. HOD is the largest transitive model of ZF for which there exists a definable
one-to-one correspondence with the class of all ordinals.

Historical Notes

The main results, namely consistency of the Axiom of Choice and the General-
ized Continuum Hypothesis, are due to Kurt Gödel, as is the concept of con-
structible sets. The results were announced in [1938], and an outline of proof ap-
peared in [1939]. Gödel’s monograph [1940] contains a detailed construction of L,
and the proof that L satisfies AC and GCH.
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In [1939] Gödel defined constructible sets using Lα+1 = the set of all subsets
of Lα definable over Lα; in [1940] he used finitely many operations (and worked in
the system BG).

The investigation of transitive models of set theory was of course motivated by
Gödel’s construction of the model L. The first systematic study of transitive models
was done by Shepherdson in [1951, 1952, 1953]. Bernays in [1937], employed a finite
number of operations on classes to give a finite axiomatization of BG. Theorem 13.9
is explicitly stated by Hajnal in [1956].

The Σn hierarchy was introduced by Lévy in [1965a]. Another result of Lévy
[1965b] is that the truth predicate �n+1 is Σn+1

Karp’s paper [1967] investigates Σ1 relations and gives a detailed computation
verifying that constructibility is Σ1. The characterization of the sets Lα as transitive
models of a single sentence σ is a result of Boolos [1970].

The Diamond Principle was introduced by Jensen in [1972].
Relative constructibility was investigated by Hajnal [1956], Shoenfield [1959]

and most generally by Lévy [1957] and [1960a].
The concept of ordinal definability was suggested by Gödel in his talk in 1946,

cf. [1965]; the theory was developed independently by Myhill and Scott in [1971]
and by Vopěnka, Balcar, and Hájek in [1968].

Theorem 13.28 is due to Vopěnka and Balcar [1967].
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The method of forcing was introduced by Paul Cohen in his proof of inde-
pendence of the Continuum Hypothesis and of the Axiom of Choice. Forcing
proved to be a remarkably general technique for producing a large number
of models and consistency results.

The main idea of forcing is to extend a transitive model M of set theory
(the ground model) by adjoining a new set G (a generic set) in order to obtain
a larger transitive model of set theory M [G] called a generic extension. The
generic set is approximated by forcing conditions in the ground model, and
a judicious choice of forcing conditions determines what is true in the generic
extension.

Cohen’s original approach was to start with a countable transitive model M
of ZFC (and a particular set of forcing conditions in M). A generic set can eas-
ily be proved to exist, and the main result was to show that M [G] is a model
of ZFC, and moreover, that the Continuum Hypothesis fails in M [G].

A minor difficulty with this approach is that a countable transitive model
need not exist. Its existence is unprovable, by Gödel’s Second Incompleteness
Theorem. The modern approach to forcing is to let the ground model be the
universe V , and pretend that V has a generic extension, i.e., to postulate
the existence of a generic set G, for the given set of forcing conditions. As
the properties of the generic extension can be described entirely withing the
ground model, statements about V [G] can be understood as statements in
the ground model using the language of forcing. We shall elaborate on this
in due course.

Forcing Conditions and Generic Sets

Let M be a transitive model of ZFC, the ground model. In M , let us consider
a nonempty partially ordered set (P, <). We call (P, <) a notion of forcing
and the elements of P forcing conditions. We say that p is stronger than q if
p < q. If p and q are conditions and there exists r such that both r ≤ p and
r ≤ q, then p and q are compatible; otherwise they are incompatible. A set
W ⊂ P is an antichain if its elements are pairwise incompatible. A set D ⊂ P
is dense in P if for every p ∈ P there is q ∈ D such that q ≤ p.
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Definition 14.1. A set F ⊂ P is a filter on P if

(i) F is nonempty;
(ii) if p ≤ q and p ∈ F , then q ∈ F ;
(iii) if p, q ∈ F , then there exists r ∈ F such that r ≤ p and r ≤ q.

(14.1)

A set of conditions G ⊂ P is generic over M if

(i) G is a filter on P ;
(ii) if D is dense in P and D ∈ M , then G ∩ D �= ∅.

(14.2)

We also say that G is M -generic, or P -generic (over M), or just generic.

Note how genericity depends on the ground model M : What matters is
which dense subsets of P are in M . Thus if D is any collection of sets, let us
say that a set G ⊂ P is a D-generic filter on P if it is a filter and if G∩D �= ∅
for every dense subset of P that is in D. Then G is generic over M just in
case it is D-generic where D is the collection of all D ∈ M dense in P .

Genericity can be described in several equivalent ways. A set D ⊂ P is
open dense if it is dense and in addition, p ∈ D and q ≤ p imply q ∈ D; D is
predense if every p ∈ P is compatible with some q ∈ D. If p ∈ P , then D is
dense (open dense, predense, an antichain) below p if it is dense (open dense,
predense, an antichain) in the set {q ∈ P : q ≤ p}.

If D is either dense or a maximal antichain then D is predense. In Defini-
tion 14.1, “dense” in (14.2)(ii) can be replaced by “open dense,” “predense,”
or “a maximal antichain”—see Exercises 14.3, 14.4, and 14.5.

Example 14.2. Let P be the following notion of forcing: The elements of P
are finite 0–1 sequences 〈p(0), . . . , p(n − 1)〉 and a condition p is stronger
than q (p < q) if p extends q. Clearly, p and q are compatible if either p ⊂ q
or q ⊂ p. Let M be the ground model (note that (P, <) ∈ M), and let G ⊂ P
be generic over M . Let f =

⋃
G. Since G is a filter, f is a function. For every

n ∈ ω, the sets Dn = {p ∈ P : n ∈ dom(p)} is dense in P , hence it meets G,
and so dom(f) = ω.

The 0–1 function f is the characteristic function of a set A ⊂ ω. We claim
that the function f (or the set A) is not in the ground model. For every
0–1 function g in M , let Dg = {p ∈ P : p �⊂ g}. The set Dg is dense, hence it
meets G, and it follows that f �= g. ��

This example describes the simplest way of adjoining a new set of natural
numbers to the ground model. A set A ⊂ ω obtained this way is called
a Cohen generic real.

Except in trivial cases, a generic set does not belong to the ground model;
see Exercise 14.6.

Example 14.3. In the ground model M , consider the following partially
ordered set P . The elements of P are finite sequences p = 〈α0, . . . , αn−1〉 of
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countable ordinals (in M), and a condition p is stronger than a condition q
(p < q) if p extends q. Now if G ⊂ P is generic over M , we let f =

⋃
G. As

in Example 14.2, f is a function on ω, and since for every α < ωM
1 , the set

Eα = {p ∈ P : α ∈ ran(p)} is dense, it follows that ran(f) = ωM
1 . Thus in

any model N ⊃ M that contains G, the ordinal ωM
1 is countable. ��

This example describes the simplest way of collapsing a cardinal.
As these examples suggest, a generic set over a transitive model need not

exist in general. However, if the ground model is countable, then generic sets
do exist. If M is countable and (P, <) ∈ M , then the collection D of all
D ∈ M that are dense in P is countable and the following lemma applies:

Lemma 14.4. If (P, <) is a partially ordered set and D is a countable col-
lection of dense subsets of P , then there exists a D-generic filter on P . In
fact, for every p ∈ P there exists a D-generic filter G on P such that p ∈ G.

Proof. Let D1, D2, . . . be the sets in D. Let p0 = p, and for each n, let pn

be such that pn ≤ pn−1 and pn ∈ Dn. The set

G = {q ∈ P : q ≥ pn for some n ∈ N}

is a D-generic filter on P and p ∈ G. ��

We shall now state the first of the three main theorems on generic models.
We shall prove these theorems (14.5, 14.6, 14.7) later in this chapter.

Theorem 14.5 (The Generic Model Theorem). Let M be a transitive
model of ZFC and let (P, <) be a notion of forcing in M . If G ⊂ P is generic
over P , then there exists a transitive model M [G] such that :

(i) M [G] is a model of ZFC;
(ii) M ⊂ M [G] and G ∈ M [G];
(iii) OrdM [G] = OrdM ;
(iv) if N is a transitive model of ZF such that M ⊂ N and G ∈ N , then

M [G] ⊂ N .

The model M [G] is called a generic extension of M . The sets in M [G]
will be definable from G and finitely many elements of M . Each element
of M [G] will have a name in M describing how it has been constructed. An
important feature of forcing is that the generic model M [G] can be described
within the ground model. Associated with the notion of forcing (P, <) is
a forcing language. This forcing language as well as the forcing relation �
are defined in the ground model M . The forcing language contains a name
for every element of M [G], including a constant Ġ, the name for a generic
set (it is customary to denote names by dotted letters ȧ). Once we select
a generic set G, then every constant of the forcing language is interpreted as
an element of the model M [G].
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The forcing relation is a relation between the forcing conditions and sen-
tences of the forcing language:

p � σ

(p forces σ). The forcing relation, which is defined in M , is a generalization
of the notion of satisfaction. For instance, if p � σ and if σ′ is a logical
consequence of σ, then p � σ′.

The second main theorem on generic models establishes the relation be-
tween forcing and truth in M [G]:

Theorem 14.6 (The Forcing Theorem). Let (P, <) be a notion of forcing
in the ground model M . If σ is a sentence of the forcing language, then for
every G ⊂ P generic over M ,

(14.3) M [G] � σ if and only if (∃p ∈ G) p � σ.

[In the left-hand-side σ one interprets the constants of the forcing language
according to G.]

The third main theorem lists the most important properties of the forcing
relation.

Theorem 14.7 (Properties of Forcing). Let (P, <) be a notion of forcing
in the ground model M , and let MP be the class (in M) of all names.

(i) (a) If p forces ϕ and q ≤ p, then q � ϕ.
(b) No p forces both ϕ and ¬ϕ.
(c) For every p there is a q ≤ p such that q decides ϕ, i.e., either

q � ϕ or q � ¬ϕ.
(ii) (a) p � ¬ϕ if and only if no q ≤ p forces ϕ.

(b) p � ϕ ∧ ψ if and only if p � ϕ and p � ψ.
p � ∀xϕ if and only if p � ϕ(ȧ) for every ȧ ∈ MP .

(c) p � ϕ ∨ ψ if and only if ∀q ≤ p ∃r ≤ q (r � ϕ or r � ψ).
p � ∃xϕ if and only if ∀q ≤ p ∃r ≤ q ∃ȧ ∈ MP r � ϕ(ȧ).

(iii) If p � ∃xϕ then for some ȧ ∈ MP , p � ϕ(ȧ).

Separative Quotients and Complete Boolean Algebras

While the forcing relation can be defined directly from the partial order-
ing (P, <), it turns out that its properties, and the properties of the generic
extension are determined by a certain complete Boolean algebra that can
be associated with (P, <). We shall therefore introduce the Boolean alge-
bra B(P ) and then use it to define the class MP (the P -names) and the
forcing relation �.

Definition 14.8. A partially ordered set (P, <) is separative if for all
p, q ∈ P ,

(14.4) if p � q then there exists an r ≤ p that is incompatible with q.
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The forcing notions in Examples 14.2 and 14.3 are separative. On the other
hand, a linear ordering is not separative (if it has more than one element).
Another example of a nonseparative partial order is the set of all infinite
subsets of ω, ordered by inclusion.

If B is a Boolean algebra, then (B+, <) is a separative partial order.
A more general statement is true. A set D ⊂ P is dense in a partially ordered
set (P, <) if for every p ∈ P there is a d ∈ D such that d ≤ p. A set D ⊂ B+

is dense in a Boolean algebra B if it is dense in (B+, <). The following lemma
is easy to verify:

Lemma 14.9. If D is a dense subset of a Boolean algebra B, then (D, <) is
a separative partial order. ��

Conversely, every separative partial order can be embedded densely in
a complete Boolean algebra:

Theorem 14.10. Let (P, <) be a separative partially ordered set. Then there
is a complete algebra B such that :

(i) P ⊂ B+ and < agrees with the partial ordering of B.
(ii) P is dense in B.

The algebra B is unique up to isomorphism.

Proof. The proof is exactly the same as the proof of Theorem 7.13. B is the
set of all regular cuts in P and separativity implies that every Up (where
p ∈ P ) is regular. ��

When (P, <) is not separative, we can replace it by a separative partial
order that will produce the same generic extension. This is the consequence
of the following lemma:

Lemma 14.11. Let (P, <) be a partially ordered set. There exists a separa-
tive partially ordered set (Q,≺) and a mapping h of P onto Q such that

(i) x ≤ y implies h(x) � h(y);
(ii) x and y are compatible in P if and only if h(x) and h(y) are

compatible in Q.

(14.5)

Proof. Let us define the following equivalence relation on P :

x ∼ y if and only if ∀z (z is compatible with x ↔ z is compatible with y).

Let Q = P/∼ and let us define

[x] � [y] ↔ (∀z ≤ x)[z and y are compatible].

The relation � on Q is a partial ordering, and it is easy to verify that (Q,≺) is
separative. The mapping h(x) = [x] satisfies (14.5). ��
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The partial order (Q,≺) is called the separative quotient of (P, <) and is
unique (up to isomorphism); see Exercise 14.9.

Corollary 14.12. For every partially ordered set (P, <) there is a complete
Boolean algebra B = B(P ) and a mapping e : P → B+ such that :

(i) if p ≤ q then e(p) ≤ e(q);
(ii) p and q are compatible if and only if e(p) · e(q) �= 0;
(iii) {e(p) : p ∈ P} is dense in B.

(14.6)

B is unique up to isomorphism. ��

Our earlier statements about the generic extension being determined
by B(P ) are based on the following facts:

Lemma 14.13. (i) In the ground model M , let Q be the separative quotient
of P and let h map P onto Q such that (14.5) holds. If G ⊂ P is generic
over M then h(G) ⊂ Q is generic over M . Conversely, if H ⊂ Q is generic
over M then h−1(H) ⊂ P is generic over M .

(ii) In the ground model M , let P be a dense subset of a partially ordered
set Q. If G ⊂ Q is generic over M then G ∩ P ⊂ P is generic over M .
Conversely, if H ⊂ P is generic over M then G = {q ∈ Q : (∃p ∈ G) p ≤ q}
is generic over M .

Proof. The proof is an exercise in verifying definitions (Exercise 14.1 is useful
here). ��

As a consequence, if e : P → B(P ) is as in Corollary 14.12 then G ⊂ P
and H = {u ∈ B : ∃p ∈ Ge(p) ≤ u} are definable from each other, and G is
generic if and only if H is, and M [G] = M [H ]. Thus P and B(P ) produce
the same generic extension.

In the ground model M , let B be a complete Boolean algebra. Outside M ,
B is still a Boolean algebra, though not necessarily complete. An ultrafilter G
on B is called generic (over M) if

(14.7)
∏

X ∈ G whenever X ∈ M and X ⊂ G.

A routine verification (see Exercise 14.10) shows that G is a generic ultrafilter
if and only if G is a generic filter on B+.

Boolean-Valued Models

Let B be a complete Boolean algebra. A Boolean-valued model (of the lan-
guage of set theory) A consists of a Boolean universe A and functions of two
variables with values in B,

(14.8) ‖x = y‖, ‖x ∈ y‖
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(the Boolean values of = and ∈), that satisfy the following:

(i) ‖x = x‖ = 1,
(ii) ‖x = y‖ = ‖y = x‖,
(iii) ‖x = y‖ · ‖y = z‖ ≤ ‖x = z‖,
(iv) ‖x ∈ y‖ · ‖v = x‖ · ‖w = y‖ ≤ ‖v ∈ w‖.

(14.9)

For every formula ϕ(x1, . . . , xn), we define the Boolean value of ϕ

‖ϕ(a1, . . . , an)‖ (a1, . . . , an ∈ A)

as follows:
(a) For atomic formulas, we have (14.8).
(b) If ϕ is a negation, conjunction, etc.,

‖¬ψ(a1, . . . , an)‖ = −‖ψ(a1, . . . , an)‖,
‖(ψ ∧ χ)(a1, . . . , an)‖ = ‖ψ(a1, . . . , an)‖ · ‖χ(a1, . . . , an)‖,
‖(ψ ∨ χ)(a1, . . . , an)‖ = ‖ψ(a1, . . . , an)‖ + ‖χ(a1, . . . , an)‖,
‖(ψ → χ)(a1, . . . , an)‖ = ‖(¬ψ ∨ χ)(a1, . . . , an)‖,
‖(ψ ↔ χ)(a1, . . . , an)‖ = ‖((ψ → χ) ∧ (χ → ψ))(a1, . . . , an)‖.

(c) If ϕ is ∃xψ or ∀xψ,

‖∃xψ(x, a1, . . . , an)‖ =
∑

a∈A

‖ψ(a, a1, . . . , an)‖,

‖∀xψ(x, a1, . . . , an)‖ =
∏

a∈A

‖ψ(a, a1, . . . , an)‖.

Note how the notion of a Boolean-valued model generalizes the notion of
a model; the Boolean value of ϕ is a generalization of the satisfaction pred-
icate �. If B is the trivial algebra {0, 1}, then a Boolean-valued model is
just a (two-valued) model; i.e., consider A/≡ where x ≡ y if and only if
‖x = y‖ = 1.

We say that ϕ(a1, . . . , an) is valid in A, if ‖ϕ(a1, . . . , an)‖ = 1. An im-
plication ϕ → ψ is valid if ‖ϕ‖ ≤ ‖ψ‖. Hence it is postulated in (14.9)
that the axioms for the equality predicate = are valid in a Boolean-valued
model. It can be easily verified that all the other axioms of predicate calculus
are valid, and that the rules of inference applied to valid sentences result
in valid sentences. Thus every sentence provable in predicate calculus has
Boolean value 1, and if two formulas ϕ, ψ are provably equivalent, we have
‖ϕ‖ = ‖ψ‖. For example, we have

‖x = y‖ · ‖ϕ(x)‖ ≤ ‖ϕ(y)‖.

Boolean-valued models can therefore be used in consistency proofs in much
the same way as two-valued models. Let A be a Boolean-valued model such



208 Part II. Advanced Set Theory

that all the axioms of ZFC are valid in A. (We say that A is a Boolean-
valued model of ZFC.) Let σ be a set-theoretical statement and assume that
‖σ‖ �= 0. Then we can conclude that σ is consistent relative to ZFC; otherwise,
¬σ would be provable in ZFC and therefore valid in A: ‖¬σ‖ = −‖σ‖ = 1.

There is an important special case of Boolean-valued models, and in this
special case, the Boolean-valued model can be transformed into a two-valued
model.

We say that a Boolean-valued model A is full if for any formula ϕ(x, x1,
. . . , xn) the following holds: For all a1, . . . , an ∈ A, there exists an a ∈ A such
that

(14.10) ‖ϕ(a, a1, . . . , an)‖ = ‖∃xϕ(x, a1, . . . , an)‖.

Let F be an ultrafilter on B. We define an equivalence relation on A by

(14.11) x ≡ y if and only if ‖x = y‖ ∈ F,

and a binary relation E on A/≡ by

(14.12) [x] E [y] if and only if ‖x ∈ y‖ ∈ F.

That ≡ is an equivalence relation, and that (14.12) does not depend on the
choice of representatives are easy consequences of (14.9) and the fact that F is
a filter. Thus A/F = (A/≡, E) is a model. Moreover, we have the following
relationship between the Boolean-valued model A and the model A/F :

Lemma 14.14. Let A be full. For any formula ϕ(x1, . . . , xn),

(14.13) A/F � ϕ([a1], . . . , [an]) if and only if ‖ϕ(a1, . . . , an)‖ ∈ F,

for all a1, . . . , an ∈ A.

Proof. (a) If ϕ is atomic, then (14.13) is true by definition.
(b) If ϕ is a negation, conjunction, etc., we use the basic properties of an

ultrafilter, and the definition of ‖ ‖; e.g., we use

‖¬ψ‖ ∈ F if and only if ‖ψ‖ /∈ F,

‖ψ ∧ χ‖ ∈ F if and only if ‖ψ‖ ∈ F and ‖χ‖ ∈ F .

(c) If ϕ is ∃xψ(x, . . .), we use the fullness of A to prove (14.13), assuming
it holds for ψ. By (14.10), we pick some a ∈ A such that ‖ϕ(a, . . .)‖ =
‖∃xϕ(x, . . .)‖ and then we have

‖∃xϕ(x, . . .)‖ ∈ F if and only if (∃a ∈ A) ‖ϕ(a, . . .)‖ ∈ F,

which enables us to do the induction step in this case. ��
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The Boolean-Valued Model V B

We now define the Boolean-valued model V B. Let B be a complete Boolean
algebra.

Our intention is to define a Boolean-valued model in which all the axioms
of ZFC are valid. In particular, we want V B to be extensional, i.e., the Axiom
of Extensionality to be valid in V B:

(14.14) ‖∀u (u ∈ X ↔ u ∈ Y )‖ ≤ ‖X = Y ‖.

We shall define V B as a generalization of V : Instead of (two-valued) sets, we
consider “Boolean-valued” sets, i.e., functions that assign Boolean values to
its “elements.” Thus we define V B as follows:

(i) V B
0 = ∅,

(ii) V B
α+1 = the set of all functions x with dom(x) ⊂ V B

α and values
in B,
V B

α =
⋃

β<α

V B
β if α is a limit ordinal, and

(iii) V B =
⋃

α∈Ord

V B
α .

(14.15)

The definition of ‖x ∈ y‖ and ‖x = y‖ is motivated by (14.14), and the
requirement that x(t) ≤ ‖t ∈ x‖. We define Boolean values by induction.
Each x ∈ V B is assigned the rank in V B,

ρ(x) = the least α such that x ∈ V B
α+1.

The forthcoming definition is by induction on pairs (ρ(x), ρ(y)), under the
canonical well-ordering.

To make the notation more suggestive, we introduce the following Boolean
operation that corresponds to the implication:

u ⇒ v = −u + v

Let

(i) ‖x ∈ y‖ =
∑

t∈dom y

(‖x = t‖ · y(t)),

(ii) ‖x ⊂ y‖ =
∏

t∈dom x

(x(t) ⇒ ‖t ∈ y‖), and

(iii) ‖x = y‖ = ‖x ⊂ y‖ · ‖y ⊂ x‖.

(14.16)

We are going to show that V B is a Boolean-valued model. To do that, we have
to verify (14.9). Clause (ii) in (14.9) is trivially satisfied since the definition
of ‖x = y‖ is symmetric in x and y.

Lemma 14.15. ‖x = x‖ = 1 for all x ∈ V B.
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Proof. By induction on ρ(x). Clearly, it suffices to show that ‖x ⊂ x‖ = 1, i.e.,
we wish to show that x(t) ⇒ ‖t ∈ x‖ = 1 for all t ∈ dom(x), or equivalently,
that x(t) ≤ ‖t ∈ x‖. If t ∈ dom(x), then by the induction hypothesis we have
‖t = t‖ = 1 and hence, by definition of ‖t ∈ x‖, x(t) = ‖t = t‖·x(t) ≤ ‖t ∈ x‖.

��

Now we prove (14.9)(iii) and (iv), simultaneously by induction:

Lemma 14.16. For all x, y, z ∈ V B,

(i) ‖x = y‖ · ‖y = z‖ ≤ ‖x = z‖,
(ii) ‖x ∈ y‖ · ‖x = z‖ ≤ ‖z ∈ y‖,
(iii) ‖y ∈ x‖ · ‖x = z‖ ≤ ‖y ∈ z‖.

Proof. By induction on triples {ρ(x), ρ(y), ρ(z)}.
(i) It suffices to prove that ‖x ⊂ y‖ · ‖y = z‖ ≤ ‖x ⊂ z‖. Let t ∈ dom(x)

be arbitrary; we wish to show that

(14.17) ‖y = z‖ · (x(t) ⇒ ‖t ∈ y‖) ≤ x(t) ⇒ ‖t ∈ z‖

(using the definition of ‖x ⊂ z‖). By the induction hypothesis, we have
‖t ∈ y‖ · ‖y = z‖ ≤ ‖t ∈ z‖. Thus ‖y = z‖ · (−x(t) + ‖t ∈ y‖) = (‖y =
z‖ − x(t)) + (‖y = z‖ · ‖t ∈ y‖ ≤ −x(t) + ‖t ∈ z‖, and (14.17) follows.

(ii) Let t ∈ dom(y) be arbitrary. By the induction hypothesis we have
‖x = z‖ · ‖x = t‖ ≤ ‖z = t‖ and so

(14.18) ‖x = z‖ · ‖x = t‖ · y(t) ≤ ‖z = t‖ · y(t).

Taking the sum of (14.18) over all t ∈ dom(y), we get

‖x = z‖ ·
∑

t∈dom y

(‖x = t‖ · y(t)) ≤
∑

t∈dom y

(‖z = t‖ · y(t)),

that is, ‖x = z‖ · ‖x ∈ y‖ ≤ ‖z ∈ y‖.
(iii) Let t ∈ dom(x). By the definition of ‖x = z‖ we have x(t) · ‖x = z‖ ≤

‖t ∈ z‖ and so

‖y = t‖ · x(t) · ‖x = z‖ ≤ ‖y = t‖ · ‖t ∈ z‖.

By the induction hypothesis, ‖y = t‖ · ‖t ∈ z‖ ≤ ‖y ∈ z‖, and therefore

(14.19) ‖y = t‖ · x(t) · ‖x = z‖ ≤ ‖y ∈ z‖.

Taking the sum of the left-hand side of (14.19) over all t ∈ dom(x), we get∑
t∈dom x

(‖y = t‖ · x(t)) · ‖x = z‖ ≤ ‖y ∈ z‖,

that is, ‖y ∈ x‖ · ‖x = z‖ ≤ ‖y ∈ z‖. ��
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Thus V B is a Boolean-valued model. We will show that all axioms of ZFC
are valid in V B. First we show that V B is extensional, and full.

Lemma 14.17. V B is extensional. ��

Proof. Let X, Y ∈ V B . By the definition of a ⇒ b we observe that if a ≤ a′,
then (a′ ⇒ b) ≤ (a ⇒ b). Thus for any u ∈ V B we have (‖u ∈ X‖ ⇒ ‖u ∈
Y ‖) ≤ (X(u) ⇒ ‖u ∈ Y ‖) and therefore

(14.20)
∏

u∈V B

(‖u ∈ X‖ ⇒ ‖u ∈ Y ‖) ≤
∏

u∈V B

(X(u) ⇒ ‖u ∈ Y ‖).

While the left-hand side of (14.20) is equal to ‖∀u (u ∈ X → u ∈ Y )‖, the
right-hand side is easily seen to equal ‖X ⊂ Y ‖. Consequently,

‖∀u (u ∈ X ↔ u ∈ Y )‖ ≤ ‖X = Y ‖. ��

Lemma 14.18. If W is a set of pairwise disjoint elements of B and if au,
u ∈ W , are elements of V B, then there exists some a ∈ V B such that u ≤
‖a = au‖ for all u ∈ W .

Proof. Let D =
⋃

u∈W dom(au), and for every t ∈ D, let a(t) =
∑

{u · au(t) :
u ∈ W}. Since the u’s are pairwise disjoint, we have u · a(t) = u · au(t)
for each u ∈ W and each t ∈ D. In other words, u ≤ (a(t) ⇒ au(t)) and
u ≤ (au(t) ⇒ a(t)), and so u ≤ ‖a = au‖. ��

Lemma 14.19. V B is full. Given a formula ϕ(x, . . .), there exists some a ∈
V B such that (14.10) holds, i.e.,

‖ϕ(a, . . .)‖ = ‖∃xϕ(x, . . .)‖.

Proof. In (14.10), ≤ holds for every a. We wish to find an a ∈ V B such that
≥ holds. Let u0 = ‖∃xϕ(x, . . .)‖. Let

D = {u ∈ B : there is some au such that u ≤ ‖ϕ(au, . . .)‖}.

It is clear that D is open and dense below u0. Let W be a maximal set of
pairwise disjoint elements of D; clearly,

∑
{u : u ∈ W} ≥ u0. By Lemma 14.18

there exists some a ∈ V B such that u ≤ ‖a = au‖ for all u ∈ W . Thus for
each u ∈ W we have u ≤ ‖ϕ(a, . . .)‖, and hence u0 ≤ ‖ϕ(a, . . .)‖. ��

We remark that Lemma 14.19 was the only place in this chapter where
we used the Axiom of Choice.

Every set (in V ) has a canonical name in the Boolean-valued model V B:

Definition 14.20 (By ∈-Induction).

(i) ∅̌ = ∅;
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(ii) for every x ∈ V , let x̌ ∈ V B be the function whose domain is the set
{y̌ : y ∈ x}, and for all y ∈ x, x̌(y̌) = 1.

When calculating the Boolean value of a formula, one may find the fol-
lowing observation helpful (cf. Exercise 14.12):

(14.21) ‖(∃y ∈ x)ϕ(y)‖ =
∑

y∈dom x

(x(y) · ‖ϕ(y)‖),

‖(∀y ∈ x)ϕ(y)‖ =
∏

y∈dom x

(x(y) ⇒ ‖ϕ(y)‖).

The following lemma is the Boolean-valued version of absoluteness of
∆0 formulas:

Lemma 14.21. If ϕ(x1, . . . , xn) is a ∆0 formula, then

ϕ(x1, . . . , xn) if and only if ‖ϕ(x̌1, . . . , x̌n)‖ = 1.

Proof. By induction on the complexity of ϕ. ��

Corollary 14.22. If ϕ is Σ1, then ϕ(x, . . .) implies ‖ϕ(x̌, . . .)‖ = 1. ��

The next lemma states that V and V B “have the same ordinals:”

Lemma 14.23. For every x ∈ V B,

‖x is an ordinal‖ =
∑

α∈Ord

‖x = α̌‖.

Proof. Since “x is an ordinal” is ∆0, we have, by Lemma 14.21,∑
α∈Ord

‖x = α̌‖ ≤ ‖x is an ordinal‖.

On the other hand, let ‖x is an ordinal‖ = u. We first observe that if γ is an
ordinal, then

‖x is an ordinal and x ∈ γ̌‖ ≤
∑
α∈γ

‖x = α̌‖.

Also, for every α, we have

u ≤ ‖x ∈ α̌‖ + ‖x = α̌‖ + ‖α̌ ∈ x‖.

However, there is only a set of α’s such that ‖α̌ ∈ x‖ �= 0 (because ‖α̌ ∈ x‖ =∑
t∈dom x(‖α̌ = t‖ · x(t))). Hence there is γ such that u ≤ ‖x ⊂ γ̌‖ and we

have u ≤
∑

α≤γ ‖x = α̌‖. ��

We show now that V B is a Boolean-valued model of ZFC.

Theorem 14.24. Every axiom of ZFC is valid in V B.

Proof. We show that ‖σ‖ = 1 for every axiom of ZFC.



14. Forcing 213

Extensionality. See Lemma 14.17.
Pairing. Given a, b ∈ V B, let c = {a, b}B ∈ V B be such that dom(c) = {a, b}
and c(a) = c(b) = 1. Then ‖a ∈ c ∧ b ∈ c‖ = 1. This, combined with
Separation, suffices for the Pairing Axiom. (We could also verify directly
that ‖∀x ∈ c (x = a ∨ x = b)‖ = 1.)
Separation. We prove that for every X ∈ V B there is Y ∈ V B such that

(14.22) ‖Y ⊂ X‖ = 1 and ‖(∀z ∈ X)(ϕ(z) ↔ z ∈ Y )‖ = 1.

Let Y ∈ V B be as follows:

dom(Y ) = dom(X), Y (t) = X(t) · ‖ϕ(t)‖.
For every x ∈ V B we have ‖x ∈ Y ‖ = ‖x ∈ X‖·‖ϕ(x)‖ and this gives (14.22).
Union. We prove that for every X ∈ V B there is Y ∈ V B such that

(14.23) ‖(∀u ∈ X)(∀v ∈ u)(v ∈ Y )‖ = 1

(this is the weak version, cf. (1.8)).
If X ∈ V B, then letting Y ∈ V B as follows verifies (14.23):

dom(Y ) =
⋃
{dom(u) : u ∈ dom(X)}, Y (t) = 1 for all t ∈ dom(Y ).

Power Set. We prove that for every X ∈ V B there is Y ∈ V B such that

(14.24) ‖∀u (u ⊂ X → u ∈ Y )‖ = 1;

(cf. (1.9)). Here we let

dom(Y ) = {u ∈ V B : dom(u) = dom(X) and u(t) ≤ X(t) for all t},
Y (u) = 1 for all u ∈ dom(Y ).

To verify that Y satisfies (14.24) we use the following observation: If u ∈ V B

is arbitrary, let u′ ∈ V B be such that dom(u′) = dom(X) and u′(t) = X(t) ·
‖t ∈ u‖ for all t ∈ dom(X). Then

‖u ⊂ X‖ ≤ ‖u = u′‖

which makes it possible to include in dom(Y ) only the “representative” u’s.
Infinity. See Lemma 14.21 for ‖ω̌ is an inductive set‖ = 1.
Replacement. It suffices to verify the Collection Principle, cf. (6.5); we prove
that for every X ∈ V B there is Y ∈ V B such that

(14.25) ‖(∀u ∈ X)(∃v ϕ(u, v) → (∃v ∈ Y )ϕ(u, v))‖ = 1.

Here we let

dom(Y ) =
⋃
{Su : u ∈ dom(X)}, Y (t) = 1 for all t ∈ dom(Y ),

where Su ⊂ V B is some set such that∑
v∈V B

‖ϕ(u, v)‖ =
∑

v∈Su

‖ϕ(u, v)‖.
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Regularity. We prove that for every X ∈ V B,

(14.26) ‖X is nonempty → (∃y ∈ X)(∀z ∈ y) z /∈ X‖ = 1.

If (14.26) is false, then

‖∃u (u ∈ X) ∧ (∀y ∈ X)(∃z ∈ y) z ∈ X‖ = b �= 0.

Let y ∈ V B be of least ρ(y) such that ‖y ∈ X‖ · b �= 0. Then ‖y ∈ X‖ · b ≤
‖(∃z ∈ y) z ∈ X‖, so there exists a z ∈ dom(y) such that ‖z ∈ X‖ · ‖y ∈ X‖ ·
b �= 0. Since ρ(z) < ρ(y), this is a contradiction.

Choice. For every S, we have (by Corollary 14.22)

‖Š can be well-ordered‖ = 1.

Now, we prove that for every X ∈ V B there exist some S and f ∈ V B such
that

(14.27) ‖f is a function on Š and ran(f) ⊃ X‖ = 1.

(This shows that ‖X can be well-ordered‖ = 1.)
We let S = dom(X) and f ∈ V B as follows:

dom(f) = {(x̌, x)B : x ∈ S}, f(t) = 1 for all t ∈ dom(f)

(where (a, b)B = {{a}B, {a, b}B}B). These S and f satisfy (14.27). ��

Among elements of V B, one is of particular significance: the canonical
name for a generic ultrafilter on B:

Definition 14.25. The canonical name Ġ for a generic ultrafilter is the
Boolean-valued function defined by

dom(Ġ) = {ǔ : u ∈ B}, Ġ(ǔ) = u for every u ∈ B.

See Exercise 14.14.

The Forcing Relation

Let M be a transitive model of ZFC (the ground model) and let (P, <) ∈ M be
a notion of forcing. We shall now introduce the forcing language by specifying
names, define the forcing relation � and prove the fundamental properties
of � (Theorem 14.7). Throughout this section we work inside the ground
model.

Let (P, <) be a notion of forcing. By Corollary 14.12 there exists a com-
plete Boolean algebra B = B(P ) such that P embeds in B by a mapping
e : P → B that satisfies (14.6) (and is not one-to-one if P is not separative).
We use MB to denote the B-valued model defined in (14.15) (inside M).
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Definition 14.26. MP = MB(P ). The elements of MP are called P -names
(or just names). P -names are usually denoted by dotted letters. The forcing
language is the language of set theory with names added as constants. The
forcing relation �P (or just �) is defined by

p � ϕ(ȧ1, . . . , ȧn) if and only if e(p) ≤ ‖ϕ(ȧ1, . . . , ȧn)‖

where ϕ is a formula of set theory and ȧ1, . . . , ȧn are names.

We remark that both names and the forcing relation can be defined di-
rectly from P without using the complete Boolean algebra. However, we find
the direct definition somewhat less intuitive.

Proof of Theorem 14.7. (i) (a) If q ≤ p then e(q) ≤ e(p).
(b) ‖ϕ‖ · ‖¬ϕ‖ = 0.
(c) If e(p) · ‖ϕ‖ �= 0 then there is a q ≤ p such that e(q) ≤ ‖ϕ‖;

similarly if e(p) · ‖¬ϕ‖ �= 0.
(ii) (a) Left-to-right: Use (i)(a) and (b). Right-to-left: If p does not

force ¬ϕ then e(p) · ‖ϕ‖ �= 0 and proceed as in (i)(c).
(b) By (14.9)(b) and (c).
(c) For disjunction, we use ‖ϕ∨ψ‖ = ‖ϕ‖+‖ψ‖ and argue as in (ii)(a).

The existential quantifier is similar, using (14.9)(c).
(iii) By Lemma 14.19, MB is full and so e(p) ≤ ‖ϕ(ȧ)‖ for some ȧ. ��

Among P -names there are canonical names x̌ for sets in the ground model.
In practice one often abuses the notation by dropping the háček ˇ and con-
fusing x ∈ M with its name x̌.

We can also introduce a “name for M ;” since a ∈ M ↔ (∃x ∈ M) a = x,
we define

(14.28) p � ȧ ∈ M̌ if and only if ∀q ≤ p ∃r ≤ q ∃x (r � ȧ = x̌).

Finally, we consider the canonical name for a generic filter on P . Using Defini-
tion 14.25 for B(P ) and the relation between generic filters on P and generic
ultrafilters on B(P ) spelled out in Lemma 14.13, we arrive at the following
definition:

(14.29) p � q ∈ Ġ if and only if ∀r ≤ p ∃s ≤ r s ≤ q,

or in terms of the separative quotient mapping h (Lemma 14.11),

p � q ∈ Ġ if and only if h(p) � h(q).

One final remark: By Theorem 14.24, every axiom of ZFC is forced by every
condition. So is every axiom of predicate calculus, and the forcing relation
is preserved by the rules of inference. Hence every condition forces every
sentence provable in ZFC.
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The Forcing Theorem and the Generic Model Theorem

We shall now define the generic extension M [G] and prove Theorems 14.5
and 14.6. We do it first for Boolean-valued models and handle the general
case afterward.

Let M be a generic transitive model of ZFC, and let B be a complete
Boolean algebra in M . Let G be an M -generic ultrafilter on B, i.e., generic
over M .

Definition 14.27 (Interpretation by G). For every x ∈ MB we define xG

by induction on ρ(x):

(i) ∅G = ∅,
(ii) xG = {yG : x(y) ∈ G}.

Using the interpretation by G, we let

(14.30) M [G] = {xG : x ∈ MB}.

Lemma 14.28. Let G be an M -generic ultrafilter on B. Then for all names
x, y ∈ MB

(i) xG ∈ yG if and only if ‖x ∈ y‖ ∈ G,
(ii) xG = yG if and only if ‖x = y‖ ∈ G.

Proof. We prove (i) and (ii) simultaneously, by induction on pairs (ρ(x), ρ(y)).

(i) ‖x ∈ y‖ ∈ G ↔ ∃t ∈ dom(y) (y(t) ∈ G and ‖x = t‖ ∈ G)

↔ ∃t (y(t) ∈ G and xG = tG)

↔ xG ∈ {tG : y(t) ∈ G}
↔ xG ∈ yG.

(ii) ‖x ⊂ y‖ ∈ G ↔
∏

t∈dom x(x(t) ⇒ ‖t ∈ y‖) ∈ G

↔ ∀t ∈ dom(x) (x(t) ∈ G implies ‖t ∈ y‖ ∈ G)

↔ ∀t (x(t) ∈ G implies tG ∈ yG)

↔ {tG : x(t) ∈ G} ⊂ yG

↔ xG ⊂ yG. ��

M [G] is a transitive class. The following is the Forcing Theorem for
Boolean-valued models.

Theorem 14.29. If G is an M -generic ultrafilter on B, then for all x1, . . . ,
xn ∈ MB,

(14.31) M [G] � ϕ(xG
1 , . . . , xG

n ) if and only if ‖ϕ(x1, . . . , xn)‖ ∈ G.



14. Forcing 217

Proof. Lemma 14.28 proves (14.31) for atomic formulas. The rest of the proof
is by induction on the complexity of ϕ.

(a) ϕ is ¬ψ, ψ∧χ, ψ∨χ, etc. Assuming (14.31) for ψ and χ, the induction
step works because G is an ultrafilter. For instance,

M [G] � ψ ∧ χ ↔ M [G] � ψ and M [G] � χ

↔ ‖ψ‖ ∈ G and ‖χ‖ ∈ G

↔ ‖ψ‖ · ‖χ‖ ∈ G

↔ ‖ψ ∧ χ‖ ∈ G.

Similarly for ¬, ∨, etc.
(b) ϕ is ∃xψ(x, . . .) or ∀xψ(x, . . .). We assume (14.31) for ψ and use the

genericity of G:

M [G] � ∃xψ(x, . . .) ↔ (∃x ∈ M [G])M [G] � ψ(x, . . .)

↔ (∃x ∈ MB)M [G] � ψ(xG, . . .)

↔ (∃x ∈ MB) ‖ψ(x, . . .)‖ ∈ G

↔
∑

x∈MB

‖ψ(x, . . .)‖ ∈ G

↔ ‖∃xψ(x, . . .)‖ ∈ G.

The penultimate equivalence holds because if we let A = {‖ψ(x, . . .)‖ :
x ∈ MB}, then A ⊂ B and A ∈ M , and since G is generic we have

(∃a ∈ A) a ∈ G if and only if
∑

A ∈ G.

Similarly for ∀xψ(x, . . .). ��

Corollary 14.30. M [G] is a model of ZFC.

Proof. By Theorem 14.24, every axiom σ of ZFC is valid in MB, therefore
‖σ‖ = 1 ∈ G and hence σ is true in M [G]. ��

The following completes the proof of both Theorems 14.5 and 14.6 when
forcing with a complete Boolean algebra:

Lemma 14.31.

(i) M ⊂ M [G], and both models have the same ordinals.
(ii) G ∈ M [G] and if N ⊃ M is a transitive model of ZFC such that

G ∈ N , then N ⊃ M [G].

Proof. (i) For every x ∈ M , the G-interpretation of the canonical name x̌
is x̌G = x (proved by ∈-induction). Hence M ⊂ M [G]. To show that ev-
ery ordinal in M [G] is in M (that M [G] is not “longer” than M), we use
Lemma 14.23.
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(ii) Let Ġ be the canonical name of a generic ultrafilter (Definition 14.25).
Its interpretation is ĠG = G and so G ∈ M [G]. If N ⊃ M is a transitive model
containing G, then the construction of M [G] can be carried out inside N , and
thus M [G] ⊂ N . ��

We shall now prove Theorems 14.5 and 14.6:
Let (P, <) be a notion of forcing in the ground model M , and let G ⊂ P

be generic over M . Let B = B(P ), and let MP = MB be the class of the
P -names. First we define G-interpretation of P -names: For every x ∈ MP ,

(i) ∅G = ∅,
(ii) xG = {yG : (∃p ∈ G) e(p) ≤ x(y)}.

(14.32)

Then we let
M [G] = {xG : x ∈ MP }.

Now let H be the ultrafilter on B generated by e(G): H = {u ∈ B :
∃p ∈ Ge(p) ≤ u}. H is M -generic, and it is easily seen that xG = xH for all
x ∈ MB. Thus M [G] = M [H ].

The Forcing Theorem now follows from the definition of � and The-
orem 14.29. As for the Generic Model Theorem 14.5, (a), (c), (d), and
the first part of (b) are immediate consequences of Lemma 14.31; it only
remains to verify that G ∈ M [G]. For that, we can either observe that
G = {p ∈ P : e(p) ∈ H} is in M [H ], or invoke (14.29) and verify that
ĠG = G.

Consistency Proofs

Forcing is used mainly (but not exclusively) in consistency proofs. In practice,
a consistency result is usually presented as follows: Suppose that A is some
sentence (in the language of set theory) and we wish to prove that A is consis-
tent with ZFC, or more generally, that A is consistent with some extension T
of ZFC. This is accomplished by assuming that T holds (in V , the universe)
and by exhibiting a forcing notion P such that the generic extension V [G]
satisfies A.

One way to make this argument legitimate is to assume that there exists
a countable transitive model M of T. Using a forcing notion P ∈ M , there
exists a P -generic filter G over M , and M [G] is a transitive model that
satisfies A. Hence A is consistent relative to T.

The assumption of a countable transitive model is unnecessary, as state-
ments about generic extensions can be considered merely as an informal refor-
mulation of statements about the forcing relation. In particular, “V [G] satis-
fies A” is to be understood to mean “every p ∈ P forces A.” Then (assuming
that T is consistent), the negation ¬A is not provable: If it were then every
condition would force ¬A (or, the Boolean value ‖¬A‖ would be 1). Note
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that for consistency of A, it is enough to show that some p ∈ P forces A; in
the language of generic extensions, one finds a p ∈ P such that when G is
generic and p ∈ G, then V [G] � A.

In some cases, forcing results are stated as independence results: A sen-
tence A is independent of the axioms T. This usually means that both A
and ¬A are consistent with T.

Independence of the Continuum Hypothesis

We now present Cohen’s proof of independence of CH.

Theorem 14.32. There is a generic extension V [G] that satisfies 2ℵ0 > ℵ1.

Proof. We describe the notion of forcing that produces a generic extension
with the desired property. Let P be the set of all functions p such that

(i) dom(p) is a finite subset of ω2 × ω,
(ii) ran(p) ⊂ {0, 1},

(14.33)

and let p be stronger than q if and only if p ⊃ q.
If G is a generic set of conditions, we let f =

⋃
G. We claim that

(i) f is a function;
(ii) dom(f) = ω2 × ω.

(14.34)

(Of course, ω2 means ω2 in the ground model.)
Part (i) of (14.34) holds because G is a filter. For part (ii), the sets Dα,n =

{p ∈ P : (α, n) ∈ dom(p)} are dense in P , hence G meets each of them, and
so (α, n) ∈ dom(f) for all (α, n) ∈ ω2 × ω.

Now, for each α < ω2, let fα : ω → {0, 1} be the function defined as
follows:

fα(n) = f(α, n).

If α �= β, then fα �= fβ ; this is because the set

D = {p ∈ P : p(α, n) �= p(β, n) for some n}

is dense in P and hence G ∩ D �= ∅. Thus in V [G] we have a one-to-one
mapping α �→ fα of ω2 into {0, 1}ω.

Each fα is the characteristic function of a set aα ⊂ ω. As in Example 14.2,
we call these sets Cohen generic reals. Thus P adjoins ℵ2 Cohen generic reals
to the ground model.

The proof of Theorem 14.32 is almost complete, except for one detail: We
don’t know that the ordinal ωV

2 is the cardinal ℵ2 of V [G]. We shall complete
the proof by showing that V [G] has the same cardinals as the ground model
(P preserves cardinals).
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Definition 14.33. A forcing notion P satisfies the countable chain condition
(c.c.c.) if every antichain in P is at most countable.

The following theorem is one of the basic tools of forcing:

Theorem 14.34. If P satisfies the countable chain condition then V and
V [G] have the same cardinals and cofinalities.

In other words cfV α = cfV [G] α for all limit ordinals α; the statement on
cardinals follows.

Proof. It suffices to show that if κ is a regular cardinal then κ remains regular
in V [G]. Thus let λ < κ; we show that every function f ∈ V [G] from λ into κ
is bounded.

Let ḟ be a name, let p ∈ P and assume

(14.35) p � ḟ is a function from λ̌ to κ̌.

For every α < λ consider the set

Aα = {β < κ : ∃q < p q � ḟ(α) = β}.

We claim that every Aα is at most countable: If W = {qβ : β ∈ Aα} is a set
of witnesses to β ∈ Aα then W is an antichain, and therefore countable by
c.c.c. Hence |Aα| ≤ ℵ0.

Now, because κ is regular, the set
⋃

α<κ Aα is bounded, by some γ < κ.
It follows that for each α < λ, p forces ḟ(α) < γ.

Thus for every ḟ ∈ V P and every p ∈ P , if (14.35) then p � ḟ is bounded
below κ. It follows that in V [G], every function f : λ → κ is bounded. ��

Now we complete the proof of Theorem 14.32 by showing that the forc-
ing notion that we employed satisfies c.c.c. That follows from the following
consequence of Theorem 9.18 on ∆-systems. ��

Lemma 14.35. Let P be a set of finite functions, with values in a given
countable set C. Let p < q be defined as p ⊃ q, and assume that for all p, q ∈
P , if p∪q is a function then p∪q ∈ P (or more generally, ∃r ∈ P (r ⊃ p∪q)).
Then P satisfies the countable chain condition.

Proof. Let F be an uncountable subset of P , and let W be the set {dom(p) :
p ∈ F}. As C is countable, the set W must be uncountable. By Theorem 9.18
there exists an uncountable ∆-system Z ⊂ W ; let S = X ∩Y for any X �= Y
in Z. Let G be the set of all p ∈ F such that dom(p) ∈ Z; again because C is
countable there are uncountably many p ∈ G with the same p�S. Now if p
and q are two such functions, i.e., dom(p)∩dom(q) = S and p�S = q�S, then
p and q are compatible functions and therefore compatible conditions. Hence
F is not an antichain. ��
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Independence of the Axiom of Choice

If the ground model M satisfies the Axiom of Choice, then so does the
generic extension. However, we can still use the method of forcing to con-
struct a model in which AC fails; namely, we find a suitable submodel of the
generic model, a model N such that M ⊂ N ⊂ M [G].

Theorem 14.36 (Cohen). There is a model of ZF in which the real num-
bers cannot be well-ordered. Thus the Axiom of Choice is independent of the
axioms of ZF.

Before we construct a model without Choice, we shall prove an easy but
useful lemma on automorphisms of Boolean-valued models. Let B be a com-
plete Boolean algebra and let π be an automorphism of B. We define, by
induction on ρ(x) an automorphism of the Boolean-valued universe V B, and
denote it also π:

(i) π(∅) = ∅;
(ii) dom(πx) = π(dom(x)), and (πx)(πy) = π(x(y)) for all π(y) ∈

dom(πx).

(14.36)

Clearly, π is a one-to-one function of V B onto itself, and π(x̌) = x̌ for every x.

Lemma 14.37. Let ϕ(x1, . . . , xn) be a formula. If π is an automorphism
of B, then for all x1, . . . , xn ∈ V B,

(14.37) ‖ϕ(πx1, . . . , πxn)‖ = π(‖ϕ(x1, . . . , xn)‖).

Proof. (a) If ϕ is an atomic formula, (14.37) is proved by induction (as in the
definition of ‖x ∈ y‖, ‖x = y‖). For instance,

‖πx ∈ πy‖ =
∑

t∈dom(πy)

(‖πx = t‖ · (πy)(t))

=
∑

z∈dom(y)

(‖πx = πz‖ · (πy)(πz))

= π
( ∑

z∈dom(y)

(‖x = z‖ · y(z))
)

= π(‖x ∈ y‖).

(b) In general, the proof is by induction on the complexity of ϕ. ��

In practice, (14.37) is used as follows: Let (P, <) be a separative partially
ordered set. If π is an automorphism of P , then π extends to an automorphism
of the complete Boolean algebra B(P ), by π(u) =

∑
{π(p) : p ≤ u}. Then

(14.37) takes this form: For all P -names ẋ1, . . . , ẋn,

(14.38) p � ϕ(ẋ1, . . . , ẋn) if and only if πp � ϕ(πẋ1, . . . , πẋn).

For the proof of Theorem 14.36, let us assume that the ground model M
satisfies V = L. We first extend M by adding countably many Cohen generic
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reals: Let P be the set of all functions p such that

(i) dom(p) is a finite subset of ω × ω,
(ii) ran(p) ⊂ {0, 1},

(14.39)

and let p < q if and only if p ⊃ q.
Let G be a generic set of conditions. For each i ∈ ω, let

ai = {n ∈ ω : (∃p ∈ G) p(i, n) = 1}

and let A = {ai : i ∈ ω}. Let ȧi, i ∈ ω, and Ȧ be the canonical names for ai

and A:

dom(ȧi) = {ň : n ∈ ω}, and ȧi(ň) =
∑

{p ∈ P : p(i, n) = 1},(14.40)
dom(Ȧ) = {ȧi : i ∈ ω}, and Ȧ(ȧi) = 1.(14.41)

Lemma 14.38. If i �= j, then every p forces ȧi �= ȧj.

Proof. For every p there exists a q ⊃ p such that for some n ∈ ω, q(i, n) = 1
and q(j, n) = 0. ��

In the model M [G], let N be the class of all sets hereditarily ordinal-
definable over A, N = HOD(A). As we have seen in Chapter 13, N is a tran-
sitive model of ZF. Since the elements of A are sets of integers, it is clear that
A ∈ N . We shall show that A cannot be well-ordered in the model N . For
that, it suffices to show that there is no one-to-one function f ∈ N from A
into the ordinals.

Lemma 14.39. In M [G], there is no one-to-one function f : A → Ord ,
ordinal-definable over A.

Proof. Assume that f : A → Ord is one-to-one and ordinal-definable over A.
Then there is a finite sequence s = 〈x0, . . . , xk〉 in A such that f is ordinal-
definable from s and A. Since f is one-to-one, it is easy to see that every
a ∈ A is ordinal definable from s and A. In particular, pick some a ∈ A that
is not among the xi, i ≤ k.

Since a ∈ OD [s, A], there is a formula ϕ such that

(14.42) M [G] � a is the unique set such that ϕ(a, α1, . . . , αn, s, A)

for some ordinals α1, . . . , αn. We shall show that (14.42) is impossible.
Let ȧ be a name for a, let ẋ0, . . . , ẋk be names for x0, . . . , xk and let

ṡ be a name for the sequence 〈x0, . . . , xk〉. We shall show the following:

For every p0 that forces ϕ(ȧ, α̌1, . . . , α̌n, ṡ, Ȧ) there exist ḃ and
q ≤ p0 such that q forces ȧ �= ḃ and ϕ(ḃ, α̌1, . . . , α̌n, ṡ, Ȧ).

(14.43)

Let p0 � ϕ(ȧ, α1, . . . , αn, ṡ, Ȧ). There exist i, i0, . . . , ik and p1 ≤ p0 such
that p1 forces ȧ = ȧi, ẋ0 = ȧi0 , . . . , ẋk = ȧik

. Let j ∈ ω be such that j �= i,
and that for all m, (j, m) /∈ dom(p1).
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Now let π be the permutation of ω that interchanges i and j, and πx = x
otherwise. This permutation induces an automorphism of P : For every p ∈ P ,

(14.44) dom(πp) = {(πx, m) : (x, m) ∈ dom(p)},
(πp)(πx, m) = p(x, m).

In turn, π induces an automorphism of B, and of MB. It is easy to see
(cf. (14.40) and (14.41)) that π(ȧi) = ȧj , π(ȧj) = ȧi, π(ȧx) = ȧx for all
x �= i, j, π(Ȧ) = Ȧ and π(ṡ) = ṡ. Since (j, m) /∈ dom(p1) for all m, it follows
that (i, m) /∈ dom(πp1) for all m, and thus p1 and πp1 are compatible. Let
q = p1 ∪ πp1.

Now, on the one hand we have

p1 � ϕ(ȧi, α1, . . . , αn, ṡ, Ȧ),

and on the other hand, since πα̌ = α̌, πṡ = ṡ and πȦ = Ȧ, we have

πp1 � ϕ(ȧj , α1, . . . , αn, ṡ, Ȧ).

Hence
q � ϕ(ȧi, . . .) and ϕ(ȧj , . . .)

and by Lemma 14.38, q � ȧi �= ȧj . Thus we have proved (14.43), which
contradicts (14.42). ��

Exercises

14.1. Show that in the definition of generic set one can replace (14.1)(iii) by the
following weaker property: If p, q ∈ G, then p and q are compatible.

[To prove (14.1)(iii), show that D = {r ∈ P : either r is incompatible with p,
or r is incompatible with q, or r ≤ p and r ≤ q} is dense.]

14.2. A filter G on P is generic over M if and only if for every p ∈ G, if D ∈M is
dense below p then G ∩D �= ∅.

14.3. A filter G on P is generic over M if and only if G∩D �= ∅ whenever D ∈M
is open and dense in P .

14.4. A filter G on P is generic over M if and only if G∩D �= ∅ whenever D ∈M
is predense in P .

14.5. A filter G on P is generic over M if and only if G∩D �= ∅ whenever D ∈M
is a maximal antichain in P .

14.6. Let (P, <) be a notion of forcing in M with the following property: For every
p ∈ P there exist q and r such that q ≤ p, r ≤ p and such that q and r are
incompatible. Show that if G ⊂ P is generic over M , then G /∈M .

[If F is a filter on P , then {p ∈ P : p /∈ F} is dense in P .]
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14.7. If {q : q � ϕ} is dense below p then p � ϕ.

14.8. Assume that for every p ∈ P there exists a G ⊂ P generic over M such that
p ∈ G (e.g., if M is countable). Show that p � σ if and only if M [G] � σ for all
generic G such that p ∈ G.

14.9. The separative quotient is unique up to isomorphism.
[If (Q, <) is separative, then ≤ can be defined in terms of compatibility: x ≤ y

if and only if every z compatible with x is compatible with y.]

14.10. If B is a complete Boolean algebra in the ground model M , then G ⊂ B is
a generic ultrafilter over M if and only if G is a generic filter on B+ over M .

14.11. An ultrafilter G on B is generic over M if and only if for every partition W
of B such that W ∈M , there exists a unique u ∈ G ∩W .

14.12. (i) ‖(∃y ∈ x)ϕ(y)‖ =
P

y∈dom x(x(y) · ‖ϕ(y)‖).
(ii) ‖(∀y ∈ x)ϕ(y)‖ =

Q

y∈domx(x(y)⇒ ‖ϕ(y)‖).

14.13. (i) If x = y then ‖x̌ = y̌‖ = 1 and if x �= y then ‖x̌ = y̌‖ = 0.
(ii) If x ∈ y then ‖x̌ ∈ y̌‖ = 1 and if x /∈ y then ‖x̌ ∈ y̌‖ = 0.

14.14. Let Ġ be the canonical name for a generic ultrafilter on B. Show that

(i) ‖Ġ is an ultrafilter on B‖ = 1.
(ii) For every X ⊂ B, ‖if X̌ ⊂ Ġ then

Q

X ∈ Ġ‖ = 1.

14.15. If G is an M -generic ultrafilter on B, let MB/G be defined by (14.11)
and (14.12). Prove that MB/G is isomorphic to M [G].

14.16. If G is an M -generic ultrafilter on B and π an automorphism of B (in M),
then H = π(G) is M -generic and M [H ] = M [G].

Historical Notes

The method of forcing was invented by Paul Cohen who used it to prove the inde-
pendence of the Continuum Hypothesis and the Axiom of Choice (see [1963, 1964]
and the book [1966]). The Boolean-valued version of Cohen’s method has been for-
mulated by Scott, Solovay, and Vopěnka. Following an observation of Solovay that
the forcing relation can be viewed as assigning Boolean-values to formulas, Scott
formulated his version of Boolean-valued models in [1967]. Vopěnka developed a the-
ory of Cohen’s method of forcing, using open sets in a topological space as forcing
conditions (in [1964, 1965a, 1965b, 1965c, 1966, 1967a] and Vopěnka-Hájek [1967]),
eventually arriving at the Boolean-valued version of forcing more or less identical
to Scott-Solovay’s version (Vopěnka [1967b]).



15. Applications of Forcing

In this chapter we present some important applications of the method of
forcing. These applications establish several major consistency results and
illustrate the techniques involved in use of forcing. Throughout we use V to
denote the ground model, and V [G] for the generic extension.

Cohen Reals

In (14.23) we described a notion of forcing that adjoins ℵ2 real numbers to
the ground model. In general, let κ be an infinite cardinal. The following
notion of forcing adjoins κ real numbers, called Cohen reals.

Let P be the set of all functions p such that

(i) dom(p) is a finite subset of κ × ω,
(ii) ran(p) ⊂ {0, 1},

(15.1)

and let p be stronger than q if and only if p ⊃ q.
Let G be a generic set of conditions and let f =

⋃
G. By a genericity

argument, f is a function from κ × ω into {0, 1}. For each α < κ, we let
fα be the function on ω defined by fα(n) = f(α, n) and let aα = {n ∈ ω :
fα(n) = 1}. Each aα is a real (a subset of ω), aα /∈ V and if α �= β, then
aα �= aβ . This is proved as in Theorem 14.32.

Also as in Theorem 14.32 one shows that P satisfies the countable chain
condition. It follows that cardinals and cofinalities are preserved in the generic
extension.

Since P adds κ distinct Cohen reals, the size of the continuum in V [G] is
at least κ. In fact, it is at least (κℵ0)V :

(2ℵ0)V [G] = ((2ℵ0)ℵ0)V [G] ≥ (κℵ0)V [G] ≥ (κℵ0)V .

It turns out that there are precisely (κℵ0)V reals in V [G]. The following is
a general estimate of the number of new sets in a generic extension:

Lemma 15.1. Let λ be a cardinal in V . If G is a V -generic ultrafilter on B,
then

(2λ)V [G] ≤ (|B|λ)V .
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Proof. Every subset A ⊂ λ in V [G] has a name Ȧ ∈ V B; every such Ȧ deter-
mines a function α �→ ‖α̌ ∈ Ȧ‖ from λ into B. Different subsets correspond
to different functions, and thus the number of all subsets of λ in V [G] is not
greater than the number of all functions from λ into B in V . ��

When P is the forcing (15.1) that adds κ Cohen reals, P satisfies c.c.c. and
so every element of B = B(P ) is the Boolean sum of a countable antichain
in P ; hence |B| ≤ |P |ℵ0 = κℵ0 . By Exercise 7.32, |B| = |B|ℵ0 and it follows
that |B| = κℵ0 , and consequently, (2ℵ0)V [G] = (κℵ0)V .

If we start with a ground model that satisfies GCH, and if κ is (in V ) a car-
dinal of uncountable cofinality, then κℵ0 = κ in V , and we get a model V [G]
in which 2ℵ0 = κ.

Adding Subsets of Regular Cardinals

The forcing that adds a Cohen real generalizes easily from ω to any regular
cardinal κ. Let κ be, in V , a regular cardinal and assume that 2<κ = κ.

Let P be the set of all functions p such that

(i) dom(p) ⊂ κ and | dom(p)| < κ;
(ii) ran(p) ⊂ {0, 1}.

(15.2)

A condition p be stronger than q if and only if p ⊃ q.
Let G be a set of conditions generic over V and let f =

⋃
G. As before,

f is a function from κ into {0, 1}, and X = {α < κ : f(α) = 1} is a subset
of κ and X /∈ V .

In order to add more new subsets of κ, we use a generalization of (15.1):
Let κ be as above, and let λ be a cardinal greater than κ such that λκ = λ.
Let P be the set of all functions p such that:

(i) dom(p) ⊂ λ × κ and | dom(p)| < κ,
(ii) ran(p) ⊂ {0, 1},

(15.3)

and let p be stronger than q if and only if p ⊃ q.
Let G be a generic set of conditions and let f =

⋃
G. For each α < λ, we

let

aα = {ξ < κ : f(α, ξ) = 1}.

Each aα is a subset of κ, each aα /∈ V and aα �= aβ whenever α �= β.
We claim that in the generic extension, all cardinals are preserved, and

2κ = λ. But to show this, we need additional results in the theory of forcing,
proved in the next two sections.
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The κ-Chain Condition

Definition 15.2. A forcing notion P satisfies the κ-chain condition (κ-c.c.)
if every antichain in P has cardinality less than κ.

The ℵ1-chain condition is the c.c.c. Note that P satisfies the κ-c.c. if and
only if B(P ) satisfies the κ-c.c.

Theorem 14.34 generalizes as follows:

Theorem 15.3. If κ is a regular cardinal and if P satisfies the κ-chain con-
dition then κ remains a regular cardinal in the generic extension by P .

Proof. The proof is exactly as the proof of Theorem 14.34. The only difference
is that the set Aα is not necessarily countable but has cardinality less than κ.

��
Consequently, all regular cardinals κ ≥ sat(B(P )), and in particular all

regular κ ≥ |P |+ are preserved in V [G].
The following lemma generalizes Lemma 14.35, and implies that the forc-

ing notion (15.3) satisfies the κ+-chain condition. We remark that Lemma 15.4
is related to (a generalization of) Theorem 9.18 on ∆-systems.

Lemma 15.4. Let κ be a regular cardinal such that 2<κ = κ. Let S be an
arbitrary set and let |C| ≤ κ. Let P be the set of all functions p whose
domains are subsets of S of size < κ, with values in C. Let p < q if and only
if q ⊃ q. Then P satisfies the κ+-chain condition.

Proof. Let W ⊂ P be an antichain. We construct sequences A0 ⊂ A1 ⊂
. . . ⊂ Aα ⊂ . . . (α < κ) of subsets of S, and W0 ⊂ W1 ⊂ . . . ⊂ Wα ⊂ . . .
(α < κ) of subsets of W . If α is a limit ordinal, we let Wα =

⋃
β<α Wβ

and Aα =
⋃

β<α Aβ . Given Aα and Wα, we choose for each p ∈ P with
dom(p) ⊂ Aα some q ∈ W (if there is one) such that p = q�Aα. Then we let
Wα+1 = Wα ∪ {the chosen q’s} and Aα+1 =

⋃
{dom(q) : q ∈ Wα+1}; finally,

A =
⋃

α<κ Aα.
Next we show that W =

⋃
α<κ Wα: If q ∈ W , then there is an α < κ

such that dom(q) ∩ A = dom(q) ∩ Aα. Thus if p = q�Aα, there exists some
q′ ∈ Wα+1 such that q′�Aα = p. Since dom(q′) ⊂ A, it follows that q and q′

are compatible; however, both are elements of W and thus q = q′. Hence
q ∈ Wα+1.

The proof is completed by showing that |Aα| ≤ κ and |Wα| ≤ κ for each
α < κ. This is proved by induction on α. If |Wα| ≤ κ, then |Aα| ≤ κ because
Aα =

⋃
{dom(q) : q ∈ Wα}. If α is a limit ordinal and |Wβ | ≤ κ for all

β < α, then |Wα| = |
⋃

β<α Wβ | ≤ κ. Thus let us assume that |Wα| ≤ κ and
let us show that |Wα+1| ≤ κ. The set Wα+1 is obtained by adding to Wα

at most one q ∈ W for each p ∈ P with dom(p) ⊂ Aα. There are at most
κ<κ subsets X of Aα of size < κ, and since κ is regular and 2<κ = κ, we
have κ<κ = κ. On each X there are |C||X| functions with values in C, and
therefore there are at most κ elements p of P with dom(p) ⊂ Aα. Hence
|Wα+1| ≤ κ. Then it follows that |W | ≤ κ. ��
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Distributivity

In (7.28) we defined κ-distributivity of complete Boolean algebras. We now
show that this concept plays a crucial role in the theory of forcing.

Definition 15.5. A forcing notion P is κ-distributive if the intersection of
κ open dense sets is open dense. P is <κ-distributive if it is λ-distributive for
all λ < κ.

Note that if P is dense in B then P is κ-distributive if and only if B is.

Theorem 15.6. Let κ be an infinite cardinal and assume that (P, <) is κ-
distributive. Then if f ∈ V [G] is a function from κ into V , then f ∈ V . In
particular, κ has no new subsets in V [G].

Proof. Let f : κ → V and f ∈ V [G], let ḟ be a name for f . There exist some
A ∈ V and a condition p0 ∈ G such that p0 forces

ḟ is a function from κ̌ into Ǎ.

For each α < κ, the set

Dα = {p ≤ p0 : (∃x ∈ A) p � ḟ(α̌) = x̌}

is open dense below p0. Thus D =
⋂

α<κ Dα is dense below p0 and therefore
there is some p ∈ D∩G. Now we argue in V : For each α < κ there is some xα

such that p � ḟ(α̌) = x̌α; let g : κ → A be the function defined by g(α) = xα.
However, it is easy to see that f(α) = xα = g(α), for every α < κ, and thus
f ∈ V . ��

See Exercise 15.5 for the converse.
The following property, stronger than distributivity, is often easy to verify:

Definition 15.7. P is κ-closed if for every λ ≤ κ, every descending sequence
p0 ≥ p1 ≥ . . . ≥ pα ≥ . . . (α < λ) has a lower bound. P is <κ-closed if it is
λ-closed for all λ < κ.

Lemma 15.8. If P is κ-closed then it is κ-distributive.

Proof. Let {Dα : α < κ} be a collection of open dense sets. The intersection
D =

⋂
α<κ Dα is clearly open; to show that D is dense, let p ∈ P be arbitrary.

By induction on α < κ, we construct a descending κ-sequence of conditions
p ≥ p0 ≥ p1 ≥ . . .. We let pα be a condition stronger than all pξ, ξ < α,
and such that pα ∈ Dα. Finally, we let q be a condition stronger than all pα,
α < κ. Clearly, q ∈ D. ��

Now we can prove the claim about the generic extension by the forcing
in (15.3). The forcing P is <κ-closed, and therefore κ has no new bounded
subsets; hence κ is preserved. The cardinals above κ are preserved because
P satisfies the κ+-chain condition, by Lemma 15.4. We have |P | = λ and
therefore |B| = |P |κ = λ, and so, by Lemma 15.1, (2κ)V [G] = λκ = λ.
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Product Forcing

Let P and Q be two notions of forcing. The product P ×Q is the coordinate-
wise partially ordered set product of P and Q:

(15.4) (p1, q1) ≤ (p2, q2) if and only if p1 ≤ p2 and q1 ≤ q2.

If G is a generic filter on P × Q, let

(15.5) G1 = {p ∈ P : ∃q (p, q) ∈ G}, G2 = {q ∈ Q : ∃p (p, q) ∈ G}.

The sets G1 and G2 are generic on P and Q respectively, and G = G1 × G2.
The following lemma describes genericity on products:

Lemma 15.9 (The Product Lemma). Let P and Q be two notions of
forcing in M . In order that G ⊂ P × Q be generic over M , it is necessary
and sufficient that G = G1×G2 where G1 ⊂ P is generic over M and G2 ⊂ Q
is generic over M [G1]. Moreover, M [G] = M [G1][G2].

As a corollary, if G1 is generic over M and G2 is generic over M [G1], then
G1 is generic over M [G2], and M [G1][G2] = M [G2][G1].

Proof. First let G be an M -generic filter on P × Q. We define G1 and G2

by (15.5). Clearly, G1 and G2 are filters, and G ⊂ G1 × G2. If (p1, p2) ∈
G1 × G2, then there are p′1 ∈ G1 and p′2 ∈ G2 such that (p′1, p2) ∈ G and
(p1, p

′
2) ∈ G. Since G is a filter, there exist q1 ≤ p1, p

′
1 and q2 ≤ p2, p

′
2 such

(q1, q2) ∈ G. Hence (p1, p2) ∈ G and we have G = G1 × G2.
It is easy to see that G1 is generic over M : If D1 ∈ M is dense in P , then

D1×Q is dense in P×Q; and since (D1×Q)∩G �= ∅, we have D1∩G1 �= ∅. To
show that G2 is generic over M [G1], let D2 ∈ M [G1] be dense in Q. Let � be
the forcing relation corresponding to P . Let Ḋ2 be a name for D2 and let
p1 ∈ G1 be such that p1 forces “Ḋ2 is dense in Q.” Let p2 ∈ G2 be arbitrary.
For every q1 ≤ p1 and every q2 ≤ p2 there exist r1 ≤ q1 and r2 ≤ q2 such
that r1 � r2 ∈ Ḋ2; thus

D = {(r1, r2) : r1 ≤ p1 and r1 � r2 ∈ Ḋ2}

is dense in P × Q below (p1, p2) and so there exist r1, r2 such that r1 ∈ G1

and r1 � r2 ∈ Ḋ2. Hence r2 ∈ D2 ∩ G2.
Conversely, let G1 ⊂ P be M -generic and let G2 ⊂ Q be M [G1]-generic.

We let G = G1 × G2. Clearly G is a filter on P × Q. To show that G is
M -generic, let D ∈ M be dense in P × Q. We let

D2 = {p2 : (p1, p2) ∈ D for some p1 ∈ G1}.

The set D2 is in M [G1]; we shall show that D2 is dense in Q and thus
D ∩ (G1 × G2) �= ∅.
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Let q2 ∈ Q be arbitrary. Since D is dense in P ×Q, it follows that the set

D1 = {p1 : (∃p2 ≤ q2) (p1, p2) ∈ D}

is dense in P . Hence there is p1 ∈ G1 ∩ D1 and so D2 is dense in Q. Since
G1 × G2 ∈ M [G1][G2], it is obvious that M [G1 × G2] = M [G1][G2]. ��

We shall now define products of infinitely many notions of forcing. In
order to simplify the notation, we will assume that every notion of forcing
has a greatest element, denoted 1. In practice, the empty condition ∅ is often
the greatest element of (P, <).

Definition 15.10. Let {Pi : i ∈ I} be a collection of partially ordered sets,
each having a greatest element 1. The product P =

∏
i∈I Pi consists of all

functions p on I with values p(i) ∈ Pi, such that p(i) = 1 for all but finitely
many i ∈ I. P is partially ordered by

(15.6) p ≤ q if and only if p(i) ≤ q(i) for all i ∈ I.

For each p ∈
∏

i Pi, the finite set s(p) = {i ∈ I : p(i) �= 1} is called the
support of p.

If G is a generic filter on
∏

i Pi, then for each i ∈ I, the set Gi = {p(i) :
p ∈ G}, the projection of G on Pi, is a generic filter on Pi.

A natural generalization of a product is κ-product:

Definition 15.11. Let κ be a regular cardinal. The κ-product (the product
with <κ-support) of Pi is the set of all functions p on I with p(i) ∈ Pi such
that |s(p)| < κ; the ordering is coordinatewise (15.6).

As usual, λ-support means <λ+-support, countable support means <ℵ1-
support, etc.

The following lemma is immediate:

Lemma 15.12. If P and Q are λ-closed then P × Q is λ-closed. More gen-
erally, if each Pi is λ-closed and P is the κ-product of the Pi, with λ < κ,
then P is λ-closed.

Proof. Let α ≤ λ and let pξ = 〈pξ
i : i ∈ I〉, ξ < α, be a descending α-sequence

of conditions in P . If we let s =
⋃

ξ<α s(pξ), then |s| < κ, and since each Pi is
λ-closed, it is easy to find p = 〈pi : i ∈ I〉 such that s(p) = s and that pi ≤ pξ

i

for each i ∈ I and each ξ < α. ��

Chain conditions are generally not preserved by products. While it is con-
sistent that c.c.c. is preserved by products (we return to this in Chapter 16),
it is also consistent to have a forcing P that satisfies c.c.c. but P × P does
not (see Exercise 15.28).

The following property (K for Knaster) is stronger than the countable
chain condition:
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Definition 15.13. A notion of forcing has property (K) if every uncountable
set of conditions has an uncountable subset of pairwise compatible elements.

Lemma 15.14. If P and Q both have property (K) then so does P × Q.

Proof. Let W ⊂ P ×Q be uncountable. If there exists a p ∈ P such that the
set X = {q : (p, q) ∈ W} is uncountable, then since Q has property (K) there
exists an uncountable Y ⊂ X of pairwise compatible elements, and {p} × Y
is such a subset of W in P × Q.

The proof is similar if for some q ∈ Q, the set {p : (p, q) ∈ W} is uncount-
able. In the remaining case, there is an uncountable set of pairs F ⊂ W that
is a one-to-one function. Applying successively property (K) to P and Q, we
get an uncountable G ⊂ F such that for any two elements (p1, q1) and (p2, q2)
of G, p1 is compatible with p2 in P and q1 is compatible with q2 in Q, hence
(p1, q1) and (p2, q2) are compatible. ��

Theorem 15.15. If for every i ∈ I, Pi has property (K) then
∏

i∈I Pi has
property (K).

Proof. Let X be an uncountable subset of P , and let W = {s(p) : p ∈ X}.
If W is countable, then there is a finite set J ⊂ I such that s(p) = J
for uncountably many p. By Lemma 15.14,

∏
i∈J Pi has property (K) and

the theorem follows. If W is uncountable, there exist, by Theorem 9.18, an
uncountable Z ⊂ X and a finite set J ⊂ I such that s(p)∩s(q) = J whenever
p, q ∈ Z, p �= q. Since

∏
i∈I Pi has property (K), Z has an uncountable

subset Y such that for any p, q ∈ Y , p�J and q�J are compatible. But such p
and q are compatible in

∏
i∈I Pi. ��

Corollary 15.16. The product of any collection of countable forcing notions
has property (K) and so it satisfies the countable chain condition. ��

The best one can say about the chain condition in products is this:

Theorem 15.17. (i) If each Pi has size λ (infinite) then the product of the Pi

satisfies the λ+-chain condition.
(ii) If κ is regular, λ ≥ κ, λ<κ = λ and |Pi| ≤ λ for all i ∈ I, then the

κ-product of the Pi satisfies the λ+-chain condition.
(iii) If λ is inaccessible, κ < λ is regular, and |Pi| < λ for each i, then

the κ-product satisfies the λ-chain condition.

Proof. (i) is a special case of (ii); thus consider κ-products. Let P be the
κ-product, and let W be an antichain in P . If p = 〈pi : i ∈ I〉 and q = 〈qi :
i ∈ I〉 are incompatible in P , then for some i ∈ s(p) ∩ s(p), pi and qi are
incompatible in Pi, and in particular pi �= qi. Thus we can regard elements
of W as functions whose domain is a subset s(p) of I of size < κ, with values
in the Pi, and show that if W consists of pairwise incompatible functions
then |W | has the required bound.
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We follow the proof of Lemma 15.4. As there we construct κ-sequences
A0 ⊂ A1 ⊂ . . . ⊂ Aα ⊂ . . . (α < κ) of subsets of I and W0 ⊂ W1 ⊂ . . . ⊂
Wα ⊂ . . . (α < κ) of subsets of W such that Aα =

⋃
{s(p) : p ∈ Wα} for

each α. And as there we show that W =
⋃

α<κ Wα. Thus it remains to show,
by induction on α, that |Wα| ≤ λ (in (ii)) or that |Wα| < λ (in (iii)). Let us
prove (ii); (iii) is similar.

If |Wα| ≤ λ, then |Aα| ≤ κ · λ = λ. If α < κ is limit and if |Wβ | ≤ λ for
each β < α, then |Wα| ≤ |α| · λ = λ. Thus let us assume that |Wα| ≤ λ and
let us show that |Wα+1| ≤ λ. The set Wα+1 is obtained by adding to Wα at
most one q for each p ∈ P with s(p) ⊂ Aα. However, since |Aα| ≤ λ, there
are at most λ<κ functions p with s(p) ⊂ Aα, |s(p)| < κ, and λ possible values
for each i ∈ s(p). Thus |Wα+1| ≤ λ<κ = λ. ��

Easton’s Theorem

The theorem that we are about to prove shows that in ZFC alone the contin-
uum function 2κ can behave in any prescribed way consistent with König’s
Theorem, for regular cardinals κ. As we have seen in Chapter 8 (Silver’s The-
orem) and shall see again in Chapter 24, this is not the case with singular
cardinals.

Theorem 15.18 (Easton). Let M be a transitive model of ZFC and as-
sume that the Generalized Continuum Hypothesis holds in M . Let F be a func-
tion (in M) whose arguments are regular cardinals and whose values are
cardinals, such that for all regular κ and λ:

(i) F (κ) > κ;
(ii) F (κ) ≤ F (λ) whenever κ ≤ λ;
(iii) cf F (κ) > κ.

(15.7)

Then there is a generic extension M [G] of M such that M and M [G] have
the same cardinals and cofinalities, and for every regular κ,

M [G] � 2κ = F (κ).

We have to point out that the generic extension is obtained by forcing with
a class of conditions. By Lemma 15.1, a notion of forcing can only increase
the size of 2κ for κ < |B(P )|; thus we have to use a class of conditions. We
shall describe the appropriate generalization of the forcing method.

Since the proof of Easton’s Theorem involves forcing with a class of con-
ditions, we shall first give a proof of the special case, when the “continuum
function” F is prescribed for only a set of regular cardinals. Thus let us work
in a ground model M that satisfies the GCH and let F be a function defined
on a set A of regular cardinals and having the properties (15.7)(i)–(iii).
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For each κ ∈ dom(F ), let (Pκ,⊃) be the notion of forcing that adjoins
F (κ) subsets of κ (cf. (15.3)):

(15.8) dom(p) ⊂ κ × F (κ), | dom(p)| < κ, and ran(p) ⊂ {0, 1}.
We let (P, <) be the Easton product of Pκ, κ ∈ A: A condition p is

a function p = 〈pκ : κ ∈ A〉 ∈
∏

κ∈A Pκ such that if we denote s(p) =
{κ ∈ A : pκ �= ∅}, the support of p, then

(15.9) for every regular cardinal γ, |s(p) ∩ γ| < γ.

We can regard the conditions as functions with values 0 and 1, whose domain
consists of triples (κ, α, β) where κ ∈ A, α < κ, and β < F (κ), and such that
for every regular cardinal γ,

(15.10) |{(κ, α, β) ∈ dom(p) : κ ≤ γ}| < γ

(and p is stronger than q if and only if p ⊃ q). Note that (15.10) implies that
for each κ ∈ A, | dom(pκ)| < κ, where pκ is defined by

pκ(α, β) = p(κ, α, β).

Let G be a generic set of conditions, and let for each κ ∈ A, Gκ be the
projection of G on Pκ. Each Gκ is a generic filter on Pκ and thus produces
F (κ) new subsets of κ:

aκ
β = {α < κ : (∃p ∈ G) p(κ, α, β) = 1} (β < F (κ)).

We shall show that (P, <) preserves cardinals and cofinalities, and that each
κ ∈ A has exactly F (κ) subsets in M [G]. The condition (15.10) is instrumen-
tal in the proof.

Given a regular cardinal λ, we can decompose each condition p ∈ P into
two parts:

(15.11) p≤λ = p�{(κ, α, β) : κ ≤ λ}, p>λ = p�{(κ, α, β) : κ > λ}.

Clearly p = p≤λ ∪ p>λ. We let

(15.12) P≤λ = {p≤λ : p ∈ P}, P>λ = {p>λ : p ∈ P}.
Obviously, P≤λ is the Easton product of Pκ, κ ∈ A and κ ≤ λ, and P >λ is
the Easton product of Pκ, κ ∈ A and κ > λ. Moreover, P is (isomorphic to)
the product P≤λ × P>λ.

First we notice that P >λ is λ-closed: If C ⊂ P>λ consists of pairwise
compatible conditions and |C| ≤ λ, then p =

⋃
C is a condition in P>λ;

(15.10) holds for all regular γ > λ, and holds trivially for γ ≤ λ because if
(κ, α, β) ∈ dom(p), then κ > λ.

Furthermore, P≤λ satisfies the λ+-chain condition: If W ⊂ P≤λ is an
antichain, then |W | ≤ λ. The proof given in Theorem 15.17 works in this case
as well because | dom(p)| < λ for each p ∈ P≤λ (and because GCH holds).
Thus P = P >λ ×P≤λ where P>λ is λ-closed and P≤λ satisfies the λ+-chain
condition.
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Lemma 15.19. Let G × H be an M -generic filter on P × Q, where P is λ-
closed and Q satisfies the λ+-chain condition. Then every function f : λ → M
in M [G × H ] is in M [H ]. In particular,

P M [G×H](λ) = P M [H](λ).

Proof. Let ḟ be a name for f ; let us assume, without loss of generality, that
for some A, every condition forces that ḟ is a function from λ into A. For
each α < λ, let Dα ⊂ P be defined as follows:

p ∈ Dα if and only if there exist a maximal antichain W ⊂ Q

and a family {a(α)
p,q : q ∈ W} such that for each q ∈ W ,

(p, q) � ḟ(α) = a
(α)
p,q .(15.13)

We claim that each Dα is open dense in P . Clearly, Dα is open; thus
let p0 ∈ P be arbitrary and let us find p ∈ Dα such that p ≤ p0. There
exist p1 ≤ p0, q1 ∈ Q and a1 ∈ A such that (p1, q1) � ḟ(α) = a1. By
induction on γ < λ+, we construct pγ ∈ P , qγ ∈ Q, and aγ ∈ A such that
p0 ≥ p1 ≥ . . . ≥ pγ ≥ . . ., that the qγ are pairwise incompatible and that
(pγ , qγ) forces ḟ(α) = aγ . If {qξ : ξ < γ} is not maximal, we can find such
pγ , qγ , and aγ since P is λ-closed. By the λ+-chain condition, there is some
β < λ+ such that W = {qγ : γ < β} is a maximal antichain; then we find
p ∈ P stronger than all pγ , γ < β. Thus Dα is open dense in P .

Since P is λ-closed, it follows that
⋂

α<λ Dα is open dense, and so there
exists some p ∈ G such that p ∈ Dα for all α < λ. We pick (in M) for each
α < λ a maximal antichain Wα ⊂ Q and a family {a(α)

p,q : q ∈ Wα} such
that (15.13) holds for each q ∈ Wα. By the genericity of H , for every α there
is a unique q ∈ Wα such that q ∈ H , and we have, for every α < λ,

(15.14) f(α) = a(α)
p,q , where q is the unique q ∈ Wα ∩ H .

However, (15.14) defines the function f in M [H ]. ��
Now we can finish the proof of Easton’s Theorem, that is, at least in the

case when F is defined on a set A of regular cardinals.
Let κ be a regular cardinal in M ; we shall show that κ is a regular cardi-

nal in M [G]. If κ fails to be a regular cardinal, then there exists a func-
tion f that maps some λ < κ, regular in M , cofinally into κ. We con-
sider P as the product: P = P >λ × P≤λ. Then G = G>λ × G≤λ and
M [G] = M [G>λ][G≤λ] = M [G≤λ][G>λ]. By Lemma 15.19, f is in M [G≤λ]
and so κ is not a regular cardinal in M [G≤λ]. However, this is a contradiction
since P≤λ satisfies the κ-chain condition and hence κ is regular in M [G≤λ].

It remains to prove that (2λ)M [G] = F (λ), for each λ ∈ A. Again, we
regard P as the product P>λ ×P≤λ and G = G>λ ×G≤λ. By Lemma 15.19,
every subset of λ in M [G] is in M [G≤λ] and we have (2λ)M [G] = (2λ)M [G≤λ].
However, an easy computation shows that |P≤λ| = F (λ) and |B(P≤λ)| =
F (λ), and hence (2λ)M [G] ≤ F (λ). On the other hand, we have exhibited
F (λ) subsets of λ for each λ ∈ A, and so M [G] � 2λ = F (λ). ��
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Forcing with a Class of Conditions

We shall now show how to generalize the preceding construction to prove
Easton’s Theorem in full generality, when the function F is defined for all
regular cardinals. This generalization involves forcing with a proper class of
conditions. Although it is possible to give a general method of forcing with
a class, we shall concentrate only on the particular example.

Thus let M be a transitive model of ZFC + GCH. Moreover, we assume
that M has a well-ordering of the universe (e.g., if M satisfies V = L).
Let F be a function (in M) defined on all regular cardinals and having the
properties (15.7)(i)–(iii). We define a class P of forcing conditions as follows:
P is the class of all functions p with values 0 and 1, whose domain consists
of triples (κ, α, β) where κ is a regular cardinal, α < κ and β < F (κ), and
such that for every regular cardinal γ, (15.10) holds, i.e.,

|{(κ, α, β) ∈ dom(p) : κ ≤ γ}| < γ

(and p is stronger than q if and only if p ⊃ q).
As before, we define P≤λ and P>λ for every regular cardinal λ. Note that

P≤λ is a set. To define the Boolean-valued model MB and the forcing relation,
we use the fact that P is the Easton product of Pκ, κ a regular cardinal. For
each regular λ, we let Bλ = B(P≤λ). If λ < µ then the inclusion P≤λ ⊂ P≤µ

defines an obvious embedding of Bλ into Bµ; thus we arrange the definition
of the Bλ so that Bλ is a complete subalgebra of Bµ whenever λ < µ. Then
we let B =

⋃
λ Bλ. B is a proper class; otherwise it has all the features of

a complete Boolean algebra. In particular,
∑

X exists for every set X ⊂ B.
Also, P is dense in B.

To define MB, we cannot quite use the inductive definition (14.15)
since B is not a set. However, we simply let MB =

⋃
λ MBλ ; the for-

mal definition of MB does not present any problem. Similarly, to define
‖x ∈ y‖ and ‖x = y‖, we first notice that if x, y ∈ MBλ and λ ≤ µ, then
‖x ∈ y‖Bλ = ‖x ∈ y‖Bµ and so we let ‖x ∈ y‖ = ‖x ∈ y‖Bλ

where λ is such
that x, y ∈ MBλ . The same for ‖x = y‖.

As for the forcing relation in general, we cannot define ‖ϕ‖ unless ϕ is ∆0;
this is because

∑
X does not generally exist if X ⊂ B is a class. However,

we can still define p � ϕ using the formulas from Theorem 14.7.
Now, we call G ⊂ P generic over M if (i) p ⊃ q and p ∈ G implies q ∈ G,

(ii) p, q ∈ G implies p ∪ q ∈ G, and (iii) if D is a class in M and D is dense
in P , then D ∩ G �= ∅.

The question of existence of a generic filter can be settled in a more or less
the same way as in the case when P is a set. One possible way is to assume
that M is a countable transitive model. Then there are only countably many
classes in M and G exists. Another possible way is to use the canonical generic
ultrafilter. It is the class Ġ in MB defined by Ġ(p̌) = p for all p ∈ P (here
we need the assumption that M is a class in MB).
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Thus let G be an M -generic filter on P . For every regular λ, Gλ = G∩P≤λ

is generic on P≤λ. If ẋ ∈ MBλ and λ ≤ µ, then ẋGλ = ẋGµ , and so we define
ẋG = ẋGλ where λ is such that ẋ ∈ MBλ . Then we define M [G] =

⋃
λ M [Gλ].

Using the genericity of G and properties of the forcing relation, we get
the Forcing Theorem,

(15.15) M [G] � ϕ(x1, . . . , xn) if and only if (∃p ∈ G) p � ϕ(ẋ1, . . . , ẋn)

where ẋ1, . . . , ẋn ∈ MB are names for x1, . . . , xn.
The formula (15.15) is proved first for atomic formulas and then by in-

duction on ϕ; in the induction step involving the quantifiers, we use the fact
that G intersects every dense class of M .

We shall now show that M [G] is a model of ZFC. The proofs of all axioms
of ZFC except Power Set and Replacement go through as when we forced with
a set. (Separation also needs some extra work which we leave to the reader.) It
is no surprise that the Power Set and Replacement Axioms present problems.
It is easy to construct either a class of forcing conditions adding a proper
class of Cohen reals, or a class of conditions collapsing Ord onto ω (as in
the following section). The present proof of the Power Set and Replacement
Axioms uses the fact that for every regular λ (or at least for arbitrarily large
regular λ), P = P >λ × P≤λ where P>λ is λ-closed and P≤λ is a set and
satisfies the λ+-chain condition.

Power Set. Let λ be a regular cardinal. Lemma 15.19 remains true even
when applied to P >λ ×P≤λ. It does not matter that each Dα is a class. The
“sequence” of classes 〈Dα : α < λ〉 can be defined (e.g., as a class of pairs
{(p, α) : p ∈ Dα}) and since P>λ is λ-closed, the intersection

⋂
α<λ Dα is

dense, and there exists p ∈ G∩P>λ such that p ∈ Dα for all α < λ. The rest
of the proof of Lemma 15.19 remains unchanged, and thus we have proved
that every subset of λ in M [G] is in M [G]. Since P≤λ is a set, it follows that
the Power Set Axiom holds in M [G].

Replacement. To show that the Axioms of Replacement hold in M [G], we
combine the proof for ordinary generic extension with Lemma 15.19. It suf-
fices to prove that if in M [G], ϕ(α, v) defines a function K : Ord → M [G],
then {K(α) : α < λ} is a set in M [G] for every regular cardinal λ. Without
less of generality, let us assume that for every p ∈ P

(15.16) p � for every α there is a unique v such that ϕ(α, v).

Let λ be a regular cardinal, and let us consider again P = P >λ × P≤λ,
and G = (G ∩ P>λ)× Gλ. As in Lemma 15.19, let us define, for each α < λ,
a class Dα ⊂ P>λ:

p ∈ Dα if and only if there is a maximal antichain W ⊂ P≤λ

and a family {ȧ(α)
p,q : q ∈ W} such that for each q ∈ W ,

p ∪ q � ϕ(α, ȧ
(α)
p,q ).(15.17)
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As in Lemma 15.19, each Dα, α < λ, is open dense; since P>λ is λ-closed,⋂
α<λ Dα is dense and there exists p ∈ G ∩ P >λ such that p ∈ Dα for all

α < λ. We pick (in M) for each α < λ a maximal antichain Wα ⊂ P≤λ and
a family {ȧ(α)

p,q : q ∈ Wα} such that (15.17) holds for each q ∈ Wα. Now, if we
let S = {ȧ(α)

p,q : α < λ and q ∈ Wα}, then it follows that {K(α) : α < λ} ⊂
{ȧG : ȧ ∈ S}. However, the latter is a set in M [G]: There is a γ such that
S ⊂ MBγ , and we have {ȧG : ȧ ∈ S} = {ȧGγ : ȧ ∈ S} ∈ M [Gγ ].

Thus M [G] is a model of ZFC and it remains to show that M [G] has the
same cardinals and cofinalities as M , and that in M [G], 2κ = F (κ) for every
regular cardinal κ. However, this is proved exactly the same way as when we
forced with a set of Easton conditions. ��

We conclude the section with a remark on the Bernays-Gödel axiomatic
set theory. If a sentence involving only set variables is provable in BGC =
BG + Axiom E, then it is provable in BG + AC. This is a consequence of
the following: If M is a transitive model of BG + AC, then there is a generic
extension M [G] that has the same sets and has a choice function F defined
for all nonempty sets. The forcing conditions p ∈ P used in the proof are
choice functions whose domain is a set of nonempty sets (and p < q means
p ⊃ q). The proof that M [G] is a model of BG is rather easy since no new sets
are added (P is κ-closed for all κ). The generic filter on P defines a choice
function F =

⋃
G, and F is defined for all nonempty sets X ∈ M [G].

The Lévy Collapse

One of the most useful techniques provided by forcing is collapsing cardinals.
We start with the simplest example:

Example 15.20. Let λ be an uncountable cardinal. Let P be the set of
all finite sequences 〈p(0), . . . , p(n − 1)〉 of ordinals less than λ; p is stronger
than q if p ⊃ q.

Let G be a generic filter on P and let f =
⋃

G; f is a function with
domain ω and range λ. Thus P collapses λ: Its cardinality in V [G] is ℵ0.

As |P | = λ, P satisfies the λ+-chain condition and so all cardinals greater
than λ are preserved (as are all cofinalities greater than λ). ��

This construction generalizes to collapsing λ to κ:

Lemma 15.21. Let κ be a regular cardinal and let λ > κ be a cardinal. There
is a notion of forcing (P, <) that collapses λ onto κ, i.e., λ has cardinality κ
in the generic extension. Moreover,

(i) every cardinal α ≤ κ in V remains a cardinal in V [G]; and
(ii) if λ<κ = λ, then every cardinal α > λ remains a cardinal in the

extension.
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[The condition in (ii) is satisfied if GCH holds and cf λ ≥ κ.]

Proof. Let P be the set of all functions p such that:

(i) dom(p) ⊂ κ and | dom(p)| < κ,
(ii) ran(p) ⊂ λ,

(15.18)

and let p < q if and only if p ⊃ q.
Let G be a generic set of conditions and let f =

⋃
G. Clearly, f is a func-

tion, and it maps κ onto λ.
(P, <) is <κ-closed and therefore all cardinals ≤ κ are preserved. If λ<κ =

λ, then |P | = λ and it follows that all cardinals ≥ λ+ are preserved. ��

The following technique collapses all cardinals below an inaccessible car-
dinal λ while preserving λ, thus making λ a successor cardinal in the generic
extension. The forcing notion P defined in (15.19) is called the Lévy collapse;
we denote B(P ) = Col(κ, <λ).

Theorem 15.22 (Lévy). Let κ be a regular cardinal and let λ > κ be an
inaccessible cardinal. There is a notion of forcing (P, <) such that :

(i) every α such that κ ≤ α < λ has cardinality κ in V [G]; and
(ii) every cardinal ≤ κ and every cardinal ≥ λ remains a cardinal in V [G].

Hence V [G] � λ = κ+.

Proof. For each α < λ, let Pα be the set of all functions pα such that
dom(pα) ⊂ κ, | dom(pα)| < κ, and ran(pα) ⊂ α; let pα < qα if and only
if pα ⊃ qα.

Let (P, <) be the κ-product of the Pα, α < λ. Equivalently, the conditions
p ∈ P are functions on subsets of λ × κ such that

(i) | dom(p)| < κ;
(ii) p(α, ξ) < α for each (α, ξ) ∈ dom(p).

(15.19)

Let G be a generic set of conditions; for each α < λ, let Gα be the projec-
tion of G on Pα. Then Gα is a generic filter on Pα; and as in Lemma 15.21,
the set fα =

⋃
Gα is a function that maps κ onto α. Thus V [G] � |α| ≤ |κ|,

for every α < λ.
The notion of forcing (P, <) is <κ-closed and hence it preserves all car-

dinals and cofinalities ≤ κ. In particular, κ is a cardinal in V [G].
By Theorem 15.17(iii), (P, <) satisfies the λ-chain condition. Hence λ re-

mains a cardinal in V [G], and so do all cardinals greater than λ. It follows
that in V [G], λ is the cardinal successor of κ. ��
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Suslin Trees

One of the earliest applications of forcing was the solution of Suslin’s Problem:
The existence of a Suslin line is independent of ZFC. In this section we show
how to construct a Suslin tree by forcing and in L; in Chapter 16 we will
construct a generic model in which there are no Suslin trees.

Theorem 15.23. There is a generic extension in which there exists a Suslin
tree.

Proof. Let P be the collection of all countable normal trees, i.e., all T such
that for some α < ω1,

(i) each t ∈ T is a function t : β → ω for some β < α;
(ii) if t ∈ T and s is an initial segment of t then s ∈ T ;
(iii) if β + 1 < α and t : β → ω is in T , then t�n ∈ T for all n ∈ ω;
(iv) if β < α and t : β → ω is in T , then for every γ such that

β ≤ γ < α there exists an s : γ → ω in T such that t ⊂ s;
(v) T ∩ ωβ is at most countable for all β < α.

(15.20)

(See (9.9) and Exercise 9.6.) T1 is stronger than T2 if T1 is an extension of T2,
i.e.,

(15.21) T1 < T2 if and only if ∃α < height(T1) T2 = {t�α : t ∈ T1}.

Let G be a generic set of conditions and let T =
⋃
{T : T ∈ G}. We shall

show that in V [G], T is a normal Suslin tree.
First we note that if T1 and T2 are two conditions, then either one is an

extension of the other, or T1 and T2 are incompatible. Thus G consists of
pairwise comparable trees and one can easily verify that T is a normal tree
(of height ≤ ω1).

If T0, T1, . . . , Tn, . . . is a sequence of conditions such that for each n,
Tn+1 is an extension of Tn, then

⋃∞
n=0 Tn is a normal countable tree (and

extends each Tn). Hence P is ℵ0-closed, and consequently, the cardinal ℵ1 is
preserved (and V [G] has the same countable sequences in V as V ).

To show that the height of T is ω1, we verify that for every α < ω1,
G contains a condition T of height at least α. We show that the set {T ∈ P :
height(T ) ≥ α} is dense in P , for any α < ω1. In other words, we show that
for each T0 ∈ P and each α < ω1, there is an extension T ∈ P of T0, of height
at least α. It suffices to show that each T0 ∈ P has an extension T ∈ P that
has one more level; for then we can proceed by induction and take unions at
limit steps.

If height(T0) is a successor ordinal, then an extension of T0 is easily ob-
tained. If height(T0) is a limit ordinal, then we first observe that for each
t ∈ T0 there exists a branch b of length α in T0 such that t ∈ b: Using an in-
creasing sequence α0 < α1 < . . . < αn . . . with limit α, we use the normality
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condition (15.20)(iv) to obtain such a branch. Now we construct an exten-
sion T of T0, of height α + 1, as follows: For each t ∈ T0, we pick a branch bt

of length α in T0 such that t ∈ bt, and let T = T0 ∪ {s : s =
⋃

bt for some
t ∈ T } (we extend all the branches bt, t ∈ T0, of T0). Since T0 is countable
the added level is countable, and one can verify that T ∈ P .

It remains to show that T has no uncountable antichain. If T is a tree
and A is an antichain in T , then A is called a maximal antichain if there is
no antichain A′ in T such that A′ ⊃ A: Each t ∈ T is comparable with some
a ∈ A. If A is a maximal antichain in T and if T ′ is an extension of T , then
A is not necessarily maximal in T . Let us call a set S ⊂ T bounded in T if
there is some α < height(T ) such that all elements of S are at levels ≤ α. (If
the height of T is a successor ordinal, then every S ⊂ T is bounded.)

Lemma 15.24. If A is a maximal antichain in a normal tree T and if A is
bounded in T (in particular, if the height of T is a successor ordinal), then
A is maximal in every extension of T .

Proof. Let T ′ be an extension of T . Let α < height(T ) be such that each
a ∈ A is at level ≤ α. If t′ ∈ T ′ − T , then there exists t ∈ T at level α such
that t ⊂ t′; in turn, there exists a ∈ A such that a ⊂ t. Hence t′ is comparable
with some a ∈ A. ��
Lemma 15.25. Let α be a countable limit ordinal, let T ∈ P be a normal
α-tree and let A be a maximal antichain in T . Then there exists an extension
T ′ ∈ P of T of height α + 1 such that A is a maximal antichain in T ′ (and
hence A is a bounded maximal antichain in T ′).

Proof. For each t ∈ T there exists a ∈ A such that either t ⊂ a or a ⊂ t. In
either case, there exists a branch b = bt of length α in T such that t ∈ b and
a ∈ b. Let T ′ be the extension of T obtained by extending the branches bt,
for all t ∈ T : T ′ = T ∪ {

⋃
bt : t ∈ T }. The tree T ′ is a normal (α + 1)-tree

and extends T ; moreover, since every s ∈ T ′ is comparable with some a ∈ A,
A is maximal in T ′. ��

Now we finish the proof of Theorem 15.23 by showing that in V [G], every
antichain in T is countable. Since every antichain can be extended to a max-
imal antichain, it suffices to show that every maximal antichain is countable.
Thus let A be a maximal antichain in T . There is a name Ȧ for A and
a condition T ∈ G such that

T � Ȧ is a maximal antichain in T .

We will show that the following set of conditions is dense below T :

D = {T ′ ≤ T : there is a bounded maximal antichain A′ in T ′

such that T ′ � A′ ⊂ Ȧ}.
Then some T ′ ∈ D is in G and there is a bounded maximal antichain A′ in T ′

such that A′ ⊂ A. However, T is an extension of T ′, and by Lemma 15.24,
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A′ is maximal in T . Consequently, A = A′, and since A′ is countable, we are
done.

To show that D is dense below T let T0 ≤ T be arbitrary. We shall
construct a tree T ′ ≤ T0 such that T ′ ∈ D. Since T0 � (Ȧ is a maximal
antichain in T and T is an extension of T0), there exist for each s ∈ T0 an
extension T ′

0 of T0 and some ts ∈ T ′
0 such that

(15.22) s and ts are comparable and T ′
0 � ts ∈ Ȧ.

Since T0 is countable, we repeat this countably many times and obtain an
extension T ′

0 < T0 such that (15.22) holds for every s ∈ T0. Let T1 = T ′
0.

Then we proceed by induction and construct a sequence of trees T0 ≥ T1 ≥
. . . ≥ Tn ≥ . . . such that for each n, Tn+1 extends Tn and

(15.23) (∀s ∈ Tn)(∃ts ∈ Tn+1) s and ts are comparable and Tn+1 � ts ∈ Ȧ.

We let T∞ =
⋃∞

n=0 Tn, and A′ = {ts : s ∈ T∞}. By (15.23), A′ is a maximal
antichain in T∞, and T∞ � A′ ⊂ Ȧ. Now we apply Lemma 15.25 and get an
extension T ′ of T such that A′ is a bounded maximal antichain in T ′. Clearly,
T ′ � A′ ⊂ Ȧ, and hence T ′ ∈ D. ��

In the Exercises (15.21 and 15.22) we present another forcing notion (with
finite conditions) that produces a Suslin tree. Later in the book we show that
the forcing that adds a Cohen real also adds a Suslin tree.

The following theorem shows that a Suslin tree exists in L.

Theorem 15.26 (Jensen). If V = L then there exists a Suslin tree.

Proof. We shall prove that the Diamond Principle ♦ implies that a Suslin
tree exists. First we make the following observation. If T is a normal ω1-tree,
let Tα = {x ∈ T : o(x) < α}.

Lemma 15.27. If A is a maximal antichain in T , then the set

C = {α : A ∩ Tα is a maximal antichain in Tα}

is closed unbounded.

Proof. It is easy to see that C is closed. To show that C is unbounded, let
α0 < ω1 be arbitrary. Since Tα0 is countable, there exists a countable ordinal
α1 > α0 such that every t ∈ Tα0 is compatible with some a ∈ A ∩ Tα1 . Then
there is α2 > α1 such that each t ∈ Tα1 is comparable with some a ∈ A∩Tα2 ,
etc. If α0 < α1 < α2 < . . . < αn < . . . is constructed in this way and if
α = limn αn, then A ∩ Tα is a maximal antichain in Tα. ��

We now use ♦ to construct a normal Suslin tree (T, <T ). We proceed by
induction on levels. To facilitate the use of ♦, we let points of T be countable
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ordinals, T = ω1, and in fact each Tα (the first α levels of T ) is an initial
segment of ω1.

We construct Tα, α < ω1, such that each Tα is a normal α-tree and such
that Tβ extends Tα whenever β > α. T1 consists of one point. If α is a limit
ordinal, then (Tα, <T ) is the union of the trees (Tβ , <T ), β < α. If α is
a successor ordinal, then (Tα+1, <T ) is an extension of (Tα, <T ) obtained by
adjoining infinitely immediate successors to each x at the top level of Tα.

It remains to describe the construction of Tα+1 if α is a limit ordinal. Let
〈Sα : α < ω1〉 be a ♦-sequence. If Sα is a maximal antichain in (Tα, <T ),
then we use Lemma 15.25 and find an extension (Tα+1, <T ) of Tα such that
Sα is maximal in Tα+1. Otherwise, we let Tα+1 be any extension of Tα that
is a normal (α + 1)-tree. (In either case, we let the set Tα+1 be an initial
segment of countable ordinals.)

We shall now show that the tree T =
⋃

α<ω1
Tα is a normal Suslin tree.

It suffices to verify that T has no uncountable antichain. If A ⊂ T (= ω1)
is a maximal antichain in T , then by Lemma 15.27, A ∩ Tα is a maximal
antichain in Tα, for a closed unbounded set of α’s. It follows that easily from
the construction that for a closed unbounded set of α’s, Tα = α. Thus using
the Diamond Principle, we find a limit ordinal α such that A ∩ α = Sα and
A ∩ α is a maximal antichain in Tα. However, we constructed Tα+1 in such
a way that A ∩ α is maximal in Tα+1, and therefore in T . It follows that
A = A ∩ α and so A is countable. ��

Suslin trees are a fruitful source of counterexamples in set-theoretic topol-
ogy as well as in the theory of Boolean algebras. As an example, let (T, <)
be a Suslin tree, and consider the partial ordering (PT , <) = (T, >). Any
two elements of T are incomparable in T if and only if they are incompatible
in PT . Thus PT satisfies the countable chain condition.

Lemma 15.28. If T is a normal Suslin tree, then PT is ℵ0-distributive.

Proof. Let Dn, n = 0, 1, 2 . . . , be open dense subsets of PT . We shall prove
that

⋂∞
n=0 Dn is dense in PT . First we claim that if D ⊂ PT is open dense,

then there is an α < ω1 such that D contains all levels of T above α. To prove
this, let A be a maximal antichain in D. A is an antichain in T and hence
countable. Thus let α < ω1 be such that all a ∈ A are below level α. Now
if x ∈ T is at level ≥ α, x is comparable with some a ∈ A (by maximality
of A), and hence a ≤T x. Since D is open, we have x ∈ D.

Now if Dn, n = 0, 1, . . . , are open dense, we pick countable ordinals αn

such that Dn contains all levels of T above αn; and since T is normal, this
implies that

⋂∞
n=0 Dn is dense in PT . ��

Corollary 15.29. If T is a normal Suslin tree, then B = B(PT ) is an ℵ0-
distributive, c.c.c., atomless, complete Boolean algebra. ��
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Random Reals

Consider the notion of forcing where forcing conditions are Borel sets of reals
of positive Lebesgue measure; a condition p is stronger than q if p ⊂ q. The
corresponding complete Boolean algebra is B/Iµ where B is the σ-algebra of
all Borel sets of reals and Iµ is the σ-ideal of all null sets. As Iµ is σ-saturated,
B/Iµ satisfies the countable chain condition, and hence the forcing preserves
cardinals.

The generic extension V [G] is determined by a single real, called a random
real. Let a ∈ RV [G] be the unique member of each rational interval [r1, r2]V [G]

such that [r1, r2]V ∈ G. Conversely, G can be defined from a, and so V [G] =
V [a]. (see Exercise 13.34 for the meaning of V [a].)

The following lemma illustrates one of the differences between random and
generic reals. If f and g are functions from ω to ω we say that g dominates f
if f(n) < g(n) for all n.

Lemma 15.30. (i) In the random real extension V [G], every f : ω → ω is
dominated by some g ∈ V .

(ii) In the Cohen real extension V [G], there exists a function f : ω → ω
that is not dominated by any g ∈ V .

Proof. (i) Forcing conditions are Borel sets of positive measure, and we freely
confuse them with their equivalence classes in B/Iµ.

Let p � ḟ : ω → ω; we shall find a q < p and some g : ω → ω such that
q forces that g dominates ḟ . For each n, let g(n) be sufficiently large, so that

µ(p − ‖ḟ(n) < g(n)‖) <
1
2n

· 1
4
· µ(p).

The Borel set q = p ∩
⋂∞

n=0 ‖ḟ(n) < g(n)‖ has measure at least µ(p)/2, and
forces ∀n ḟ(n) < g(n).

(ii) We use the following variant of Cohen forcing: Forcing conditions are
finite sequences 〈p(0), . . . , p(n − 1)〉 of natural numbers, and p < q if and
only if p ⊃ q. (This forcing produces the same generic extension—and has
the same B(P )—as the forcing from Example 14.2).

Let ḟ be the name for the function f =
⋃

G. If p is any condition and
g : ω → ω is in V , then there exist a stronger q ⊃ p and some n ∈ dom(q)
such that q(n) > g(n). It follows that q forces g(n) > ḟ(n) (because q �
ḟ(n) = q(n)). ��

To add a large number of random reals, we use product measure:

Example 15.31. Let κ be an infinite cardinal and let I = κ × ω. Let Ω =
{0, 1}I. Let T be the set of all finite 0–1 functions with dom(t) ⊂ I. Let S be
the σ-algebra generated by the sets St, t ∈ T , where St = {f ∈ Ω : t ⊂ f}.
The product measure on S is the unique σ-additive measure such that each St

has measure 1/2|t|. Let B = S/I where I is the ideal of measure 0 sets.



244 Part II. Advanced Set Theory

If G is a generic ultrafilter on B then f =
⋃
{t : St ∈ G} is a 0–1 function

on I, and for each α < κ, we define fα(n) = f(α, n), for all n < ω. The fα,
α < κ, are κ-distinct random reals, and the continuum in V [G] has size at
least κ. But since |B|ℵ0 = κℵ0 , we have (2ℵ0)V [G] = κℵ0 . ��

Forcing with Perfect Trees

This section describes forcing with perfect trees (due to Gerald Sacks) that
produces a real of minimal degree of constructibility. If forced over L, the
generic filter yields a real a such that a /∈ L and such that for every real
x ∈ L[a], either x ∈ L or a ∈ L[x].

Let Seq({0, 1}) denote the set of all finite 0–1 sequences. A tree is a set
T ⊂ Seq({0, 1}) that satisfies

(15.24) if t ∈ T and s = t�n for some n, then s ∈ T .

A nonempty tree T is perfect if for every t ∈ T there exists an s ⊃ t such that
both s�0 and s�1 are in T . (Compare with (4.4) and Lemma 4.11.) The set
of all paths in a perfect tree is a perfect set in the Cantor space {0, 1}ω.

Definition 15.32 (Forcing with Perfect Trees). Let P be the set of all
perfect trees p ⊂ Seq({0, 1}); p is stronger than q if and only if p ⊂ q.

If G is a generic set of perfect trees, let

(15.25) f =
⋃
{s : (∀p ∈ G) s ∈ p}.

The function f : ω → {0, 1} is called a Sacks real. Note that V [G] = V [f ].
Since |P | = 2ℵ0 , if we assume CH in the ground model, P satisfies the ℵ2-
chain condition and all cardinals ≥ ℵ2 are preserved. We prove below that
ℵ1 is preserved as well.

Definition 15.33. A generic filter G is minimal over the ground model M
if for every set of ordinals X in M [G], either X ∈ M or G ∈ M [X ].

Theorem 15.34 (Sacks). When forcing with perfect trees, the generic filter
is minimal over the ground model.

The proof uses the technique of fusion. Let p be a perfect tree. A node
s ∈ p is a splitting node if both s�0 ∈ p and s�1 ∈ p; a splitting node s is
an nth splitting node if there are exactly n splitting nodes t such that t ⊂ s.
(A perfect tree has 2n−1 nth splitting nodes.) For each n ≥ 1, let

(15.26) p ≤n q if and only if p ≤ q and every nth splitting node of q is an
nth splitting node of p.

A fusion sequence is a sequence of conditions {pn}∞n=0 such that pn ≤n pn−1

for all n ≥ 1. The following is the key property of fusion sequences:
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Lemma 15.35. If {pn}∞n=0 is a fusion sequence then
⋂∞

n=0 pn is a perfect
tree. ��

If s is a node in p, let p�s denote the tree {t ∈ p : t ⊂ s or t ⊃ s}. If A is
a set of incompatible nodes of p and for each s ∈ A, qs is a perfect tree such
that qs ⊂ p�s, then the amalgamation of {qs : s ∈ A} into p is the perfect
tree

(15.27) {t ∈ p : if t ⊃ s for some s ∈ A then t ∈ qs}.

(Replace in p each p�s by qs.)

Proof of Theorem 15.34. Let Ẋ be a name for a set of ordinals and let p ∈ P
be a condition that forces Ẋ /∈ V ; no stronger condition forces Ẋ = A, for
any A ∈ V . We shall find a condition q ≤ p and a set of ordinals {γs : s is
a splitting node of q} such that qs�0 and qs�1 decide γs ∈ Ẋ, but in opposite
ways. Then the generic branch (15.25) can be recovered from ẊG, and so
V [ẊG] = V [G].

To construct q and {γs}s we build a fusion sequence {pn}∞n=0 as follows:
Let p0 = p. For each n ≥ 1, let Sn be the set of all nth splitting nodes of pn−1.
For each s ∈ Sn, let γs be an ordinal such that pn−1�s does not decide γs ∈ Ẋ,
and let qs�0 ≤ pn−1�s�0 and qs�1 ≤ pn−1�s�1 be conditions that decide
γs ∈ Ẋ in opposite ways. Then let pn be the amalgamation of {qs�i : s ∈ Sn

and i = 0, 1} into pn−1. Clearly, pn ≤n pn−1, and so {pn}∞n=0 is a fusion
sequence. Then we set q =

⋂∞
n=0 pn. ��

A similar argument shows that forcing with perfect trees preserves ℵ1:

Lemma 15.36. If X is a countable set of ordinals in V [G] then there exists
a set A ∈ V , countable in V , such that X ⊂ A.

Proof. Let Ḟ be a name and let p ∈ P be such that p forces “Ḟ is a function
from ω into the ordinals.” We build a fusion sequence {pn}∞n=0 with p0 = p
as follows: For each n ≥ 1, let Sn be the set of all nth splitting nodes of pn−1.
For each s ∈ Sn, let qs�0, qs�1, as�0, as�1 be such that (for i = 0, 1)
qs�i ≤ pn−1�s�i and qs�i � Ḟ (n − 1) = as�i. Let pn be the amalgamation
of {qs�i : s ∈ Sn and i = 0, 1}. Then let q =

⋂∞
n=0 pn, and

A =
∞⋃

n=0
{as�i : s ∈ Sn and i = 0, 1}.

It follows that q � ran(Ḟ ) ⊂ A. ��

More on Generic Extensions

Properties of a generic extensions are determined by properties of the forcing
notion that constructs it. For instance, if P satisfies the countable chain con-
dition then V [G] preserves cardinals. Or, if P is ω-distributive then V [G] has
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no new countable sets of ordinals. But since the model V [G] is determined
by the complete Boolean algebra B(P ), its properties depend on properties
of the algebra. Below we illustrate the correspondence between properties of
a complete Boolean algebra B and truth in the model V B.

The first example shows the importance of distributivity.
Let κ and λ be cardinals. A complete Boolean algebra B is (κ, λ)-dis-

tributive if

(15.28)
∏

α<κ

∑
β<λ

uα,β =
∑

f :κ→λ

∏
α<κ

uα,f(α).

Note that (15.28) is a special case of (7.28); B is κ-distributive if and only
if it is (κ, λ)-distributive for all λ. As in Lemma 7.16 we can reformulate
(κ, λ)-distributivity as follows:

Lemma 15.37. B is (κ, λ)-distributive if and only if every collection of
κ partitions of B of size at most λ has a common refinement. ��

Theorem 15.6 and Exercise 15.5 yield the following equivalence:

Theorem 15.38. B is (κ, λ)-distributive if and only if every f : κ → λ in
the generic extension by B is in the ground model.

Proof. If ‖ḟ is a function from κ to λ‖ = 1, then {‖ḟ(α) = β‖ : β < λ} is
a partition of B of size ≤ λ. ��

Exercises 15.31 and 15.32 give short proofs of Boolean algebraic results
using generic extensions.

A related concept is weak distributivity: B is called weakly (κ, λ)-distribu-
tive, if

(15.29)
∏

α<κ

∑
β<λ

uα,β =
∑

g:κ→λ

∏
α<κ

∑
β<g(α)

uα,β .

A modification of Theorem 15.38 gives this:

Lemma 15.39. B is weakly (κ, λ)-distributive if and only if every f : κ → λ
in V [G] is dominated by some g : κ → λ that is in V (i.e., f(α) < g(α) for
all α < κ). ��

Consequently, by Lemma 15.30(i), the measure algebra B/Iµ is weakly
(ω, ω)-distributive.

Let B be a complete Boolean algebra and let D be a complete subalgebra
of B. If G is generic on B, then it is easy to see that G ∩ D is generic on D,
and so V [G ∩ D] is a model of ZFC, and V ⊂ V [G ∩ D] ⊂ V [G]. We shall
prove that every model of ZFC between V and V [G] is obtained this way,
and that for every subset A of V in V [G] there is a complete subalgebra D
of B such that V [G ∩ D] = V [A].
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We recall (cf. Chapter 7) that a complete subalgebra B of a complete
Boolean algebra D is (completely) generated by a set X ⊂ D if B is the
smallest complete subalgebra of D such that X ⊂ B. Let κ be a cardinal. We
say that a complete Boolean algebra B is κ-generated if there exists some
X ⊂ B of size at most κ such that the complete subalgebra of B generated
by X is equal to B.

Lemma 15.40. Let X be a subset of a complete Boolean algebra B such that
B is completely generated by X. Then for every generic G on B, V [G] =
V [X ∩ G].

Proof. We want to show that V [G] is the least model such that the set A =
X ∩ G is in V [G]. It suffices to show that G can be defined in terms of A.

Since B is generated by X , every element of B can be obtained from
the elements of X by successive (transfinite) application of the operation −
and

∑
. Thus let Xα be subsets of B defined recursively as follows:

X0 = X, Xα = {−a : a ∈ Xα}, and

Xα = {a : a =
∑

Z where Z ⊂
⋃

β<α(Xβ ∪ Xβ)}.

Then B =
⋃

α<θ Xα for some θ ≤ |B|+. If we denote Gα = G ∩ Xα, Gα =
G ∩ Xα, we have

(15.30) G0 = A, Gα = {−a : a ∈ Xα − Gα}, and

Gα = {a ∈ Xα : a =
∑

Z where Z contains at least one b
in some Gβ or Gβ , β < α},

and G =
⋃

α<θ Gα. Thus given A, we define Gα and Gα inductively us-
ing (15.30) and let G =

⋃
α<θ Gα. ��

Corollary 15.41. If B is κ-generated, then V [G] = V [A] for some A ⊂ κ.
��

Corollary 15.42. If G is generic on B and A ∈ V [G] is a subset of κ, then
there exists a κ-generated complete subalgebra D of B such that V [D ∩ G] =
V [A] for some A ⊂ κ.

Proof. Let Ȧ be a name for A. We let X = {uα : α < κ}, where uα =
‖α̌ ∈ A‖. Now let D be the complete subalgebra completely generated by X ;
by Lemma 15.40 we have V [X ∩ G] = V [D ∩ G]. It remains to show that
V [X ∩ G] = V [A].

On the one hand, we have A = {α : uα ∈ X ∩ G}. On the other hand,
X ∩ G = {uα : α ∈ A}. ��

Lemma 15.43. Let G be generic on B. If M is a model of ZFC such that
V ⊂ M ⊂ V [G], then there exists a complete subalgebra D ⊂ B such that
M = V [D ∩ G].



248 Part II. Advanced Set Theory

Proof. We show that M = V [A], where A is a set of ordinals. Then the
lemma follows from Corollary 15.42. First we note that since M satisfies the
Axiom of Choice, there exists for every X ∈ M a set of ordinals AX ∈ M
such that X ∈ V [AX ]. We let Z = P (B)∩M , and let A = AZ ; we claim that
M = V [A].

If X ∈ M , consider the set of ordinals AX ; by Corollary 15.42 there exists
a subalgebra DX ⊂ B such that V [AX ] = V [DX ∩ G]. Hence DX ∩ G ∈ M ,
and we have DX ∩ G ∈ Z. Since Z ∈ V [A], it follows that DX ∩ G ∈ V [A]
and hence X ∈ V [A]. Thus M = V [A]. ��

Let us now address the question under what conditions one generic ex-
tension embeds (as a submodel) into another generic extension. Of course, if
B(P ) = B(Q), then V P = V Q and if B(P ) is a complete subalgebra of B(Q)
then V P ⊂ V Q. But if B1 is a complete subalgebra of B2, we can have
V [G∩B1] = V [G] even if B1 �= B2. For every a ∈ B+

2 (not necessarily in B1),
let B1�a = {x·a : x ∈ B1}. Now assume that the set {a ∈ B+

2 : B1�a = B2�a}
is dense in B2. Then it is easy to see that V [G ∩ B1] = V [G], for every
generic G on B2. (One can show that this condition is also necessarily for B1

to give the same generic extension as B2.)
By V P ⊂ V Q we mean the following: Whenever G is a generic filter on Q

then there is some H ∈ V [G] that is a generic filter on P . In practice there
are several ways how to verify V P ⊂ V Q. The following two lemmas are
sometimes useful:

Lemma 15.44. Let i : P → Q be such that

(i) if p1 ≤ p2 then i(p1) ≤ i(p2),
(ii) if p1 and p2 are incompatible then i(p1) and i(p2) are incompatible,
(iii) for every q ∈ Q there is a p ∈ P such that for all p′ ≤ p, i(p′) is

comparable with q.

Then V P ⊂ V Q.

Proof. If G is generic on Q then i−1(G) is generic on P . ��

Lemma 15.45. Let h : Q → P be such that

(i) if q1 ≤ q2 then h(q1) ≤ h(q2).
(ii) for every q ∈ Q and every p ≤ h(q) there exists a q′ compatible with q

such that h(q′) ≤ p.

Then V P ⊂ V Q.

Proof. If D ⊂ P is open dense then h−1(D) is predense in Q. It follows that
if G is generic on Q then {p ∈ P : p ≥ h(q) for some q ∈ G} is generic
on P . ��

We conclude this section with the following result that shows that for
every set A of ordinals, the model L[A] is a generic extension of HOD :
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Theorem 15.46 (Vopěnka). Let V = L[A] where A is a set of ordinals.
Then V is a generic extension of the model HOD. There is a Boolean algebra
B ∈ HOD complete in HOD , and there is an ultrafilter G ⊂ B, generic
over HOD , such that V = HOD[G].

Proof. Let κ be such that A ⊂ κ. We let C = OD ∩P (P (κ)) be the family of
all ordinal definable sets of subsets of κ. Let us consider the partial ordering
(C,⊂).

First we claim that there is a hereditarily ordinal definable partially or-
dered set (B,≤) and an ordinal definable isomorphism π between (C,⊂) and
(B,≤): There is a definable one-to-one mapping F of OD into the ordinals.
The set C is an ordinal definable set of ordinal definable sets and so F �C is
an OD one-to-one mapping of C onto F (C). We let B = F (C), and define
the partial ordering of B so that (B,≤) is isomorphic to (C,⊂). Since ⊂∩C2

is an OD relation, we have (B,≤) ∈ HOD .
Now (C,⊂) is clearly a Boolean algebra. Moreover, if X ⊂ C is ordinal

definable, then
⋃

X is ordinal definable and so
⋃

X =
∑C X. Hence the

algebra C is OD-complete; and using the OD isomorphism π, we can conclude
that (B,≤) is a complete Boolean algebra in HOD .

Now we let H = {u ∈ C : A ∈ u}. Clearly, H is an ultrafilter on C,
and if X ⊂ H is OD , then

⋂
X ∈ H . Hence G = π(H) is an HOD-generic

ultrafilter on B.
It remains to show that V = HOD [G]. Let f : κ → B be the function

defined by f(α) = π({Z ⊂ κ : α ∈ Z}). Clearly, f is OD , and so f ∈ HOD .
Now we note that for every α < κ, α ∈ A if and only if f(α) ∈ G and
therefore A ∈ HOD [G]. It follows that V = L[A] = HOD [G]. ��

Symmetric Submodels of Generic Models

In Chapter 14 we constructed a model of set theory in which the reals cannot
be well-ordered, thus showing that the Axiom of Choice is independent of the
axioms of ZF. What follows is a more systematic study of models in which the
Axiom of Choice fails. We shall present a general method of construction of
submodels of generic extensions. The construction uses symmetry arguments
similar to those used in Theorem 14.36, and the models obtained are generally
models of ZF and do not satisfy the Axiom of Choice. This method has been
used to obtain a number of results about the relative strength of various
weaker versions and consequences of the Axiom of Choice.

The main idea of the construction of symmetric models is the use of auto-
morphisms of the Boolean-valued model V B and the Symmetry Lemma 14.37.
In fact, the idea of using automorphisms of the universe to show that the Ax-
iom of Choice is unprovable dates back into the preforcing era of set theory.
We shall describe this older construction first.
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In order to describe this method, we introduce the theory ZFA, set theory
with atoms. In addition to sets, ZFA has additional objects called atoms.
These atoms do not have any elements themselves but can be collected into
sets. Obviously, we have to modify the Axiom of Extensionality, for any two
atoms have the same elements—none.

The language of ZFA has, in addition to the predicate ∈, a constant A.
The elements of A are called atoms ; all other objects are sets. The axioms
of ZFA are the axioms 1.1–1.8 of ZF plus (15.31) and (15.32):

(15.31) If a ∈ A, then there is no x such that x ∈ a.

The Axiom of Extensionality takes this form:

(15.32) If two sets X and Y have the same elements, then X = Y .

Other axioms of ZF remain unchanged. In particular, the Axiom of Regularity
states that every nonempty set has an ∈-minimal element. This minimal
element may be an atom.

The effect of atoms is that the universe is no longer obtained by iterated
power set operation from the empty set. In ZFA, the universe is built up from
atoms.

Ordinal numbers are defined as usual except that one has to add that an
ordinal does not contain any atom. For any set S, let us define the following
cumulative hierarchy:

(15.33) P 0(S) = S,

P α(S) =
⋃

β<α

P β(S) if α is limit,

Pα+1(S) = P α(S) ∪ P (P α(S)),

P∞(S) =
⋃

α∈Ord

Pα(S).

It follows that V = P∞(A), and that the kernel, the class P∞(∅) of
“hereditary” sets, is a model of ZF. If A is empty, then we have just ZF.

Lemma 15.47. The theory ZFA+AC+“A is infinite” is consistent relative
to ZFC.

Proof. Construct a model of ZFA. Let C be an infinite set of sets of the same
rank (so that X /∈ TC(Y ) for any X, Y ∈ C). Consider one X0 ∈ C as the
empty set, and all other X ∈ C as atoms. Build up the model from C by
iterating the operation P ∗(Z) = P (Z) − {∅}. ��

While in ZF, the universe does not admit nontrivial automorphisms, the
important feature of ZFA is that every permutation of atoms induces an
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automorphism of V : If π is a one-to-one mapping of A onto A (a permutation
of A), then we define for every x (by ∈-induction)

π(x) = {π(t) : t ∈ x}.

Clearly, π is an ∈-automorphism, and we have π(x) = x for every x in the
kernel P∞(∅).

We use these automorphisms to construct transitive models of ZFA. First
we point out that the analog of Theorem 13.9 is true in ZFA: If M is a tran-
sitive, almost universal class closed under Gödel operations, and if A ∈ M ,
then M is a model of ZFA.

Let G be a group of permutations of a set S. A set F of subgroups of G
is a filter on G, if for all subgroups H , K of G:

(i) G ∈ F ;
(ii) if H ∈ F and H ⊂ K, then K ∈ F ;
(iii) if H ∈ F and K ∈ F , then H ∩ K ∈ F ;
(iv) if π ∈ G and H ∈ F , then πHπ−1 ∈ F .

(15.34)

For a given group of permutations G of the set A of atoms and a given filter F
on G, we say that x is symmetric if the group

sym(x) = {π ∈ G : π(x) = x}

belongs to F .
Let us further assume that sym(a) ∈ F for all a ∈ A, that is, that all

atoms are symmetric and let U be the class of all hereditarily symmetric
objects:

(15.35) U = {x : every z ∈ TC({x}) is symmetric}.

The class U is called a permutation model. It is a transitive class and includes
the kernel (because sym(x) = G for all x ∈ P∞(∅)), moreover, all atoms are
in U , and A ∈ U .

Lemma 15.48. U is a transitive model of ZFA.

Proof. We show that U is closed under Gödel operations and almost univer-
sal. It is easy to see that Gi(πx, πy) = π(Gi(x, y)) for all i = 1, . . ., 10, and
therefore

sym(Gi(x, y)) ⊃ sym(x) ∩ sym(y) (i = 1, . . . , 10).

It follows that if x and y are hereditarily symmetric, then so is Gi(x, y).
To show that U is almost universal, it suffices to verify that for each α,

U ∩P α(A) is symmetric. For all x and all π ∈ G we have rank(πx) = rankx.
Also, sym(πx) = π · sym(x) · π−1, and hence, by property (iv) in (15.34), if
x is symmetric and π ∈ G, then π(x) is symmetric. Thus for all π ∈ G we
have π(U ∩ P α(A)) = U ∩ Pα(A) and therefore, sym(U ∩ P α(A)) = G. ��
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In the following examples we construct permutation models as follows:
For every finite E ⊂ A, we let

(15.36) fix(E) = {π ∈ G : πa = a for all a ∈ E}

and let F be the filter on G generated by {fix(E) : E ⊂ A is finite}. F is
a filter since π · fix(E) · π−1 = fix(π(E)). Thus x is symmetric if and only
if there exists a finite set of atoms E, a support for x, such that π(x) = x
whenever π ∈ G and π(a) = a for all a ∈ E.

We shall now give two examples of permutation models.

Example 15.49. Let A be infinite, and let G be the group of all permuta-
tions of A. Let F be generated by {fix(E) : E ⊂ A is finite}, and let U be
the permutation model. In the model U the set A, although infinite, has no
countable subset. Hence the Axiom of Choice fails in U .

Proof. Assume that there exists an f ∈ U that is a one-to-one mapping of ω
into A. Let E be a finite subset of A such that πf = f for every π ∈ fix(E).
Since E is finite, there exists an a ∈ A − E such that a = f(n) for some n;
also, let b ∈ A−E be arbitrary such that b �= a. Now, let π be a permutation
of A such that πa = b but πx = x for all x ∈ E. Then πf = f , and since n is
in the kernel, we have πn = n. It follows that π(f(n)) = (πf)(πn) = f(n);
however, f(n) = a while π(f(n)) = π(a) �= a. A contradiction. ��

Example 15.50. Let A be a disjoint countable union of pairs: A =
⋃∞

n=0 Pn,
Pn = {an, bn}, and let G be the group of all permutations of A such that
π({an, bn}) = {an, bn}, for all n. Let F be generated by {fix(E) : E ⊂ A is
finite}, and let U be the permutation model. In the model U , {Pn : n ∈ ω}
is a countable set of pairs and has no choice function.

Proof. Each Pn is a symmetric set since π(Pn) = Pn for all π ∈ G. For the
same reason, π〈Pn : n ∈ ω〉 = π({(n, Pn) : n ∈ ω}) = 〈Pn : n ∈ ω〉, for all
π ∈ G, and so 〈Pn : n ∈ ω〉 ∈ U . Hence S = {Pn : n ∈ ω} is a countable set
in U .

We show that there is no function f ∈ U such that dom(f) = S and
f(Pn) ∈ Pn for all n. Assume that f is such a function and let E be a support
of f . There exists n such that neither an nor bn is in E, and we let π ∈ G be
such that π(an) = bn but πx = x for all x ∈ E. Then πf = f , πPn = Pn,
and so π(f(Pn)) = (πf)(πPn) = f(Pn) but π(f(Pn)) = bn while f(Pn) = an;
a contradiction. ��

The method of permutation models gives numerous examples of violation
of the Axiom of Choice. One usually uses the set of atoms to produce a coun-
terexample (in the permutation model) to some consequence of the Axiom of
Choice, thus showing the limitations of proofs not using the Axiom of Choice.
(A typical example is a vector space that has no basis, a set that cannot be
linearly ordered, etc.) However, these examples do not give any information
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about the “true” sets, like real numbers, sets of real numbers, etc., since those
sets are in the kernel. It is clear that a different method has to be used to
investigate the role of the Axiom of Choice in ZF. We shall now describe such
a method and exploit the similarities between it and permutation models.

We shall use automorphisms (symmetries) to construct submodels of
generic extensions. As shown in (14.36), every automorphism π of a com-
plete Boolean algebra B induces an automorphism of the Boolean-valued
model V B . The important property of such an automorphism is (14.36) in
the Symmetry Lemma 14.37:

‖ϕ(πẋ1, . . . , πẋn)‖ = π(‖ϕ(ẋ1, . . . , ẋn)‖).

for all names ẋ1, . . . , ẋn.
Let G be a group of automorphisms of B, and let F be a filter on G,

i.e., a set of subgroups that satisfies (15.34). For each ẋ ∈ V B we define its
symmetry group

sym(ẋ) = {π ∈ G : π(ẋ) = ẋ}.
If π is an automorphism of B, then

(15.37) sym(πẋ) = π · sym(ẋ) · π−1.

This is because σ(πẋ) = πẋ if and only if (π−1σπ)(ẋ) = ẋ. Given a fil-
ter F on G, we call ẋ symmetric if sym(ẋ) ∈ F . The class HS of hereditarily
symmetric names is defined by induction on ρ(ẋ):

if dom(ẋ) ⊂ HS and if ẋ is symmetric, then ẋ ∈ HS .

Note that π(x̌) = x̌ for all x and all π, and so all x̌ are in HS . If a name ẋ
is symmetric, and if π ∈ G, then by (15.37) and (15.34)(iv), π(ẋ) is also
symmetric. It follows that πẋ ∈ HS whenever ẋ ∈ HS and π ∈ G.

The class HS is a submodel of the Boolean-valued model V B, and can be
shown to satisfy all axioms of ZF. Instead, we prove that its interpretation
is a transitive model of ZF.

Thus let M be the ground model, let B be a complete Boolean algebra
in M , and let G and F be respectively (in M), a group of automorphisms
of B and a filter on G. Let G be an M -generic ultrafilter on B. We let

(15.38) N = {ẋG : ẋ ∈ HS}

be the class of all elements of M [G] that have a hereditarily symmetric name.
N is called a symmetric submodel of M [G]. We will prove that N is a tran-
sitive model of ZF. Before we do so, we notice that HS is a Boolean-valued
model (with the same ‖x ∈ y‖ and ‖x = y‖ as MB). Thus we can define
‖ϕ‖HS for every formula ϕ. Note that

(15.39) ‖∃xϕ(x)‖HS =
∑

ẋ∈HS

‖ϕ(ẋ)‖
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and that ‖ϕ‖HS = ‖ϕ‖ whenever ϕ is a ∆0 formula. We also have a forcing
theorem for the model N :

(15.40) N � ϕ(x1, . . . , xn) if and only if ‖ϕ(ẋ1, . . . , ẋn)‖HS ∈ G

where ẋ1, . . . , ẋn ∈ HS are names for x1, . . . , xn. Finally, since π(HS ) = HS
for all π ∈ G, we have the Symmetry Lemma for ‖ ‖HS : If π ∈ G and
ẋ1, . . . , ẋn ∈ HS , then

(15.41) ‖ϕ(πẋ1, . . . , πẋn)‖HS = π(‖ϕ(ẋ1, . . . , ẋn)‖HS ).

Lemma 15.51. A symmetric submodel N of M [G] is a transitive model
of ZF, and M ⊂ N ⊂ M [G].

Proof. Since x̌ ∈ HS for every x ∈ M , we have M ⊂ N . The heredity of HS
implies that N is transitive. To verify that the axioms of ZF hold in N , we
follow closely the proof of the Generic Model Theorem. As there, we have to
show that certain sets exist in the model by exhibiting names for the sets;
here we have to find such names in HS .

A. Extensionality, Regularity, Infinity. These axioms hold in N since N is
transitive and N ⊃ M .

B. Separation. Let ϕ be a formula and let

Y = {x ∈ X : N � ϕ(x, p)}

where X, p ∈ N . Let Ẋ, ṗ ∈ HS be names for X , p. We let Ẏ ∈ MB as
follows:

dom(Ẏ ) = dom(Ẋ), Ẏ (ṫ) = Ẋ(ṫ) · ‖ϕ(ṫ, ṗ)‖HS .

A routine argument shows that Ẏ is a name for Y ; it remains to show that
Ẏ is symmetric.

We shall show that sym(Ẏ ) ⊃ sym(Ẋ) ∩ sym(ṗ). Thus let π ∈ G be
such that πẊ = Ẋ and πṗ = ṗ. For every ṫ ∈ dom(Ẋ) we have πṫ ∈
dom(πẊ) = dom(Ẋ) and Ẋ(πṫ) = (πẊ)(πṫ) = π(Ẋ(ṫ)), and ‖ϕ(πṫ, ṗ)‖HS =
π‖ϕ(ṫ, ṗ)‖HS , and so Ẏ (πṫ) = π(Ẏ (ṫ)). Therefore, πẎ = Ẏ .

C. Pairing, Union, Power Set. Let X ∈ N and let Ẋ ∈ HS be a name for X .
For the union, we let S =

⋃
{dom(ẏ) : ẏ ∈ dom(Ẋ)}. If π ∈ sym(Ẋ) then

π(S) = S and so the set Y = {tG : t ∈ S} has a hereditarily symmetric name
Ẏ : Ẏ (ṫ) = 1 for all ṫ ∈ S. Moreover, Y ⊃

⋃
X .

Pairing and Power Set are handled similarly.

D. Replacement. We show that if X ∈ N , then there exists a Y ∈ N such
that for all u ∈ X , N satisfies

∃v ϕ(u, v) → (∃v ∈ Y )ϕ(u, v).

We proceed as in (14.15) except that (we deal with ‖ ‖HS instead of ‖ ‖
and that) we look for S ⊂ HS such that π(S) = S for all π ∈ G (for then
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Y = {tG : t ∈ S} has a name in HS ). This is accomplished by taking for S
the set HS ∩ MB

α for large enough α. Since every π preserves the rank and
since each π ∈ G preserves HS , we have π(S) = S for all π ∈ G. ��

In general, the set G is not a member of N , and N does not satisfy the
Axiom of Choice.

The model in Example 15.52 is due to Cohen. It is an analog of the
permutation model in Example 15.49, and in fact, it is the same model that
was used in Theorem 14.36.

Example 15.52. Let V [G] be the generic extension adjoining countably
many Cohen reals: P is the set of all finite 0–1 functions p with domain
dom(p) ⊂ ω ×ω. We define an, n ∈ ω, and A = {an : n ∈ ω}, as well as their
canonical names as in (14.40) and (14.41).

Every permutation π of ω induces an automorphism of P (and in turn
an automorphism of B) by (14.44). We can view such permutations as per-
mutations of the set {ȧn : n ∈ ω}. Let G be the group of all automorphisms
of B that are induced by such permutations. For every finite E ⊂ ω, let

fix(E) = {π ∈ G : πn = n for each n ∈ E},

and let F be the filter on G generated by the {fix(E) : E ⊂ ω is finite}.
Now let HS be the class of all hereditarily symmetric names, and let N be

the corresponding symmetric submodel of V [G]. It is easy to see that all ȧn

are in HS and so is Ȧ. Moreover, the an are distinct subsets of ω and so A is
an infinite set of reals in N .

We claim that in N , A has no countable subset. Thus assume that some
f ∈ N is a one-to-one function from ω into A. Let ḟ ∈ HS and let p0 ∈ G be
such that

p0 � ḟ maps ω̌ one-to-one into Ȧ.

The contradiction is obtained as in Lemma 14.39. We let E be a support
of ḟ , i.e., a finite subset of ω such that sym(ḟ) ⊃ fix(E). We pick i ∈ ω such
that i /∈ E, and find p ≤ p0 and n ∈ ω such that

p � ḟ(ň) = ȧi.

Then we find a permutation π ∈ G such that:

(i) πp and p are compatible;
(ii) π ∈ fix(E);
(iii) πi = j �= i.

Then πḟ = ḟ , π(ň) = ň, and we have p∪πp � ḟ(ň) = ȧi and p∪πp � ḟ(ň) =
ȧj , a contradiction. ��

The set A in Example 15.52 is a set of reals and is therefore linearly
ordered. Lévy proved that in the model N in Example 15.52, every set can
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be linearly ordered. In fact, Halpern and Lévy proved that the model even
satisfies the Prime Ideal Theorem, thus establishing the independence of the
Axiom of Choice from the Prime Ideal Theorem. We note that numerous
consequences of the Axiom of Choice in mathematics can be proved using
the Prime Ideal Theorem instead—among others the Hahn-Banach Theo-
rem, Compactification Theorems, the Completeness Theorem, the Tikhonov
Theorem for Hausdorff spaces, etc.

Another construction of Cohen yields a model that has similar properties
as the permutation model in Example 15.50. The atoms are replaced not by
reals, but by sets of reals.

The similarity between permutation models and symmetric submodels is
made precise by the following result that shows that every permutation model
can be embedded in a symmetric model of ZF, “with a prescribed degree of
accuracy.”

Theorem 15.53 (Jech-Sochor). Let U be a permutation model, let A be
its set of atoms, and let α be an ordinal. There exist a symmetric model N
of ZF and an embedding x �→ x̃ of U into N such that

(Pα(A))U is ∈-isomorphic to
(
Pα(Ã)

)N .

Proof. We work in the theory ZFA, plus the Axiom of Choice. We denote A
the set of all atoms, and let M be the kernel, M = P∞(∅). We consider
a group G of permutations of A, and a filter F on G, and let U be the
permutation model given by G and F . Let α be an ordinal number.

We shall construct a generic extension M [G] of the kernel, and then the
model N as a symmetric submodel of M [G]. We construct M [G] by adjoining
to M a number of subsets of a regular cardinal κ, κ of them for each a ∈ A.
We use these to embed U in M [G].

Let κ be a regular cardinal such that κ > |Pα(A)|. The set P of forcing
conditions consists of 0–1 functions p such that | dom(p)| < κ and dom(p) ⊂
(A × κ) × κ; as usual, p < q if and only if p ⊃ q.

Let G be an M -generic filter on P . For each a ∈ A and each ξ < κ, we let

xa,ξ = {η ∈ κ : p(a, ξ, η) = 1 for some p ∈ G}.

Each xa,ξ has a canonical name ẋa,ξ:

ẋa,ξ(η̌) =
∑

{p ∈ P : p(a, ξ, η) = 1} (η ∈ κ).

Then we define, for every a ∈ A,

ã = {xa,ξ : ξ < κ}

and let Ã = {ã : a ∈ A}. The sets ã and Ã have obvious canonical names.
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Having defined ã for each a ∈ A, we can define x̃ (and its canonical
name ˙̃x) for each x be ∈-induction:

(15.42) x̃ = {ỹ : y ∈ x}.

We shall show that the function x �→ x̃ is an ∈-isomorphism.

Lemma 15.54. For all x and y, x ∈ y if and only if x̃ ∈ ỹ, and x = y if and
only if x̃ = ỹ.

Proof. First we note that ‖ẋa,ξ = ẋa′,ξ′‖ = 0 whenever (a, ξ) �= (a′, ξ′), and
that ‖ẋa,ξ = ž‖ = 0 for all z ∈ M . Consequently, we have ã �= b̃ whenever
a �= b are atoms. We claim that for all x, x̃ �= xa,ξ for any a, ξ. If x ∈ M ,
then x̃ = x and so x̃ �= xa,ξ. If x /∈ M , then x̃ is of higher rank than any
xa,ξ: xa,ξ is a subset of κ, while the transitive closure of x̃ contains some of
the xa,ξ.

Now we can prove the lemma, simultaneously for ∈ and =, by induction
on rank:

(a) If x ∈ y, then x̃ ∈ ỹ follows from the definition (15.42). If x̃ ∈ ỹ, then
y cannot be an atom because then we would have x̃ = xa,ξ for some a, ξ,
which is impossible. Hence x̃ = z̃ for some z ∈ y and we have x = z by the
induction hypothesis; thus x ∈ y.

(b) If x = y, then x̃ = ỹ. Conversely, if x �= y, then either both x and y
are atoms and then x̃ �= ỹ; or, e.g., x contains some z that is not in y, and
then, by the induction hypothesis, z̃ ∈ x̃ and z̃ /∈ ỹ; thus x̃ �= ỹ. ��

Note that the proof of Lemma 15.54 does not depend on the particular G
and so in fact we have proved

(15.43) x = y if and only if ‖ ˙̃x = ˙̃y‖ �= 0 if and only if ‖ ˙̃x = ˙̃y‖ = 1

and similarly for ∈.
Now we shall construct a symmetric submodel N of M [G]. We construct N

so that for every x ∈ U , x̃ is in N and that (Pα(A))U is isomorphic to
(Pα(Ã))N . For every permutation σ of A, let σ̄ be the group of all permuta-
tions π of A × κ such that for all a, ξ,

π(a, ξ) = (σa, ξ′) for some ξ′.

We let H̄ =
⋃
{σ̄ : σ ∈ H} for every subgroup H of G. Since every permuta-

tion π of A × κ induces an automorphism of P by

(πp)(π(a, ξ), η) = p(a, ξ, η) (all a, ξ, η)

we consider Ḡ as a group of automorphisms of B = B(P ). For every finite
A ⊂ A × κ we let

fix(E) = {π ∈ Ḡ : π(a, ξ) = (a, ξ) for all (a, ξ) ∈ E},
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and we let F̄ be the filter on Ḡ generated by the set

(15.44) {H̄ : H ∈ F} ∪ {fix(E) : E ⊂ A × κ finite}.

Let HS be the class of all hereditarily symmetric names and let N be the
corresponding symmetric submodel of M [G]. It is an immediate consequence
of (15.44) that all ẋa,ξ, all ȧ (a ∈ A), and ˙̃A are symmetric, and so Ã is in N .
The following two lemmas show that for any x, x̃ is in N if and only if x ∈ U .

Lemma 15.55. For all x, x ∈ U if and only if ˙̃x ∈ HS.

Proof. It suffices to show that x is symmetric if and only if ˙̃x is symmetric. If
σ ∈ G and π ∈ σ̄, then π ˙̃x is the canonical name for (σx)̃, and so symḠ( ˙̃x) =
symG(x); thus if sym(x) ∈ F , then symḠ( ˙̃x) ∈ F̄ . On the other hand, if
symḠ( ˙̃x) ∈ F̄ , then sym(x) ⊃ H̄ ∩ fix(E) for some H ∈ F and a finite
E ⊂ A× κ. If e = {a ∈ A : (a, ξ) ∈ E for some ξ}, then sym(x) ⊃ H ∩ fix(e),
and since fix(e) ∈ F , we have sym(x) ∈ F . ��

Lemma 15.56. For all x, x ∈ U if and only if x̃ ∈ N .

Proof. By Lemma 15.55, it suffices to show that if x̃ ∈ N , then x ∈ U .
Assume otherwise, and let x be of least rank such that x̃ ∈ N and x /∈ U .
Thus x ⊂ U , and since x̃ ∈ N , there exist a name ż ∈ HS and some p ∈ G
such that p � ż = ˙̃x. Since symḠ(ż) ∈ F̄ , we have symḠ(ż) ⊃ H̄ ∩ fix(E) for
some H ∈ F and a finite E ⊂ A × κ. We shall find σ ∈ G and π ∈ σ̄ such
that:

(i) πp and p are compatible;
(ii) π ∈ H̄ ∩ fix(E);
(iii) σx �= x.

Then we have πż = ż by (ii), ‖π ˙̃x = ˙̃x‖ = 0 by (iii) and (15.43); and since
πp � πż = π ˙̃x, we have

πp ∪ p � ż = ˙̃x, πp ∪ p � ż = π ˙̃x,

a contradiction.
To find π, note that x is not symmetric, so that there is a σ ∈ G such

that σx �= x and σ ∈ H ∩ fix(e), where e = {a ∈ A : (a, ξ) ∈ E for some ξ}.
Since |p| < κ, there exists a γ < κ such that (a, ξ) /∈ dom(p) for all a ∈ A
and all ξ > γ. Thus we define π ∈ σ̄ as follows:

if a ∈ e, then π(a, ξ) = (a, ξ) for all ξ;

if a /∈ e, then

{
π(a, ξ) = π(σa, γ + ξ) and π(a, γ + ξ) = π(σa, ξ) if ξ < γ;

π(a, ξ) = (σa, ξ) if ξ > γ · 2.

It follows that π ∈ H̄ ∩ fix(E) and that p and πp are compatible. ��
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We complete the proof of Theorem 15.53 by showing that(
(P α(A))U

)̃
=

(
Pα(Ã)

)N
.

The left-hand side is clearly included in the right-hand side; we prove the
converse by induction. Thus let x ∈ Pα(A) ∩ U and let y ∈ N be a subset
of x; we shall show that y = z̃ for some z ∈ U . Let ẏ be a name for y.
The notion of forcing that we are using here is <κ-closed; and since we have
chosen κ large, it follows that there is a p ∈ G that decides ˙̃t ∈ ẏ for all t ∈ x.
Hence y = z̃, where z = {t ∈ x : p � ˙̃t ∈ ẏ}, and by Lemma 15.56 we have
z ∈ U . ��

As for applications of Theorem 15.53, consider a formula ϕ(X, γ) such
that the only quantifiers in ϕ are ∃u ∈ P γ(X) and ∀u ∈ P γ(X). Let U be
a permutation model such that

U � ∃X ϕ(X, γ).

Let X ∈ U be such that U � ϕ(X, γ); let α be such that P γ(X) ⊂ P α(A). By
the theorem, U can be embedded in a model N of ZF such that (Pα(A))U is
isomorphic to (Pα(Ã))N . Since the quantifiers in ϕ are restricted to P γ(X),
it follows that N � ϕ(X̃, γ), and so

N � ∃X ϕ(X, γ).

Therefore, if we wish to prove consistency (with ZF) of an existential state-
ment of the kind just described, it suffices to construct a permutation model
(of ZFA).

Note that “X cannot be well ordered,” “X cannot be linearly ordered”
are formulas of the above type and so is “X is a countable set of pairs without
a choice function.”

Theorem 15.53, in conjunction with the construction of permutation mod-
els, has interesting applications in algebra. One can construct various abstract
counterexamples to theorems whose proofs use the Axiom of Choice. For ex-
ample, one can construct a vector space that has no basis, etc.

We conclude this section by sketching two examples of models of ZF in
which the Axiom of Choice fails. The first model was constructed by Feferman
and Lévy, the other by Feferman.

Example 15.57. Let M be a transitive model of ZFC. There is a model
N ⊃ M such that (ℵ1)N = (ℵω)M ; hence ℵ1 is singular in N .

Proof. First we construct a generic extension M [G] by adjoining collapsing
maps fn : ω → ωn, for all n ∈ ω: We let (P,⊃) consist of finite functions
with domain ⊂ ω × ω, such that p(n, i) < ωn for all (n, i) ∈ dom(p). If G is
a generic filter on P , then f =

⋃
G is a function on ω × ω, and for every n,
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the function fn defined on ω by fn(i) = f(n, i) maps ω onto ωn. We shall
construct a symmetric model N ⊂ M [G] such that each fn is in N but ℵω is
a cardinal in N .

Let G be the group of all permutations π of ω × ω such that for every n,
π(n, i) = (n, j), for some j. Every π induces an automorphism of P by

dom(πp) = {π(n, i) : (n, i) ∈ dom(p)}, (πp)(π(n, i)) = p(n, i).

Let F be the filter on G generated by {Hn : n ∈ ω}, where Hn consists of
all π such that π(k, i) = (k, i) for all k ≤ n, all i ∈ ω. Let HS be the class of
all hereditarily symmetric names and let N be the symmetric model.

It is easy to verify that for each n, the canonical name ḟn of fn is sym-
metric and so fn ∈ N . To show that ℵω remains a cardinal in N , we use the
following lemma:

Lemma 15.58. If sym(ẋ) ⊃ Hn and p � ϕ(ẋ), then p�n � ϕ(ẋ), where p�n
is the restriction of p to {(k, i) : k ≤ n}.
Proof. Let us assume that p�n does not force ϕ(ẋ) and let q ⊃ p�n be such
that q � ¬ϕ(ẋ). It is easy to find some π ∈ Hn such that πp and q are
compatible; since πp � ϕ(πẋ) and πẋ = ẋ, we get a contradiction. ��

Now let us assume that g ∈ N is a function of ω onto ℵω, and let ġ be
a symmetric name for g. Let p0 ∈ G be such that p0 forces “ġ is a function
from ω̌ onto ℵ̌ω.” Let n be such that p0�n = p0 and that sym(ġ) ⊃ Hn. Since
g takes ℵω values, it follows that for some k ∈ ω, there exists an incompatible
set W of conditions p ⊃ p0 such that |W | ≥ ℵn+1, and distinct ordinals αp,
p ∈ W , such that for each p ∈ W , p � ġ(k) = αp. By Lemma 15.58, we have
p�n � ġ(k) = αp, for each p ∈ W , which is a contradiction: On the one hand,
the conditions p�n, p ∈ W , must be mutually incompatible, and on the other
hand, the set {p�n : p ∈ P} has size only ℵn. ��

If the ground model M in the above example satisfies GCH, then one can
show that in N , the set of all reals is the countable union of countable sets.

Example 15.59. Let M be a transitive model of ZFC. There is a model
N ⊃ M such that in N , there is no nonprincipal ultrafilter on ω.

Proof. The model N is obtained by adjoining to M infinitely many generic
reals an, n < ω, without putting in N the set {an : n ∈ ω} (unlike in Exam-
ple 15.52 where {an : n ∈ ω} is in N). First we construct M [G] as in Exam-
ple 15.52: (P,⊃) is the set of all finite 0–1 functions with domain ⊂ ω × ω.
Let G be generic and let an = {m : p(n, m) = 1 for some p ∈ G}, for each
n ∈ ω.

Now let N be as follows. Every X ⊂ ω × ω induces a symmetry σX , an
automorphism of P defined by

(σXp)(n, m) =

{
p(n, m) if (n, m) /∈ X ,

1 − p(n, m) if (n, m) ∈ X .
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Let G be the group of all σX , X ⊂ ω×ω, and let F be the filter on G generated
by {fix(E) : E ⊂ ω finite}, where fix(E) = {σX : X ∩ (E ×ω) = ∅}. Let N be
the symmetric model.

Let D ∈ N be an ultrafilter on ω; we shall show that D is principal. Let
Ḋ ∈ HS be a name for D and let p ∈ G be such that p forces “Ḋ is an
ultrafilter on ω̌.” Let E ⊂ ω be finite, such that sym(Ḋ) ⊃ fix(E), and let
n /∈ E. Then there is some q ≤ p, q ∈ G, that decides ȧn ∈ Ḋ (where ȧn is
the canonical name for an). For example, assume that q � ȧn ∈ Ḋ (the proof
is similar if q � ȧn /∈ Ḋ).

Let m0 be such that for all m ≥ m0, (n, m) /∈ dom(q), and let X =
{(n, m) : m ≥ m0}. Let ḃn = σX(ȧn). Since for each m ≥ m0, ‖m̌ ∈ ḃn‖ =
−‖m̌ ∈ ȧn‖, it follows that an ∩ bn is a finite set. However, σXq � σX ȧn ∈
σXḊ; it is fairly obvious that σXq = q and since σX ∈ fix(E), we have
σXḊ = Ḋ. Thus q � ḃn ∈ Ḋ and hence an ∩ bn ∈ D. Consequently, D is
principal. ��

Exercises

15.1. If P satisfies the κ-chain condition then |B(P )| ≤ |P |<κ.
[Every u ∈ B+ is

P

W for some antichain in P .]

15.2. Let P be as in (15.2) and let Q = {p ∈ P : dom(p) is an initial segment
of κ}. Then Q is dense in P and hence B(Q) = B(P ).

15.3. Let κ be a singular cardinal and let (P, <) be defined as in (15.2). Then
P collapses κ to cf(κ): In the generic extension, there is a one-to-one function g
from κ into cf(κ).

[Let κ = ℵω, and let X be the added subset of ℵω. For each α < ℵω, let
g(α) = the least n such that the order-type of X∩(ωn+1−ωn) is ωn +α. Show that
for every α and every p ∈ P there is q ⊃ p and some n such that dom(q) ⊃ ωn+1−ωn

and that the set {ξ ∈ ωn+1 − ωn : q(ξ) = 1} has the order-type ωn + α. By the
genericity of G, the function g is defined for every α < ℵω; it is clearly one-to-one.]

15.4. Again let κ be singular, and let P be the set of all 0–1 functions whose
domains are bounded subsets of κ; P is ordered by ⊃. Show that P collapses κ
to cf(κ).

15.5. If every f : κ→ V in V B is in the ground model, then B is κ-distributive.
[Let Wα, α < κ, be partitions of B. Consider ḟ ∈ V B such that ‖ḟ(α) = u‖ = u

for u ∈ Wα, and find a common refinement of the Wα.]

15.6. If B(P1) = B(P2) and B(Q1) = B(Q2) then B(P1 ×Q1) = B(P2 ×Q2).

15.7. B(P×Q) is the completion of the direct sum of the algebras B(P ) and B(Q).

15.8. Let P be such that for every p there exist incompatible q ≤ p and r ≤ p.
Show that if G ⊂ P then G×G is not generic on P × P .

15.9. If B(Pi) = B(Qi) for each i ∈ I , then B(P ) = B(Q) where P =
Q

i Pi and
Q =

Q

i Qi.
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15.10. Let P be the notion of forcing (15.1) that adjoins κ Cohen reals. Then P is
(isomorphic to) the product of κ copies of the forcing for adding a single Cohen
real (Example 14.2).

15.11. If P satisfies c.c.c. and Q has property (K) then P ×Q satisfies c.c.c.

15.12. The Singular Cardinal Hypothesis holds in Easton’s model.
[If κ is singular then every f : cf(κ)→ κ is in N = V [G≤ cf κ], and so if F (cf κ) <

κ then (κcf κ)V [G] = (κcf κ)N ≤ (2κ)N ≤ |B(P≤ cf κ)|κ = (F (cf κ))κ = κ+.]

15.13. In (15.18), let κ = ℵ1 and λ = ℵω. Then in V [G] there is a one-to-one
function g : ℵℵ0

ω → ℵ1.
[If X is a countable subset of ℵω, let g(X) = the least α such that f(α + ω−α) =

X (where f =
S

G is the collapsing function). Use the fact that X ∈ V .]

15.14. In (15.18), let κ = ℵω. Then in V [G] there is a one-to-one function g from λ
into ω.

[Let f =
S

G, and let g(α) = the least n such the function f�(ωn+1 − ωn) is
eventually equal to α.]

15.15. There is a generic extension V [G] such that V [G] satisfies the GCH.
[For each α, let Pα be the notion of forcing which collapses λ = �α+1 onto

κ = (�α)+ (see (15.18)). Pα is �α-closed and satisfies the λ+-chain condition. Let
P be an Easton product of Pα, α ∈ Ord ; namely, we require that |s(p)∩ γ| < γ for
every inaccessible γ = �α. Show that for each α, κ = (�α)+ is a cardinal in V [G],
κ = ℵV [G]

α+1 , and V [G] � 2ℵα = ℵα+1. Apply Lemma 15.19 in two ways: (a) For
each α, consider P≤α × P >α: P≤α satisfies the �+

α+1-chain condition and P >α is
�α+1-closed; (b) if α is inaccessible and α = �α, consider P <α×P≥α: P <α satisfies
the �+

α -chain condition and P≥α is �α-closed.]

15.16. Let (P, <) be the notion of forcing that adds a subset of ω1 (15.2), and let
(Q, <) be the notion of forcing that collapses 2ℵ0 onto ℵ1 (15.18). Then B(P ) =
B(Q).

[Let Q′ = {q ∈ Q : dom(q) is an initial segment of ω1}; Q′ is dense in Q. Show
that P has a dense set P ′ isomorphic to Q′: Use the fact that every p ∈ P has
2ℵ0 mutually incompatible extensions.]

[Another way to show that (P, <) from (15.2) adjoins a one-to-one mapping

of 2ℵ0 into ℵ1: Let f =
S

G, and for every g ∈ {0, 1}ω, let F (g) = least α such that
f(α + n) = g(n) for all n.]

15.17. Let P be the forcing that adds a subset of ω1, and let Q be the forcing that
adds a Suslin tree as in (15.9). Then B(P ) = B(Q).

If T1 and T2 are trees, then an isomorphism π : T1 → T2 between T1 and T2 is
a one-to-one mapping of T1 onto T2 such that x < y if and only if π(x) < π(y). An
isomorphism maps level α of T1 onto level α of T2 (for all α); and if b is a branch
in T1, then π(b) is a branch in T2. An automorphism of T is an isomorphism
of T1 onto T2. A tree T is rigid if it has no nontrivial automorphism, i.e., the only
automorphism of T is the identity mapping. T is homogeneous if for any x, y at
the same level of T , there exists an automorphism π of T such that π(x) = y.

15.18. If T is a normal α-tree where α < ω1 is a limit ordinal and if π is a nontrivial
automorphism of T , then T has an extension T ∈ P of height α + 1 such that
π cannot be extended to an automorphism of T ′.

[Construct T ′ so that for some branch b in T , b is extended while π(b) is not.]
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15.19. The generic Suslin tree constructed in Theorem 15.23 is rigid.
[If T � ρ̇ is a nontrivial automorphism of T , then the set {T ′ ≤ T :

∃automorphism π of an initial segment of T ′ that cannot be extended to an auto-
morphism of T ′ and T ′ � π ⊂ ρ̇} is dense below T ; a contradiction.]

If s : α→ ω and t : α→ ω, let s ∼ t if and only if s(ξ) = t(ξ) for all but finitely
many ξ < α.

15.20. There is a generic model V [G] in which there exists a homogeneous Suslin
tree.

[Let the forcing conditions be normal countable trees with the additional prop-
erties: (vi) if t ∈ T and s ∼ t, then s ∈ T ; and (vii) if s ∈ T and t ∈ T are at the
same level, then s ∼ t.]

Let (P, <) be the notion of forcing consisting of finite trees (T, <T ) such that
T ⊂ ω1, and such that α < β if α <T β; (T1, <T1) is stronger than (T2, <T2) if and
only if T1 ⊃ T2 and <T1 = <T2 ∩ (T2× T2). If G is a generic set of conditions, then
T =

S{T : T ∈ G} is a Suslin tree. The crucial properties to verify are: (a) (P, <)
satisfies the countable chain condition, and (b) T has no uncountable antichain:

15.21. (P, <) satisfies c.c.c.
[Given an uncountable set W of conditions, use ∆-Lemma to find an uncount-

able Z ⊂W such that any X, Y ∈ Z are compatible.]

15.22. T has no uncountable antichain.
[If T0 � Ȧ is uncountable, we first find an uncountable set W of pairs (T, αT )

such that T ≤ T0 and T � αT ∈ Ȧ. By ∆-Lemma, find an uncountable Z ⊂ W
with the property that if T1, T2 ∈ Z, then there is T stronger than both T1 and T2

such that T � αT1 is compatible with αT2 . Then some T ′ ≤ T0 forces that Ȧ is not
an antichain.]

Let Q consist of all countable sequences p = 〈Sξ : ξ < α〉 (α < ω1) where Sξ ⊂ ξ
for all ξ < α; let p ≤ q if and only if p extends q. Q is ℵ0-closed.

15.23. Let G be Q-generic. Then V [G] � ♦.
[If p � (Ċ is closed unbounded set and Ẋ ⊂ ω1), find q ≤ p such that q = 〈Sξ :

ξ ≤ α〉 and q � (α ∈ Ċ and Ẋ ∩ α = Sα).]

15.24. Let P be the forcing that adds a subset of ω1 (15.2) and let Q be the forcing
that adds a ♦-sequence (Exercise 15.23). Then B(P ) = B(Q).

A purely combinatorial argument can be used to show that ♦ is equivalent to
the following statement:

(♦′) There exists a sequence of functions hα, α < ω1, such that for every f :
ω1 → ω1, the set {α < ω1 : f�α = hα} is stationary.

15.25. V = L implies ♦′.

15.26. If V = L then there exists a rigid Suslin tree.

15.27. If V = L then there exists a homogeneous Suslin tree.

15.28. If T is a normal Suslin tree then PT × PT does not satisfy the countable
chain condition.

[For each x ∈ T , pick two immediate successors px and qx of x. The set {(px, qx) :
x ∈ T} ⊂ PT × PT is an antichain in PT × PT .]
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15.29. A Cohen-generic real is not minimal over the ground model.
[Show that P is isomorphic to P×P , and therefore V [x] = V [x1][x2], where x1 is

Cohen-generic over V and x2 is Cohen-generic over V [x1]. Consequently, x1 /∈ V
and x /∈ V [x1].]

15.30. If a is a Sacks real, then in V [a], every f : ω → ω is dominated by some
g : ω → ω in the ground model.

15.31. If B is (κ, 2)-distributive then it is (κ, 2κ)-distributive.
[Given f : κ→ P (κ), consider {(α, β) : β ∈ f(α)} ∈ P (κ× κ).]

15.32. If κ is singular and B is <κ-distributive then it is κ-distributive.
[Given a function f on κ, consider {f�κα : α < cf κ}.]

15.33. Let P be the forcing that adds a Cohen real. The algebra B(P ) is not
weakly (ω, ω)-distributive.

[See Lemma 15.30(ii).]

15.34. B is weakly (ω,ω1)-distributive if and only if ω1 is a cardinal in V [G].

15.35. If a complete Boolean algebra is κ-generated and λ-saturated, then |B| ≤
κ<λ.

15.36. Every infinite countably generated c.c.c. complete Boolean algebra has
size 2ℵ0 .

15.37. Show that in either Example 15.49 or 15.50, the set A cannot be linearly
ordered.

Historical Notes

The forcing that adds Cohen reals is due to Cohen. Shortly after Cohen’s discoveries,
Solovay (in [1963]) noticed that Cohen’s construction of a model for 2ℵ0 = ℵ2 can
be generalized so that for a regular cardinal κ one obtains a model of with 2κ = λ
(assuming 2<κ = κ and λκ = λ in the ground model).

The relation between the chain condition and preservation of cardinals is ba-
sically due to Cohen; the observation that a λ-closed notion of forcing does not
produce new subsets of λ is due to Solovay. The Product Lemma 15.9 is due to
Solovay [1970]. Theorem 15.15 comes from general topology and is due to Engelk-
ing and Kar�lowicz [1965].

Easton’s Theorem (Theorem 15.18) was published in [1970]. The generalization
of Cohen’s method allowing a class of forcing conditions is due to Easton. The Lévy
collapse (Theorem 15.22) was constructed by Lévy; cf. [1970].

Suslin’s Problem was formulated by Suslin in [1920]. Tennenbaum [1968] and
Jech [1967] discovered models of set theory in which a Suslin line exists; Solovay and
Tennenbaum [1971] proved that existence of a Suslin line is not provable in ZFC.
Subsequently, Jensen proved that a Suslin line exists in the constructible universe
(cf. [1968, 1972]).

The present proof of Theorem 15.23 is as in Jech [1967] (countable conditions);
Tennenbaum’s proof (finite conditions) is presented in Exercises 15.21 and 15.22.

Random reals were introduced by Solovay [1970]. Forcing with perfect trees to
obtain a minimal degree (Theorem 15.34) is due to Sacks [1971].
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Theorem 15.46 is due to Vopěnka and appears in the book [1972] of Vopěnka
and Hájek.

The idea of using symmetry arguments to construct models in which the Axiom
of Choice fails goes back to Fraenkel [1922b]; the two examples of models of ZFA (an
infinite set of atoms without a countable subset, and a countable set of pairs that
has no choice function) are basically due to him. Further examples of permutation
models were given by Mostowski who (in [1939]) developed a theory of such models.
The present definition using filters was given by Specker [1957].

Cohen incorporated the symmetry arguments into his method and constructed
the model in Example 15.52. The formulation of Cohen’s method in terms of sym-
metric submodels of Boolean-valued models is due to Scott (unpublished) and
Jech [1971a]; the latter’s version was a reformulation of a topological version of
Vopěnka and Hájek [1965].

Theorem 15.53 is due to Jech and Sochor [1966a, 1966b]. Numerous applications
of the theorem are given in the second paper [1966b]. The method has been gen-
eralized by Pincus in [1971] and in [1972], extending further the analogy between
permutations models of ZFA and symmetric models of ZF.

Lévy showed that in Cohen’s model in Example 15.52 every set can be linearly
ordered; consequently, Halpern and Lévy [1971] proved that the Prime Ideal Theo-
rem holds in the model. Example 15.57 (singularity of ℵ1) is due to Feferman and
Lévy [1963]. Example 15.59 (independence of the Prime Ideal Theorem) is due to
Feferman [1964/65]. A. Blass constructed in [1977] a model, similar to Feferman’s
model, in which every ultrafilter is principal.

Exercise 15.15: Jensen [1965].
Exercise 15.20: Fukson [1971].
Exercises 15.25–15.28: Jensen [1969].
The results in Exercises 15.31 and 15.32 had been known before forcing; see

Sikorski [1964].



16. Iterated Forcing and Martin’s Axiom

In this chapter we introduce two related concepts: iterated forcing and Mar-
tin’s Axiom. Iteration of forcing is one of the basic techniques used in appli-
cations of forcing. It was first used by Solovay and Tennenbaum in their proof
of the independence of Suslin’s Hypothesis. The idea is to repeat the generic
model construction transfinitely many times. Such iterations are described in
the ground model.

Martin observed that many properties of a generic extension obtained by
iteration follow from a single axiom that captures the combinatorial content
of the model. The general principle has become known as Martin’s Axiom.
Martin’s Axiom has become a favorite tool in combinatorial set theory and
set-theoretic topology. Its consistency is proved by iterated forcing.

Two-Step Iteration

The basic observation is that a two-step iteration can be represented by
a single forcing extension. Let P be a notion of forcing, and let Q̇ ∈ V P be
a name for a partial ordering in V P .

Definition 16.1.

(i) P ∗ Q̇ = {(p, q̇) : p ∈ P and �P q̇ ∈ Q̇},
(ii) (p1, q̇1) ≤ (p2, q̇2) if and only if p1 ≤ p2 and p1 � q̇1 ≤ q̇2.

In (i), �P ϕ means that every condition in P forces ϕ; equivalently,
‖ϕ‖B(P ) = 1.

Theorem 16.2. (i) Let G be a V -generic filter on P , let Q = Q̇G, and let
H be a V [G]-generic filter on Q. Then

G ∗ H = {(p, q̇) ∈ P ∗ Q̇ : p ∈ G and q̇G ∈ H}

is a V -generic filter on P ∗ Q̇ and V [G ∗ H ] = V [G][H ].
(ii) Let K be a V -generic filter on P ∗ Q̇. Then

G = {p ∈ P : ∃q̇ (p, q̇) ∈ K} and H = {q̇G : ∃p (p, q̇) ∈ K}

are, respectively, a V -generic filter on P and a V [G]-generic filter on Q = Q̇G,
and K = G ∗ H.
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Proof. (i) Let us prove that if D ∈ V is a dense subset of P ∗Q then D∩(G∗H)
is nonempty. In V [G], let

D1 = {q̇G : ∃p ∈ G such that (p, q̇) ∈ D}.

The set D1 is dense in Q; this is proved by showing that for every q̇0, the set
(in V )

{p ∈ P : ∃q̇1 (p � q̇1 ≤ q̇0 and (p, q̇1) ∈ D)}

is dense in P . Hence D1 ∩ H �= ∅ and so there exists some q ∈ H such
that for some p ∈ G and some G-name q̇ for q, (p, q̇) ∈ D. It follows that
(p, q̇) ∈ D ∩ (G ∗ H).

(ii) Let D ∈ V be dense in P . Then D1 = {(p, q̇) : p ∈ D} is dense in
P ∗ Q̇ and so D ∩ G is nonempty. Hence G is a V -generic filter on P .

Let D ∈ V [G] be dense in Q, and let Ḋ ∈ V P be a G-name for D such
that �P Ḋ is dense in Q̇. Then the set {(p, q̇) ∈ P ∗ Q̇ : p � q̇ ∈ Ḋ} is dense
in P ∗ Q̇ and it follows that D ∩ H is nonempty. Hence H is V [G]-generic.

The proof of K = G ∗ H is routine. ��

We shall now describe two-step iteration in terms of complete Boolean
algebras. Let B be a complete Boolean algebra and let Ċ ∈ V B be such that

‖Ċ is a complete Boolean algebra‖B = 1.

Let us consider all ċ ∈ V B such that ‖ċ ∈ Ċ‖ = 1 and the equivalence relation

(16.1) ċ1 ≡ ċ2 if and only if ‖ċ1 = ċ2‖ = 1.

We let D be the set of equivalence classes for (16.1). We make D a Boolean
algebra as follows: If ċ1 and ċ2 are in D, there exists a unique ċ ∈ D such
that ‖ċ = ċ1 +Ċ ċ2‖ = 1; we let ċ = ċ1 +D ċ2. The operations ·D and −D are
defined similarly. With these operations, D is a Boolean algebra; also,

ċ1 ≤D ċ2 if and only if ‖ċ1 ≤Ċ ċ2‖ = 1.

Lemma 16.3. D is a complete Boolean algebra, and B embeds in D as
a complete subalgebra.

Proof. If X ⊂ D, let Ẋ ∈ V B be such that dom(Ẋ) = X and Ẋ(ċ) = 1 for
all ċ ∈ X . Since Ċ is a complete Boolean algebra in V B and V B is full, there
exists a ċ such that ‖ċ =

∑
Ċ Ẋ‖ = 1. It follows that ċ =

∑
D X .

For each b ∈ B, let ċ = π(b) be the unique ċ ∈ D such that

‖ċ = 1Ċ‖ = b and ‖ċ = 0Ċ‖ = −b;

π is a complete embedding of B into D. ��
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We use the notation D = B ∗ Ċ. If B = B(P ) and in V B, Ċ = B(Q̇),
then P ∗ Q̇ embeds densely in B ∗ Ċ (Exercise 16.1).

Two-step iteration is a generalization of product: If P and Q are two
notions of forcing then P × Q embeds densely in P ∗ Q̌ (Exercise 16.2).

If B and D are complete Boolean algebras and B is a complete subalgebra
of D then there exists a Ċ ∈ V B that is a complete Boolean algebra in V B,
such that D = B ∗ Ċ: In V B, let Ḟ be the filter on Ď generated by the
generic ultrafilter Ġ on B̌, and let Ċ be the quotient of Ď by Ḟ . We denote
this algebra (in V B) Ċ = D : B. D : B is a complete Boolean algebra in V B,
and B ∗ (D : B) = D (Exercises 16.3 and 16.4).

It follows that if V [G] and V [H ] are two generic extensions of V such that
V [G] ⊂ V [H ], then V [H ] is a generic extension of V [G].

Theorem 16.4. Let κ be a regular uncountable cardinal. If P satisfies the
κ-chain condition and if in V P , Q̇ satisfies the κ-chain condition, then P ∗ Q̇
satisfies the κ-chain condition.

Proof. Assume that (pα, q̇α), α < κ, are mutually incompatible in P ∗ Q̇.
Let Ż ∈ V P be the canonical name for the set {α : pα ∈ G} (where G is
a generic filter on P ), i.e., ‖α ∈ Ż‖ = pα. For every α and every β, either pα

and pβ are incompatible, or every stronger condition forces that q̇α and q̇β

are incompatible. Thus qα and qβ are incompatible if α ∈ Z and β ∈ Z,
and since Q satisfies the κ-chain condition in V [G], we have |Z| < κ; i.e.,
�P |Ż| < κ.

Since κ is regular in V [G] (by Theorem 15.3), there exists a maximal
antichain W ⊂ P , and for each p ∈ W there exists some γp < κ such that
p � Ż ⊂ γp. If we let γ = sup{γp : p ∈ W}, we have γ < κ, and �P Ż ⊂ γ.
This is a contradiction, since pγ � γ ∈ Ż. ��

The converse of Theorem 16.4 is also true:

Lemma 16.5. If P ∗ Q̇ satisfies the κ-chain condition then �P Q̇ satisfies
the κ-chain condition.

Of course P satisfies the κ-c.c. because B(P ) is a complete subalgebra of
B(P ∗ Q̇).

Proof. Let D = B ∗ Ċ and assume that D satisfies the κ-chain condition. Let
Ẇ ∈ V B and b0 ∈ B+ be such that

b0 � Ẇ is a subset of Ċ+ of size κ.

We shall find a nonzero b ≤ b0 such that

(16.2) b � Ẇ is not an antichain.

Let ḟ ∈ V B be such that

b0 � ḟ is a one-to-one function of κ onto Ẇ .
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For every α < κ, b0 � (∃x ∈ Ẇ )x = ḟ(α̌); and since V B is full, there exists
a ċα ∈ D such that b0 � (ċα ∈ W and ċα = ḟ(α̌)). Let ḋα = b0 · ċα. Since
b0 � ċα �= ċβ , for all α �= β, the set {ḋα : α < κ} is a subset of D of size κ.
Since D satisfies the κ-chain condition, there exist α and β such that ḋα

and ḋβ are compatible. Hence there exists a ḋ ∈ D+ such that ḋ ≤ ḋα · ḋβ ;
moreover, we can find ḋ such that ḋ = b · ċ, where 0 �= b ≤ b0 and b � (ċ �= 0
and ċ ≤ ċα · ċβ). Now (16.2) follows. ��

Corollary 16.6. If P and Q satisfy the κ-chain condition then P ×Q satis-
fies the κ-chain condition if and only if �P Q̌ satisfies the κ-chain condition.

��

Lemma 16.7. If P is κ-closed and �P Q̇ is κ-closed, then P ∗Q̇ is κ-closed.

Proof. Let λ ≤ κ and let (p1, q̇1) ≥ (p2, q̇2) ≥ . . . ≥ (pα, q̇α) ≥ . . . (α < λ) be
a descending sequence in P ∗Q̇. Then {pα}α<λ is a descending sequence in P ,
and has a lower bound p. The condition p forces that {q̇α}α<λ is a descending
sequence in Q̇, and has a lower bound q̇. Then (p, q̇) is a lower bound of
{(pα, q̇α)}α<λ. ��

Iteration with Finite Support

The idea of transfinite iteration of forcing is to construct sequences {Pα}α<θ

of forcing notions so that for every α, Pα+1 = Pα ∗ Q̇α where Q̇ ∈ V Pα , and
that at limit stages, Pα is a “limit” of {Pβ}β<α. In this section we describe
iteration with finite support, where the “limit” is the direct limit.

In Definition 16.8 below, Q̇α is assumed to be a forcing notion in V Pα ,
with greatest element 1. The symbol ≤α denotes the partial ordering of Pα,
and �α denotes the corresponding forcing relation.

Definition 16.8. Let α ≥ 1. A forcing notion Pα is an iteration (of length α
with finite support) if it is a set of α-sequences with the following properties:

(i) If α = 1 then for some forcing notion Q0,
(a) P1 is the set of all 1-sequences 〈p(0)〉 where p(0) ∈ Q0;
(b) 〈p(0)〉 ≤1 〈q(0)〉 if and only if p(0) ≤ q(0) (in Q0).

(ii) If α = β + 1 then Pβ = Pα�β = {p�β : p ∈ Pα} is an iteration of
length β, and there is some forcing notion Q̇β ∈ V Pβ such that
(a) p ∈ Pα if and only if p�β ∈ Pβ and �β p(β) ∈ Q̇β;
(b) p ≤α q if and only if p�β ≤β q�β and p�β �β p(β) ≤ q(β).

(iii) If α is a limit ordinal, then for every β < α, Pβ = Pα�β = {p�β :
p ∈ Pα} is an iteration of length β and
(a) p ∈ Pα if and only if ∀β < α p�β ∈ Pβ and for all but finitely

many β < α, �β p(β) = 1;
(b) p ≤α q if and only if ∀β < α p�β ≤β q�β.
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The finite set {β < α : not �β p(β) = 1} is the support of p ∈ Pα.

An iteration with finite support is uniquely determined by the sequence
〈Q̇β : β < α〉. Thus we call Pα the iteration of 〈Q̇β : β < α〉. For each β < α,
Pβ+1 is isomorphic to Pβ ∗ Q̇β . When α is a limit ordinal, (Pα,≤α) is the
direct limit of the Pβ , β < α, in the sense of Lemma 12.2. In fact B(Pα) is
the completion of the direct limit of the B(Pβ), β < α (Exercise 16.8).

Finite support iteration preserves chain conditions:

Theorem 16.9. Let κ be a regular uncountable cardinal. Let Pα be the it-
eration with finite support of 〈Q̇β : β < α〉, such that for each β < α,
�β Q̇β satisfies the κ-chain condition. Then Pα satisfies the κ-chain condi-
tion.

Proof. By induction on α. If α = β + 1 then Pα = Pβ ∗ Q̇β and the assertion
follows from Theorem 16.4. Thus let α be a limit ordinal. For each p ∈ Pα,
let s(p) denote the support of p.

Let W = {pξ : ξ < κ} be a subset of Pα of size κ. If cf α �= κ then
there exist a β < α and some Z ⊂ W of size κ such that s(p) ⊂ β for each
p ∈ Z. Then {p�β : β ∈ Z} ⊂ Pβ and since Pβ satisfies the κ-chain condition,
there exist p and q in Z such that p�β and q�β are compatible (in Pβ). Since
s(p) ⊂ β and s(q) ⊂ β, p and q are compatible.

Thus assume that cf α = κ, and let {αξ : ξ < κ} be a normal sequence
with limit α. Let C ⊂ κ be the closed unbounded set of all η such that
s(pξ) ⊂ αη for all ξ < η. For each limit ξ ∈ C there is some γ(ξ) < ξ such
that s(pξ) ∩ αξ ⊂ αγ(ξ). By Fodor’s Theorem there exist a stationary set
S ⊂ C and some γ < κ such that s(pξ) ∩ αξ ⊂ αγ for all ξ ∈ S.

Now consider the set {pξ�αγ : ξ ∈ S}. This is a subset of Pαγ , of size κ,
and therefore there exist ξ and η in S, γ < ξ < η, such that pξ�αγ and pη�αγ

are compatible. Let q ∈ Pαγ be a condition stronger than both pξ�αγ and
pη�αγ , and consider the following α-sequence r:

(16.3) r(β) =

⎧⎪⎪⎨
⎪⎪⎩

q(β) if β < αγ ,

pξ(β) if αγ ≤ β < αη,

pη(β) if αη ≤ β < α.

It is easily verified that r is a condition in Pα and is stronger than both pξ

and pη. Thus pξ and pη are compatible, and W is not an antichain. ��

Theorem 16.9 gives the following corollary for complete Boolean algebras:

Corollary 16.10. Let B0 ⊂ B1 ⊂ . . . ⊂ Bβ ⊂ . . . (β < α) be a sequence of
complete Boolean algebras such that for all β < γ, Bβ is a complete subal-
gebra of Bγ , and that for each limit ordinal γ,

⋃
β<γ Bβ is dense in Bγ . If

every Bβ satisfies the κ-chain condition then
⋃

β<α Bβ satisfies the κ-chain
condition. ��



272 Part II. Advanced Set Theory

Martin’s Axiom

Definition 16.11 (Martin’s Axiom (MA)). If (P, <) is partially ordered
set that satisfies the countable chain condition and if D is a collection of
fewer than 2ℵ0 dense subsets of P , then there exists a D-generic filter on P .

By Lemma 14.4, if (P, <) is any partial ordering and if D is a countable
collection of dense subsets of P , then a D-generic filter on P exists. Hence
Martin’s Axiom is a consequence of the Continuum Hypothesis. Exercises
16.10 and 16.11 show that the restriction to fewer than continuum dense sets
as well as some restriction on (P, <) are necessary.

If κ is an infinite cardinal, let MAκ be the statement

(16.4) If (P, <) is a partially ordered set that satisfies the countable chain
condition, and if D is a collection of at most κ dense subsets of P ,
then there exists a D-generic filter on P .

MAℵ0 is true by Lemma 14.4, and Martin’s Axiom states that MAκ holds
for all κ < 2ℵ0 . Exercise 16.10 shows that MAκ implies that κ < 2ℵ0 .

Lemma 16.12. Martin’s Axiom is equivalent to its restriction to partial or-
ders of cardinality < c:

(16.5) If (P, <) is a partially ordered set that satisfies the countable chain
condition and |P | < 2ℵ0 , and if D is a collection of at most κ dense
subsets of P , then there exists a D-generic filter on P .

Proof. Let P be a c.c.c. partially ordered set and let us assume that (16.5)
holds. Let D be a family of fewer than c dense subsets of P . For each D ∈
D, we let WD be a maximal incompatible subset of D. Since each WD is
countable, there exists a set Q ⊂ P of size < c such that WD ⊂ Q for
all D ∈ D, and if p, q ∈ Q are compatible, then there exists some r ∈ Q
such that r ≤ p and r ≤ q. Each WD is a maximal antichain in Q; let
ED = {q ∈ Q : q ≤ w for some w ∈ WD}. Each ED is dense in Q.

The partially ordered set Q has size at most κ and satisfies the countable
chain condition. By (16.5) there is a filter G on Q that meets every ED.
G generates a D-generic filter on P . ��

We will now show that MA is consistent with 2ℵ0 > ℵ1:

Theorem 16.13 (Solovay and Tennenbaum). Assume GCH and let κ
be a regular cardinal greater than ℵ1. There exists a c.c.c. notion of forc-
ing P such that the generic extension V [G] by P satisfies Martin’s Axiom
and 2ℵ0 = κ.

As P satisfies the countable chain condition, the model V [G] preserves
cardinals and cofinalities.



16. Iterated Forcing and Martin’s Axiom 273

Proof. We construct P as a finite support iteration of length κ, of a certain
(yet to be determined) sequence 〈Q̇α : α < κ〉. At each stage, we’ll have
�α Q̇α satisfies the countable chain condition, and so P will satisfy c.c.c. as
well. We shall also have, for each α < κ, �α |Q̇α| < κ. It follows, by induction
on α, that |Pα| ≤ κ for every α ≤ κ: If α is a limit ordinal and if |Pβ | ≤ κ for
all β < α, then |Pα| ≤ κ since the elements of Pα are α-sequences with finite
support. Thus assume that |Pα| ≤ κ and let us prove |Pα+1| ≤ κ. Because
Pα satisfies c.c.c. and κ is regular, there exists a λ < κ such that �α |Q̇α| ≤ λ.
Every name q̇ for an element of Q̇α can be represented by a function from an
antichain in Pα into λ. As every antichain in Pα is countable, the number of
such functions is at most κℵ0 which is κ (by GCH). It follows that |Pα+1| ≤ κ;
in fact |B(Pα+1)| ≤ κ.

Note that because GCH holds in V , and because Pα is a c.c.c. forcing of
size ≤ κ, we have �α 2λ ≤ κ, for every λ < κ. In particular, �P 2ℵ0 ≤ κ.

We shall now define the Q̇α, by induction on α < κ. Let us fix a function π
that maps κ onto κ × κ such that if π(α) = (β, γ) then β ≤ α. For every
α < κ, the model V Pα has at most κ nonisomorphic partial orderings of
size < κ (because �α κ<κ = κ). Since Pα satisfies c.c.c., there are at most κ
distinct names in V Pα for such partial orderings.

Thus let us assume that α < κ and that 〈Q̇β : β < α〉 has been de-
fined. Let π(α) = (β, γ). Let Q̇ be the γth name in V Pβ for a partial order
with a greatest element 1, of size < κ. Let b = ‖Q̇ satisfies the countable
chain condition‖Pα and let Q̇α ∈ V Pα be such that ‖Q̇α = Q̇‖Pα = b and
‖Q̇α = {1}‖Pα = −b.

Now let P be the finite support iteration of 〈Q̇α : α < κ〉. We shall prove
that V P satisfies Martin’s Axiom as well as 2ℵ0 = κ. Let G be a generic filter
on P , and let Gα = G�Pα for all α < κ.

Lemma 16.14. If λ < κ and X ⊂ λ is in V [G] then X ∈ V [Gα] for some
α < κ.

Proof. Let Ẋ be a name for X . Every Boolean value ‖ξ ∈ Ẋ‖ (where ξ < λ)
is determined by a countable antichain in P and hence Ẋ is determined by
at most λ conditions in P . Every condition has finite support which in turn
is included in some α < κ. Therefore there exists some α < κ such that all
these λ conditions have support included in α. It follows that X has a name
in V Pα ; hence X ∈ V [Gα]. ��

Lemma 16.15. Let (Q, <) ∈ V [G] and D ∈ G be such that (Q, <) is a c.c.c.
partial order, |Q| < κ and |D| < κ. There exists in V [G] a D-generic filter
on Q.

Once we prove Lemma 16.15, we finish the proof of Theorem 16.13 as
follows: Let Q be the forcing for adding one Cohen generic real; Q is countable.
For any set X ⊂ {0, 1}ω of size < κ, let DX = {Dg : g ∈ X} where Dg =
{q ∈ Q : q �⊂ g} (see Exercise 16.10). Lemma 16.15 applied to DX shows
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that X �= {0, 1}ω and therefore V [G] satisfies 2ℵ0 ≥ κ. However, we already
proved that 2ℵ0 ≤ κ, and so V [G] � 2ℵ0 = κ. Thus V [G] satisfies (16.5) and
therefore MA, completing the proof. ��

Proof of Lemma 16.15. By Lemma 16.14, both (Q, <) and D are in V [Gβ ],
for some β < κ. Let Q̇ be a name for Q in V Pβ . We may assume that Q has
a greatest element, and let γ be such that Q̇ is the γth name for such partial
order. Let α be such that π(α) = (β, γ). As Q satisfies the countable chain
condition in V [G], it also satisfies the countable chain condition in V [Gα].
Thus Q = Q̇Gα

α .
In V [Gα+1] there is a generic filter H on Q over V [Gα], because Pα+1 =

Pα ∗ Q̇α. The filter H meets every dense subset of Q that is in V [Gα], and
therefore it meets every D ∈ D. Hence H is D-generic. ��

Independence of Suslin’s Hypothesis

Suslin’s Hypothesis (SH) is the statement there are no Suslin lines. In Chap-
ter 15 we showed that the negation of SH is consistent; by the following
theorem, SH is independent.

Theorem 16.16. If MAℵ1 holds, then there is no Suslin tree.

Proof. Let us assume that T is a normal Suslin tree and let PT be the partially
ordered set obtained from T by reversing the order. PT satisfies the countable
chain condition. For each α < ω1, let Dα be the union of all levels above α:
Dα = {x ∈ T : o(x) > α}. Each Dα is dense in PT ; if we let D = {Dα :
α < ω1} and if G is a D-generic filter on P , then G is a branch in T of
length ω1. A contradiction. ��

The proof of independence of SH was the first application of iterated
forcing (and led to the formulation of Martin’s Axiom). The model for SH,
due to Solovay and Tennenbaum [1971], was constructed by iteration of the
forcing notions PT , for all prospective Suslin trees in the final model. The
forcing PT “kills” the Suslin tree T by forcing an ω1-branch in T .

In the proof of the following theorem, Suslin trees are killed by a different
method: by specializing the tree. Recalling the definition in Chapter 9 (and
Exercise 9.9), an Aronszajn tree T is special if there exists a function f :
T → ω such that each f−1({n}) is an antichain.

Theorem 16.17 (Baumgartner, Malitz, and Reinhardt [1970]). If
MAℵ1 holds, then every Aronszajn tree is special.

Lemma 16.18. If T is an Aronszajn tree and W is an uncountable collection
of finite pairwise disjoint subsets of T , then there exist S, S′ ∈ W such that
any x ∈ S is incomparable with any y ∈ S′.
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Proof. Since uncountably many elements of W have the same size, we may
as well assume that there exists a natural number n such that |S| = n for
all S ∈ W ; furthermore let us consider a fixed enumeration {z1, . . . , zn} of
each set S ∈ W . Let D be an ultrafilter on W such that every X ∈ D is
uncountable.

Let us assume that the lemma is false. For each x ∈ T and each k = 1,
. . . , n, let Yx,k be the set of all S ∈ W such that x is comparable with the
kth element of S. Since any S and S′ contain comparable elements, we have

⋃
x∈S

n⋃
k=1

Yx,k = W

for every S ∈ W . Thus pick, for each S ∈ W , an element x = xS of S
and k = kS such that Yx,k ∈ D. Now, there is k ≤ n such that the set
Z = {S ∈ W : kS = k} is uncountable. We shall show that the elements xS ,
S ∈ Z, are pairwise comparable; and that will be a contradiction since T has
no uncountable branch.

If S1, S2 ∈ Z and x = xS1 , y = xS2 , then Y = Yx,k∩Yy,k is in the ultrafilter
and thus uncountable. If S ∈ Y , then the kth element of S is comparable
with both x and y. Since Y is uncountable, there must exist S ∈ Y such that
the kth element of S is greater than both x and y. But then it follows that
x and y are comparable. ��

Let T be an Aronszajn tree and let us consider the following notion of
forcing (P, <): Forcing conditions are functions p such that

(i) dom(p) is a finite subset of T ;
(ii) ran(p) ⊂ ω;
(iii) if x, y ∈ dom(p) and x and y are comparable, then p(x) �= p(y);
(iv) p is stronger than q if and only if p extends q.

(16.6)

Lemma 16.19. (P, <) satisfies the countable chain condition.

Proof. Let W be an uncountable subset of P . Note that the set {dom(p) :
p ∈ W} is uncountable (there are only countably many functions from a fi-
nite set into ω). By ∆-Lemma, there is an uncountable W1 ⊂ W , and a fi-
nite set S ⊂ T such that dom(p) ∩ dom(q) = S for any distinct elements
p, q ∈ W1. Then there is an uncountable W2 ⊂ W1 such that p�S = q�S for
any p, q ∈ W2. By Lemma 16.18 there exist p and q ∈ W2 such that any
x ∈ dom(p) − S is incomparable with any y ∈ dom(q) − S. Then p ∪ q is
a function that satisfies (16.6) and extends both p and q. Thus p and q are
compatible elements of W and so (P, <) satisfies the countable chain condi-
tion. ��

Proof of Theorem 16.17. For each x ∈ T , let Dx be the set of all p ∈ P such
that x ∈ dom(p); clearly, each Dx is dense in P . Let D = {Dx : x ∈ T }.
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It follows from MAℵ1 , that (P, <) has a D-generic filter G. The elements
of G are pairwise compatible and since G is D-generic, every x ∈ T is in the
domain of the function f =

⋃
G. The function f maps T into ω and witnesses

that T is a special Aronszajn tree. ��

More Applications of Martin’s Axiom

Theorem 16.20 (Martin-Solovay). Martin’s Axiom implies that c is reg-
ular, and 2κ = c for all infinite cardinals κ < c.

Proof. Assuming MA, we prove that 2κ = 2ℵ0 for every κ < 2ℵ0 . Regularity
of c follows, as cf 2ℵ0 = cf 2κ > κ for all κ < 2ℵ0 . Let κ < 2ℵ0 and let
{Aα : α < κ} be an almost disjoint family of subsets of ω.

Let X be a subset of κ. We shall find a set A ⊂ ω such that for all α < κ

(16.7) α ∈ X if and only if A ∩ Aα is infinite.

In other words, X = {α ∈ κ : A ∩ Aα is infinite} is “coded” by the set A.
Therefore there exists a mapping of P (ω) onto P (κ), and so 2κ ≤ 2ℵ0 .

Let (P, <) be the following notion of forcing: A condition is a function p
from a subset of ω into {0, 1} such that:

(i) dom(p) ∩ Aα is finite for every α ∈ X ;
(ii) {n : p(n) = 1} is finite.

(16.8)

The set P is partially ordered by reverse inclusion: p ≤ q if and only if p
extends q.

We first show that P satisfies the countable chain condition. If p and q
are incompatible, then {n : p(n) = 1} �= {n : q(n) = 1} and since there are
only countably many finite subsets of ω, it follows that P satisfies c.c.c.

For each β ∈ κ − X , let Dβ = {p ∈ P : Aβ ⊂ dom(p)}. Any q ∈ P can
be extended to some p ∈ Dβ: Simply let p(n) = 0 for all n ∈ Aβ − dom(p).
Since Aβ is almost disjoint from all Aα, α ∈ X , p has property (16.8)(i) and
hence is a condition. Thus each Dβ is dense.

For each α ∈ X and each k ∈ ω, let

Eα,k = {p ∈ P : {n ∈ Aα : p(n) = 1} has size at least k}.

It is easy to see that each Eα,k is dense in P .
Let D be the collection of all Dβ for β ∈ κ − X and all Eα,k for α ∈ X

and k ∈ ω. By MA, there exists a D-generic filter G on P . Note that f =
⋃

G
is a function on a subset of ω. We let

(16.9) A = {n : f(n) = 1} = {n : p(n) = 1 for some p ∈ G}.

If α ∈ X , then A∩Aα is infinite because for each k there is some p ∈ G∩Eα,k.
If β ∈ κ − X , then A ∩ Aβ is finite because for some p ∈ G, Aβ ⊂ dom(p)
and {n : p(n) = 1} is finite. ��
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The almost disjoint forcing defined in the proof of Theorem 16.20 is of-
ten used to code generically uncountable sets. A typical application is the
following:

Let V [X ] be a generic extension where X ⊂ ω1; furthermore, assume that
ωV [X]

1 = ω1. Let A = {Aα : α < ω1} be an almost disjoint family in V , and
let us consider the almost disjoint forcing P in V [X ]. If G ⊂ P is generic
over V [X ], then V [X ][G] = V [X ][A], where A is defined by (16.9). Note that
ωV [X][A]

1 = ω1.
Now in V [X ][A], the set X satisfies (16.7), and since A ∈ V , it follows

that X ∈ V [A], and we have V [X ][A] = V [A]. Thus we have found a generic
extension V [A] such that A ⊂ ω and X ∈ V [A]. See Exercise 16.15.

The next theorem shows that under MAℵ1 , countable chain condition is
preserved by products. Compare with Exercise 15.28.

Theorem 16.21. MAℵ1 implies that every partially ordered set that satisfies
the countable chain condition has property (K).

Proof. Let P be a partially ordered set that satisfies the countable chain
condition and let W = {wα : α < ω1} be an uncountable subset of P . We
will use MAℵ1 to find a filter G such that Z = G ∩ W is uncountable.

First we claim that there is some p0 ∈ W such that every p ≤ p0 is
compatible with uncountably many wα. Otherwise, for each α < ω1 there is
β > α and some vα ≤ wα which is incompatible with all wγ , γ ≥ β; then
we can construct an ω1-sequence {vαi : i < ω1} of pairwise incompatible
elements.

For each α < ω1, let

Dα = {p ≤ p0 : p ≤ wγ for some γ ≥ α}.

By the above claim, each Dα is dense below p0. By MAℵ1 , there exists a fil-
ter G on P such that p0 ∈ G and G ∩ Dα �= ∅ for all α < ω1. It follows that
G ∩ W is uncountable. Hence P has property (K). ��

Corollary 16.22. MAℵ1 implies that if every Pi, i ∈ I, satisfies the count-
able chain condition then so does the product

∏
i∈I Pi (with finite support).

Proof. Theorem 15.15. ��

The next result generalizes the Baire Category Theorem:

Theorem 16.23. Martin’s Axiom implies that the intersection of fewer
than c dense open sets of reals is dense.

Proof. Let κ < c and let Uα, α < κ, be dense open sets of reals. Let I be
a bounded open interval. We’ll show that

⋂
α<κ Uα ∩ I �= ∅. Let P be the

following notion of forcing: Conditions are nonempty open sets p such that
p ⊂ I, with p ≤ q if and only if p ⊂ q. Since every collection of disjoint
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open sets is at most countable, P satisfies the countable chain condition. For
each α < κ, let Dα = {p ∈ P : p ⊂ Uα}; each Dα is dense in P . Let G be
a D-generic filter on P where D = {Dα : α < κ}. Since G is a filter, the
intersection

⋂
{p : p ∈ G} is nonempty, and is contained in each Uα since

G ∩ Dα �= ∅. ��

If f and g are functions from ω to ω, we say that f eventually dominates g
if f(n) > g(n) for all but finitely many n ∈ ω (i.e., f > g in the notation of
Lemma 10.16). A set of functions G is eventually dominated by f if f > g
for all g ∈ G.

Theorem 16.24. Martin’s Axiom implies that every family G of fewer than c
functions from ω to ω is eventually dominated by some f ∈ ωω.

Corollary 16.25. MA implies that there exists a c-scale.

Proof. A scale is constructed by transfinite induction, using an enumeration
of ωω of order-type c. ��

Corollary 16.26. MA implies that c is not real-valued measurable.

Proof. Lemma 10.16. ��

The proof of Theorem 16.24 uses the Hechler forcing: Let G be a given
family of functions h : ω → ω. A forcing condition is a pair p = (s, E),
where s = 〈s(0), . . . , s(n − 1)〉 is a finite sequence of natural numbers and
E is a finite subset of G. A condition (s′, E′) is stronger than (s, E) if:

(i) s ⊂ s′, and E ⊂ E′;
(ii) if k ∈ dom(s′) − dom(s), then s(k) > h(k) for all h ∈ E.

(16.10)

If (s1, E1) and (s2, E2) are conditions and s1 = s2, then (s1, E1) and
(s2, E2) are compatible. Hence (P, <) satisfies the countable chain condition.
Let G ⊂ P be generic; we let f =

⋃
{s : (s, E) ∈ G for some E}. We claim

that G is eventually dominated by f . Let h ∈ G be arbitrary. First there
is a condition (s, E) ∈ G such that h ∈ E (by genericity). Secondly, every
condition (s′, E′) < (s, E) satisfies (16.10)(ii), and so f(k) > g(k) for all
k /∈ dom(s). Thus in V [G], there is f : ω → ω such that h < f for all h ∈ G.

Proof of Theorem 16.24. If G ⊂ ωω and |G| < c, let P be the Hechler forcing
for the family G. Let D = {Dh : h ∈ G} ∪ {En : n ∈ ω} where Dh = {(s, E) :
h ∈ E} and En = {(s, E) : n ∈ dom(s)}. Then if G is a D-generic filter,
the function f =

⋃
{s : (s, E) ∈ G for some E} eventually dominates all

h ∈ G. ��

Theorem 16.27 (Booth). Martin’s Axiom implies that there exists a p-
point.
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Proof. Let Aα, α < 2ℵ0 , be an enumeration of all decreasing sequences
{An}∞n=0 of subsets of ω. We construct, by induction on α < 2ℵ0 , a chain
of families G0 ⊂ . . . ⊂ Gα ⊂ . . . of nonempty subsets of ω, such that each Gα

is closed under finite intersections and |Gα| < 2ℵ0 for all α.
We let G0 = {X ⊂ ω : ω − X is finite}. If α is a limit ordinal, we let

Gα =
⋃

β<α Gα. Having constructed Gα, we construct Gα+1 as follows: Let
Aα = {An}∞n=0 be a decreasing sequence of subsets of ω. If some An is
disjoint from some X ∈ Gα, then we let Gα+1 = Gα. Otherwise, the family
G = Gα ∪ {An : n ∈ ω} has the finite intersection property and we claim (see
Lemma 16.28 below), that there exists a Z ⊂ ω such that Z − An is finite
for all n, and G′ = G ∪ {Z} has the finite intersection property. Then we let
Gα+1 consist of all finite intersections X1 ∩ . . . ∩ Xk of elements of G′.

Finally, we let G =
⋃
{Gα : α < 2ℵ0}, and let D be any ultrafilter such

that D ⊃ G. We claim that D is a p-point: If A0 ⊃ A1 ⊃ . . . An ⊃ . . . is any
decreasing sequence of elements of D, then {An}∞n=0 = Aα for some α < 2ℵ0

and we have Z ∈ Gα+1 such that Z − An is finite for all n. By Exercise 7.7,
D is a p-point. ��

It remains to prove the claim:

Lemma 16.28. Assume MA, and let G be a family of subsets of ω with the
finite intersection property such that |G| < 2ℵ0 . Let A0 ⊃ A1 ⊃ . . . An ⊃ . . .
be a decreasing sequence of elements of G. Then there exists a Z ⊂ ω such
that :

(i) G ∪ {Z} has the finite intersection property;
(ii) Z − An is finite for all n ∈ ω.

Proof. We may assume that that if X, Y ∈ G, then X ∩ Y ∈ G. For each
X ∈ G, let hX : ω → ω be some function such that hX(n) ∈ X ∩ An.
By Theorem 16.24 the family {hX : X ∈ G} is eventually dominated by
a function f ; in particular for every X ∈ G there exists some n such that
f(n) ≥ hX(n). Now we let Z =

⋃∞
n=0{k ∈ An : k ≤ f(n)}. It is readily

verified that Z−An is finite for each n, and that Z ∩X �= ∅ for every X ∈ G.
��

Iterated Forcing

We conclude this chapter with the general definition of iterated forcing. We
shall return to the general method in later chapters. Below we follow closely
Definition 16.8 of finite support iteration. As before, for each ordinal α ≥ 1,
Pα denotes an iteration of length α, ≤α is the partial ordering of Pα and �α is
the corresponding forcing relation, and Q̇α is a name in V Pα for a forcing
notion with a greatest element 1. The general definition differs from Defini-
tion 16.8 by its handling of limit stages.
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Definition 16.29. Let α ≥ 1. A forcing notion Pα is an iteration (of
length α) if it is a set of α-sequences with the following properties:

(i) If α = 1 then for some forcing notion Q0,
(a) P1 is the set of all 1-sequences 〈p(0)〉 where p(0) ∈ Q0;
(b) 〈p(0)〉 ≤1 〈q(0)〉 if and only if p(0) ≤ q(0).

(ii) If α = β + 1 then Pβ = Pα�β = {p�β : p ∈ Pα} is an iteration of
length β, and there is some forcing notion Q̇β ∈ V Pβ such that
(a) p ∈ Pα if and only if p�β ∈ Pβ and �β p(β) ∈ Q̇β;
(b) p ≤α q if and only if p�β ≤β q�β and p�β �β p(β) ≤ q(β).

(iii) If α is a limit ordinal, then for every β < α, Pβ = Pα�β = {p�β :
p ∈ Pα} is an iteration of length β and
(a) the α-sequence 〈1, 1, . . . , 1, . . .〉 is in Pα;
(b) if p ∈ Pα, β < α and if q ∈ Pβ is such that q ≤β p�β, then

r ∈ Pα where for all ξ < α, r(ξ) = q(ξ) if ξ < β and r(ξ) = p(ξ) if
β ≤ ξ < α;

(c) p ≤α q if and only if ∀β < α p�β ≤β q�β.

Clearly, an iteration with finite support is an iteration. In general, prop-
erty (iii)(b) guarantees that if Pβ = Pα�β then V Pβ ⊂ V Pα ; see Exer-
cise 16.17.

A general iteration depends not only on the Q̇β but also on the limit
stages of the iteration. Let Pα be an iteration of length α where α is a limit
ordinal. Pα is a direct limit if for every α-sequence p,

(16.11) p ∈ Pα if and only if ∃β < α p�β ∈ Pβ and ∀ξ ≥ β p(ξ) = 1.

Pα is an inverse limit if for every α-sequence p,

(16.12) p ∈ Pα if and only if ∀β < α p�α ∈ Pβ .

In practice, forcing iterations combine direct and inverse limits. Finite sup-
port iterations are exactly those that use direct limits at all limit stages. In
general, let s(p), the support of p ∈ Pα, be the set of all β < α such that it is
not the case that �β p(β) = 1. If I is an ideal on α containing all finite sets
then an iteration with I-support is an iteration that satisfies for every limit
ordinal γ ≤ α,

(16.13) p ∈ Pγ if and only if ∀β < γ p�β ∈ Pβ and s(p) ∈ I.

One of the most useful tools in forcing are iterations with countable support,
where in (16.13) I is the ideal of at most countable sets. A countable support
iteration is an iteration such that for every limit ordinal γ if cf γ = ω then Pγ

is an inverse limit, and if cf γ > ω then Pγ is a direct limit. We shall return
to countable support iterations later in the book.

The following generalizes Theorem 16.9:
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Theorem 16.30. Let κ be a regular uncountable cardinal and let α be a limit
ordinal. Let Pα be an iteration such that for each β < α, Pβ = Pα�β satisfies
the κ-chain condition. If Pα is a direct limit, and either cf α �= κ or (if
cf α = κ) for a stationary set of β < α, Pβ is a direct limit, then Pα satisfies
the κ-chain condition.

Proof. Exactly as the proof of Theorem 16.9. The only difference is that we
apply Fodor’s Theorem not to C, but to the stationary subset of C consisting
of all ξ such that Pαξ

is a direct limit. ��

Exercises

16.1. B(P ∗ Q̇) = B(P ) ∗ B(Q̇).

16.2. P ×Q embeds densely in P ∗ Q̌.

16.3. In V B , D : B = D/İ where for each d ∈ D, ‖d ∈ İ‖B =
P{b ∈ B : b · d = 0}.

16.4. ‖D : B is a complete Boolean algebra‖B = 1, and D is isomorphic to B ∗
(D : B).

[Every name for an element of D : B has the form d/I where d ∈ D. To see
that D : B is complete in V B, let A be a name for a subset of D : B, and let
e =

P{d : ‖d/I ∈ A‖} = 1. Then ‖e/I =
P

A‖ = 1.]

16.5. Let h : P ∗ Q̇→ P be defined by h(p, q̇) = p. Then h satisfies the conditions
in Lemma 15.45.

16.6. If P has property (K) and �P Q̇ has property (K), then P ∗ Q̇ has prop-
erty (K).

16.7. If P is κ-distributive and �P Q̇ is κ-distributive then P ∗ Q̇ is κ-distributive.

16.8. Let Pα, α a limit ordinal, be a finite support iteration, and Bβ = B(Pα�β)
for all β ≤ α. Then Bα is the completion of the direct limit of the algebras Bβ ,
β < α.

16.9. If Pα is a finite support iteration and Pβ = Pα�β then V Pβ ⊂ V Pα . The
projection h(p) = p�β satisfies Lemma 15.45; Gβ = {p�β : p ∈ G} is a generic filter
on Pβ .

16.10. Let (P, <) be the notion of forcing producing a Cohen generic real. There
is a collection D of size 2ℵ0 of dense subsets of P such that there is no D-generic
filter on P .

[For each g : ω → {0, 1}, let Dg = {p ∈ P : p �⊂ g}.]

16.11. Let (P, <) be the notion of forcing that collapses ω1. There is a collection D
of size ℵ1 of dense subsets of P such that there is no D-generic filter on P .

[For each α < ω1, let Dα = {p ∈ P : α ∈ ran(p)}.]

16.12. MAκ is equivalent to the statement of MAκ restricted to complete Boolean
algebras.
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16.13. MAκ is equivalent to of MAκ restricted to partial orders of cardinality ≤ κ.

16.14. Let T be a Suslin tree and let P be the notion of forcing that adjoins
κ Cohen generic reals. Let G be a generic filter on P . Then T is a Suslin tree
in V [G].

[Let PT be the notion of forcing associated with the Suslin tree T . P satisfies
the c.c.c. in any V [H ] where H is a generic filter on PT . Thus PT ×P is c.c.c., and
so PT is c.c.c. in V[G].]

It follows that the existence of a Suslin tree is consistent with 2ℵ0 > ℵ1.

16.15. There is a generic extension V [A] where A ⊂ ω, such that ωV [A]
1 = ω1, and

ω2 is collapsed.
[Let f be a generic mapping of ω1 onto ω2 and let X ⊂ ω1 be such that

V [f ] = V [X]. Use almost disjoint forcing to find A ⊂ ω such that V [A] = V [X][A].]

16.16. Assume MAκ and let {Xα : α < κ} be a sequence of infinite subsets of ω
such that Xβ −Xα is finite if α < β. Show that there exists an infinite X such that
X −Xα is finite for all α < κ.

[A forcing condition is a pair (s, F ) where s is a finite subset of ω and F is
a finite subset of κ; (s′, F ′) ≤ (s,F ) just in case s′ ⊃ s, F ′ ⊃ F , and s′ − s ⊂ Xα

for all α ∈ F . Consider the dense sets Dn = {(s, F ) : |s| ≥ n}, n < ω, and
Eα = {(s, F ) : α ∈ F}, α < κ.]

16.17. If Pα is an iteration and Pβ = Pα�β then V Pβ ⊂ V Pα .
[Use (iii)(b) in Definition 16.29 and Lemma 15.45.]

16.18. Let Pα and P ′
α be countable support iterations of {Q̇β}β and {Q̇′

β}β , respec-

tively. Assume that for every β < α, if B(Pβ) = B(P ′
β) then �β B(Q̇β) = B(Q̇′

β).
Then B(Pα) = B(P ′

α).

16.19. Let I be a κ-closed ideal on α, and let Pα be an iteration of {Q̇β}β with
I-support. If for each β < α, �β Q̇β is <κ-closed, then Pα is <κ-closed.

16.20. Let κ ≥ ℵ2 be a regular cardinal. Let P be a countable support iteration
of length κ such that for all β < κ, P �β has a dense subset of size < κ. Then
P satisfies the κ-chain condition.

[Use Theorem 16.30.]

Historical Notes

Iterated forcing was introduced by Solovay and Tennenbaum [1971]. The formu-
lation in terms of Boolean algebras is based on their paper. Our presentation of
general iteration (Definitions 16.8 and 16.29) follows Baumgartner [1983].

Following Solovay and Tennenbaum’s construction of a model in which there
are no Suslin trees (Theorem 16.13), Martin formulated an axiom (MAℵ1) which
implies that there are no Suslin trees, and whose consistency was obtained by
Solovay-Tennenbaum’s method. The consistency proof of MA + 2ℵ0 > ℵ1 appears
in Solovay and Tennenbaum [1971].

Martin’s Axiom is investigated in detail in the paper [1970] of Martin and
Solovay. The paper contains various equivalent formulations of Martin’s Axiom and
numerous applications (including Theorem 16.20). Theorem 16.21 was discovered
by Kunen, Rowbottom, Solovay and possibly others.
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Baumgartner, Malitz, and Reinhardt [1970] proved that MAℵ1 implies that
every Aronszajn tree is special (Theorem 16.17). Special Aronszajn trees have ap-
plications in model theory (this fact is due to Rowbottom and Silver) and are
investigated in Mitchell’s paper [1972/73].

Scales were investigated extensively by Hechler [1974]. Hechler introduced the
notion of forcing used in the proof of Theorem 16.24. Hechler, among others, showed
that if cf κ > ω, then there is a generic extension in which 2ℵ0 > κ and a κ-scale
exists.

The construction of p-points (and Ramsey ultrafilters) under the assumption
of Martin’s Axiom is due to Booth [1970]. Our proof of Theorem 16.27 follows
Ketonen [1976].



17. Large Cardinals

The theory of large cardinals plays central role in modern set theory. In
this chapter we begin a systematic study of large cardinals. In addition to
combinatorial methods, the proofs use techniques from model theory.

Ultrapowers and Elementary Embeddings

We start with the following theorem that introduced the technique of ultra-
powers to the study of large cardinals.

Theorem 17.1 (Scott). If there is a measurable cardinal then V �= L.

Ultrapowers were introduced in Chapter 12. We now generalize the tech-
nique to construct ultrapowers of the universe. Let U be an ultrafilter on
a set S and consider the class of all functions with domain S. Following
(12.3) and (12.4) we define

f =∗ g if and only if {x ∈ S : f(x) = g(x)} ∈ U,

f ∈∗ g if and only if {x ∈ S : f(x) ∈ g(x)} ∈ U.

For each f , we denote [f ] the equivalence class of f in =∗ (recall (6.4)):

[f ] = {g : f =∗ g and ∀h (h =∗ f → rank g ≤ rankh)}.

We also use the notation [f ] ∈∗ [g] when f ∈∗ g.
Let Ult = UltU (V ) be the class of all [f ], where f is a function on S, and

consider the model Ult = (Ult,∈∗). �Loś’s Theorem 12.3 holds in the present
context as well: If ϕ(x1, . . . , xn) is a formula of set theory, then

Ult � ϕ([f1], . . . , [fn]) if and only if {x ∈ S : ϕ(f1(x), . . . , fn(x))} ∈ U.

If σ is a sentence, then Ult � σ if and only if σ holds; the ultrapower
is elementarily equivalent to the universe (V,∈). The constant functions ca

are defined, for every set a, by (12.12), and the function j = jU : V → Ult,
defined by jU (a) = [ca] is an elementary embedding of V in Ult:

(17.1) ϕ(a1, . . . , an) if and only if Ult � ϕ(ja1, . . . , jan)

whenever ϕ(x1, . . . , xn) is a formula of set theory.
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The most important application of ultrapowers in set theory are those in
which (Ult,∈∗) is well-founded. As we show below, well-founded ultrapowers
are closely related to measurable cardinals.

The model UltU (V ) is well-founded if (i) every nonempty set X ⊂ Ult
has a ∈∗-minimal element, and (ii) ext(f) is a set for every f , where

ext(f) = {[g] : g ∈∗ f}.

The second condition is clearly satisfied for any ultrafilter U : For every g ∈∗ f
there is some h =∗ g such that rankh ≤ rank f . As for the condition (i), this
is satisfied if and only if there exists no infinite descending ∈∗-sequence

f0 �∗ f1 �∗ . . . �∗ fk �∗ . . . (k ∈ ω)

of elements of the ultrapower.

Lemma 17.2. If U is a σ-complete ultrafilter, then (Ult,∈∗) is a well-
founded model.

Proof. We shall show that there is no infinite descending ∈∗-sequence in Ult
if U is a σ-complete ultrafilter on S. Let us assume that f0, f1, . . . , fn, . . .
is such a descending sequence. Thus for each n, the set

Xn = {x ∈ S : fn+1(x) ∈ fn(x)}

is in the ultrafilter. Since U is σ-complete, the intersection X =
⋂∞

n=0 Xn is
also in U and hence nonempty; let x be an arbitrary element of X . Then we
have

f0(x) � f1(x) � f2(x) � . . .

an infinite descending �-sequence, which is a contradiction. ��

By the Mostowski Collapsing Theorem every well-founded model is iso-
morphic to a transitive model. Thus if U is σ-complete, there exists a one-
to-one mapping π of Ult onto a transitive class such that f ∈∗ g if and only
π([f ]) ∈ π([g]). In order to simplify notation, we shall identify each [f ] with
its image π([f ]). Thus if U is σ-complete, the symbol Ult denotes the transi-
tive collapse of the ultrapower, and for each function f on S, [f ] is an element
of the transitive class Ult; we say the function f represents [f ] ∈ Ult.

Thus if U is a σ-complete ultrafilter, M = UltU (V ) is an inner model and
j = jU is an elementary embedding j : V → M .

If α is an ordinal, then since j is elementary, j(α) is an ordinal; moreover,
α < β implies j(α) < j(β). Thus we have α ≤ j(α) for every ordinal num-
ber α. Note that j(α + 1) = j(α)+1, and j(n) = n for all natural numbers n.
It is also easy to see that j(ω) = ω: If [f ] < ω, then f(x) < ω for almost
all x ∈ S, and by σ-completeness, there exists n < ω such that f(x) = n for
almost all x. By the same argument, if U is λ-complete, then j(γ) = γ for all
γ < λ.
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Now let κ be a measurable cardinal, and let U be a nonprincipal κ-com-
plete ultrafilter on κ. Let d (the diagonal function) be the function on κ
defined by

d(α) = α (α < κ).

Since U is κ-complete every bounded subset of κ has measure 0 and so for
every γ < κ, we have d(α) > γ for almost all α. Hence [d] > γ for all γ < κ
and thus [d] ≥ κ. However, we clearly have [d] < j(κ) and it follows that
j(κ) > κ.

We have thus proved that if there is a measurable cardinal, then there
is an elementary embedding j of the universe in a transitive model M such
that j is not the identity mapping; j is a nontrivial elementary embedding of
the universe.

Proof of Theorem 17.1. Let us assume V = L and that measurable cardinals
exist; let κ be the least measurable cardinal. Let U be a nonprincipal κ-
complete ultrafilter on κ and let j : V → M be the corresponding elementary
embedding. As we have shown, j(κ) > κ.

Since V = L, the only transitive model containing all ordinals is the
universe itself: V = M = L. Since j is an elementary embedding and κ is the
least measurable cardinal, we have

M � j(κ) is the least measurable cardinal;

and hence, j(κ) is the least measurable cardinal. This is a contradiction since
j(κ) > κ. ��

If there exists a measurable cardinal, then there exists a nontrivial elemen-
tary embedding of the universe. Let us show that conversely, if j : V → M is
a nontrivial elementary embedding then there exists a measurable cardinal.

Lemma 17.3. If j is a nontrivial elementary embedding of the universe, then
there exists a measurable cardinal.

Proof. Let j : V → M be a nontrivial embedding. Notice that there exists an
ordinal α such that j(α) �= α; otherwise, we would have rank(jx) = rank(x)
for all x, and then we could prove by induction on rank that j(x) = x for
all x.

Thus let κ be the least ordinal number such that j(κ) �= κ (and hence
j(κ) > κ). It is clear that j(n) = n for all n and j(ω) = ω since 0, n + 1,
and ω are absolute notions and j is elementary. Hence κ > ω. We shall show
that κ is a measurable cardinal.

Let D be the collection of subsets of κ defined as follows:

(17.2) X ∈ D if and only if κ ∈ j(X) (X ⊂ κ).

Since κ < j(κ), i.e., κ ∈ j(κ), we have κ ∈ D; also ∅ /∈ D because j(∅) = ∅.
Using the fact that j(X ∩Y ) = j(X)∩ j(Y ) and that j(X) ⊂ j(Y ) whenever
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X ⊂ Y , we see that D is a filter: If κ ∈ j(X) and κ ∈ j(Y ), then κ ∈ j(X∩Y );
if X ⊂ Y and κ ∈ j(X), then κ ∈ j(Y ). Similarly, j(κ − X) = j(κ) − j(X)
and thus D is an ultrafilter.

D is a nonprincipal ultrafilter: For every α < κ, we have j({α}) =
{j(α)} = {α}, and so κ /∈ j({α}) and we have {α} /∈ D. We shall now
show that D is κ-complete. Let γ < κ and let X = 〈Xα : α < γ〉 be a se-
quence of subsets of κ such that κ ∈ j(Xα) for each α < γ. We shall show
that

⋂
α<γ Xα ∈ D. In M (and thus in V ), j(X ) is a sequence of length j(γ)

of subsets of j(κ); for each α < γ, the j(α)th term of j(X ) is j(Xα). Since
j(α) = α for all α < γ and j(γ) = γ, it follows that j(X ) = 〈j(Xα) : α < γ〉.
Hence if X =

⋂
α<γ Xα, we have j(X) =

⋂
α<γ j(Xα). Now it is clear that

κ ∈ j(X) and hence X ∈ D. ��

The construction of a κ-complete ultrafilter from an elementary embed-
ding yields the following commutative diagram (17.3):

Lemma 17.4. Let j : V → M be a nontrivial elementary embedding, let κ be
the least ordinal moved, and let D be the ultrafilter on κ defined in (17.2). Let
jD : V → Ult be the canonical embedding of V in the ultrapower UltD(V ).
Then there is an elementary embedding k of Ult in M such that k(jD(a)) =
j(a) for all a:

(17.3)

Ult

V M
j

k
jD

�

�

�
�

�
�

�
���

Proof. For each [f ] ∈ Ult, let

(17.4) k([f ]) = (j(f))(κ).

(Here f is a function on κ and j(f) is a function on j(κ).)
We shall first show that definition (17.4) does not depend on the choice

of f representing [f ]. If f =D g, then the set X = {α : f(α) = g(α)} is in D
and hence κ is in the set

j(X) = {α < j(κ) : (jf)(α) = (jg)(α)}.

Therefore (jf)(κ) = (jg)(κ).
Next we show that k is elementary. Let ϕ(x) be a formula and let Ult �

ϕ([f ]); we shall show that M � ϕ(k([f ])). The set X = {α : ϕ(f(α))} is in D
and hence κ belongs to the set

j(X) = {α < j(κ) : M � ϕ((jf)(α))}.

Since (jf)(κ) = k([f ]), we have M � ϕ(k([f ])).
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Finally, we show that k(jD(a)) = j(a) for all a. Since jD(a) = [ca], where
ca is the constant function on κ with value a, we have k(jD(a)) = (j(ca))(κ).
Now j(ca) is the constant function on j(κ) with value j(a) and hence
(j(ca))(κ) = j(a). ��

We remark that the measure D = {X ⊂ κ : κ ∈ j(X)} defined from
an elementary embedding is normal: Let f be a regressive function on some
X ∈ D. Then (jf)(κ) < κ, and if γ = (jf)(κ), then f(α) = γ for almost
all α.

Normality can be expressed in terms of ultrapowers:

Lemma 17.5. Let D be a nonprincipal κ-complete ultrafilter on κ. Then the
following are equivalent :

(i) D is normal.
(ii) In the ultrapower UltD(V ),

κ = [d]

where d is the diagonal function.
(iii) For every X ⊂ κ, X ∈ D if and only if κ ∈ jD(X).

Proof. (i) implies (ii): Every function f ∈∗ d is regressive, and hence repre-
sents an ordinal γ < κ.

(ii) implies (iii): If X ⊂ κ, then X ∈ D if and only if d(α) ∈ X for almost
all α, that is, if and only if [d] ∈ jD(X). If [d] = κ, we get X ∈ D if and only
if κ ∈ jD(X).

(iii) implies (i): If D = {X ⊂ κ : κ ∈ jD(X)} then D is normal, by the
remark preceding the lemma. ��

Let j : V → M be an elementary embedding. If X is a class defined by
a formula ϕ, then j(X) is the class of the model M , defined in M by the same
formula ϕ. Note that j(X) =

⋃
α∈Ord j(X ∩ Vα). In particular, M = j(V ).

Lemma 17.6. Let j be an elementary embedding of the universe and let κ
be the least ordinal moved (i.e., j(κ) > κ). If C is a closed unbounded subset
of κ, then κ ∈ j(C).

Proof. Since j(α) = α for all α < κ, we have j(C) ∩ κ = C. Thus j(C) ∩ κ
is unbounded in κ; and because j(C) is closed (in j(V ) and hence in the
universe), we have κ ∈ j(C). ��

A consequence of Lemma 17.6 is that the set of all regular cardinals below
a measurable cardinal κ is stationary (cf. Lemma 10.21): Let X ⊂ κ be the
set of all regular cardinals below κ. Since κ is regular in M , we have κ ∈ j(X),
and κ ∈ j(X ∩C) for every closed unbounded C ⊂ κ. Hence X is stationary.
Similarly, as κ is Mahlo, it is Mahlo in M , and if X is now the set of all
Mahlo cardinals below κ, it follows that X is stationary.
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More generally, if M(X) denotes the Mahlo operation

(17.5) M(X) = {α : X ∩ α is stationary in α}

where X is any class of ordinals, the above argument shows that if κ ∈ j(X)
then κ ∈ M(X) (Exercise 17.7).

The next theorem shows that there exists no nontrivial elementary em-
bedding of V into V . As the statement “there exists an elementary embedding
of V ” is not expressible in the language of set theory, the theorem needs to be
understood as a theorem in the following modification of ZFC: The language
has, in addition to ∈, a function symbol j, the axioms include Separation and
Replacement Axioms for formulas that contain the symbol j, and axioms that
state that j is an elementary embedding of V .

Theorem 17.7 (Kunen). If j : V → M is a nontrivial elementary embed-
ding, then M �= V .

First we prove the following lemma:

Lemma 17.8. Let λ be an infinite cardinal such that 2λ = λℵ0 . There exists
a function F : λω → λ such that whenever A is a subset of λ of size λ and
γ < λ, there exists some s ∈ Aω such that F (s) = γ.

Proof. Let {(Aα, γα) : α < 2λ} be an enumeration of all pairs (A, γ) where
γ < λ and A is a subset of λ of size λ. We define, by induction on α, a sequence
sα, α < 2λ, of elements of λω as follows: If α < 2λ, then since λℵ0 = 2λ > |α|,
there exists an sα ∈ Aω

α such that sα �= sβ for all β < α.
For each α < 2λ, we define F (sα) = γα (and let F (s) be arbitrary if s is

not one of the sα). The function F has the required property: If A ⊂ λ has
size λ and γ < λ, then (A, γ) = (Aα, γα) for some α, and then γα = F (sα).

��

Proof of Theorem 17.7. Let us assume that j is a nontrivial elementary em-
bedding of V in V . Let κ = κ0 be the least ordinal moved; κ0 is measurable,
and so are κ1 = j(κ0), κ2 = j(κ1), and every κn, where κn+1 = j(κn). Let
λ = limn→∞ κn. Since j(〈κn : n < ω〉) = 〈j(κn) : n < ω〉 = 〈κn+1 : n < ω〉,
we have j(λ) = limn→∞ j(κn) = λ. Let G = {j(α) : α < λ}; we shall use the
set G and Lemma 17.8 to obtain a contradiction.

The cardinal λ is the limit of a sequence of measurable cardinals and hence
is a strong limit cardinal. Since cf λ = ω, we have 2λ = λℵ0 . By Lemma 17.8
there is a function F : λω → λ such that F (Aω) = λ for all A ⊂ λ of size λ.
Since j is elementary, and j(ω) = ω and j(λ) = λ, the function j(F ) has the
same property. Thus, considering the set A = G, there exists s ∈ Gω such
that (jF )(s) = κ.

Now, s is a function, s : ω → G, and hence there is a t : ω → λ such
that s(n) = j(t(n)) for all n < ω. It follows that s = j(t). Thus we have
κ = (jF )(jt) = j(F (t)); in other words, κ = j(α) where α = F (t). However,
this is impossible since j(α) = α for all α < κ, and j(κ) > κ. ��
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Let us now consider ultrapowers and the corresponding elementary em-
beddings jU : V → Ult. To introduce the following lemma, let us observe
that if j : V → M and if κ is the least ordinal moved, then j(x) = x for
every x ∈ Vκ, and j(X) ∩ Vκ = X for every X ⊂ Vκ. Hence V M

κ+1 = Vκ+1

(and PM (κ) = P (κ)).

Lemma 17.9. Let U be a nonprincipal κ-complete ultrafilter on κ, let M =
UltU (V ) and let j = jU be the canonical elementary embedding of V in M .

(i) Mκ ⊂ M , i.e., every κ-sequence 〈aα : α < κ〉 of elements of M is
itself a member of M .

(ii) U /∈ M .
(iii) 2κ ≤ (2κ)M < j(κ) < (2κ)+.
(iv) If λ is a limit ordinal and if cf λ = κ, then j(λ) > limα→λ j(α); if

cf λ �= κ, then j(λ) = limα→λ j(α).
(v) If λ > κ is a strong limit cardinal and cf λ �= κ, then j(λ) = λ.

Proof. (i) Let 〈aξ : ξ < κ〉 be a κ-sequence of elements of M . For each
ξ < κ, let gξ be a function that represents aξ, and let h be a function that
represents κ:

[gξ] = aξ, [h] = κ.

We shall construct a function F such that [F ] = 〈aξ : ξ < κ〉. We let, for each
α < κ,

F (α) = 〈gξ : ξ < h(α)〉.

Since for each α, F (α) is an h(α)-sequence, [F ] is a κ-sequence. Let ξ < κ; we
want to show that the ξth term of [F ] is aξ. Since [h] > ξ, we have ξ < h(α)
for almost all α; and for each α such that ξ < h(α), the ξth term of F (α)
is gξ(α). But [cξ] = ξ and [gξ] = aξ, and we are done.

(ii) Assume that U ∈ M , and let us consider the mapping e of κκ onto j(κ)
defined by e(f) = [f ]. Since κκ ∈ M and U ∈ M , the mapping e is in M .
It follows that M � |j(κ)| ≤ 2κ. This is a contradiction since κ < j(κ) and
j(κ) is inaccessible in M .

(iii) 2κ ≤ (2κ)M holds because PM (κ) = P (κ) and M ⊂ V ; (2κ)M is less
than j(κ) since j(κ) is inaccessible in M ; finally, we have |j(κ)| = 2κ and
hence j(κ) < (2κ)+.

(iv) If cf λ = κ, let λ = limα→κ λα and let f(α) = λα for all α < κ.
Then [f ] > j(λα) for all α < κ and [f ] < j(λ). If cf λ > κ, then for every
f : κ → λ there exists α < λ such that [f ] < j(α). If cf λ = γ < κ, let
λ = limν→γ λν ; for every f : κ → λ there exists (by κ-completeness) ν < γ
such that [f ] < j(λν).

(v) For every α < λ, the ordinals below α are represented by functions
f : κ → α; hence |j(α)| ≤ |ακ| < λ; by (iv) we have j(λ) = limα→λ j(α) = λ.

��
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Note that in (v) it suffices to assume that cf λ �= κ and ακ < λ for all
cardinals α < λ.

Let us recall (Lemma 10.18) that a measurable cardinal is weakly com-
pact. We now prove a stronger result:

Theorem 17.10. Every measurable cardinal κ is weakly compact and if D is
a normal measure on κ then the set {α < κ : α is weakly compact} is in D.

Proof. The first statement was proved in Lemma 10.18. Let D be a normal
measure on κ, and let jD : V → M be the canonical embedding. Since
PM (κ) = P (κ), it follows that κ is weakly compact in M , and since [d]D = κ,
we have {α : α is weakly compact} ∈ D. ��

The following two results show that the existence of measurable cardinals
influences cardinal arithmetic:

Lemma 17.11. Let κ be a measurable cardinal. If 2κ > κ+, then the set
{α < κ : 2α > α+} has measure one for every normal measure on κ.

Consequently, if 2α = α+ for all cardinals α < κ, then 2κ = κ+.

Proof. Let D be a normal measure on κ, and let M = UltD(V ). If 2α = α+

for almost all α, then, since [d]D = κ, we have M � 2κ = κ+. In other words,
there is a one-to-one mapping in M between PM (κ) and (κ+)M . However,
PM (κ) = P (κ) and (κ+)M = κ+ (because PM (κ) = P (κ)), and so 2κ = κ+.

��

Lemma 17.12. Let κ be a measurable cardinal, let D be a normal measure
on κ and let j : V → M be the corresponding elementary embedding. Let
λ > κ be a strong limit cardinal of cofinality κ. Then 2λ < j(λ).

Proof. Since cf λ = κ, we have j(λ) > λ. We shall show that 2λ = λκ ≤
(λκ)M ≤ (λj(κ))M < j(λ). The first equality holds because λ is strong limit.
We have λκ ≤ (λκ)M because every function f : κ → λ is in M . As for the
last inequality, we have

M � j(λ) is a strong limit cardinal

and since λ < j(λ) and j(κ) < j(λ), we have M � λj(κ) < j(λ). ��

See Exercises 17.12–17.16.

Weak Compactness

We shall investigate weakly compact cardinals in some detail, and give a char-
acterization of weakly compact cardinals that explains the name “weakly
compact.” This aspect of weakly compact cardinals has, as many other large
cardinal properties, motivation in model theory.
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We shall consider infinitary languages which are generalizations of the
ordinary first order language. Let κ be an infinite cardinal number. The
language Lκ,ω consists of

(i) κ variables;
(ii) various relation, function, and constant symbols;
(iii) logical connectives and infinitary connectives

∨
ξ<α ϕξ,

∧
ξ<α ϕξ for

α < κ (infinite disjunction and conjunction);
(iv) quantifiers ∃v, ∀v.

The language Lκ,κ is like Lκ,ω except that it also contains infinitary quanti-
fiers:

(v) ∃ξ<αvξ, ∀ξ<αvξ for α < κ.

The interpretation of the infinitary symbols of Lκ,κ is the obvious generaliza-
tion of the finitary case where

∨
ξ<n ϕξ is ϕ0 ∨ . . .∨ ϕn−1, ∃ξ<nvξ stands for

∃v0 . . .∃vn−1, etc. The language Lω,ω is just the language of the first order
predicate calculus.

The finitary language Lω,ω satisfies the Compactness Theorem: If Σ is
a set of sentences such that every finite S ⊂ Σ has a model, then Σ has
a model. Let us say that the language Lκ,κ (or Lκ,ω) satisfies the Weak
Compactness Theorem if whenever Σ is a set of sentences of Lκ,κ (Lκ,ω) such
that |Σ| ≤ κ and that every S ⊂ Σ with |S| < κ has a model, then Σ has
a model. Clearly, if Lκ,κ satisfies the Weak Compactness Theorem, then so
does Lκ,ω because Lκ,ω ⊂ Lκ,κ.

Theorem 17.13.

(i) If κ is a weakly compact cardinal, then the language Lκ,κ satisfies the
Weak Compactness Theorem.

(ii) If κ is an inaccessible cardinal and if Lκ,ω satisfies the Weak Com-
pactness Theorem, then κ is weakly compact.

Proof. (i) The proof of the Weak Compactness Theorem for Lκ,κ is very much
like the standard proof of the Compactness Theorem for Lω,ω. Let Σ be a set
of sentences of Lκ,κ of size κ such that if S ⊂ Σ and |S| < κ, then S has
a model. Let us assume that the language L = Lκ,κ has only the symbols
that occur in Σ; thus |L| = κ.

First we extend the language as follows: For each formula ϕ with free
variables vξ, ξ < α, we introduce new constant symbols cϕ

ξ , ξ < α (Skolem
constants); let L(1) be the extended language. Then we do the same for each
formula of L(1) and obtain L(2) ⊃ L(1). We do the same for each n < ω, and
then let L∗ =

⋃∞
n=1 L(n). Since κ is inaccessible, it follows that |L∗| = κ.

L∗ has the property that for each formula ϕ with free variables vξ, ξ < α,
there are in L∗ constant symbols cϕ

ξ , ξ < α (which do not occur in ϕ).
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For each ϕ(vξ, . . .)ξ<α let σϕ be the sentence (a Skolem sentence)

(17.6) ∃ξ<αvξ ϕ(vξ , . . .)ξ<α → ϕ(cϕ
ξ , . . .)ξ<α

and let Σ∗ = Σ ∪ {σϕ : ϕ is a formula of L∗}.
Note that if S ⊂ Σ∗ and |S| < κ, then S has a model: Take a model for

S∩Σ (for L) and then expand it to a model for L∗ by interpreting the Skolem
constants so that each sentence (17.6) is true.

Let {σα : α < κ} be an enumeration of all the sentences in L∗. Let (T,⊂)
be the binary κ-tree consisting of all t : γ → {0, 1}, γ < κ, for which there
exists a model A of Σ ∩ {σα : α ∈ dom(t)} such that for all α ∈ dom(t)

t(α) = 1 if and only if A � σα.

Since κ has the tree property, there exists a branch B in T of length κ. Let

∆ = {σα : t(α) = 1 for some t ∈ B}.

Clearly, Σ∗ ⊂ ∆. Let A0 be the set of all constant terms of L∗, and let ≈ be
the equivalence relation on A0 defined by

τ1 ≈ τ2 if and only if (τ1 ≈ τ2) ∈ ∆,

and let A = A0/≈.
We make A into a model A for L∗ as follows:

A � P [[τ1], . . . , [tn]] if and only if P (τ1, . . . , τn) ∈ ∆

and similarly for function and constant symbols. The proof is then completed
by showing that A is a model for ∆ (and hence for Σ). The proof of

(17.7) A � σ if and only if σ ∈ ∆

is done by induction on the number of quantifier blocks in σ: If σ =
∃ξ<αvξ ϕ(vξ, . . .), then by induction hypothesis we have

A � σ(cϕ
ξ , . . .)ξ<α if and only if σ(cϕ

ξ , . . .)ξ<α ∈ ∆

and (17.7) follows.
(ii) Let κ be inaccessible and assume that the language Lκ,ω satisfies the

Weak Compactness Theorem. We shall show that κ has the tree property.
Let (T, <) be a tree of height κ such that each level of T has size < κ.
Let us consider the Lκ,ω language with one unary predicate B and constant
symbols cx for all x ∈ T . Let Σ be the following set of sentences:

¬(B(cx) ∧ B(cy)) for all x, y ∈ T that are incomparable,∨
x∈Uα

B(cx) for all α < κ, where Uα is the αth level of T

(Σ says that B is branch in T of length κ). If S ⊂ Σ and |S| < κ, then we
get a model for S by taking a sufficiently large initial segment of T and some
branch in this segment. By the Weak Compactness Theorem for Lκ,ω, Σ has
a model, which obviously yields a branch of length κ. ��
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Indescribability

Let n > 0 be a natural number and let us consider the nth order predicate
calculus. There are variables of orders 1, 2, . . . , n, and the quantifiers are
applied to variables of all orders. An nth order formula contains, in addition
to first order symbols and higher order quantifiers, predicates X(z) where
X and z are variables of order k + 1 and k respectively (for any k < n).
Satisfaction for an nth order formula in a model A = (A, P, . . . , f, . . . , c, . . .)
is defined as follows: Variables of first order are interpreted as elements of
the set A, variables of second order as elements of P (A) (as subsets of A),
etc.; variables of order n are interpreted as elements of Pn−1(A). The predi-
cate X(z) is interpreted as z ∈ X . A Πn

m formula is a formula of order n + 1
of the form

(17.8) ∀X ∃Y . . .︸ ︷︷ ︸
m quantifiers

ψ

where X , Y , . . . are (n + 1)th order variables and ψ is such that all quantified
variables are of order at most n. Similarly, a Σn

m formula is as in (17.8), but
with ∃ and ∀ interchanged.

We shall often exhibit a sentence σ and claim that it is Πn
m (or Σn

m)
although it is only equivalent to a Πn

m (or Σn
m) sentence, in the following

sense: We are considering a specific type of models in which σ is interpreted
(e.g., the models (Vα,∈)) and there is a Πn

m (or Σn
m) sentence σ such that

the equivalence σ ↔ σ holds in all these models.
Note that every first order formula is equivalent to some Π0

n formula (and
also to some Σ0

k formula).

Definition 17.14. A cardinal κ is Πn
m-indescribable if whenever U ⊂ Vκ

and σ is a Πn
m sentence such that (Vκ,∈, U) � σ, then for some α < κ,

(Vα,∈, U ∩ Vα) � σ.

Lemma 17.15. Every measurable cardinal is Π2
1-indescribable.

Proof. Let κ be a measurable cardinal, let U ⊂ Vκ and let σ be a Π2
1 sentence

of the (third order) language {∈, U}. Let us assume that (Vκ,∈, U) � σ.
We have σ = ∀X ϕ(X) where X is a third order variable and ϕ(X) con-

tains only second and first order quantifiers. Thus

(17.9) ∀X ⊂ Vκ+1 (Vκ+1,∈, X, Vκ, U) � ϕ̃

where ϕ̃ is the (first order) sentence obtained from ϕ by replacing the first
order quantifiers by the restricted quantifiers ∀x ∈ Vκ and ∃x ∈ Vκ.

Now let D be a normal measure on κ and let M = UltD(V ). Since
V M

κ+1 = Vκ+1, we know that (17.9) holds also in M . Using the fact that Vκ is
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represented in the ultrapower by the function α �→ Vα, Vκ+1 by α �→ Vα+1,
and U by α �→ U ∩ Vα, we conclude that for almost all α,

(17.10) ∀X ⊂ Vα+1 (Vα+1,∈, X, Vα, U ∩ Vα) � ϕ̃.

Then, translating (17.10) back into the third order language, we obtain

(Vα,∈, U ∩ Vα) � σ

for almost all, and hence for some, α < κ. ��

Lemma 17.16. If κ is not inaccessible, then it is describable by a first order
sentence, i.e., Π0

m-describable for some m.

Proof. Let κ be a singular cardinal, and let f be a function with dom(f) =
λ < κ and ran(f) cofinal in κ. Let U1 = f and U2 = {λ}, and let σ be
the first order sentence saying that U2 is nonempty and that the unique
element of U2 is the domain of U1. Clearly, κ is describable in the sense that
(Vκ,∈, U1, U2) � σ and there is no α < κ such that (Vα,∈, U1 ∩ Vα, U2 ∩ Vα) �
σ. It is routine to find a single U ⊂ Vκ and an (∈, U)-sentence σ̃ attesting to
the describability of κ.

If κ ≤ 2λ for some λ < κ, there is a function f that maps P (λ) onto κ.
We let U1 = f and U2 = {P (λ)}; then κ is described by the same sentence
as above.

Finally, κ = ω is describable as follows: (Vκ,∈) � ∀x∃y x ∈ y. ��

The converse is also true; cf. Exercise 17.23.
We shall now present a result of Hanf and Scott that shows that Π1

1-
indescribable cardinals are exactly the weakly compact cardinals. First we
need a lemma.

Lemma 17.17. If κ is a weakly compact cardinal, then for every U ⊂ Vκ,
the model (Vκ,∈, U) has a transitive elementary extension (M,∈, U ′) such
that κ ∈ M .

Proof. Let Σ be the set of all Lκ,κ sentences true in the model (Vκ,∈, U, x)x∈Vκ

plus the sentences
c is an ordinal,

c > α, (all α < κ).

Clearly |Σ| = κ, and if S ⊂ Σ is such that |S| < κ, then S has a model
(namely Vκ, where the constant c can be interpreted as some ordinal greater
than all the α’s mentioned in S).

Hence Σ has a model A = (A, E, UA, xA)x∈Vκ ; we may assume that A ⊃
Vκ, E ∩ (Vκ × Vκ) = ∈, UA ∩ Vκ = U , and xA = x for all x ∈ Vκ. Moreover,
Vκ ≺ (A, E, UA) because A satisfies all formulas true in Vκ of all x ∈ Vκ.
If we show that the model (A, E) is well-founded, then the lemma follows.



17. Large Cardinals 297

Here we make use of the expressive power of the infinitary language Lκ,κ: We
consider the sentence

(17.11) ¬∃v0 ∃v1 . . . ∃vn . . .
∧

n∈ω
(vn+1 ∈ vn).

The sentence (17.11) holds in a model A = (A, E) if and only if A is well-
founded. Since Σ contains the sentence (17.11), every model of Σ is well-
founded. ��

The converse is also true; this will follow from the proof of Theorem 17.18.

Theorem 17.18 (Hanf-Scott). A cardinal κ is Π1
1-indescribable if and

only if it is weakly compact.

Proof. First we show that every Π1
1-indescribable cardinal is weakly compact.

If κ is Π1
1-indescribable, then by Lemma 17.16, κ is inaccessible, and it suffices

to show that κ has the tree property. In fact, by the proof of Theorem 17.13(i)
it suffices to consider trees (T, <) consisting of sequences t : γ → {0, 1}, γ < κ.
Let T be such a tree. For every α < κ, the model (Vα,∈, T ∩ Vα) satisfies the
Σ1

1 sentence

(17.12) ∃B (B ⊂ T and B is a branch of unbounded length).

Namely, let B = {t�ξ : ξ < α} where t is any t ∈ T with domain α. Since κ is
Π1

1-indescribable, the sentence (17.12) holds in (Vκ,∈, T ) and hence T has
a branch of length κ.

To show that a weakly compact cardinal is Π1
1-indescribable, we use

Lemma 17.17. Let κ be weakly compact, let U ⊂ Vκ and let σ be a Π1
1 sen-

tence true in (Vκ,∈, U). We have σ = ∀X ϕ(X) where X is a second order
variable and ϕ has only first order quantifiers.

Let (M,∈, U ′) be a transitive elementary extension of (Vκ,∈, U) such that
κ ∈ M . Since

(∀X ⊂ Vκ) (Vκ,∈, U) � ϕ(X)

and V M
κ = Vκ, we have

(M,∈, U ′) � (∀X ⊂ Vκ) (Vκ,∈, U ′ ∩ Vκ) � ϕ(X).

Therefore,

(M,∈, U ′) � ∃α (∀X ⊂ Vα) (Vα,∈, U ′ ∩ Vα) � ϕ(X),

and so
(Vκ,∈, U) � ∃α (∀X ⊂ Vα) (Vα,∈, U ′ ∩ Vα) � ϕ(X).

Hence for some α < κ, (Vα,∈, U ∩ Vα) � σ. ��

Corollary 17.19. Every weakly compact cardinal κ is a Mahlo cardinal, and
the set of Mahlo cardinals below κ is stationary.
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Proof. Let C ⊂ κ be a closed unbounded set. Since κ is inaccessible, (Vκ,∈, C)
satisfies the following Π1

1 sentence:

¬∃F (F is a function from some λ < κ cofinally into κ)

and C is unbounded in κ.

By Π1
1-indescribability, there exists a regular α < κ such that C ∩ α is un-

bounded in α; hence α ∈ C. Thus κ is Mahlo.
Being Mahlo is also expressible by a Π1

1 sentence:

∀X (if X is closed unbounded, then ∃ a regular α in X)

and so the same argument as above shows that there is a stationary set of
Mahlo cardinals below κ. ��

Corollary 17.20. If κ is weakly compact and if S ⊂ κ is stationary, then
there is a regular uncountable λ < κ such that S ∩ λ is stationary in λ.

Proof. “κ is regular” is expressible by a Π1
1 sentence in (Vκ,∈) and so is “κ is

uncountable.” “S is stationary” is Π1
1 in (Vκ,∈, S): For every C, if C is closed

unbounded, then S ∩ C �= ∅. ��

Lemma 17.21. If κ is weakly compact and if A ⊂ κ is such that A ∩ α ∈ L
for every α < κ, then A is constructible.

Proof. Let A ⊂ κ be such that A ∩ α ∈ L for all α < κ. By Lemma 17.17
there is a transitive model (M,∈, A′) $ (Vκ,∈, A) such that κ ∈ M . Consider
the sentence ∀α ∃x (x is constructible and x = A ∩ α) and let α = κ. ��

Unlike measurability, weak compactness is consistent with V = L:

Theorem 17.22. If κ is weakly compact then κ is weakly compact in L.

Proof. In L, let T = (κ, <T ) be a tree of height κ such that each level of T
has size less than κ. If κ is weakly compact then T has a branch B (in the
universe), and by Lemma 17.21, B ∈ L. Hence κ has the tree property in L,
and since κ is inaccessible, it is weakly compact in L. ��

Partitions and Models

Let us consider a model A = (A, PA, . . . , FA, . . . , cA, . . .) of a (not necessarily
countable) language L = {P, . . . , F, . . . , c, . . .}. Let κ be an infinite cardinal
and let us assume that the universe A of the model A contains all ordinals
α < κ, i.e., κ ⊂ A.
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Definition 17.23. A set I ⊂ κ is a set of indiscernibles for the model A if
for every n ∈ ω, and every formula ϕ(v1, . . . , vn),

A � ϕ[α1, . . . , αn] if and only if A � ϕ[β1, . . . , βn]

whenever α1 < . . . < αn and β1 < . . . < βn are two increasing sequences of
elements of I.

Lemma 17.24. Let κ be an infinite cardinal and assume that

κ → (α)<ω
2λ

where α is a limit ordinal and λ is an infinite cardinal. Let L be a language
of size ≤ λ and let A be a model of L such that κ ⊂ A. Then A has a set of
indiscernibles of order-type α.

Proof. Let Φ be the set of all formulas of the language L. We consider
the function F : [κ]<ω → P (Φ) defined as follows: If x ∈ [κ]n and
x = {α1, . . . , αn} where α1 < . . . < αn, then

F (x) = {ϕ(v1, . . . , vn) ∈ Φ : A � ϕ[α1, . . . , αn]}.

The function F is a partition into at most 2λ pieces and thus has a homo-
geneous set I ⊂ κ of order-type α. It is now easy to verify that I is a set of
indiscernibles for A. ��

We shall see later that for a given limit ordinal α, the least κ that satisfies
κ → (α)<ω is inaccessible and satisfies κ → (α)<ω

λ for all λ < κ. Now we shall
prove this for Ramsey cardinals.

Lemma 17.25. If κ → (κ)<ω and if λ < κ is a cardinal, then κ → (κ)<ω
λ .

Proof. Let F : [κ]<ω → λ be a partition into λ < κ pieces. We consider the
following partition G of [κ]<ω into two pieces: If α1 < . . . < αk < αk+1 <
. . . < α2k are elements of κ and if F ({α1, . . . , αk}) = F ({αk+1, . . . , α2k}),
then we let G({α1, . . . , α2k}) = 1; for all other x ∈ [κ]<ω, we let G(x) = 0.

Now, let H ⊂ κ be a homogeneous set for G, |H | = κ. We claim that
for each k and each x ∈ [H ]2k, G(x) = 1: This is because |H | = κ > λ, and
therefore we can find α1 < . . . < αk < αk+1 < . . . < α2k in H such that
F ({α1, . . . , αk}) = F ({αk+1, . . . , α2k}).

It follows that H is homogeneous for F : If α1 < . . . < αn and β1 < . . . <
βn are two sequences in H , we choose a sequence γ1 < . . . < γn in H such
that both αn < γ1 and βn < γ1. Then

G({α1, . . . , αn, γ1, . . . , γn}) = G({β1, . . . , βn, γ1, . . . , γn}) = 1,

and hence

F ({α1, . . . , αn}) = F ({γ1, . . . , γn}) = F ({β1, . . . , βn}). ��
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Corollary 17.26. If κ is a Ramsey cardinal and if A ⊃ κ is a model of
a language of size < κ, then A has a set of indiscernibles of size κ. ��

The combinatorial methods introduced in this section will now be em-
ployed to obtain a result on measurable cardinals considerably stronger than
Scott’s Theorem. It will be shown that if a Ramsey cardinal exists then
V = L fails in a strong way. A more extensive theory will be developed in
Chapter 18.

Let us make a few observations about models with definable Skolem func-
tions. Let A be a model of a language L such that A ⊃ κ and let I ⊂ κ be
a set of indiscernibles for A. Let us assume that the model A has definable
Skolem functions ; i.e., for every formula ϕ(u, v1, . . . , vn), where n ≥ 0, there
exists an n-ary function hϕ in A such that:

(i) hϕ is definable in A, i.e., there is a formula ψ such that

y = hϕ(x1, . . . , xn) if and only if A � ψ[y, x1, . . . , xn]

for all y, x1, . . . , xn ∈ A; and
(ii) hϕ is a Skolem function for ϕ.

Let B ⊂ A be the closure of I under all functions in L and the functions hϕ

for all formulas ϕ. B is an elementary submodel of A, and in fact is the
smallest elementary submodel of A that includes the set I; we call B the
Skolem hull of I and say that I generates B.

We augment the language of A by adding function symbols for all the
Skolem functions hϕ and call Skolem terms the terms built from variables and
constant symbols (0-ary functions) by applications of functions in L and the
Skolem functions. Since B is an elementary submodel of A, the interpretation
of each Skolem term t is the same in B as in A. For every element x ∈ B
there is a Skolem term t and indiscernibles γ1 < . . . < γn, elements of I,
such that x = tA[γ1, . . . , γn] = tB[γ1, . . . , γn]. Now if ψ is a formula of the
augmented language, i.e., if ψ also contains the Skolem terms, it still does not
distinguish between the indiscernibles: If α1 < . . . < αn and β1 < . . . < βn

are two sequences in I, then ψ(α1, . . . , αn) holds (either in A or in B) if and
only if ψ(β1, . . . , βn) holds.

Theorem 17.27 (Rowbottom). If κ is a Ramsey cardinal, then the set of
all constructible reals is countable. More generally, if λ is an infinite cardinal
less than κ, then |P L(λ)| = λ.

Proof. Let κ be a Ramsey cardinal and let λ < κ. Since κ is inaccessible, we
have P L(λ) ⊂ Lκ. Consider the model

A = (Lκ,∈, PL(λ), α)α≤λ.

A is a model of the language L = {∈, Q, cα}α≤λ where Q is a one-place
predicate (interpreted in A as P (λ)∩L) and cα, α ≤ λ, are constant symbols
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(interpreted as ordinals less than or equal to λ). Since κ is Ramsey, there
exists a set I of size κ of indiscernibles for A.

The model A has definable Skolem functions: Since κ is inaccessible, Lκ is
a model of ZFC + V = L and therefore has a definable well-ordering. Thus
let B ⊂ Lκ be the elementary submodel of A generated by the set I. Every
element x ∈ B is expressible as x = t(γ1, . . . , γn) where t is a Skolem term
and γ1 < . . . < γn are elements of I.

We shall now show that the set S = PL(λ) ∩ B has at most λ elements.
Since S is the interpretation in B of the one-place predicate Q, it suffices to
show that there are at most λ elements x ∈ B such that B � Q(x).

Let t be a Skolem term. Let us consider the truth value of the formula

(17.13) t(α1, . . . , αn) = t(β1, . . . , βn)

for a sequence of indiscernibles α1 < . . . < αn < β1 < . . . < βn. The
formula (17.13) is either true for all increasing sequences in I or false for
all increasing sequences in I. If (17.13) is true, then it is true for any two
sequences α1 < . . . < αn, β1 < . . . < βn, in I: Pick γ1, . . . , γn bigger than
both αn and βn and then t(α1, . . . , αn) = t(γ1, . . . , γn) = t(β1, . . . , βn). If
(17.13) is false, then we choose κ increasing sequences

α0
1 < . . . < α0

n < α1
1 < . . . < α1

n < . . . < αξ
1 < . . . < αξ

n < . . . (ξ < κ)

in I and then t(αξ
1, . . . , α

ξ
n) �= t(αη

1 , . . . , αη
n) whenever ξ �= η. In conclusion,

the set

(17.14) {t(α1, . . . , αn) : α1 < . . . < αn are in I}

has either one or κ elements.
Now we apply this to evaluate the size of the set S. We know that |S| < κ

because S ⊂ P L(λ) ⊂ P (λ) and κ is inaccessible. If t is a Skolem term
for which the set (17.14) has size κ, then t(α1, . . . , αn) is not in S, for any
α1 < . . . < αn in I; by indiscernibility, Q(t(α1, . . . , αn)) is true or false
simultaneously for all increasing sequences in I. Thus if t(α1, . . . , αn) ∈ S,
the set (17.14) has only one element.

However, since |L| ≤ λ, there are at most λ Skolem terms. And since every
x ∈ B has the form t(α1, . . . , αn) for some Skolem term and α1 < . . . < αn

in I, it follows that |S| ≤ λ.
Thus we have proved that S = QB = PL(λ)∩B has at most λ elements.

Now B ≺ Lκ and |B| = κ; hence the transitive collapse of B is Lκ and we
have an isomorphism

π : B � Lκ.

Since each α ≤ λ has a name in A, we have λ ∪ {λ} ⊂ B and so π(X) = X
for each X ⊂ λ in B. In particular π(X) = X for all X ∈ S; and since
Qπ(B) = π(S) = S, we have

S = P L(λ) ∩ π(B) = P L(λ) ∩ Lκ = PL(λ).
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This completes the proof: On the one hand, we proved that |S| ≤ λ; and on
the other hand, |P L(λ)| ≥ λ; thus |P L(λ)| = λ. ��

Every Ramsey cardinal is weakly compact. Not only is the least Ramsey
cardinal greater than the least weakly compact but, as we show below, there
is a hierarchy of large cardinals below each Ramsey cardinal, exceeding the
least weakly compact.

Definition 17.28. For every limit ordinal α, the Erdős cardinal ηα is the
least κ such that κ → (α)<ω .

We shall prove that each ηα, if it exists, is inaccessible, and if α < β then
ηα < ηβ . Note that κ is a Ramsey cardinal if and only if κ = ηκ.

Lemma 17.29. If κ → (α)<ω, then κ → (α)<ω
2ℵ0 .

Proof. Let f be a partition, f : [κ]<ω → {0, 1}ω. For each n < ω, let fn =
f�[κ]n, and for each κ < ω, let fn,k : [κ]n → {0, 1} be as follows:

fn,k({α1, . . . , αn}) = h(k), where h = fn({α1, . . . , αn}).

Let π be a one-to-one correspondence between ω and ω × ω such that if
π(m) = (n, k), then m ≥ n; for each m, let gm : [κ]m → {0, 1} be the
partition defined by

gm({α1, . . . , αm}) = fn,k({α1, . . . , αn})

where (n, k) = π(m).
By the assumption, there exists H ⊂ κ of order-type α which is homo-

geneous for all gm. We claim that H is homogeneous for f . If not, then
fn({α1, . . . , αn}) �= fn({β1, . . . , βn}) for some α’s and β’s in H . Then for
some k, fn,k({α1, . . . , αn}) �= fn,k({β1, . . . , βn}), contrary to the assumption
that H is homogeneous for gm, where π(m) = (n, k). ��

Lemma 17.30. For every κ < ηα, ηα → (α)<ω
κ .

Proof. Let κ < ηα, and let f : [ηα]<ω → κ. We wish to find a homogeneous
set for f of order-type α. Since κ < ηα, there exists g : [κ]<ω → {0, 1} that
has no homogeneous set of order-type α. For each n, let fn = f�[ηα]n and
gn = g�[κ]n, and let A be the model (Vηα ,∈, fn, gn)n=0,1,....

By Lemmas 17.29 and 17.24, the model A has a set of indiscernibles H of
order-type α. We shall show that H is homogeneous for f . It suffices to show
that for each n, the formula

(17.15) fn({α1, . . . , αn}) = fn({β1, . . . , βn})

holds in A for any increasing sequence α1 < . . . < αn < β1 < . . . < βn

of indiscernibles: Then if α1 < . . . < αn and α′
1 < . . . < α′

n are arbitrary
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in H , we choose β1 < . . . < βn in H such that αn < β1 and α′
n < β1, and

fn({α1, . . . , αn}) = fn({α′
1, . . . , α

′
n}) follows from (17.15).

Thus let us assume that the negation of (17.15) holds for any α1 < . . . <
αn < β1 < . . . < βn in H . Let uξ, ξ < α, be increasing n-sequences in H such
that the last element of uξ is less than the first element of uη whenever ξ < η.
Let γξ = f(uξ) for all ξ < α, and let G = {γξ : ξ < α}. By indiscernibility,
and since γ0 > γ1 > . . . > γξ > . . . is impossible, we have γ0 < γ1 < . . . <
γξ < . . ..

We shall reach a contradiction by showing that G is homogeneous for g.
For each k, consider the formula

(17.16) g({f(uξ1), . . . , f(uξk
)}) = g({f(uν1), . . . , f(uνk

)}).

By indiscernibility, either (17.16) or its negation holds for all increasing se-
quences ξ1 < . . . < ξk < ν1 < . . . < νk. The inequality cannot hold because
g takes only two values, 0 and 1, and three sequences 〈ξ1, . . . , ξk〉 would give
three different values. Thus (17.16) holds, and the same argument as earlier
in this proof shows that g is constant on [G]k. ��

Theorem 17.31. Every Erdős cardinal ηα is inaccessible, and if α < β then
ηα < ηβ.

Proof. First we claim that ηα is a strong limit cardinal. If κ < ηα then
because 2κ �→ (α)2κ (by Lemma 9.3) and ηα → (α)2κ, we have 2κ < ηα. We
shall show that ηα is regular.

Let us assume that ηα is singular and that κ = cf ηα; let ηα = limν→κ λν .
For each ν < κ, let fν : [λν ]<ω → {0, 1} be such that fν has no homoge-
neous set of order-type α. For each n, let fν

n = fν�[λν ]n; let A be the model
(Vηα ,∈, λν , fν

n)ν<κ,n=0,1,... Since ηα is a strong limit and κ < ηα, the model A
has a set of indiscernibles H of order-type α.

Let ν be such that λν is greater than the least element of H . Then by
indiscernibility, all elements of H are smaller than λν . Since the function fν

takes only two values, it follows that for each n, it is the equality

fν
n({α1, . . . , αn}) = fν

n({β1, . . . , βn})

that holds for all increasing sequences α1 < . . . < αn < β1 < . . . < βn

in H , and not its negation. Hence H is homogeneous for fν , contrary to the
assumption on fν .

Finally, let α < β be limit ordinals, and let us assume that ηα = ηβ .
For each ξ < ηα, there exists a function fξ : [ξ]<ω → {0, 1} that has no
homogeneous subset of ξ of order-type α. Let us define g : [ηβ ]<ω → {0, 1}
by

g({ξ1, . . . , ξn}) = fξn({ξ1, . . . , ξn−1}).
Now if H is homogeneous for g, then for each ξ ∈ H , H ∩ ξ is homogeneous
for fξ. Hence the order-type of each H ∩ ξ is less than α, and therefore the
order-type of H is at most α, which is less than β. A contradiction. ��
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We shall now show that the least Erdős cardinal ηω is greater than the
least weakly compact cardinal. We use the following lemma, of independent
interest:

Lemma 17.32. Let M and N be transitive models of ZFC and let j : M →
N be a nontrivial elementary embedding; let κ be the least ordinal moved. If
P M (κ) = P N (κ), then κ is a weakly compact cardinal in M .

Proof. We prove a somewhat stronger statement: κ is ineffable in M (see
Exercise 17.26).

Let 〈Aα : α < κ〉 ∈ M be such that Aα ⊂ α for all α. We have j(Aα) = Aα

for all α < κ, and hence j(〈Aα : α < κ〉) = (〈Aα : α < j(κ)〉 (for some Aα,
κ ≤ α < j(κ)). The set Aκ is in M and witnesses ineffability of κ in M . ��

Theorem 17.33. If ηω exists then there exists a weakly compact cardinal
below ηω.

Proof. Let hϕ, ϕ ∈ Form , be Skolem functions for the language {∈} of set
theory, and let us consider the model A = (Vηω ,∈, hA

ϕ)ϕ∈Form where for
each ϕ, hA

ϕ is a Skolem function for ϕ in (Vηω ,∈). The model A has a set of
indiscernibles I of order-type ω. Let B be the closure of I under the Skolem
functions hA

ϕ .
Let us consider some nontrivial order-preserving mapping of H into H .

Using the Skolem functions, we extend this mapping (in the unique way)
to a nontrivial elementary embedding of B into B. Let M be the transitive
set isomorphic to B and let j : M → M be the corresponding nontrivial
elementary embedding.

Since ηω is inaccessible, Vηω is a model of ZFC and thus M is a transitive
model of ZFC. By Lemma 17.32 there exists a weakly compact cardinal in M ,
and therefore in Vηω . ��

The next result shows that the Erdős cardinal ηω is consistent with V = L.
In Chapter 18 we show that the existence of ηω1 implies V �= L.

Theorem 17.34. If κ → (ω)<ω then L � κ → (ω)<ω.

Proof. Let f be a constructible partition f : [κ]<ω → {0, 1}. We claim that
if there is an infinite homogeneous set for f , then there is one in L. Let T
be the set of all finite increasing sequences t = 〈α0, . . . , αn−1〉 in κ such that
for every k ≤ n, f is constant on [{α0, . . . , αn−1}]k, and let us consider the
tree (T,⊃); clearly, T is constructible. We note that an infinite homogeneous
set for f exists if and only if (T,⊃) is not well-founded. However, being well-
founded is an absolute property for models of ZFC; and so if the tree is not
well-founded, then it is not well-founded in L, and the claim follows. ��

Let us consider models of a countable language L, with a distinguished
one-place predicate Q. A model A = (A, QA, . . .) of L has type (κ, λ) if |A| = κ
and |QA| = λ.
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Definition 17.35. A cardinal κ > ℵ1 is a Rowbottom cardinal if for every
uncountable λ < κ, every model of type (κ, λ) has an elementary submodel
of type (κ,ℵ0).

An infinite cardinal is a Jónsson cardinal if every model of size κ has
a proper elementary submodel of size κ.

Every Rowbottom cardinal is a Jónsson cardinal and the following lemma,
a variation on Rowbottom’s Theorem, shows that every Ramsey cardinal is
a Rowbottom cardinal.

Lemma 17.36. Let κ be a Ramsey cardinal, and let λ be an infinite cardinal
less than κ. Let A = (A, . . .) be a model of a language L such that |L| ≤ λ,
and let A ⊃ κ. If P ⊂ A is such that |P | < κ then A has an elementary
submodel B = (B, . . .) such that |B| = κ and |P ∩ B| ≤ λ.

Moreover, if X ⊂ A is of size at most λ, then we can find B such that
X ⊂ B.

Moreover, if κ is a measurable and D is a normal measure on κ, then we
can find B such that B ∩ κ ∈ D.

Proof. First we add to the language L one unary predicate whose interpre-
tation is the set P ; we also add constant symbols for all x ∈ X . Next we find
some Skolem functions hϕ (in (A, . . . , P, x)x∈X) for every formula ϕ, and
extend the language further by adding function symbols for the functions hϕ.

Next we find a set of indiscernibles I ⊂ κ, of size κ, for the expanded
model A′; if κ is measurable and D is a normal measure, we find I ∈ D. We
let B be the elementary submodel of A′ generated by I. As in the proof of
Theorem 17.27, one proves that if |P ∩ B| < κ then |P ∩ B| ≤ λ. ��

In Chapter 18 we show that if there exists a Jónsson cardinal then V �= L.

Exercises

17.1. Let U be a nonprincipal ultrafilter on ω. Then UltU (V ) is not well-founded.
[For each k ∈ ω, let fk be a function on ω such that fk(n) = n−k for all n ≥ k.

Then f0 �∗ f1 �∗ f2 �∗ . . . is a descending ∈∗-sequence in Ult.]

17.2. If U is not σ-complete, then UltU (V ) is not well-founded.
[There exists a countable partition {Xn : n = 0, 1, 2, . . .} of S such that

Xn /∈ U for all n. For each k, let fk be a function on S such that fk(x) = n− k for
all x ∈ Xn.]

17.3. If Ult is well-founded, then every ordinal number α is represented by a func-
tion f : S → Ord .

17.4. If U is a principal ultrafilter {X ∈ S : x0 ∈ S} then [f ] = f(x0) for each f ,
and jU is the identity mapping.
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17.5. Let U be a nonprincipal σ-complete ultrafilter on S and let λ be the largest
cardinal such that U is λ-complete. Then jU (λ) > λ.

[Let {Xα : α < λ} be a partition of S into sets of measure 0; let f be a function
on S such that f(x) = α if x ∈ Xα. Then [f ] ≥ λ.]

17.6. If j is an elementary embedding of the universe into a transitive model M ,
then M =

S

α∈Ord j(Vα).

17.7. Let j be an elementary embedding of the universe and let κ be the least
ordinal moved. If X is a class of ordinals such that κ ∈ j(X), then κ ∈M(X).

17.8. If j : V → M is a nontrivial elementary embedding, if κ is the least ordinal
moved, and if λ = lim{κ, j(κ), j(j(κ)), . . .}, then there exists A ⊂ λ such that
A /∈M .

[Assuming that M contains all bounded subsets of λ, the proof of Theorem 17.7
shows that G /∈M .]

17.9. If κ is measurable, then there exists a normal measure D on κ such that
UltD(V ) � κ is not measurable.

[Let D be a normal measure such that jD(κ) is the least possible ordinal; let
M = UltD(V ). If κ is measurable in M , then there is a normal measure U on κ
such that U ∈ M . Since P (κ) ⊂ M , we have UltU (κ, <) ∈ M . By Lemma 17.9(iii)
we have jU (κ) < ((2κ)+)M . Since ((2κ)+)M < jD(κ), we get a contradiction.]

A function f on κ is monotone if f(α) ≤ f(β) whenever α < β.

17.10. Let U be a nonprincipal κ-complete ultrafilter on κ. Then U extends the
closed unbounded filter if and only if the diagonal function is the least nonconstant
monotone function in UltU .

[If U extends the closed unbounded filter and if f is monotone and regressive
on some X ∈ U , then since X is stationary, f is constant on an unbounded set
and hence constant almost everywhere. If U does not extend the closed unbounded
filter, then f(α) = sup(C ∩α) (where C /∈ U is closed unbounded) is a nonconstant
monotone function regressive on X ∈ U .]

17.11. Let U be a κ-complete ultrafilter on κ, and let h : κ → κ. If D = h∗(U),
then the mapping k : UltD(V ) → UltU (V ) defined by k([f ]D) = [f ◦ h]U is an
elementary embedding.

17.12. If D is a normal measure on κ and {α : 2α ≤ α++} ∈ D, then 2κ ≤ κ++.
More generally, if β < κ and {ℵα : 2ℵα ≤ ℵα+β} ∈ D, then 2ℵκ ≤ ℵκ+β.

[If f is such that f(ℵα) = ℵα+β for all α < κ, then [f ]D = (ℵκ+j(β))
M ≤ ℵκ+β.]

17.13. If D is a normal measure on κ and {α : 2ℵα < ℵα+α} ∈ D, then 2ℵκ < ℵκ+κ.
[If f(α) = ℵα+α, then [f ] = (ℵκ+κ)M .]

17.14. Let κ be measurable and let λ = ℵκ+κ be strong limit. Then 2λ < ℵ(2κ)+ .
[j(λ) = (ℵj(κ+κ))

M ≤ ℵj(κ)+j(κ); j(κ) + j(κ) < (2κ)+.]

17.15. Let κ be measurable, let λ be strong limit, cf λ = κ, such that λ < ℵλ.
Then 2λ < ℵλ.

[If λ = ℵα, then j(λ) = (ℵj(α))
M ≤ ℵj(α), and j(α) < (ακ)+ < λ.]

17.16. Let Φ(α) denote the αth fixed point of ℵ, i.e., the αth ordinal ξ such
that ℵξ = ξ. Let κ be measurable and let λ = Φ(κ + κ) be strong limit. Then
2λ < Φ((2κ)+).

[Use the fact that (Φ(α))M ≤ Φ(α) for all α.]



17. Large Cardinals 307

17.17. If κ = λ+ is a successor cardinal, then the Weak Compactness Theorem
for Lκ,ω is false.

[Consider constants cα, α ≤ κ, a binary relation < and a ternary relation R.
Consider the sentences saying that (a) < is a linear ordering; (b) cα < cβ for α < β;
(c) each fx is a function, where fx(y) = z stands for R(x, y, z). Let Σ consist of these
sentences, the sentence z < x → ∃y R(x, y, z) (saying that ran(fx) ⊃ {z : z < x}),
and the infinitary sentence R(x, y, z)→ W

ξ<λ(y = cξ) (saying that dom(fx) ⊂ {cξ :
ξ < λ}). Show that each S ⊂ Σ, |S| ≤ λ, has a model, but Σ does not.]

17.18. If κ is a singular cardinal, then the Weak Compactness Theorem for Lκ,ω

is false.
[Let A ⊂ κ be a cofinal subset of size < κ. Consider constants cα, α ≤ κ, and

a linear ordering <. There is Σ that says on the one hand that {cα : α ∈ A} is cofinal
in the universe, and on the other hand that for each α < κ, if (∀β < α) cκ > cβ

then cκ > cα; and each S ⊂ Σ, |S| < κ, has a model.]

17.19. If κ is weakly compact and if (B,⊂) is a κ-complete algebra of subsets
of κ such that |B| = κ, then every κ-complete filter F on B can be extended to
a κ-complete ultrafilter on B.

[Consider constants cX for all X ∈ B, and a unary predicate U . Let Σ be the
following set of Lκ,ω-sentences: ¬U(c∅), U(cX ) ∨ U(cκ−X) for all X ∈ B, U(cX)→
U(cY ) for all X ⊂ Y in B, U(cX) for all X ∈ F , and

V

X∈A U(cX)→ U(cT A) for
all A ⊂ B such that |A| < κ. Show that Σ has a model.]

17.20. If κ is inaccessible and if every κ-complete filter on any κ-complete algebra B
of subsets of κ such that |B| = κ can be extended to a κ-complete ultrafilter, then
κ is weakly compact.

[As in Lemma 10.18.]

17.21. If (P, <) is a linearly ordered set of size κ, and κ is weakly compact, then
there is a subset W ⊂ P of size κ that is either well-ordered or conversely well-
ordered by <.

17.22. The least measurable cardinal is Σ2
1-describable.

[∃U (U is κ-complete nonprincipal ultrafilter on κ).]

17.23. Every inaccessible cardinal is Π0
m-indescribable for all m.

[Let U ⊂ Vκ. The model (Vκ,∈, U) has a countable elementary submodel M0.
Let α0 < κ be such that M0 ⊂ Vα0 . For each n, let Mn+1 be an elementary submodel
of (Vκ,∈, U) such that Vαn ⊂ Mn+1, and let Mn+1 ⊂ Vαn+1 . Let α = limn→ω αn;
then Vα is an elementary submodel of (Vκ,∈, U).]

17.24. If κ is weakly compact, then there is no countably generated complete
Boolean algebra B such that |B| = κ.

[Assume that B is such. Note that sat(B) = κ. We may assume that B =
(κ, +, ·,−); let A ⊂ κ be a countable set of generators. Let U1 be the set of all
pairs (u, x) such that u ∈ κ, x ⊂ κ, |x| < κ, and u =

P

x, let U2 = {A}. Let
σ be the conjunction of these sentences: (a) B is a Boolean algebra and B ⊃ A
(first order), (b) ∀x∃u (if x ⊂ κ, then u =

P

x) (first order), and (c) ∀X (if X ⊂ κ
and X is a partition of B, then ∃x (x = X)) (here x is a first order variable; the
sentence (c) is Π1

1). Since (Vκ,∈, U1, U2) satisfies σ, there is some α < κ such
that (Vα,∈, U1 ∩ Vα, U2 ∩ Vα) � σ. Then (α, +, ·,−) is a complete subalgebra of B
containing A.]
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17.25. Let κ be a measurable cardinal. If 〈Aα : α < κ〉 is a sequence of sets such
that Aα ⊂ α for all α < κ, then there exists an A ⊂ κ such that {α ∈ κ : A∩α = Aα}
is stationary.

A cardinal κ with the property from Exercise 17.25 is called ineffable.

17.26. Let κ be ineffable and let f : [κ]2 → {0, 1} be a partition. Then there exists
a stationary homogeneous set. (Hence κ is weakly compact.)

[For each α < κ let Aα = {ξ < α : f({ξ, α}) = 1}, and let A ⊂ κ be such that
S = {α : A ∩ α = Aα} is stationary. Either S ∩ A or S − A is stationary, and is
homogeneous.]

17.27. If κ is ineffable then κ is ineffable in L.
[Use Lemma 17.21.]

17.28. If κ is Ramsey then ℵ1 is inaccessible in L.
[Show that P L[x](ω) is countable for every x ⊂ ω.]

17.29. If M is a transitive model of ZFC and if j : M → M is a nontrivial
elementary embedding, then the least ordinal κ moved by j is Πn

m-indescribable
in M , for all n and m.

[If U ⊂ V M
κ , then U = j(U)∩V M

κ . If σ is a Πn
m sentence and M � ((Vκ,∈, U) �

σ), then M � ((∃α < j(κ)) (Vα,∈, j(U) ∩ Vα) � σ).]

17.30. The cardinal ηω is not weakly compact.
[ηω is Π1

1-describable.]

17.31. An infinite cardinal κ is a Jónsson cardinal if and only if for every F :
[κ]<ω → κ there exists a set H ⊂ κ of size κ such that the image of [H ]<ω under F
is not the whole set κ.

[To show that the condition is necessary, consider the model (κ, <, F1, F2, . . .)
where Fn = F �[κ]n. To show that the condition is sufficient, let A = (κ, . . .) be
a model. Let {hn : n < ω} be a set of Skolem functions for A, closed under
composition and arranged so that each hα is n-ary. For each x ∈ [κ]n, let F (x) =
hn(x). If H ⊂ κ, then the image of [H ]<ω under F is an elementary submodel of A.]

17.32. ℵ0 is not a Jónsson cardinal.
[Let A = (ω, f) where f(n) = n− 1 for all n > 0.]

17.33. If κ is a Rowbottom cardinal, then either κ is weakly inaccessible or
cf κ = ω.

[To show that κ = λ+ is not Rowbottom, let fα be a one-to-one mapping of α
onto λ, for each α, such that λ ≤ α < κ. Let A = (κ, λ, <, R) where R(α, β, γ)
if and only if fα(β) = γ. If (B,B ∩ λ, <, R ∩ B3) ≺ A and |B| = κ, let α be the
λth element of B; then fα(B ∩ α) ⊂ B ∩ λ and hence |B ∩ λ| = λ > ℵ0.

To show that κ is not Rowbottom if κ > cf κ = λ > ℵ0, let f be a nondecreasing
function of κ onto λ and use f to produce a counterexample.]

Historical Notes

In [1963/64] Keisler and Tarski introduced the method of ultraproducts in the
study of measurable cardinals, and it was established that the least measurable
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cardinal is greater than the least inaccessible cardinal. Scott used the method of ul-
trapowers to prove that existence of measurable cardinals contradicts the Axiom of
Constructibility. Rowbottom and Silver initiated applications of infinitary combina-
torics developed by Erdős and his collaborators. Scott’s Theorem appeared in [1961]
and Kunen’s Theorem in [1971a]. (Lemma 17.8 is due to Erdős and Hajnal [1966].)

In [1963/64a] Hanf studied compactness of infinitary languages; his work let to
the systematic study of Keisler and Tarski. Hanf proved that the least inaccessible
cardinal is not measurable (in fact not weakly compact); Erdős and Hajnal then
pointed out (cf. [1962]) that the same result can be proved using infinitary combi-
natorics. Keisler and Tarski introduced the Mahlo operation and showed that the
least measurable cardinal is much greater than, e.g., the least Mahlo cardinal, etc.

The equivalence of various formulations of weak compactness is a result of
several papers. In [1963/64a] Hanf initiated investigations of compactness of in-
finitary languages. Erdős and Tarski listed in [1961] several properties that were
subsequently shown mutually equivalent (for inaccessible cardinals) and proved
several implications. These properties included the partition property κ → (κ)22,
the tree property, and several other properties. Hanf and Scott [1961] introduced
Πn

m-indescribability and announced Theorem 17.18. Further contributions were
made in the papers Hanf [1963/64b], Hajnal [1964], Keisler [1962], Monk and
Scott [1963/64], Tarski [1962], and Keisler and Tarski [1963/64]. A complete list of
equivalent formulations with the proofs appeared in Silver [1971b]. Theorem 17.22
is due to Silver [1971b]. Rowbottom’s Theorem (as well as Lemma 17.36) are due
to Rowbottom [1971].

The main results on Erdős cardinals are due to Rowbottom, Reinhardt, and
Silver. Rowbottom proved that if ηω1 exists, then there are only countably many
constructible reals (see [1971]); Theorem 17.33 is due to Reinhardt and Silver [1965],
and Theorem 17.34 is due to Silver [1970a].

Exercise 17.10: Ketonen [1973].
Ineffable cardinals were introduced by Jensen; Exercises 17.26 and 17.27 are

due to Kunen and Jensen.
Exercise 17.29: Reinhardt and Silver [1965].
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In Chapter 17 we proved that while “smaller” large cardinals (inaccessible,
Mahlo, weakly compact) can exist in L, the “bigger” large cardinals (measur-
able, Ramsey) cannot. In this chapter we isolate and investigate the concept
of 0� (zero-sharp), a great divide in the landscape of large cardinals.

Silver Indiscernibles

Theorem 18.1 (Silver). If there exists a Ramsey cardinal, then:

(i) If κ and λ are uncountable cardinals and κ < λ, then (Lκ,∈) is an
elementary submodel of (Lλ,∈).

(ii) There is a unique closed unbounded class of ordinals I containing all
uncountable cardinals such that for every uncountable cardinal κ:
(a) |I ∩ κ| = κ,
(b) I ∩ κ is a set of indiscernibles for (Lκ,∈), and
(c) every a ∈ Lκ is definable in (Lκ,∈) from I ∩ κ.

The elements of the class I are called Silver indiscernibles. Before giving
the proof of Theorem 18.1 we state some consequences of the existence of
Silver indiscernibles.

By the Reflection Principle, if ϕ is a formula, then there exists an un-
countable cardinal κ such that

(18.1) L � ϕ(x1, . . . , xn) if and only if Lκ � ϕ(x1, . . . , xn)

for all x1, . . . , xn ∈ Lκ. By (i), the right hand side holds in and only if
Lλ � ϕ(x1, . . . , xn) for all cardinals λ ≥ κ. In view of this, we can define
satisfaction in L for all formulas ϕ ∈ Form: If ϕ(v1, . . . , vn) is a formula of
the language L = {∈} and if 〈a1, . . . , an〉 is an n-termed sequence in L, we
define

(18.2) L � ϕ[a1, . . . , an]

as follows: For every uncountable cardinal κ such that a1, . . . , an ∈ Lκ, Lκ �
ϕ[a1, . . . , an].
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Note that this gives us a truth definition for the constructible universe:
T = {#σ : Lℵ1 � σ}. If σ is a sentence, then σL ↔ #σ ∈ T . (Note that the
set T is constructible but not definable in L: Otherwise, T would be a truth
definition in L. Hence the cardinal ℵ1 is not definable in L.)

Moreover, as a consequence of (i) we have (Lκ,∈) ≺ (L,∈) for every
uncountable cardinal κ. As a consequence of (ii) Silver indiscernibles are
indiscernibles for L: If ϕ(v1, . . . , vn) is a formula, then

(18.3) L � ϕ[α1, . . . , αn] if and only if L � ϕ[β1, . . . , βn]

whenever α1 < . . . < αn and β1 < . . . < βn are increasing sequences in I.
Every constructible set is definable from I. If a ∈ L, there exists an increasing
sequence 〈γ1, . . . , γn〉 of Silver indiscernibles and a formula ϕ such that

L � a is the unique x such that ϕ(x, γ1, . . . , γn).

By (18.3), every formula ϕ(v1, . . . , vn) is either true or false in L for any
increasing sequence 〈γ1, . . . , γn〉 of Silver indiscernibles; moreover, the truth
value coincides with the truth value of Lℵω � ϕ[ℵ1, . . . ,ℵn] since Lℵω ≺ L
and ℵ1, . . . , ℵn are Silver indiscernibles. Thus let us define

(18.4) 0� = {ϕ : Lℵω � ϕ[ℵ1, . . . ,ℵn]}

(zero-sharp). Later in this section we shall give another definition of the set 0�.
We shall show that a set 0� satisfying the definition exists if and only if (i)
and (ii) holds, and then 0� is as in (18.4).

Thus the conclusion of Theorem 18.1 is abbreviated as

0� exists.

In the following corollaries we assume that 0� exists.

Corollary 18.2. Every constructible set definable in L is countable.

Proof. If x ∈ L is definable in L by a formula ϕ, then the same formula
defines x in Lℵ1 and hence x ∈ Lℵ1 . ��

In particular, every ordinal number definable in L is countable.
In the following corollary ℵα denotes the αth cardinal in V , not ℵL

α.

Corollary 18.3. Every uncountable cardinal is inaccessible in L.

Proof. Since L � ℵ1 is regular, we have

L � ℵα is regular

for every α ≥ 1. Similarly, L � ℵω is a limit cardinal, and hence

L � ℵα is a limit cardinal

for every α ≥ 1. Thus every uncountable cardinal (and in fact every γ ∈ I)
is an inaccessible cardinal in L. ��
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Corollary 18.4. Every uncountable cardinal is a Mahlo cardinal in L.

Proof. By Corollary 18.3, every Silver indiscernible is an inaccessible cardinal
in L. Since I ∩ω1 is closed unbounded in ω1, ℵ1 is a Mahlo cardinal in L. ��

Corollary 18.5. For every α ≥ ω, |Vα ∩ L| ≤ |α|. In particular, the set of
all constructible reals is countable.

Proof. The set Vα ∩L is definable in L from α. Thus Vα ∩L is also definable
from α in Lκ where κ is the least cardinal > α. Hence Vα∩L ⊂ Lβ for some β
such that |α| = |β|. However, |Lβ| = |β|. ��

Models with Indiscernibles

The proof of Silver’s Theorem is based on a theorem of Ehrenfeucht and
Mostowski in model theory, stating that every infinite model is elementarily
equivalent to a model that has a set of indiscernibles of prescribed order-type.
We shall deal only with models (Lλ,∈) (and models elementarily equivalent
to these); we shall prove below a special case of the Ehrenfeucht-Mostowski
Theorem.

We shall use the canonical well-ordering of L to endow the models (Lλ,∈)
with definable Skolem functions. For each formula ϕ(u, v1, . . . , vn), let hϕ be
the n-ary function defined as follows:

(18.5) hϕ(v1, . . . , vn) =
{

the <L-least u such that ϕ(u, v1, . . . , vn),

∅ otherwise.

We call hϕ, ϕ ∈ Form, the canonical Skolem functions.
For each limit ordinal λ, hLλ

ϕ is an n-ary function on Lλ, the Lλ-interpre-
tation of hϕ, and is definable in (Lλ,∈).

When dealing with models (Lλ,∈) we shall freely use terms and formulas
involving the hϕ since they as definable functions can be eliminated and
the formulas can be replaced by ∈-formulas. For each limit ordinal λ, the
functions hLλ

ϕ , ϕ ∈ Form, are Skolem functions for (Lλ,∈) and so a set
M ⊂ Lλ is an elementary submodel of (Lλ,∈) if and only if M is closed
under the hLλ

ϕ . If X ⊂ Lλ, then the closure of X under the hLλ
ϕ is the smallest

elementary submodel M ≺ Lλ such that X ⊂ M , and is the collection of all
elements of Lλ definable in Lλ from X .

The fact that the well-ordering <λ of Lλ is definable in Lλ uniformly for
all limit ordinals λ (by the same formula) implies the following:

Lemma 18.6. If α and β are limit ordinals and if j : Lα → Lβ is an
elementary embedding of (Lα,∈) in (Lβ ,∈), then for each formula ϕ and all
x1, . . . , xn ∈ Lα,

(18.6) h
Lβ
ϕ (j(x1), . . . , j(xn)) = j(hLα

ϕ (x1, . . . , xn)).
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Hence j remains elementary with respect to the augmented language L∗ =
{∈} ∪ {hϕ : ϕ ∈ Form}. ��

Let λ be a limit ordinal, and let A = (A, E) be a model elementarily
equivalent to (Lλ,∈). The set OrdA of all ordinal numbers of the model A is
linearly ordered by E; let us use x < y rather than x E y for x, y ∈ OrdA.
A set I ⊂ OrdA is a set of indiscernibles for A if for every formula ϕ,

(18.7) A � ϕ[x1, . . . , xn] if and only if A � ϕ[y1, . . . , yn]

whenever x1 < . . . < xn and y1 < . . . < yn are elements of I. Let hA
ϕ denote

the A-interpretation of the canonical Skolem functions (18.5). Given a set
X ⊂ A, let us denote HA(X) the closure of X under all hA

ϕ , ϕ ∈ Form. The
set HA(X) is the Skolem hull of X and is an elementary submodel of A.

If I is a set of indiscernibles for A, let Σ(A, I) be the set of all formulas
ϕ(v1, . . . , vn) true in A for increasing sequences of elements of I:

(18.8) ϕ(v1, . . . , vn) ∈ Σ(A, I) ↔ A � ϕ[x1, . . . , xn] for some x1, . . . , xn ∈ I

such that x1 < . . . < xn.

A set of formulas Σ is called an E.M. set (Ehrenfeucht-Mostowski) if there
exists a model A elementarily equivalent to some Lλ, λ a limit ordinal, and
an infinite set I of indiscernibles for A such that Σ = Σ(A, I).

Lemma 18.7. If Σ is an E.M. set and α an infinite ordinal number, then
there exists a model A and a set of indiscernibles I for A such that :

(i) Σ = Σ(A, I);
(ii) the order-type of I is α;
(iii) A = HA(I).

Moreover, the pair (A, I) is unique up to isomorphism.

Proof. We prove uniqueness first. Let (A, I) and (B, J) be two pairs, each
satisfying (i), (ii), (iii). Since both I and J have order-type α, let π be the
isomorphism between I and J . We shall extend π to an isomorphism between
A and B.

Since A is the Skolem hull of I, there is for each a ∈ A a Skolem
term t(v1, . . . , vn) (a combination of the Skolem functions hϕ) such that
a = tA[x1, . . . , xn] for some x1 < . . . < xn in I; similarly for B, J . Thus
we define

(18.9) π(tA[x1, . . . , xn]) = tB[π(x1), . . . , π(xn)]

for each Skolem term t and all x1, . . . , xn ∈ I such that x1 < . . . < xn. Since
Σ(A, I) = Σ(B, J), we have
(18.10)

tA1 [x1, . . . , xn] = tA2 [y1, . . . , yn] ↔ tB1 [πx1, . . . , πxn] = tB2 [πy1, . . . , πyn],

tA1 [x1, . . . , xn] EA tA2 [y1, . . . , yn] ↔ tB1 [πx1, . . . , πxn] EB tB2 [πy1, . . . , πyn]
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for any terms t1, t2 and indiscernibles x, y: Let z1, . . . , zn+m be the enumera-
tion of the set {x1, . . . , xn, y1, . . . , ym} in increasing order. Then the equality
in (18.10) holds (simultaneously in A and B) just in case ϕ(v1, . . . , vn+m) ∈
Σ where ϕ(z1, . . . , zn+m) is the formula that says that t1[x1, . . . , xn] =
t2[y1, . . . , yn]. Hence π is well-defined by (18.9) and is an isomorphism be-
tween A and B extending the order-isomorphism of I and J .

To prove the existence of a model with indiscernibles with properties (i),
(ii), and (iii), we use the Compactness Theorem. Since Σ is an E.M. set, there
exists (A0, I0) such that Σ = Σ(A0, I0). Let us extend the language {∈} by
adding α constant symbols cξ, ξ < α. Let ∆ be the following set of sentences:

(18.11) cξ is an ordinal (all ξ < α),

cξ < cη (all ξ, η such that ξ < η < α),

ϕ(cξ1 , . . . , cξn) (all ϕ ∈ Σ and all ξ1 < . . . < ξn < α).

We shall show that every finite subset of ∆ has a model. Let D ⊂ ∆ be
finite. There exist ξ1 < . . . < ξk such that cξ1 , . . . , cξk

are the only constants
mentioned in D. Let σ(cξ1 , . . . , cξk

) be the sentence that is the conjunction
of all sentences in D.

Since I0 is infinite, there are i1, . . . , ik ∈ I0 such that i1 < . . . < ik. Let
us take the model A0 and expand it by interpreting the constant symbols
cξ1 , . . . , cξk

as i1, . . . , ik. Since Σ = Σ(A0, I0) and D ⊂ ∆, it is clear that
A0 � σ[i1, . . . , ik] and hence the expansion (A0, i1, . . . , ik) is a model of σ,
hence of D.

By the Compactness Theorem, the set ∆ has a model M = (M, E, cM
ξ )ξ<α.

Let I = {cM
ξ : ξ < α}. I is a set of ordinals of M and has order-type α.

It is clear that if ϕ(v1, . . . , vn) is an ∈-formula and ξ1 < . . . < ξn, then
(M, E) � ϕ[cM

ξ1
, . . . , cM

ξn
] if and only if ϕ ∈ Σ. Thus I is a set of indiscernibles

for (M, E). Now we let A be the Skolem hull of I in (M, E). Since A = (A, E)
is an elementary submodel of (M, E), it follows that I is a set of indiscernibles
for A, Σ(A, I) = Σ, and that HA(I) = H(M,E)(I) = A. Hence (A, I) satisfies
(i), (ii), and (iii). ��

For each E.M. set Σ and each ordinal α, let us call the (Σ, α)-model the
unique pair (A, I) given by Lemma 18.7. The uniqueness proof of Lemma 18.7
easily extends to give the following:

Lemma 18.8. Let Σ be an E.M. set, let α ≤ β, and let j : α → β be
order-preserving. Then j can be extended to an elementary embedding of the
(Σ, α)-model into the (Σ, β)-model.

Proof. Extend j as in (18.9). ��
We shall eventually show that the existence of Ramsey cardinal implies

the existence of an E.M. set Σ having a certain syntactical property (remark-
ability) and such that every (Σ, α)-model is well-founded. Let us investigate
well-foundedness first.
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Lemma 18.9. The following are equivalent, for an E.M. set Σ:

(i) For every ordinal α, the (Σ, α)-model is well-founded.
(ii) For some ordinal α ≥ ω1, the (Σ, α)-model is well-founded.
(iii) For every ordinal α < ω1, the (Σ, α)-model is well-founded.

Proof. (i) → (ii) is trivial.
(ii) → (iii): If (A, I) is the (Σ, α)-model and if β ≤ α, let J be the initial

segment of the first β elements of I; let B = HA(J). Clearly, (B, J) is the
(Σ, β)-model. Since a submodel of a well-founded model is well-founded, it
follows that if β ≤ α and the (Σ, α)-model is well-founded, then the (Σ, β)-
model is also well-founded, and thus (ii) implies (iii).

(iii) → (i): Let us assume that there is a limit ordinal α such that the
(Σ, α)-model is not well-founded; let (A, I) be the model. There is an infinite
sequence a0, a1, a2, . . . in A such that a1 E a2, a2 E a1, etc. Each an is
definable from I; that is, for each n there is a Skolem term tn such that an =
tAn [x1, . . . , xkn ] for some x1, . . . , xkn ∈ I. Therefore there is a countable subset
I0 of I such that an ∈ HA(I0) for all n ∈ ω. The order-type of I0 is a countable
ordinal β and (HA(I0), I0) is the (Σ, β)-model. This model is clearly non-
well-founded since it contains all the an. Hence for some countable β, the
(Σ, β)-model is not well-founded. ��

We shall now define remarkability. We consider only (Σ, α)-models where
α is an infinite limit ordinal.

Let us say that a (Σ, α)-model (A, I) is unbounded if the set I is un-
bounded in the ordinals of A, that is, if for every x ∈ OrdA there is y ∈ I
such that x < y.

Lemma 18.10. The following are equivalent, for any E.M. set Σ:

(i) For all α, (Σ, α) is unbounded.
(ii) For some α, (Σ, α) is unbounded.
(iii) For every Skolem term t(v1, . . . , vn) the set Σ contains the formula

(18.12) if t(v1, . . . , vn) is an ordinal, then t(v1, . . . , vn) < vn+1.

Proof. (i) → (ii) is trivial.
(ii) → (iii): Let (A, I) be a (Σ, α)-model, where α is a limit ordinal,

and assume that I is unbounded in OrdA. To prove (iii), it suffices to show
that for any term t, (18.12) is true in A for some increasing sequence x1 <
. . . < xn+1 in I. Let t be a Skolem term. Let us choose x1 < . . . < xn ∈ I
and let y = tA[x1, . . . , xn]. If y /∈ OrdA, then (18.12) is vacuously true; if
y ∈ OrdA, then there exists xn+1 ∈ I such that y < xn+1, and we have
A � t[x1, . . . , xn] < xn+1.

(iii) → (i): Let (A, I) be a (Σ, α)-model, where α is a limit ordinal, and
assume (iii). To prove that I is unbounded in OrdA, let y ∈ OrdA. There exist
a Skolem term t and x1 < . . . < xn ∈ I such that y = tA[x1, . . . , xn]. Now if
xn+1 is any element of I greater than xn, (iii) implies that y < xn+1. ��
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Thus we say that an E.M. set Σ is unbounded if it contains the formu-
las (18.12) for all Skolem terms t.

Let α be a limit ordinal, α > ω, and let (A, I) be the (Σ, α)-model.
For each ξ < α, let iξ denote the ξth element of I. We say that (A, I) is
remarkable if it is unbounded and if every ordinal x of A less than iω is in
HA({in : n ∈ ω}).

Lemma 18.11. The following are equivalent for any unbounded E.M. set Σ:

(i) For all α > ω, the (Σ, α)-model is remarkable.
(ii) For some α > ω, the (Σ, α)-model is remarkable.
(iii) For every Skolem term t(x1, . . . , xm, y1, . . . , yn), the set Σ contains the

formula

(18.13) if t(x1, . . . , xm, y1, . . . , yn) is an ordinal smaller than y1, then
t(x1, . . . , xm, y1, . . . , yn) = t(x1, . . . , xm, z1, . . . , zn).

Moreover, if (A, I) is a remarkable (Σ, α)-model and γ < α is a limit ordinal,
then every ordinal x of A less than iγ is in HA({iξ : ξ < γ}).

Proof. (i) → (ii) is trivial.
(ii) → (iii): Let α > ω be a limit ordinal and let (A, I) be a remarkable

(Σ, α)-model. To prove (iii), it suffices to show that for any t, (18.13) is
true in A for some increasing sequence x1 < . . . < xm < y1 < . . . < yn <
z1 < . . . < zn in I. Let t be a Skolem term. We let x1 < . . . < xm <
y1 < . . . < yn < z1 < . . . < zn ∈ I be such that x1, . . . , xm are the
first m members of I and that y1 is the ωth member of I, y1 = iω. Now if
a = tA(x1, . . . , xm, y1, . . . , yn) is an ordinal of A and less than y1, we have, by
remarkability of (A, I), a ∈ HA({in : n < ω}). Hence there is k < ω, k ≥ m,
and a term s such that

(18.14) A � t[x1, . . . , xm, y1, . . . , yn] = s[i0, . . . , ik].

In other words (18.14) says that A satisfies a certain formula ϕ[i0, . . . , ik,
y1, . . . , yn]. By indiscernibility, A also satisfies ϕ[i0, . . . , ik, z1, . . . , zn], i.e.,

A � t[x1, . . . , xm, z1, . . . , zn] = s[i0, . . . , ik].

Therefore tA[x1, . . . , xm, y1, . . . , yn] = tA[x1, . . . , xm, z1, . . . , zn].
(iii) → (i) and “moreover:” Let (A, I) be a (Σ, α)-model, where α > ω is

a limit ordinal, and assume (iii). Let γ ≥ ω be a limit ordinal and let x ∈ OrdA

be less than iγ , the γth element of I. We shall show that x ∈ HA({iξ : ξ < γ}).
Since A = HA(I), there is a Skolem term t and x1 < . . . < xm < y1 . . . <
yn ∈ I such that y1 = iγ and x = tA[x1, . . . , xm, y1, . . . , yn]. Let us choose
w1, . . . , wn and z1, . . . , zn in I such that

x1 < . . . < xm < w1 < . . . < wn < y1 < . . . < yn < z1 . . . < zn.
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Now since x < y1, it follows from (18.13) that

A � t[x1, . . . , xm, y1, . . . , yn] = t[x1, . . . , xm, z1, . . . , zn].

However, by indiscernibility, this implies that

A � t[x1, . . . , xm, w1, . . . , wn] = t[x1, . . . , xm, z1, . . . , zn],

and hence x = tA[x1, . . . , xm, w1, . . . , wn]. Therefore x ∈ HA({iξ : ξ < γ}).
��

Thus we say that an E.M. set Σ is remarkable if it is unbounded and
contains the formulas (18.13) for all Skolem terms t.

An important consequence of remarkability is the following: Let (A, I) be
a remarkable (Σ, α)-model and let γ < α be a limit ordinal. Let J = {iξ :
ξ < γ} and let B = HA(J). Then (B, J) is the (Σ, γ)-model, and the ordinals
of B form an initial segment of the ordinals of A.

Another consequence of remarkability is that the indiscernibles form
a closed unbounded subset of ordinals. Let (A, I) be the (Σ, α)-model. We
say that the set I is closed in OrdA if for every limit γ < α, iγ is the least
upper bound (in the linearly ordered set OrdA) of the set {iξ : ξ < γ}.

Lemma 18.12. If (A, I) is remarkable, then I is closed in OrdA.

Proof. Let γ < α be a limit ordinal. If x is an ordinal of A less than iγ , then
by remarkability, x is in the (Σ, γ)-model B = HA({iξ : ξ < γ}). However,
since Σ is unbounded, B is an unbounded (Σ, γ)-model and hence x < iξ for
some ξ < γ. Hence iγ is the least upper bound of {iξ : ξ < γ}. ��

Proof of Silver’s Theorem and 0�

Let us call an E.M. set Σ well-founded if every (Σ, α)-model is well-founded,
and let us consider the statement:

(18.15) There exists a well-founded remarkable E.M. set.

We shall prove Theorem 18.1 in two steps: First we shall show that both (i)
and (ii) are consequences of the assumption that there exists a well-founded
remarkable E.M. set, and then we shall show that if there exists a Ramsey
cardinal, then (18.15) holds. (Note that by Lemma 18.9 it suffices to find
a well-founded remarkable model with uncountably many indiscernibles.)

Thus let us assume that there exists a well-founded remarkable E.M. set
and let Σ be such a set.

For every limit ordinal α, the (Σ, α)-model is a well-founded model el-
ementarily equivalent to some Lγ , and so by (13.13) is (isomorphic to)
some Lβ .
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Lemma 18.13. If κ is an uncountable cardinal, then the universe of the
(Σ, κ)-model is Lκ.

Proof. The (Σ, κ)-model is (Lβ, I) for some β; since |I| = κ, we clearly have
β ≥ κ. To prove that β = κ, assume that β > κ. Since I is unbounded in β and
has order-type κ, there is a limit ordinal γ < κ such that κ < iγ . By remark-
ability, all ordinals less than iγ are in the (Σ, γ)-model A = H({iξ : ξ < γ}).
This is a contradiction since on the one hand we have κ ⊂ A, and on the
other hand |A| = |γ| < κ. ��

For each uncountable cardinal κ, let Iκ be the unique subset of κ such that
(Lκ, Iκ) is the (Σ, κ)-model. By Lemma 18.12, Iκ is closed and unbounded
in κ.

Lemma 18.14. If κ < λ are uncountable cardinals, then Iλ ∩ κ = Iκ, and
HLλ(Iκ) = Lκ.

Proof. Let J be the set consisting of the first κ members of Iλ and let A =
HLλ(J). Then (A, J) is a (Σ, κ)-model and the ordinals of A are an initial
segment of λ, say OrdA = β. Since (A, J) is isomorphic to (Lκ, Iκ), it is clear
that β = κ and J = Iκ. Hence Iλ ∩ κ = Iκ.

Now since A ≺ Lλ, A is closed under the definable function F (α) =
the αth set in the well-ordering <L, and since OrdA = κ, we have A =
{F (α) : α < κ} = Lκ. ��

Using this lemma, we can now prove both (i) and (ii) of Theorem 18.1
except for the uniqueness of Silver indiscernibles. We let

(18.16) I =
⋃
{Iκ : κ is an uncountable cardinal}.

For each uncountable cardinal κ, I∩κ = Iκ is a closed unbounded set of order-
type κ, and is a set of indiscernibles for (Lκ,∈); moreover, by Lemma 18.7(iii),
every a ∈ Lκ is definable in Lκ from Iκ. Let κ < λ be uncountable cardinals.
Since Iλ is closed in Lλ and Iλ∩κ = Iκ, it follows that κ ∈ Iλ; hence I contains
all uncountable cardinals. Also, since Lκ = HLλ(Iκ), we have Lκ ≺ Lλ.

The next two lemmas prove the uniqueness of Silver indiscernibles and of
the corresponding E.M. set.

Lemma 18.15. There is at most one well-founded remarkable E.M. set.

Proof. Assuming that there is one such Σ, we define the class I in (18.16).
Now since Lℵω is the (Σ,ℵω)-model and ℵn ∈ I for each n ≥ 1, we have

(18.17) ϕ(v1, . . . , vn) ∈ Σ if and only if Lℵω � ϕ[ℵ1, . . . ,ℵn]

which proves that Σ is unique. ��
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We therefore define 0� (zero-sharp):

(18.18) 0� is the unique well-founded remarkable E.M. set if it exists.

The uniqueness of Silver indiscernibles now follows from:

Lemma 18.16. For every regular uncountable cardinal κ there is at most one
closed unbounded set of indiscernibles X for Lκ such that Lκ = HLκ(X).

Proof. Let Σ = Σ(Lκ, X). Since X is closed unbounded, it follows that X ∩I
is infinite, and Σ(Lκ, X) = Σ(Lκ, X ∩ I) = Σ(Lκ, I ∩ κ). Hence Σ = 0� and
since (Lκ, X) is the (Σ, κ)-model, we have X = I ∩ κ. ��

Thus we have proved (i) and (ii) of Theorem 18.1 under the assump-
tion that 0� exists. On the other hand, if (ii) holds, then 0� exists because,
e.g., (Lω1 , I ∩ ω1) is a remarkable well-founded model with ℵ1 indiscernibles.
To complete the proof of Theorem 18.1, it remains to show that if there is
a Ramsey cardinal, then 0� exists. That will follow from:

Lemma 18.17. Let κ be an uncountable cardinal. If there exists a limit ordi-
nal λ such that (Lλ,∈) has a set of indiscernibles of order-type κ, then there
exist a limit ordinal γ and a set I ⊂ γ of order-type κ such that (Lγ , I) is
remarkable.

It follows that if κ is Ramsey, then by Corollary 17.26 (Lκ,∈) has a set
of indiscernibles of order-type κ. By Lemma 18.17, there exists a remarkable
model (Lγ , I) where I has order-type κ. By Lemma 18.9, Σ(Lγ , I) is well-
founded and remarkable and hence 0� exists.

Proof. Let λ be the least limit ordinal such that (Lλ,∈) has a set of indis-
cernibles I ⊂ λ of order-type κ. We shall show first that there is a set of
indiscernibles I ⊂ λ for Lλ, of order-type κ, such that HLλ(I) = Lλ. Let
J be any set of indiscernibles for Lλ, of order-type κ, and let A = HLλ(J).
Then A ≺ Lλ and hence A is isomorphic to some Lβ, β ≤ λ, by the collapsing
map π. Now I = π(J) is a set of indiscernibles for Lβ, and HLβ(I) = Lβ. By
the minimality of λ, we have β = λ and hence I is as claimed.

Next we show that any such set I is unbounded in λ. If not, there is a limit
ordinal α < λ such that I ⊂ α. There is a Skolem term t and γ1 < . . . < γn ∈ I
such that α = tLλ [γ1, . . . , γn]. We claim that the set J = {i ∈ I : i > γn}
is a set of indiscernibles for (Lα,∈). If ϕ(v1, . . . , vn) is a formula, then for
any i1 < . . . < ik ∈ J , Lα satisfies ϕ[i1, . . . , ik] if and only if Lλ satisfies the
formula

(18.19) Lα � ϕ[i1, . . . , ik].

The formula (18.19) is a formula about α, i1, . . . , ik, and since α =
tLλ [γ1, . . . , γn] there is a formula ψ(u1, . . . , un, v1, . . . , vk) such that Lλ sat-
isfies (18.19) if and only if

(18.20) Lλ � ψ[γ1, . . . , γn, i1, . . . , ik].
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By the indiscernibility of I, the truth of (18.20) is independent of the
choice of i1 < . . . < ik in I provided γn < i1. Hence the truth of (18.19)
is independent of the choice of i1 < . . . < ik in J . Hence J is a set of
indiscernibles for Lα, and this contradicts the minimality of λ since α < λ
and the order-type of J is κ.

Finally, let I be a set of indiscernibles for Lλ of order-type κ such that
HLλ(I) = Lλ, and that iω, the ωth element of I, is least possible. We will
show that (Lλ, I) is remarkable.

Let us assume that (Lλ, I) is not remarkable. Then there is a Skolem
term t(x1, . . . , xm, y1, . . . , yn) such that the following holds in Lλ for any
x1 < . . . < xm < y1 < . . . < yn < z1 < . . . < zn:

(18.21) t(x1, . . . , xm, y1, . . . , yn) < y1

and

(18.22) t(x1, . . . , xm, y1, . . . , yn) �= t(x1, . . . , xm, z1, . . . , zn).

Let x1, . . . , xm be the first m elements of I. We now consider the following
increasing n-termed sequences in I: Let u0 be the sequence of first n indis-
cernibles after xm, let u1 be the first n indiscernibles after u0, etc.; for each
α < κ, let

γα = t(x1, . . . , xm, uα).

By indiscernibility, applied to the formula (18.22), we have γα �= γβ whenever
α �= β. In fact, in (18.22) we have either < or > (in place of �=); but > is
impossible since that would mean that γα > γβ whenever α < β. Thus
〈γα : α < κ〉 is an increasing sequence of ordinals.

We claim that J = {γα : α < κ} is a set of indiscernibles for Lλ. This is
so because for any formula ϕ, the truth value of ϕ(γα1 , . . . , γαk

) in Lλ does
not depend on the choice of γα1 < . . . < γαk

in J because by the definition
of the uα, the truth value of ϕ(t(x1 . . . , xm, uα1), . . . , t(x1 . . . , xm, uαk

)) does
not depend on the choice of α1 < . . . < αk.

Hence {γα : α < κ} is a set of indiscernibles for Lλ. Since iω is the first
member of uω, it follows by (18.21) that γω < iω. Now if A = H(J) and
π is the transitive collapse of A, then, as we proved in the first paragraph,
π(A) = Lλ, and K = π(J) is a set of indiscernibles for Lλ of order-type κ such
that HLλ(K) = Lλ. However, π(γω) ≤ γω < iω, and so the ωth member of K
is smaller than iω, contrary to our assumption. Hence (Lλ, I) is remarkable.

��

This completes the proof of Theorem 18.1. Lemma 18.17 also gives the
following equivalence:

Corollary 18.18. 0� exists if and only if for some limit ordinal λ, the model
(Lλ,∈) has an uncountable set of indiscernibles. ��
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The set 0� is, strictly speaking, a set of formulas. But as formulas can
be coded by natural numbers, we can regard 0� as a subset of ω. This con-
vention has become standard. Moreover, in Chapter 25 we show that 0� is
a Π1

2 singleton, and so {0�} is a ∆1
3 set. At this point we outline the proof of

absoluteness of 0�:

Lemma 18.19. The property “Σ is a well-founded remarkable E.M. set” is
absolute for every inner model of ZF. Hence M � 0� exists if and only if
0� ∈ M in which case (0�)M = 0�.

Proof. We first replace the property “Σ is an E.M. set” by a syntactical
condition.

Let L̂ be the language {∈, c1, c2, . . . , cn, . . .} where cn, n < ω, are constant
symbols. For every ∈-formula ϕ(v1, . . . , vn) let ϕ̂ be the sentence ϕ(c1, . . . , cn)
of L̂. For each set of formulas Σ, let Σ̂ be the set containing (i) all ϕ̂ for
ϕ ∈ Σ, (ii) the sentence “c1 is an ordinal and c1 < c2,” and (iii) the sentence
“ϕ(ci1 , . . . , cin) ↔ ϕ(cj1 , . . . , cjn)” for every ϕ ∈ Σ and any i1 < . . . < in,
j1 < . . . < jn, (iv) all axioms of ZFC + V = L. Let us consider the condition

(18.23) Σ̂ is consistent.

Clearly, if Σ is an E.M. set, then Σ̂ is consistent, for we simply interpret
the constants cn, n < ω, as some Silver indiscernibles. Conversely, if Σ̂ is
consistent, then Σ̂ has a model and that model provides us with a (Σ, ω)-
model (with indiscernibles cn, n < ω) and the proof of Lemma 18.7 goes
through. Therefore (18.23) holds if and only if Σ is an E.M. set.

As remarkability can also be expressed as a syntactical property, it follows
that “Σ is a remarkable E.M. set” can be written as a ∆0 property (with
parameters Vω and Form). As such it is absolute for transitive models.

If Σ is a remarkable E.M. set, then for every limit ordinal α there is
a unique (up to isomorphism) (Σ, α)-model and we can find one ((A, E), I)
such that I = α and that <A (i.e., E) agrees with < on α. If ((A, E), α)
is such, we say that “((A, E), α) is a (Σ, α)-model.” This last property is
a ∆1 property of Σ, (A, E), α, Vω and Form. Then Σ = 0� if and only if

(18.24) ∀α ∀(A, E) (if ((A, E), α) is a (Σ, α)-model, then (A, E) is well-
founded).

As well-foundedness is absolute for transitive models of ZF, it follows that
(18.24) is absolute for inner models of ZF (which contain all ordinals), and
therefore “Σ = 0�” is absolute. ��

Elementary Embeddings of L

In Chapter 17 we proved that a well-founded ultrapower of the universe
induces an elementary embedding jU : V → Ult, and conversely, if j : V → M
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is a nontrivial elementary embedding, then (17.2) defines a normal measure
on the least ordinal moved by j.

Let j be a nontrivial elementary embedding of the universe, and let M
be a transitive model of ZFC, containing all ordinals. Let N = j(M) =⋃

α∈Ord j(M ∩ Vα). Then N is a transitive model of ZF and j : M → N is
elementary:

(18.25) M � ϕ(a1, . . . , an) if and only if N � ϕ(j(a1), . . . , j(an)).

((18.25) is proved by induction on the complexity of ϕ). In particular, if
M = L, then j(V ) � (N is the constructible universe), and so N = L, and
j�L is an elementary embedding of L in L. Note that by Scott’s Theorem, the
function j�L is not a class in L; thus if there exists an elementary embedding
of L (into L), then V �= L.

If 0� exists, then there are nontrivial elementary embeddings of L. In
fact, let j be any order-preserving function from the class I of all Silver
indiscernibles into itself. Then j can be extended to an elementary embedding
of L; we simply let

(18.26) j(tL[γ1, . . . , γn]) = tL[j(γ1), . . . , j(γn)]

for every Skolem term t and any Silver indiscernibles γ1 < . . . < γn. We
shall prove that the converse is true, that if there is a nontrivial elementary
embedding of L, then 0� exists:

Theorem 18.20 (Kunen). The following are equivalent :

(i) 0� exists.
(ii) There is a nontrivial elementary embedding j : L → L.

Toward the proof of Kunen’s Theorem, let us investigate elementary em-
beddings j : M → N where M is a transitive model of ZFC.

Definition 18.21. Let M be a transitive model of ZFC, and let κ be a car-
dinal in M . An M -ultrafilter on κ is a collection D ⊂ PM (κ) that is an
ultrafilter on the algebra of sets PM (κ). Explicitly,

(i) κ ∈ D and ∅ /∈ D;
(ii) if X ∈ D and Y ∈ D, then X ∩ Y ∈ D;
(iii) if X ∈ D and Y ∈ M is such that X ⊂ Y , then Y ∈ D;
(iv) for every X ⊂ κ such that X ∈ M , either X or κ − X is in D.

(18.27)

D is κ-complete if whenever α < κ and {Xξ : ξ < α} ∈ M is such that
Xξ ∈ D for all ξ < α, then

⋂
ξ<α Xα ∈ D; D is normal if whenever f ∈ M is

a regressive function on X ∈ D, then f is constant on some Y ∈ D.
If j : M → N is an elementary embedding, then the least ordinal moved

by j is called the critical point of j.
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Lemma 18.22. If j : M → N is an elementary embedding and κ is the
critical point of j then κ is a regular uncountable cardinal in M , and D =
{X ∈ PM (κ) : κ ∈ j(X)} is a nonprincipal normal κ-complete M -ultrafilter
on κ.

Proof. Exactly as the proof of Lemma 17.2. Note that κ-completeness of D
implies that κ is regular in M . ��

If D is an M -ultrafilter on κ, one can construct the ultrapower of M
by D as follows: Consider, in M , the class of all functions f with domain κ.
Using D, define an equivalence relation =∗ and the relation ∈∗ as usual;

f =∗ g ↔ {α < κ : f(α) = g(α)} ∈ D,

f ∈∗ g ↔ {α < κ : f(α) ∈ g(α)} ∈ D.

Then define equivalence classes mod =∗, and the model Ult = UltD(M). An
analog of Theorem 12.3 is easily verified:

Ult � ϕ([f1], . . . , [fn]) if and only if {α < γ : M � ϕ(f1(α), . . . , fn(α))} ∈ D.

If for each a ∈ M , ca denotes the constant function with value a, then

jD(a) = [ca]

defines an elementary embedding of M in Ult.
The ultrapower of M by an M -ultrafilter D is not necessarily well-

founded, even if D is countably complete.
If j : M → N is an elementary embedding with M and N being transitive

models, and if D is the M -ultrafilter {X : κ ∈ j(X)}, then, as in Lemma 17.4,
we have the commutative diagram

(18.28)

Ult

M N
j

k
jD

�

�

�
�

�
�

�
���

and it follows that UltD(M) is well-founded. (If [f0] �∗ [f1] �∗ . . . were a de-
scending sequence in Ult, then k([f0]) � k([f1]) � . . . would be a descending
sequence in N .)

We proceed with the proof of Kunen’s Theorem.
Let j : L → L be an elementary embedding. We shall first replace j by

a more manageable embedding. We let D be the L-ultrafilter {X ∈ PL(γ) :
γ ∈ j(X)} where γ is the critical point of j. The ultrapower UltD(L) is well-
founded and so we identify Ult with its transitive collapse L; let jD be the
canonical embedding, jD : L → L. The critical point of jD is γ because D is
γ-complete.
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Lemma 18.23. If κ is a limit cardinal such that cf κ > γ, then jD(κ) = κ.

Proof. Every constructible function f : γ → κ is bounded by some α <
κ and hence [f ] < [cα] (where cα is the constant function with value α).
Thus jD(κ) = limα→κ jD(α). Now if α < κ, then |jD(α)| ≤ |(αγ)L|, hence
jD(α) < κ. It follows that jD(κ) = κ. ��

Let us drop the subscript D and simply assume that j : L → L is an
elementary embedding, that γ is its critical point and that j(κ) = κ for every
limit cardinal κ such that cf κ > γ.

Let U0 be the class of all limit cardinals κ with cf κ > γ; by transfinite
induction we define a sequence of classes U0 ⊃ U1 ⊃ . . . ⊃ Uα ⊃ . . . as
follows:

(18.29) Uα+1 = {κ ∈ Uα : |Uα ∩ κ| = κ},
Uλ =

⋂
α<λ

Uα (λ limit).

(That is, Uα+1 consists of fixed points of the increasing enumeration of Uα.)
Each Uα is nonempty, and in fact a proper class. To see this, verify, by
induction on α, that each Uα is a proper class and is δ-closed, for each δ
with cf δ > γ; that is, whenever 〈κξ : ξ < δ〉 is an increasing sequence in Uα,
then limξ→δ κξ ∈ Uα. Hence each Uα is nonempty, and we choose a cardinal
κ ∈ Uω1 .

Thus κ is such that cf κ > γ and κ is the κth element of each Uα, α < ω1.
We shall find a set of ℵ1 indiscernibles for (Lκ,∈).

Since j : L → L is an elementary and j(κ) = κ, it is clear that the
mapping i = j�Lκ is an elementary embedding of (Lκ,∈) into (Lκ,∈). We
shall use i and the sets Uα ∩κ, α < ω1, to produce indiscernibles γα, α < ω1,
for Lκ. Let Xα = Uα ∩ κ for each α < ω1, and recall that γ is the critical
point of i.

For each α < ω1, we let

(18.30) Mα = HLα(γ ∪ Xα).

Mα is an elementary submodel of Lκ.
If πα is the transitive collapse of Mα, then because |Xα| = κ, we have

πα(Mα) = Lκ. Thus if we denote iα = π−1
α , then iα is an elementary embed-

ding of Lκ in Lκ. Let γα = iα(γ).

Lemma 18.24.

(i) The ordinal γα is the least ordinal greater than γ in Mα.
(ii) If α < β and x ∈ Mβ , then iα(x) = x. In particular, iα(γβ) = γβ.
(iii) If α < β, then γα < γβ.
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Proof. (i) Since γ ⊂ Mα, iα(γ) is the least ordinal in Mα greater than or
equal to γ; thus it suffices to show that γ /∈ Mα. If x ∈ Mα, then x =
t[η1, . . . , ηn] where t is a Skolem term and the η’s are either smaller than γ or
elements of Xα. For all such η, i(η) = η and hence i(x) = i(t(η1, . . . , ηn)) =
t(i(η1), . . . , i(ηn)) = x. However, i(γ) �= γ and so γ /∈ Mα.

(ii) Each x ∈ Mβ is of the form t[η1, . . . , ηn] where the η’s are either < γ
or in Xβ . If η < γ, then clearly iα(η) = η. If η ∈ Xβ , then because α < β, we
have |Xα ∩ η| = η and hence πα(η) = η; in other words, iα(η) = η. Therefore
iα(x) = x.

(iii) If α < β, then Mα ⊃ Mβ and hence γα ≤ γβ . To see that γα �= γβ ,
note that because γα > γ, we have iα(γα) > iα(γ) = γα, while iα(γβ) = γβ .

��

Lemma 18.25. If α < β, then there is an elementary embedding iα,β : Lκ →
Lκ such that for every ξ that is either smaller than α or greater than β we
have iα,β(γξ) = γξ, and iα,β(γα) = γβ.

Proof. Let Mα,β = HLκ(γα ∪ Xβ), and let iα,β = π−1
α,β where πα,β is the

transitive collapse of Mα,β. The mapping iα,β is an elementary embedding
of Lκ in Lκ.

If η < γα, then clearly iα,β(η) = η; in particular iα,β(γξ) = γξ if ξ < α. If
x ∈ Mβ+1, then x = t(η1, . . . , ηn) where the η’s are either smaller than γ or
elements of Xβ+1. If η ∈ Xβ+1, then |Xβ ∩ η| = η and therefore iα,β(η) = η.
Hence iα,β(x) = x for every x ∈ Mβ+1, and in particular iα,β(γξ) = γξ if
ξ > β.

Now we shall show that iα,β(γα) = γβ . Since Mα,β ⊃ Mβ, we have γβ ∈
Mα,β ; and since γα ⊂ Mα,β, iα,β(γα) is the least ordinal in Mα,β greater than
or equal to γα; hence we have γα ≤ iα,β(γα) ≤ γβ.

Thus it suffices to show that there is no ordinal δ ∈ Mα,β such that
γα ≤ δ < γβ . Otherwise there is some δ = t(ξ1, . . . , ξn, η1, . . . , ηk) such that
the ξ’s are < γα and the η’s are in Xβ (and t is a Skolem term) and that
γα ≤ δ < γβ . Thus we have:

(18.31) (Lκ,∈) � ∃ξ < γα such that γα ≤ t(ξ, η) < γβ .

The formula in (18.31) is a formula ϕ about γα, η, and γβ . At this point, we
apply the elementary embedding iα : Lκ → Lκ backward. That is, γα, the η’s
and γβ are all in the range of iα: γα = iα(γ), η = iα(η), and γβ = iα(γβ); and
since Lκ � ϕ[iα(γ), iα(η), iα(γβ)], we conclude that Lκ � ϕ[γ, η, γβ ], namely

(Lκ,∈) � ∃ξ < γ such that γ ≤ t(ξ, η) < γβ.

Thus pick some ξ’s less than γ such that γ ≤ t(ξ, η) < γβ . Since ξ ∈ γ and
η ∈ Xβ , we have t(ξ, η) ∈ Mβ , which means that t(ξ, η) is an ordinal in Mβ

between γ and γβ, and that contradicts Lemma 18.24(i). ��

The proof of Kunen’s Theorem will be complete when we show:
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Lemma 18.26. The set {γα : α < ω1} is a set of indiscernibles for (Lκ,∈).

Proof. Let ϕ be a formula and let α1 < . . . < αn and β1 < . . . < βn be two
sequences of countable ordinals. We wish to show that

(18.32) Lκ � ϕ[γα1 , . . . , γαn ] if and only if Lκ � ϕ[γβ1 , . . . , γβn ].

Let us pick δ1 < . . . < δn such that αn < δ1 and βn < δ1. First we apply the
elementary embedding iαn,δn and get

Lκ � ϕ[γα1 , . . . , γαn−1 , γαn ] if and only if Lκ � ϕ[γα1 , . . . , γαn−1 , γδn ]

because iαn,δn(γαn) = γδn , and preserves the other γ’s. The we apply
iαn−1,δn−1 with a similar effect, and by a successive application of iαn−2,δn−2 ,
. . . , iα1,δ1 we get

Lκ � ϕ[γα1 , . . . , γαn ] if and only if Lκ � ϕ[γδ1 , . . . , γδn ].

Then we do the same for the β’s and δ’s as we did for the α’s and δ’s, and
(18.32) follows. ��

This completes the proof of Theorem 18.20.
The following result is related to Kunen’s Theorem:

Theorem 18.27. Let j : Lα → Lβ be an elementary embedding and let γ be
the critical point of j. If γ < |α|, then 0� exists.

Proof. Let γ be the critical point of j. Since γ < |α|, every X ⊂ γ is in Lα,
and so D = {X ⊂ γ : γ ∈ j(X)} is an L-ultrafilter.

Let us consider the ultrapower UltD(L). If the ultrapower is well-founded,
then we are done because then the canonical embedding jD : L → UltD(L)
is a nontrivial elementary embedding of L in L. Thus we shall prove that
UltD(L) is well-founded.

Let us assume that f0, f1, . . . , fn, . . . is a counterexample to well-
foundedness of the ultrapower. Each fn is a constructible function on γ and
{ξ < γ : fn+1(ξ) ∈ fn(ξ)} ∈ D for all n < ω. Let θ be a limit ordinal such
that fn ∈ Lθ for all n and let M be an elementary submodel of (Lθ,∈) such
that |M | = |γ|, γ ⊂ M , and fn ∈ M for all n. Let π be the transitive collapse
of M , π(M) = Lη, and let gn = π(fn), for all n.

Since π(ξ) = ξ for all ξ < γ, we see that for each ξ < γ and all n,
gn+1(ξ) ∈ gn(ξ) if and only if fn+1(ξ) ∈ fn(ξ), and hence g0, g1, . . . , gn, . . .
is also a counterexample to well-foundedness of the ultrapower. However,
since each gn is in L and |η| = |γ| < |α|, we have gn ∈ Lα for all n. Thus
j(gn) is defined for all n, and we have,

{ξ < γ : gn+1(ξ) ∈ gn(ξ)} ∈ D if and only if (j(gn+1))(γ) ∈ (j(gn))(γ).

Now we reached a contradiction because (j(g0))(γ) � (j(g1))(γ) � . . . would
be a descending sequence. ��
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Corollary 18.28. If there is a Jónsson cardinal, then 0� exists.

Proof. Let κ be a Jónsson cardinal and let us consider the model (Lκ,∈).
Let A be an elementary submodel, of size κ, such that A �= Lκ. Let π be
the transitive collapse of A; clearly, π(A) = Lκ. Thus j = π−1 is a nontrivial
elementary embedding of Lκ in Lκ. Since κ is a cardinal, 0� exists by Theo-
rem 18.27. ��

Chang’s Conjecture is the statement that every model of type (ℵ2,ℵ1)
has an elementary submodel of type (ℵ1,ℵ0).

Corollary 18.29. Chang’s Conjecture implies that 0� exists.

Proof. Consider the model (Lω2 , ω1,∈), and let A = (A, ω1 ∩ A,∈) be its
elementary submodel such that |A| = ℵ1 and |ω1 ∩ A| = ℵ0. Let π be the
transitive collapse of A; we have π(A) = Lα for some α such that ω1 ≤
α < ω2. Also, π(ω1 ∩ A) is a countable ordinal, and hence π(ω1) < ω1. Then
j = π−1 is an elementary embedding of Lα in Lω2 , and its critical point is
a countable ordinal. Hence 0� exists. ��

All results about 0� and Silver indiscernibles for L proved in the present
section can be relativized to obtain similar results for the models L[x], where
x ⊂ ω.

In particular, if there exists a Ramsey cardinal there is for every x ⊂ ω
a unique class Ix containing all uncountable cardinals such that for each un-
countable cardinal κ, Ix∩κ is a set of indiscernibles for the model (Lκ[x],∈, x)
and all elements of Lκ[x] are definable in the model from Ix ∩ κ. Here x is con-
sidered a one-place predicate. Also, for every regular uncountable cardinal κ,
Ix ∩ κ is closed unbounded in κ.

The proof of the relativization of Silver’s Theorem uses models with in-
discernibles (A, I) where A is elementarily equivalent to some (Lλ[x],∈, x)
where λ > ω is a limit ordinal. If κ is a Ramsey cardinal, then (Lκ[x],∈, x)
has a set of indiscernibles of size κ, and the theorem follows.

We define x� as the unique set Σ = Σ((Lλ[x],∈, x), I) that is well-founded
and remarkable. If x� exists, then we have

x� = {ϕ : (Lℵω [x],∈, x) � ϕ[ℵ1, . . . ,ℵn]}.

Here ϕ is a formula of the language {∈, P} where P is a one-place predicate
(interpreted as x). Note that x is definable in the model (Lλ[x],∈, x) (by the
formula P (v)).

The real x� is absolute for all transitive models M of ZF containing all
ordinals such that x� ∈ M .

Also, “x� exists” is equivalent to the existence of a nontrivial elementary
embedding j : L[x] → L[x].
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Jensen’s Covering Theorem

The theorem presented in this section shows that in the absence of 0� the
universe does not differ drastically from the constructible model. In partic-
ular, the cofinality function is closely related to the cofinality function in L,
and every singular cardinal is a singular cardinal in L. Moreover, the Singular
Cardinal Hypothesis holds and cardinal exponentiation is determined by the
continuum function on regular cardinals.

Theorem 18.30 (Jensen’s Covering Theorem). If 0� does not exist,
then for every uncountable set X of ordinals there exists a constructible set
Y ⊃ X such that |Y | = |X |.

The Covering Theorem expresses the closeness between V and L: Every
uncountable set of ordinals can be covered by a constructible set of the same
cardinality. In other words, every set X of ordinals can be covered by some
Y ∈ L such that |Y | ≤ |X | · ℵ1. (This is best possible: In Chapter 28 we give
an example of a forcing extension of L in which there is a countable set of
ordinals that cannot be covered by a countable (in V ) constructible set.)

The converse of the Covering Theorem is also true: If 0� exists then every
uncountable cardinal is regular in L, and in particular, since ℵω is regular
in L, the countable set {ℵn : n < ω} cannot be covered by a constructible
set of cardinality less than ℵω. This shows:

0� exists if and only if ℵω is regular in L.

Corollary 18.31. If 0� does not exist then for every λ ≥ ℵ2, if λ is a reg-
ular cardinal in L then cf λ = |λ|. Consequently, every singular cardinal is
a singular cardinal in L.

The assumption λ ≥ ℵ2 is necessary: The forcing mentioned above yields
a model where λ = ℵL

2 is such that |λ| = ℵ1 and cf λ = ω.

Proof. Let λ be a limit ordinal such that λ ≥ ω2 and that λ is a regular
cardinal in L. Let X be an unbounded subset of λ such that |X | = cf λ. By the
Covering Theorem, there exists a constructible set Y such that X ⊂ Y ⊂ λ
and that |Y | = |X | ·ℵ1. Since Y is unbounded in λ and λ is a regular cardinal
in L, we have |Y | = |λ|. This gives |λ| = ℵ1 · cf λ and since λ ≥ ℵ2, we have
|λ| = cf λ. ��

Corollary 18.32. If 0� does not exist then for every singular cardinal κ,
(κ+)L = κ+.

Proof. Let κ be a singular cardinal and let λ be the successor cardinal of κ
in L; we want to show that λ = κ+. If not, then |λ| = κ, and since κ is singular,
we have cf λ < κ. However, this means that cf λ < |λ| which contradicts
Corollary 18.31. ��
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Corollary 18.33. If 0� does not exist then the Singular Cardinal Hypothesis
holds.

Proof. Let κ be such that 2cf κ < κ, and let A = [κ]cf κ be the set of all subsets
of κ of size cf κ. We shall show that |A| ≤ κ+. By the Covering Theorem,
for every X ∈ A there exists a constructible Y ⊂ κ such that X ⊂ Y and
|Y | = λ where λ = ℵ1 · cf κ. Thus

(18.33) A ⊂
⋃
{[Y ]cf κ : Y ∈ C}

where C = {Y ⊂ κ : |Y | = λ and Y ∈ L}. If Y ∈ C, then |[Y ]cf κ| = λcf κ =
(ℵ1 · cf κ)cf κ = 2cf κ < κ. Since |C| ≤ |PL(κ)| = |(κ+)L| ≤ κ+ it follows
from (18.33) that |A| ≤ κ+. ��

Corollary 18.34. If 0� does not exist then if κ is a singular cardinal and if
there exists a nonconstructible subset of κ, then some α < κ has a noncon-
structible subset.

Proof. Let κ be a singular cardinal and assume that each α < κ has only
constructible subsets; we shall show that every subset of κ is constructible.
It suffices to show that each subset of κ of size cf κ is constructible: If A ⊂ κ,
let {αν : ν < cf κ} be such that limν αν = κ; then A = {A ∩ αν : ν < cf κ}
is a subset of Lκ of size ≤ cf κ and hence constructible. It follows that A is
constructible.

Let X ⊂ κ be such that |X | ≤ cf(κ). By the Covering Theorem, there
exists a constructible set of ordinals Y ⊃ X such that |Y | < κ. Let π be the
isomorphism between Y and its order-type α; the function π is constructible
and one-to-one. Since |α| = |Y | < κ, we have α < κ.

Let Z = π(X). Then Z ⊂ α is constructible by the assumption, and hence
X = π−1(Z) is also constructible. ��

The rest of this chapter is devoted to the proof of the Covering Theorem.
Jensen’s proof of the Covering Theorem used a detailed analysis of construc-
tion of sets in L, the fine structure theory, see [1972]. The proof appeared in
Devlin and Jensen [1975]. Subsequently, Silver and Magidor gave proofs that
did not use the fine structure. The outline below is based on Magidor [1990]
(and on Kanamori’s presentation in [∞]).

Let us assume that there exists an uncountable set X of ordinals that can-
not be covered by a constructible set of the same size. The goal is to produce
a nontrivial elementary embedding from L into L. In fact, by Theorem 18.27
it suffices to find some j : Lα → Lβ with critical point below |α|.

Let τ be the least ordinal such that there exists a set X ⊂ τ that cannot
be covered, and let X ⊂ τ be such a set with |X | least possible. Let ν = |X |.
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Lemma 18.35.

(i) τ is a cardinal in L.
(ii) If Y ∈ L covers X then |Y |L ≥ τ .
(iii) ν is a regular cardinal, ν < τ , and ν = ℵ1 · cf τ .

Proof. (i) and (ii) follow from the minimality of τ .
(iii) |X | < τ , because otherwise, Y = τ would cover X . Clearly, |X | ≥

ℵ1 · cf τ ; thus assume that ν > ℵ1 · cf τ . Let τ = limξ→cf τ τξ. For each ξ, let
Yξ ∈ L cover X ∩ τξ. Let {Eα : α < τ} be a constructible enumeration of
all bounded constructible subsets of τ , and let Z = {α < τ : Eα = Yξ for
some ξ}. By the minimality of ν, Z can be covered by some W ∈ L of size
ℵ1 · cf τ . Then the set Y =

⋃
α∈Z Eα covers X , a contradiction. ��

Now let M be an elementary submodel of (Lτ ,∈) such that X ⊂ M and
|M | = ν. Let Lη be the transitive collapse of M , and let j = π−1 where π is
the collapsing isomorphism. Hence j : Lη → Lτ is an elementary embedding.
As X is cofinal in τ , and |η| = ν < τ , j is nontrivial.

The goal is to extend j : Lη → Lτ to an elementary embedding
J : Lδ → Lε where |δ| is greater than the critical point of j. This can be
achieved by finding M ≺ Lτ that satisfies certain closure conditions. These
closure conditions guarantee that if Lη is the transitive collapse of M then
η is a cardinal in L, and furthermore, that for any δ > τ , j extends to an
elementary embedding J with domain Lδ.

The precise nature of the closure conditions will be spelled out in (18.41).
For the remainder of this chapter, we use the phrase “M is sufficiently closed”
to indicate that M satisfies (18.41).

We defer the issue of η being a cardinal in L, as its proof requires a finer
analysis of the constructible hierarchy. We start with the proof of extendibility
of j.

Lemma 18.36. Let M be sufficiently closed, X ⊂ M ≺ Lτ such that |X | =
ν = |M |, let π : M � Lη be the transitive collapse, let j = π−1, and assume
that η is a cardinal in L. Then for every limit ordinal δ ≥ η there exists an
elementary embedding J : Lδ → Lε such that J�Lη = j.

Proof. Let δ ≥ η be a limit ordinal. We consider the following directed system
of models: Let D be the set of all pairs i = (α, p) where α < η and p is
a finite subset of Lδ, ordered by (α, p) ≤ (β, q) if and only if α ≤ β and
p ⊂ q. (D, <) is a directed set. Let i = (α, p), and let Mi = Hδ(α ∪ p) be
the Skolem hull of α ∪ p in (Lδ,∈). Let Lηi be the transitive collapse of Mi

and let ei : Lηi → Lδ be the inverse of the collapsing map πi : M � Lηi . For
i ≤ k, let ei,k = πk ◦ ei.

Let us consider the directed system of models

(18.34) {Lηi , ei,k : i, k ∈ D}.
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Clearly, every x ∈ Lδ is in some Mi, and so Lδ is the direct limit of
{Lηi , ei,k}i,k∈D. For every i ∈ D, |Mi|L < η, and since η is a cardinal in L,
we have ηi < η. We claim that for all i, k ∈ D, ei,k ∈ Lη. This is because
Lηi = Hηi(α ∪ πi(p)), Lηk

= Hηk(β ∪ πk(q)), and for every Skolem term t,
ei,k(tLηi (ξ, x)) = tLηk (ξ, ei,k(x)), so ei,k is definable in Lη from ηi, ηk, πi(p),
and πk(q).

Now we consider the directed system

(18.35) {j(Lηi), j(ei,k) : i, k ∈ D}.

The closure properties (18.41) of M guarantee that the direct limit of the
system (18.35) is well-founded. Let N be the direct limit, and for each i ∈ D,
ẽi : Lj(ηi) → N be an elementary embedding such that ẽi = ẽk ◦ j(ẽi,k)
whenever i < k. As N is well-founded, we may assume that N is transitive,
and then (by (13.13)), N = Lε for some limit ordinal ε.

We can extend j : Lη → Lτ to J : Lδ → Lε as follows:

(18.36) J(x) = ẽi(j(e−1
i (x)))

where i is some (any) i ∈ D such that x ∈ Mi.
It remains to show that J(x) = j(x) for all x ∈ Lη. So let x ∈ Lη, and let

α < η be such that x ∈ Lα. Let i = (α, {x}). Since Lα ⊂ Mi = Hδ(α ∪ {x}),
it follows that ei�Lα is the identity, as is ek,l�Lα whenever i ≤ k ≤ l. Thus
j(ek,l)�j(Lα) is the identity, for all l ≥ k ≥ i, and therefore ẽi�j(Lα) is the
identity. Hence ei(x) = x and ẽi(jx) = jx, and therefore J(x) = j(x). ��

The crucial step in the proof of the Covering Theorem is the following.

Lemma 18.37. Let M be sufficiently closed, X ⊂ M ≺ Lτ , such that |X | =
ν = |M |, and let Lη be the transitive collapse of M . Then η is a cardinal
in L.

The proof is by contradiction. Assuming that η is not a cardinal in L, we
shall produce a constructible set of size ν that covers X . It is in this proof
that we need a finer analysis of constructibility. We start by refining Gödel’s
Condensation Lemma:

Lemma 18.38. For every infinite ordinal ρ, if M ≺Σ1 (Lρ,∈) then the tran-
sitive collapse of M is Lγ for some γ. Moreover, there is a Π2 sentence σ
such that for every transitive set M , (M,∈) � σ if and only if M = Lρ for
some infinite ordinal ρ. ��

We omit the proof of Lemma 18.38. It can be found in Magidor [1990] or
in Kanamori [∞]. A related fact is the following lemma that is not difficult
to deduce from Lemma 18.38:

Lemma 18.39. Let {(Lηi ,∈), ei,k : i, k ∈ D} be a directed system of models,
ei,k being Σ0-elementary embeddings. If the direct limit of this system is well-
founded, then it is isomorphic to some Lγ. ��
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We also need the concept of Σn Skolem terms and Σn Skolem hull :

Definition 18.40. Let n ≥ 1.

(i) A Σn Skolem term is a composition of canonical Skolem functions
(18.5) for Σn formulas.

(ii) If Z ⊂ Lρ, the Σn Skolem hull of Z is the set Hρ
n(Z) = {tLρ[z1, . . . , zk] :

t is a Σn Skolem term and z1, . . . , zn ∈ Z}.

While a Σn Skolem function is not necessarily a Σn function, we have the
following:

Lemma 18.41.

(i) Hρ
n(Z) is a Σn-elementary submodel of Lρ.

(ii) If j : Lα → Lβ is Σn-elementary, then for every Σn Skolem term t
and all x1, . . . , xk ∈ Lα, j(tLα [x1, . . . , xk]) = tLβ [j(x1), . . . , j(xk)]. ��

Proof of Lemma 18.37. Let us assume that η is not a cardinal in L. Then
there exists a constructible function that maps some α < η onto η. Conse-
quently, there exists an ordinal ρ ≥ η, such that for some α < η and some
finite set p ⊂ Lρ,

(18.37) Hρ(α ∪ p) ⊃ η.

We say that η is not a cardinal at ρ. Let ρ be the least ordinal such that η is
not a cardinal at ρ.

There are three possible cases.

Case I. There exists some n > 1 such that Hρ
n(α ∪ p) ⊃ η for some α < η

and some finite p ⊂ Lρ, but Hρ
n−1(β ∪ q) �⊃ η, for all β < η and all finite

q ⊂ Lρ.

Case II. Hρ
1 (α ∪ p) ⊃ η for some α < η and some finite p ⊂ Lρ.

Case III. Hρ
n(α ∪ p) �⊃ η, for all α < η and all finite p ⊂ Lρ.

We start with Case I.

Case I. We consider the following directed system of models. Let D be the
set of all pairs i = (α, p) where i < η and p ⊂ Lρ is finite, ordered by (α, p) ≤
(β, q) if and only if α ≤ β and p ⊂ q. For each i ∈ D, let Mi = Hρ

n−1(α ∪ p).
Let Lηi be the transitive collapse of Mi and let ei : Lηi → Lρ be the inverse
of the collapsing map. For i ≤ k, let ei,k = e−1

k ◦ ei. Clearly, Lρ is the direct
limit of the directed system

(18.38) {Lηi , ei,k : i, k ∈ D},

with ei,k being Σn−1-elementary embeddings.
For each i ∈ D, ηi < η because otherwise η ⊂ Hρ

n−1(α ∪ e−1(p)), con-
tradicting the assumption about n. Also, ei,k ∈ Lη for all i, k ∈ D, because
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ei,k is defined in Lη by its action on Σn−1 Skolem terms: ei,k(tLηi (ξ, x)) =
tLηk (ξ, ei,k(x)).

Now we consider the directed system

(18.39) {j(Lηi), j(ei,k) : i, k ∈ D}.

The closure properties (18.41) of M guarantee that the direct limit of (18.39)
is well-founded, and by Lemma 18.39, it is equal to Lγ for some γ. Let
ẽi be the embedding of j(Lηi) into Lγ ; ẽi is Σn−1-elementary. We extend
j : Lη → Lτ to J : Lρ → Lγ as follows:

(18.40) J(x) = ẽi(j(e−1
i (x)))

where i ∈ D is such that x ∈ Mi. As in the proof of Lemma 18.36, J extends j,
and it is easily verified that J is Σn−1-elementary.

The key observation is that J is even Σn-elementary. To prove that, it is
enough to show that for every Σn−1 formula ϕ, if Lγ � ∃xϕ(x, J(y)) then
Lρ � ∃xϕ(x, y). Thus let y ∈ Lρ and x ∈ Lγ be such that Lγ � ϕ(x, J(y)).
Let i ∈ D be such that x ∈ ran(ẽi) and y ∈ ran(ei). If u ∈ Lj(ηi) and
v ∈ Lηi are such that x = ẽi(u) y = ei(v) then J(y) = ẽi(j(v)), and Lγ �
ϕ(ẽi(u), ẽi(j(v))). Since ẽi is Σn−1-elementary, we have Lj(ηi) � ϕ(u, j(v)).
The statement Lj(ηi) � ∃z ϕ(z, j(v)) is Σ0 (with parameters j(Lηi) and j(v))
and true in Lτ ; hence in Lη, Lηi � ∃z ϕ(z, v). Let z ∈ Lηi be such that
Lηi � ϕ(z, v); since ei is Σn−1-elementary, we get Lρ � ϕ(ei(z), ei(v)), and so
Lρ � ∃xϕ(x, y).

Now we reach a contradiction. Let α < η and a finite p ⊂ Lρ be such that
η ⊂ Hρ

n(α ∪ p). First we have

X ⊂ M ∩ τ = j“η = J“η,

and since J is Σn-elementary, Lemma 18.41 gives

J“η ⊂ J“Hρ
n(α ∪ p) = Hγ(J“α ∪ J“p).

By the minimality of τ , the set J“α ⊂ j(α) < τ can be covered by a con-
structible set Y of size |Y | ≤ ν. Hence X can be covered by the constructible
set Hγ

n(Y ∪ J“p), which has cardinality ≤ ν, contrary to Lemma 18.35.
This completes the proof of Case I.

Case II. We use the fact that in this case, ρ must be a limit ordinal. This is
an immediate consequence of this:

Lemma 18.42. If γ is infinite, α < γ and p ⊂ Lγ+1 is finite, then there
exists a finite set q ⊂ Lγ such that

Hγ+1
1 (α ∪ q) ∩ Lγ ⊂ Hγ(α ∪ p).
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Proof. This is quite routine when p = ∅. When p is nonempty, the idea is to
replace members of p by the parameters used in their definitions over Lγ . We
omit the proof. ��

Continuing Case II, we consider the directed system of models (18.38)
with ηi < η where all embeddings are Σ0-elementary embeddings. The index
set D is the set of all i = (α, p, ξ) where α < η, p ⊂ Lρ is finite and ξ < ρ
such that p ∈ Lξ. Each model Lηi is the transitive collapse of Hξ(α ∪ p).

The closure properties (18.41) of M guarantee that the direct limit of the
system (18.39) is well-founded, say Lγ . We extend j to J : Lρ → Lγ as before,
and as in Case I prove that J is not just Σ0-elementary, but Σ1-elementary.
As in Case I, we reach a contradiction by covering X by a constructible set
of size ≤ ν.

Case III. In this case, we consider the directed system (18.38) indexed by
triples i = (α, p, n) where α and p are as before and n ≥ 1; (α, p, n) ≤ (β, q, m)
means α ≤ β, p ⊂ q and n ≤ m. For each i = (α, p, n), Mi = Hρ

n(α ∪ p); by
the assumption on ρ, the transitive collapse of Mi is some Lηi with ηi < η,
and if for each k ≥ i, ei,k is Σn-elementary (and ei,k ∈ Lη).

Again, by (18.41) the direct limit of (18.39) is some Lγ , and for each
i = (α, p, n), ẽi is Σn-elementary. Extending j to J : Lρ → Lγ as before,
we get J elementary, and reach a contradiction in much the same way as
before. ��

It remains to find a model M ⊃ X with the right closure conditions. This
is provided by the following technical lemma:

Lemma 18.43. There exists a model M ≺ Lτ such that X ⊂ M , |M | = ν =
|X |, and if j−1 is the transitive collapse of M onto Lη, then

(18.41) for every directed system {Lηi, ei,k : i, k ∈ D} with Lηi , ei,k ∈ Lη,
with limit Lρ for some ρ ≥ η, and D as in the proof of Lem-
mas 18.36 and 18.37, the direct limit of {j(Lηi), j(ei,k) : i, k ∈ D}
is well-founded. ��

The construction of M proceeds in ν steps. At each step ξ < ν let
(η(ξ), ρ(ξ)) be the least (η, ρ) such that for some increasing {in}∞n=0 ⊂ D,
there are ordinals βn ∈ Lηin

such that βn+1 < ein,in+1(βn) for n = 0, 1,
2, . . . . We add the ordinals βn to M at this stage ξ. Using the fact that ν is
a regular uncountable cardinal, one can verify that the resulting model M
satisfies (18.41). As the proof is rather long and tedious, we omit it and refer
the reader to either Magidor [1990] or Chapter 32 in Kanamori’s book.
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Exercises

18.1. If there exists a cardinal κ such that κ→ (ω1)
<ω then 0� exists.

18.2. Let M be a transitive model of ZFC, let B be a complete Boolean algebra
in M and let G be an M -generic ultrafilter on B. If M � 0� does not exist, then
M [G] � 0� does not exist.

[All cardinals ≥ |B+| remain cardinals in M [G]. Let γ1 < γ2 < . . . < γn < . . . <
γω be an increasing sequence of cardinals in M such that γ1 ≥ |B+|. If 0� exists
in M [G], then 0� = {ϕ : Lγω � ϕ[γ1, . . . , γn]} and hence 0� ∈M .]

18.3. Assume that 0� exists. If A ⊂ ω1 is such that A ∩ α ∈ L for every α < ω1,
then A ∈ L.

[For every α ∈ I ∩ ω1 there is tα such that A ∩ α = tα(γα
1 , . . . , γα

n(α), α,
δα
1 , . . . , δα

k(α)). Clearly A∩α = tα(γα
1 , . . . , γα

n(α), α,ℵ2, . . . ,ℵk(α)+1). Since there are
only countably many Skolem terms, and by Fodor’s Theorem, there is a stationary
subset X of I ∩ ω1 and t, γ1, . . . , γn such that for all α ∈ X, A ∩ α = t(γ1, . . . , γn,
α,ℵ2, . . . ,ℵk+1). Show that A = t(γ1, . . . , γn,ℵ1,ℵ2, . . . ,ℵk+1).]

18.4. Let κ be an uncountable regular cardinal. If 0� exists, then for every con-
structible set X ⊂ κ, either X or κ−X contains a closed unbounded subset.

[Let X = t(α1, . . . , αn, β1, . . . , βm) where α1 < . . . < αn < β1 < . . . < βm

are Silver indiscernibles such that αn < κ ≤ β1. Show that either X or κ−X
contains all Silver indiscernibles γ such that αn < γ < κ: The truth value of
γ ∈ t(α1, . . . , αn, β1, . . . , βm) is the same for all such γ.]

18.5. Let us assume that for some uncountable regular cardinal κ, every con-
structible X ⊂ κ either contains or is disjoint from a closed unbounded set. Then
0� exists.

[Let D be the collection of all constructible subsets of κ containing a closed
unbounded subset. D is an L-ultrafilter and every intersection of less than κ ele-
ments of D is nonempty; hence the ultrapower UltD(L) is well-founded and gives
an elementary embedding of L in L.]

18.6. If κ is weakly compact and if |(κ+)L| = κ, then 0� exists.
[Let B be the least nontrivial κ-complete algebra of subsets of κ closed under in-

verses of constructible functions f : κ→ κ; we have |B| = κ. Let U be a κ-complete
ultrafilter on B containing all final segments {α : ℵ0 ≤ α < κ}. U ∩ L is a non-
principal L-ultrafilter, and UltU∩L(L) is well-founded. Thus there is a nontrivial
elementary embedding of L in L.]

18.7. Let in (n ≤ ω) be the nth Silver indiscernible, and let j : I → I be order-
preserving such that j(in) = in for n < ω and j(iω) > iω. Then j extends to an
elementary embedding j : L→ L with iω its critical point.

18.8. Every Silver indiscernible is ineffable (hence weakly compact) in L.
[Show that iω is ineffable in L, by Lemma 17.32.]

18.9. If 0� exists then L � ∃κ κ→ (ω)<ω.
[Let κ = iω. If f : [κ]<ω → {0, 1} is in L, there is some n < ω such that the set

{ik : k ≤ n < ω} is homogeneous for f .]

18.10. If 0� exists then the Erdős cardinal ηω in L is smaller than the least Silver
indiscernible.

[(ηω)L is definable in L.]
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18.11. If j : L → L is elementary, then the critical point of j is a Silver indis-
cernible.

[Let κ be the critical point, let D = {X : κ ∈ j(X)}, and let jD : L→ UltD(L) =
L be the canonical embedding. κ is the critical point of jD, and jD(λ) = λ for all
regular λ ≥ κ+. If κ /∈ I then κ = t(α1, . . . , αk, λ1, . . . , λn) where αi < κ < λj and
jD(αi) = αi, jD(λj) = λj . Hence jD(κ) = κ, a contradiction.]

18.12. If both ω1 and ω2 are singular, then 0� exists.
[Let κ = ω1 and let λ be the successor cardinal of κ in L. Since cf κ = cf λ = ω,

there are sets X ⊂ κ and Y ⊂ λ, both of order-type ω such that sup X = κ and
sup Y = λ. Let M = L[X, Y ]; M is a model of ZFC and in M , κ is a singular
cardinal, and λ is not a cardinal. Hence 0� exists in M .]

18.13. For every x ⊂ ω, either 0� ∈ L[x] or x� ∈ L[0�, x].
[If 0� /∈ L[x], then the Covering Theorem for L holds in L[x] but fails in L[0�, x],

and hence the Covering Theorem for L[x] fails in L[0�, x]. Therefore x� ∈ L[0�, x].]

Historical Notes

Theorem 18.1 was discovered by Gaifman (assuming the existence of a measurable
cardinal). Gaifman’s results were announced in [1964] and the proof was published
in [1974], Gaifman’s proof used iterated ultrapowers (see also Gaifman [1967]).
Silver in his thesis (1966, published in [1971b]) developed the present method of
proof, using infinitary combinatorics, and proved the theorem under the weaker
assumption of existence of κ with the property κ → (ℵ1)

<ω. Gaifman proved that
if there is a measurable cardinal, then there exists A ⊂ ω such that the conclusion
of Theorem 18.1 holds in L[A]. Solovay formulated 0� and proved that it is a ∆1

3 set
of integers; Silver deduced the existence of 0� under weaker assumptions.

Construction of models with indiscernibles was introduced by Ehrenfeucht and
Mostowski in [1956].

The equivalence of the existence of 0� with the existence of a nontrivial elemen-
tary embedding of L (Theorem 18.20) is due to Kunen; the present proof is due
to Silver. Kunen also derived 0� from the existence of Jónsson cardinals and from
Chang’s Conjecture.

Theorem 18.30 (and its corollaries) is due to Jensen. A proof of the theorem
appeared in Devlin and Jensen [1975]. Jensen’s proof makes use of his fine structure
theory, see Jensen [1972]. The present proof is due to Magidor [1990]. Lemma 18.38
appears in Magidor [1990] and in Kanamori’s book [∞]; Magidor attributes the
proof to Boolos [1970].

Exercise 18.3: Solovay.
Exercise 18.6: Kunen.
Exercise 18.12: Magidor.
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In this chapter we investigate inner models for measurable cardinals, using
Kunen’s technique of iterated ultrapowers.

The Model L[U ]

Let κ be a measurable cardinal and let U be a κ-complete nonprincipal ultra-
filter on κ. Let us consider the model L[U ]. By Lemma 13.23, L[U ] = L[Ū ],
where Ū = U ∩ L[U ].

Lemma 19.1. In L[U ], Ū is a κ-complete nonprincipal ultrafilter on κ.
Moreover, if U is normal, then L[U ] � Ū is normal.

Proof. A straightforward verification. For instance if U is normal and f ∈
L[U ] is a regressive function on κ, then for some γ < κ, the set X = {α :
f(α) = γ} is in U ; since X ∈ L[U ], L[U ] � f is constant on some X ∈ Ū . ��

We shall eventually prove, among others, that the model L[U ] satis-
fies GCH. For now, we recall Theorem 13.22(iv) by which 2ℵα = ℵα+1

holds in L[U ] for all sufficiently large α. Specifically, using the Condensa-
tion Lemma 13.24, we get:

Lemma 19.2. If V = L[A], and if A ⊂ P (ωα), then 2ℵα = ℵα+1.

Proof. Let X be a subset of ωα. Let λ be a cardinal such that A ∈ Lλ[A]
and X ∈ Lλ[A]. Let M be an elementary submodel of (Lλ[A],∈) such that
ωα ⊂ M , A ∈ M , X ∈ M , and |M | = ℵα. Let π be the transitive collapse
of M , and let N = π(M). Since ωα ⊂ M , we have π(Z) = Z for every Z ⊂ ωα

that is in M and in particular π(X) = X ; also, π(A) = π(A ∩ M) = A ∩ N .
Now N = Lγ [A ∩ N ] for some γ, and hence N = Lγ [A]. Since |N | = ℵα, we
have γ < ωα+1 and hence X ∈ Lωα+1[A]. It follows that every subset of ωα

is in Lωα+1[A] and therefore 2ℵα = ℵα+1. ��

Theorem 19.3 (Silver). If V = L[D] where D is a normal measure on
a measurable cardinal κ, then the Generalized Continuum Hypothesis holds.
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Proof. If λ ≥ κ, then D ⊂ P (λ) and hence 2λ = λ+ by Lemma 19.2. Thus
it suffices to show that 2λ = λ+ for every infinite cardinal λ < κ. Let λ < κ
and let us assume that there are more than λ+ subsets of λ; we shall reach
a contradiction. If 2λ > λ+, then there exists a set X ⊂ λ that is the λ+th
subset of λ in the canonical well-ordering <L[D] of L[D]. Let α be the least
ordinal such that X ∈ Lα[D]. Since the well-ordering <L[D] has the property
that each Lξ[D] is an initial segment of <L[D] every subset of λ preceding X
is also in Lα[D] and hence the set P (λ) ∩ Lα[D] has size at least λ+.

We shall now apply Lemma 17.36. Let η be a cardinal such that η > α
and that D ∈ Lη[D], and consider the model A = (A,∈) where A = Lη[D].
We have κ ⊂ A, and we consider the set P = P (λ)∩A. Since 2λ < κ, we have
|P | < κ. By Lemma 17.36, there is an elementary submodel B = (B,∈) ≺ A
such that λ ∪ {D, X, α} ⊂ B, κ ∩ B ∈ D and |P ∩ B| ≤ λ. Let π be the
transitive collapse of B onto a transitive set M ; we have M = Lγ [π(D)] for
some γ.

Using the normality of D, we show that π(D) = D∩M . Clearly, π(κ) = κ
because |κ ∩ B| = κ. The function π is one-to-one, and for every ξ < κ,
π(ξ) ≤ ξ. Since D is normal, there is a set Z ∈ D such that π(ξ) = ξ for all
ξ ∈ Z. Hence if Y ∈ B is a set in D, then π(Y ) ⊃ π(Y ∩ Z) = Y ∩ Z, and so
π(Y ) is also in D; similarly, if Y ∈ B and π(Y ) ∈ D, then Y ∈ D. It follows
that π(D) = D ∩ M .

Hence M = Lγ [D]. Since λ ⊂ B, π maps every subset of λ onto itself,
and so P (λ) ∩ M = P (λ) ∩ B. In particular, we have π(X) = X and so
X ∈ Lγ [D]. By the minimality assumption on α, we have α ≤ γ, and this is
a contradiction since on the one hand |P (λ)∩Lα[D]| ≥ λ+, and on the other
hand |P (λ) ∩ Lγ [D]| ≤ λ. ��

One proves rather easily that the model L[D] has only one measurable
cardinal:

Lemma 19.4. If V = L[D] and D is a normal measure on κ, then κ is the
only measurable cardinal.

Proof. Let us assume that there is a measurable cardinal λ �= κ and let us
consider the elementary embedding jU : V → M where U is some nonprin-
cipal λ-complete ultrafilter on λ. We shall prove that M = L[D] = V thus
getting a contradiction since U /∈ M by Lemma 17.9(ii).

Since j is elementary, it is clear that M = L[j(D)]. If λ > κ, then j(D) =
D and so M = L[D]. Thus assume that λ < κ.

Since κ is measurable, the set Z = {α < κ : α is inaccessible and α > λ}
belongs to D. By Lemma 17.9(v), j(κ) = κ and j(α) = α for all α ∈ Z. We
shall show that j(D) = D ∩ M . It suffices to show that j(D) ⊂ D ∩ M since
j(D) is (in M) an ultrafilter. Let X ∈ j(D) be represented by f : λ → D. Let
Y =

⋂
ξ<λ f(ξ); we have Y ∈ D, and clearly j(Y ) ⊂ X . Now if α ∈ Y ∩ Z,

then j(α) = α and so X ⊃ j(Y ) ⊃ j“(Y ∩Z) = Y ∩Z ∈ D and hence X ∈ D.
Thus j(D) = D∩M , and we have M = L[j(D)] = L[D ∩M ] = L[D]. ��
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Iterated Ultrapowers

Let κ be a measurable cardinal and let U be a κ-complete nonprincipal ul-
trafilter on κ. Using U , we construct an ultrapower of V mod U ; and since
the ultrapower is well-founded, we identify the ultrapower with its transi-
tive collapse, a transitive model M = UltU (V ). Let us denote this transitive
model Ult(1)U (V ) or just Ult(1). Let j(0) = jU be the canonical embedding
of V in Ult(1), and let κ(1) = j(0)(κ) and U (1) = j(0)(U).

In the model Ult(1), the ordinal κ(1) is a measurable cardinal and U (1) is
a κ(1)-complete nonprincipal ultrafilter on κ(1). Thus working inside Ult(1),
we can construct an ultrapower mod U (1): UltU(1)(Ult(1)). Let us denote this
ultrapower Ult(2), and let j(1) be the canonical embedding of Ult(1) in Ult(2)

given by this ultrapower. Let κ(2) = j(1)(κ1) and U (2) = j(1)(U (1)).
We can continue this procedure and obtain transitive models

Ult(1), Ult(2), . . . , Ult(n), . . . (n < ω).

[That we can indeed construct such a sequence of classes follows from the
observation that for each α, the initial segment Vα∩Ult(n) of each ultrapower
in the sequence is defined from an initial segment Vβ of the universe (where
β is something like κ + α + 1).]

Thus we get a sequence of models Ult(n), n < ω (where Ult(0) = V ). For
any n < m, we have an elementary embedding in,m : Ult(n) → Ult(m) which
is the composition of the embeddings j(n), j(n+1), . . . , j(m−1):

in,m(x) = j(m−1)j(m−2) . . . j(n)(x) (x ∈ Ult(n)).

These embeddings form a commutative system; that is,

im,k ◦ in,m = in,k (m < n < k).

We also let κ(n) = i0,n(κ), and U (n) = i0,n(U). Note that κ(0) < κ(1) < . . . <
κ(n) < . . ., and Ult(0) ⊃ Ult(1) ⊃ . . . ⊃ Ult(n) ⊃ . . ..

Thus we have a directed system of models and elementary embeddings

(19.1) {Ult(n), im,n : m, n ∈ ω}.

Even though the models are proper classes, the technique of Lemma 12.2 is
still applicable and we can consider the direct limit

(19.2) (M, E) = limdirn→ω{Ult(n), in,m},

along with elementary embeddings in,ω : Ult(n) → (M, E). The direct limit
is a model of ZFC and we shall prove below that it is well-founded. Thus we
identify it with a transitive model Ult(ω). (We shall also prove that Ult(ω) ⊂
Ult(n) for every n.)
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Let κ(ω) = i0,ω(κ) and U (ω) = i0,ω(U). Since Ult(ω) satisfies that U (ω) is
a κ(ω)-complete nonprincipal ultrafilter on κ(ω), we can construct, working
inside the model Ult(ω), the ultrapower of Ult(ω) mod U (ω) and the corre-
sponding canonical embedding j(ω).

Let us denote Ult(ω+1) the ultrapower of Ult(ω) mod U (ω) and let iω,ω+1 be
the corresponding canonical elementary embedding. For n < ω, let in,ω+1 =
iω,ω+1 ◦ in,ω.

This procedure can be continued, and so we define the iterated ultrapower
as follows:

(Ult(0), E(0)) = (V,∈),

(Ult(α+1), E(α+1)) = UltU(α)(Ult(α), E(α)),

(Ult(λ), E(λ)) = limdirα→λ{(Ult(α), E(α)), iα,β} (λ limit)

where U (α) = i0,α(U), for each α. We do not know yet that all the mod-
els Ult(α) are well-founded; but we make a convention that if Ult(α) is well-
founded, then we identify it with its transitive collapse.

If M is a transitive model of set theory and U is (in M) a κ-complete
nonprincipal ultrafilter on κ, we can construct, within M , the iterated ultra-
powers. Let us denote by Ult(α)

U (M) the αth iterated ultrapower, constructed
in M .

Lemma 19.5 (The Factor Lemma). Let us assume that Ult(α) is well-
founded. Then for each β, the iterated ultrapower Ult(β)

U(α)(Ult(α)) taken
in Ult(α) is isomorphic to the iterated ultrapower Ult(α+β).

Moreover, there is for each β an isomorphism e
(α)
β such that if for all

ξ and η, i
(α)
ξ,η denotes the elementary embedding of Ult(ξ)

U(α)(Ult(α)) into

Ult(η)

U(α)(Ult(α)), then the following diagram commutes:

Ult(ξ)
U(α)(Ult(α))

i
(α)
ξ,η−−−−→ Ult(η)

U(α)(Ult(α))

e
(α)
ξ

⏐⏐� ⏐⏐�e(α)
η

Ult(α+ξ)
U −−−−−−→

i
(α)
α+ξ,α+η

Ult(α+η)
U

Proof. The proof is by induction on β. If β = 0, then the 0th iterated
ultrapower in Ult(α) is Ult(α); and we let e

(α)
0 be the identity mapping.

If Ult(β)

U(α) and Ult(α+β)
U are isomorphic and e

(α)
β is the isomorphism, then

Ult(β+1)

U(α) and Ult(α+β+1)
U are ultrapowers of Ult(β)

U(α) and Ult(α+β)
U , respec-

tively, mod i
(α)
0,β(U (α)) and mod i0,α+β(U), respectively; and since i0,α+β(U) =

e
(α)
β (i(α)

0,β(U (α))), the isomorphism e
(α)
β induces an isomorphism e

(α)
β+1 between

Ult(β+1)

U(α) and Ult(α+β+1)
U .
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If λ is a limit ordinal, then Ult(λ)

U(α) and Ult(α+λ)
U are (in Ult(α)) the di-

rect limits of {Ult(β)

U(α) , i
(α)
β,γ : β, γ < λ} and {Ult(α+β)

U , iα+β,α+γ : β, γ < λ},
respectively. It is clear that the isomorphisms e

(α)
β , β < λ, induce an isomor-

phism e
(α)
λ between Ult(λ)

U(α) and Ult(α+λ)
U . ��

Corollary 19.6. For every limit ordinal λ, if Ult(λ) is well-founded then
Ult(λ) ⊂ Ult(α) for all α < λ.

Proof. Ult(λ) is a class in Ult(α); it is the iterated ultrapower Ult(β)

U(α)(Ult(α))
where α + β = λ. ��

Next we show that the iterated ultrapowers Ult(α)
U are all well-founded.

Theorem 19.7 (Gaifman). Let U be a κ-complete nonprincipal ultrafilter
on κ. Then for every α, the αth iterated ultrapower Ult(α) is well-founded.

Proof. Clearly, if Ult(α) is well-founded, then Ult(α+1) is well-founded. Thus
if γ is the least γ such that Ult(γ) is not well-founded, then γ is a limit
ordinal. The ordinals of the model Ult(γ) are not well-ordered; let ξ be the
least ordinal such that the ordinals of Ultγ below i0,γ(ξ) are not well-ordered.

Let x0, x1, x2, . . . be a descending sequence of ordinals in the model Ult(γ)

such that x0 is less than i0,γ(ξ). Since Ult(γ) is the direct limit of Ult(α),
α < γ, there is an α < γ and an ordinal ν (less than i0,α(ξ)) such that
x0 = iα,γ(ν). Let β be such that α + β = γ.

By our assumptions, the following is true (in V ):

(19.3) (∀γ′ ≤ γ)(∀ξ′ < ξ) the ordinals below i0,γ′(ξ′) in Ult(γ
′) are well-

ordered.

When we apply the elementary embedding i0,α to (19.3), we get:

(19.4) Ult(α) � (∀γ′ ≤ i0,α(γ))(∀ξ′ < i0,α(ξ)) the ordinals below i
(α)
0,γ′(ξ′) in

Ult(γ
′)

U(α) are well-ordered.

Now β ≤ γ ≤ i0,α(γ), and ν < i0,α(ξ). Hence if we let γ′ = β and ξ′ = ν
in (19.4), we get

Ult(α) � the ordinals below i
(α)
0,β(ν) in Ult(β)

U(α) are well-ordered.

By the Factor Lemma, Ult(β)

U(α) is (isomorphic to) Ult(α+β), and i
(α)
0,β(ν)

is iα,α+β(ν). Since α + β = γ and iα,γ(ν) = x0, and since being well-ordered
is absolute (for the transitive model Ult(α)), we have:

The ordinals below x0 in Ult(γ) are well-ordered.

But this is a contradiction since x1, x2, x3, . . . is a descending sequence of
ordinals below x0 in Ult(γ). ��
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Thus for any given κ-complete nonprincipal ultrafilter U on κ we have
a transfinite sequence of transitive models, the iterated ultrapowers Ult(α)

U (V ),
and the elementary embeddings iα,β : Ult(α) → Ult(β). Let κ(α) = i0,α(κ) for
each α; we shall show that the sequence κ(α), α ∈ Ord , is a normal sequence.

Lemma 19.8.

(i) If γ < κ(α), then iα,β(γ) = γ for all β ≥ α.
(ii) If X ⊂ κ(α) and X ∈ Ult(α), then X ⊂ iα,β(X) for all β ≥ α; in fact

X = κ(α) ∩ iα,β(X).

Proof. By the Factor Lemma, it suffices to give the proof for α = 0.
(i) As we know, i0,1(γ) = γ for all γ < κ. By induction on β, if i0,β(γ) = γ,

then i0,β+1(γ) = iβ,β+1(γ) = γ because γ < κ(β); if λ is limit and i0,β(ξ) = ξ
for all ξ ≤ γ and β < λ, then i0,λ(γ) = γ.

(ii) Follows from (i). ��

Lemma 19.9. The sequence 〈κ(α) : α ∈ Ord〉 is normal ; i.e., increasing and
continuous.

Proof. For each α, κ(α+1) = iα,α+1(κ(α)) > κ(α). To show that the sequence is
continuous, let λ be a limit ordinal; we want to show that κ(λ) = limα→λ κ(α).
If γ < κ(λ), then γ = iα,λ(δ) for some α < λ and δ < κ(α). Hence γ = δ and
so γ < κ(α). ��

Lemma 19.10. Let D be a normal measure on κ, and let for each α, Ult(α)

be the αth iterated ultrapower mod D, κ(α) = i0,α(κ), and D(α) = i0,α(D).
Let λ be an infinite limit ordinal. Then for each X ∈ Ult(λ), X ⊂ κ(λ),

(19.5) X ∈ D(λ) if and only if (∃α < λ)X ⊃ {κ(γ) : α ≤ γ < λ}.

Proof. Since for no X can both X and its complement contain a final segment
of the sequence 〈κ(γ) : γ < λ〉, it suffices to show that if X ∈ D(λ), then there
is an α such that κ(γ) ∈ X for all γ ≥ α.

There exists an α < λ such that X = iα,λ(Y ) for some Y ∈ D(α). Let us
show that κ(γ) ∈ X for all γ, α ≤ γ < λ. Let γ ≥ α and let Z = iα,γ(Y ).
Then Z ∈ D(γ) and since D(γ) is a normal measure on κ(γ) in Ult(γ), we have
κ(γ) ∈ iγ,γ+1(Z). However, iγ,γ+1(Z) ⊂ iγ+1,λ(iγ,γ+1(Z)) = X and hence
κ(γ) ∈ X . ��

Representation of Iterated Ultrapowers

We shall now give an alternative description of each of the models Ult(α) by
means of a single ultrapower of the universe, using an ultrafilter on a certain
Boolean algebra of subsets of κα. This will enable us to obtain more precise
information about the embeddings i0,α : V → Ult(α).
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We shall deal first with the finite iterations. Let U be a κ-complete non-
principal ultrafilter on κ. Let us use the symbol ∀∗α for “almost all α < κ:”

∀∗α ϕ(α) if and only if {α < κ : ϕ(α)} ∈ U.

If X ⊂ κn and α < κ, let

X(α) = {〈α1, . . . , αn−1〉 : 〈α, α1, . . . , αn−1〉 ∈ X}.

We define ultrafilters Un on κn, by induction on n:

U1 = U,

Un+1 = {X ⊂ κn+1 : ∀∗α X(α) ∈ Un}.

Each Un is a nonprincipal κ-complete ultrafilter on κn, and if Z ∈ U , then
Zn ∈ Un. It is easy to see that for all X ⊂ κn,

X ∈ Un if and only if ∀∗α0 ∀∗α1 . . . ∀∗αn−1 〈α0, . . . , αn−1〉 ∈ X.

Note that Un concentrates on increasing n-sequences:

{〈α0, . . . , αn−1〉 ∈ κn : α0 < . . . < αn−1} ∈ Un

(because ∀α0 (∀α1 > α0) . . . (∀αn−1 > αn−2)α0 < . . . < αn−1).

Lemma 19.11. For every n,

UltUn(V ) = Ult(n)(V )

and jUn = i0,n.

Here jUn is the canonical embedding j : V → UltUn(V ).

Proof. By induction on n. The case n = 1 is trivial. Let us assume that
the lemma is true for n and let us consider UltUn+1 . Let f be a function
on κn+1. For each t = 〈α0, . . . , αn−1〉 ∈ κn, let f(t) be the function on κ
defined by f(t)(ξ) = f(α0, . . . , αn−1, ξ) and let F be a function on κn such
that F (t) = f(t) for all t ∈ κn. In UltUn = Ult(n), the function F represents
a function on jUn(κ) = κ(n): Let f̃ = [F ]Un . This way we assign to each
function f on κn+1 a function f̃ ∈ Ult(n) on κ(n).

Conversely, if h ∈ Ult(n) is a function on κ(n), there is an f on κn+1 such
that h = f̃ : There exists some F on κn such that h = [F ]Un and that for
each t ∈ κn, F (t) is a function on κ; thus we let f(α0, . . . , αn) be the value
of F (α0, . . . , αn−1) at αn.
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We shall show that the correspondence [f ]Un+1 �→ [f̃ ]U(n) is an isomor-
phism between UltUn+1 and Ult(n+1) = UltU(n)(Ult(n)). We have

[f ]Un+1 = [g]Un+1 ↔ ∀∗α0 . . . ∀∗αn−1 ∀∗ξ f(α0, . . . , αn−1, ξ) = g(α0, . . . ,
αn−1, ξ)

↔ ∀∗t {ξ < κ : f(t)(ξ) = g(t)(ξ)} ∈ U

↔ UltUn � {ξ < jUn(κ) : f̃(ξ) = g̃(ξ)} ∈ jUn(U)

↔ Ult(n) � {ξ < κ(n) : f̃(ξ) = g̃(ξ)} ∈ U (n)

↔ [f̃ ]U(n) = [g̃]U(n)

and similarly for ∈ in place of =.
Thus UltUn+1 = Ult(n+1). To show that jUn+1 = i0,n+1, let f = cx be

the constant function on κn+1 with value x. It follows that f̃ is the constant
function on κ(n) with value i0,n(x), and therefore

jUn+1(x) = [cx]Un+1 = in,n+1(i0,n(x)) = i0,n+1(x). ��

The infinite iterations are described with the help of ultrafilters UE on κE ,
where E ranges over finite sets of ordinal numbers. If E is a finite set of
ordinals, then the order isomorphism π between n = |E| and E induces, in
a natural way, an ultrafilter UE corresponding to Un:

UE = {π(X) : X ⊂ κn}

where π(〈α0, . . . , αn−1〉) = t ∈ κE with t(π(k)) = αk for all k = 0, . . . , n − 1.
If S is any set of ordinals and E ⊂ S is a finite set, we define a mapping

inE,S (an inclusion map) of P (κE) into P (κS) as follows:

inE,S(X) = {t ∈ κS : t�E ∈ X} (all X ⊂ κE).

Lemma 19.12. If E ⊂ F are finite sets of ordinals, then for each X ⊂ κE ,

X ∈ UE if and only if inE,F (X) ∈ UF .

Proof. By induction on (m, n) where m = |E| and n = |F |. Let E ⊂ F be
finite sets of ordinals. Let a be the least element of F , and let us assume
that a ∈ E (if a /∈ E, then the proof is similar). Let E′ = E − {a} and
F ′ = F − {a}.

If X ⊂ κE , let us define for each α < κ, the set X(α) ⊂ κE′
as follows:

X(α) = {t�E′ : t ∈ X and t(a) = α}; for Z ⊂ κF , let us define Z(α) ⊂ κF ′

similarly (for all α < κ). It should be clear that

(19.6) X ∈ UE ↔ ∀∗α X(α) ∈ UE′ and Z ∈ UF ↔ ∀∗α Z(α) ∈ UF ′ .

Now we observe that if Z = inE,F (X), then Z(α) = inE′,F ′(X(α)), and the
lemma for E, F follows from (19.6) and the induction hypothesis. ��
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Let us now consider an ordinal number α. If E ⊂ α is a finite set, let us
say that a set Z ⊂ κα has support E if Z = inE,α(X) for some X ⊂ κE .
Note that if Z has support E and E ⊂ F , then Z also has support F . Let Bα

denote the collection of all subsets of κα that have finite support. (Bα,⊂) is
a Boolean algebra.

Let Uα be the following ultrafilter on Bα: For each Z ∈ Bα, if Z =
inE,α(X) where X ⊂ κE , let

Z ∈ Uα if and only if X ∈ UE .

By Lemma 19.12, the definition of Uα does not depend on the choice of
support E of Z.

We shall now construct an ultrapower mod Uα. If f is a function on κα, let
us say that f has a finite support E ⊂ α if f(t) = f(s) whenever t, s ∈ κα are
such that t�E = s�E. In other words, there is g on κE such that f(t) = g(t�E)
for all t ∈ κα. Let us consider only functions f on κα with finite support and
define

(19.7)
f =α g if and only if {t : f(t) = g(t)} ∈ Uα,

f Eα g if and only if {t : f(t) ∈ g(t)} ∈ Uα.

The sets on the right-hand side of (19.7) have finite support, namely E ∪ F
where E and F are, respectively, supports of f and g.

Let (UltUα(V ), Eα) be the model whose elements are equivalence classes
mod =α of functions on κα with finite support.

We are now in a position to state the main lemma.

Lemma 19.13 (The Representation Lemma). For every α, the model
(UltUα(V ), Eα) is (isomorphic to) the αth iterated ultrapower Ult(α)

U (V ), and
the canonical embedding jUα : V → UltUα is equal to i0,α. Moreover, if α ≤ β
and [f ]Uα ∈ Ult(α), then iα,β([f ]Uα) = [g]Uβ

where g is defined by g(t) =
f(t�α) for all t ∈ κβ.

Proof. By induction on α. The induction step from α to α + 1 follows closely
the proof of Lemma 19.11; thus let us describe only how to assign to [f ]Uα+1

the corresponding [f̃ ]U(α) in Ult(α+1). Let f be a function on κα+1 with
support E ∪ {α} where E ⊂ α. For each t ∈ κα let f(t)(ξ) = f(t�ξ) for all
ξ < κ, and let F be a function on κα (with support E) such that F (t) = f(t)

for all t ∈ κα. Let f̃ = [F ]Uα ; f̃ is in Ult(α) and is a function on κ(α).
When λ is a limit ordinal, a routine verification shows that UltUλ

is the
direct limit of {UltUα , iα,β : α, β < λ} and that the embeddings iα,λ commute
with the iα,β . ��
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Uniqueness of the Model L[D]

Theorem 19.14 (Kunen).

(i) If V = L[D] and D is a normal measure on κ, then κ is the only
measurable cardinal and D is the only normal measure on κ.

(ii) For every ordinal κ, there is at most one D ⊂ P (κ) such that D ∈ L[D]
and

L[D] � D is a normal measure on κ.

(iii) If κ1 < κ2 are ordinals and if D1, D2 are such that

L[Di] � Di is a normal measure on κi (i = 1, 2)

then L[D2] is an iterated ultrapower of L[D1]; i.e., there is α such that
L[D2] = Ult(α)

D1
(L[D1]), and D2 = i0,α(D1).

The proof of Theorem 19.14 uses iterated ultrapowers. The following
lemma uses the representation of iterated ultrapowers.

Lemma 19.15. Let U be a κ-complete nonprincipal ultrafilter on κ and let,
for each α, i0,α : V → Ult(α) be the embedding of V in its αth iterated
ultrapower.

(i) If α is a cardinal and α > 2κ, then i0,α(κ) = α.
(ii) If λ is a strong limit cardinal, λ > α, and if cf λ > κ, then i0,α(λ) = λ.

Proof. It follows from the Representation Lemma that for all ξ, η, the ordinals
below i0,ξ(η) are represented by functions with finite support from κξ into η
and hence |i0,ξ(η)| ≤ |ξ| · |η|κ.

(i) We have i0,α(κ) = limξ→α i0,ξ(κ), and for each ξ < α, |i0,ξ(κ)| ≤
|ξ| · 2κ < α. Hence i0,κ(κ) = α.

(ii) Since cf λ > κ, every function f : κα → λ with finite support is
bounded below λ: There exists γ < λ such that f(t) < γ for all t ∈ κα. Hence
i0,α(λ) = limγ→λ i0,α(γ). Since λ is strong limit, we have |i0,α(γ)| < λ for all
γ < λ and hence i0,λ = λ. ��

It is clear from the proof that in (ii) it is enough to assume that γκ < λ
for all cardinals γ < λ, instead of that λ is a strong limit cardinal.

Let U ⊂ P (κ). If θ is a cardinal and U ∈ Lθ[U ], then by absoluteness of
relative constructibility, every elementary submodel of (Lθ[U ],∈) that con-
tains U and all ordinals < κ, is isomorphic to M = Lα[U ] for some α. (If
π is the transitive collapse of the submodel, then π(U) = U ∩ M ∈ M , and
M = Lα[U ].) Let θ be a cardinal such that U ∈ Lθ[U ] and let us consider
the model (Lθ[U ],∈, U) where U is regarded as a constant. This model has
a definable well-ordering, hence definable Skolem functions, and so we can
talk about Skolem hulls of subsets of Lθ[U ].



19. Iterated Ultrapowers and L[U ] 349

Lemma 19.16. Assume that in L[D], D is a normal measure on κ. Let A be
a set of ordinals of size at least κ+ and let θ be a cardinal such that D ∈ Lθ[D]
and A ⊂ Lθ[D]. Let M ≺ (Lθ[D],∈, D) be the Skolem hull of κ ∪ A. Then
M contains all subsets of κ in L[D].

For every X ⊂ κ in L[D] there is a Skolem term t such that for some
α1, . . . , αn < κ and γ1, . . . , γm ∈ A,

Lθ[D] � X = t[α1, . . . , αn, γ1, . . . , γm, D].

Proof. Let π be the transitive collapse of M . We have π(M) = Lα[D] for
some α, and since A ⊂ M , we have necessarily α ≥ κ+. By Lemma 19.2,
every X ⊂ κ in L[D] is in Lκ+ [D], and since π is the identity on κ, we have
X ∈ M for all X ⊂ κ in L[D]. ��

The following is the key lemma in the proof of uniqueness of L[D]:

Lemma 19.17. Let D ⊂ P (κ) be such that D ∈ L[D] and

L[D] � D is a normal measure on κ.

For each α, let Ult(α)
D (L[D]) denote the αth iterated ultrapower, constructed

inside L[D]. Let i0,α be the corresponding elementary embedding. Let λ be
a regular cardinal greater than κ+, and let F be the closed unbounded filter
on λ. Then:

(i) i0,λ(D) = F ∩ Ult(λ)
D (L[D]);

(ii) Ult(λ)
D (L[D]) = L[F ].

Proof. First, we have i0,λ(κ) = λ by Lemma 19.15(i) because λ > κ+ ≥
(κ+)L[D] = (2κ)L[D]. Let D(λ) = i0,λ(D) and let M = Ult(λ)

D (L[D]). If X ∈
D(λ), then by (19.5), X contains a closed unbounded subset and hence X ∈ F .
Since D(λ) is an ultrafilter in M and F is a filter, it follows that D(λ) = F∩M .

As for (ii) we have

M = Ult(λ)(L[D]) = L[D(λ)] = L[F ∩ M ] = L[F ]. ��

We shall now prove parts (i) and (ii) of Kunen’s Theorem. We already
know by Lemma 19.4 that in L[D], κ is the only measurable cardinal. Thus
(i) and (ii) follow from this lemma:

Lemma 19.18. Let D1, D2 ⊂ P (κ) be such that D1 ∈ L[D1], D2 ∈ L[D2]
and

L[Di] � Di is a normal measure on κ (i = 1, 2).

Then D1 = D2.
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Proof. Let D1, D2 ⊂ P (κ) be such that L[Di] � Di is a normal measure on κ,
for i = 1, 2; we want to show that D1 = D2. By symmetry, it suffices to show
that if X ⊂ κ is in D1, then X ∈ D2.

Let λ be a regular cardinal greater than κ+ and let F be the closed
unbounded filter on λ. Let us consider the λth iterated ultrapowers Mi =
Ult(λ)

Di
(L[Di]) (i = 1, 2), and the corresponding embeddings i10,λ, i20,λ.

By Lemma 19.17, M1 = M2 = L[F ], and i10,λ(D1) = i20,λ(D2) = F ∩L[F ].
Let G = F ∩ L[F ].

Let A be a set of ordinals, |A| = κ+, such that all γ ∈ A are greater than λ
and that i10,λ(γ) = i20,λ(γ) for all γ ∈ A; such a set exists by Lemma 19.15(ii).
Let θ be a cardinal greater than all γ ∈ A such that i10,λ(θ) = i20,λ(θ) = θ.

Now let X be a subset of κ such that X ∈ D1. By Lemma 19.16, X belongs
to the Skolem hull of κ∪A in (Lθ[D1],∈, D1). Thus there is a Skolem term t
such that for some α1, . . . , αn < κ and γ1, . . . , γm ∈ A,

(19.8) Lθ[D1] � X = t[α1, . . . , αn, γ1, . . . , γm, D1].

Let Y ∈ Lθ[D2] be such that

(19.9) Lθ[D2] � Y = t[α1, . . . , αn, γ1, . . . , γm, D2].

We shall show that Y ∈ D2 and Y = X , hence X ∈ D2.
First we observe that i10,λ(X) = i20,λ(Y ): Let Z1 = i10,λ(X) and Z2 =

i20,λ(Y ). We have i10,λ(α) = α, i10,λ(γ) = γ, i10,λ(θ) = θ, and i10,λ(D1) = G; and
thus when we apply i10,λ to (19.8), we get

(19.10) Lθ[G] � Z1 = t[α1, . . . , αn, γ1, . . . , γm, G].

Similarly, when we apply i20,λ to (19.8), we get (19.10) with Z2 instead of Z1.
Thus Z1 = Z2.

Now, by Lemma 19.8(ii), we have X = Z1 ∩ κ and Y = Z2 ∩ κ. Hence
X = Y .

Finally, since i20,λ(Y ) ∈ F , it follows that i20,λ(Y ) ∈ i20,λ(D2) and hence
Y ∈ D2. Thus X ∈ D2 and this completes the proof of D1 = D2. ��

The key lemma in the proof of Theorem 19.14(iii) is the following:

Lemma 19.19. Let κ, D be such that L[D] � D is a normal measure on κ,
and let γ be an ordinal such that κ < γ < i0,1(κ), where i0,1 is the embedding
of L[D] in UltD(L[D]). Then there is no U ⊂ P (γ) such that L[U ] � U is
a normal measure on γ.

Proof. Let us assume that on the contrary there is such a U . Let j be the
canonical embedding of L[U ] in UltU (L[U ]). Let λ = |γ|++, and let F be the
closed unbounded filter on λ. Let G = F ∩ L[F ].

Since L[U ] � GCH, we have j(λ) = λ (see the remark following Lem-
ma 19.15). In L[U ], G is the λth iterate of U , and in L[j(U)], G is the
j(λ)th iterate of j(U); hence j(G) = G.
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Let f : κ → κ be a function in L[D] such that f represents γ in UltD(L[D]).
Since D is normal, the diagonal d(α) = α represents κ, and thus we have
(i0,1(f))(κ) = γ. Let i0,λ be the embedding of L[D] in Ult(λ)

D (L[D]) = L[G].
It is clear that (i0,λ(f))(κ) = γ.

Now let A be a set of ordinals such that |A| = κ+, that all ξ ∈ A are
greater than λ, and that i0,λ(ξ) = ξ and j(ξ) = ξ for all ξ ∈ A. Let θ be
a cardinal greater than all ξ ∈ A, such that i0,λ(θ) = θ and j(θ) = θ.

By Lemma 19.16, the function f is definable in Lθ[D] from A ∪ κ ∪ {D};
thus i0,λ(f) is definable in Lθ[G] from A ∪ κ ∪ {G}. Hence γ is definable
in Lθ[G] from A ∪ κ ∪ {G} ∪ {κ}, and so there is a Skolem term t such that

(19.11) Lθ[G] � γ = t[α1, . . . , αn, ξ1, . . . , ξm, G, κ].

for some α1, . . . , αn < κ and ξ1, . . . , ξm ∈ A.
Now we apply the elementary embedding j to (19.11); and since j(θ) = θ,

j(G) = G, j(ξ) = ξ for ξ ∈ A, and j(α) = α for all α < γ (hence j(κ) = κ),
we have

Lθ[G] � j(γ) = t[α1, . . . , αn, ξ1, . . . , ξm, G, κ].

which is a contradiction because j(γ) > γ. ��

Proof of Theorem 19.14(iii). Let κ1 < κ2 and let D1, D2 be such that L[Di] �
D is a normal measure on κi (i = 1, 2). Let i0,α denote the embedding of
L[D1] in Ult(α)

D1
(L[D1]) and let α be the unique α such that i0,α(κ1) ≤ κ2 <

i0,α+1(κ1). By Lemma 19.19 (if we let κ = i0,α(κ1), D = i0,α(D1), and
γ = κ2), it is necessary that κ2 = i0,α(κ1). Now the statement follows from
the uniqueness of i0,α(D1). ��

Thus we have proved that the model V = L[D] (where D is a normal
measure on κ) is unique, has only one measurable cardinal and only one
normal measure on κ, and it satisfies the Generalized Continuum Hypothesis.
The next lemma completes the characterization of L[D] by showing that for
every κ-complete nonprincipal ultrafilter U on κ, L[U ] is equal to L[D].

Lemma 19.20. Let U be a nonprincipal κ-complete ultrafilter on κ. Then
L[U ] = L[D] where D is the normal measure on κ in L[D].

Proof. By the absoluteness of L[D], we have L[D] ⊂ L[U ] because L[U ] sat-
isfies that κ is measurable. Thus it suffices to prove that U ∩ L[D] ∈ L[D].
Let j = jU be the canonical embedding j : V → UltU (V ), and let γ = j(κ).
Let d(α) = α be the diagonal function and let δ be the ordinal represented
in UltU (V ) by d; thus

(19.12) X ∈ U if and only if δ ∈ j(X)

for all X ⊂ κ.
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Since L[j(D)] � j(D) is a normal measure on γ, there exists an α such
that γ = i0,α(κ), j(D) = i0,α(D), and L[j(D)] = Ult(α)

D (L[D]). We shall show
that for every X ⊂ κ in L[D],

(19.13) j(X) = i0,α(X).

This, together with (19.12), gives

(19.14) U ∩ L[D] = {X ∈ L[D] : X ⊂ κ and δ ∈ i0,α(X)}
and therefore U ∩ L[D] ∈ L[D].

The proof of (19.13) uses Lemma 19.16 again. We let A be a set of size κ+

of ordinals greater than α such that i0,α(ξ) = j(ξ) = ξ for all ξ ∈ A, and let
θ be a cardinal greater than all ξ ∈ A, such that i0,λ(θ) = j(θ) = θ.

If X ⊂ κ is in L[D], then there is a Skolem term t such that

Lθ[D] � X = t[α1, . . . , αn, ξ1, . . . , ξm, D].

for some α1, . . . , αn < κ and ξ1, . . . , ξm ∈ A. Since i0,α and j agree on
κ ∪ A ∪ {θ}, and i0,α(D) = j(D), it follows that i0,α(X) = j(X). ��

The proof of Lemma 19.20 gives additional information about κ-complete
ultrafilters in L[D]. Let us assume that V = L[D] and let U be a nonprincipal
κ-complete ultrafilter on κ. By (19.14), we have

(19.15) U = {X ⊂ κ : δ ∈ i0,α(X)}
where α is such that j(κ) = i0,α(κ), and δ < j(κ). Note that for any β ≥ α,
we also have U = {X ⊂ κ : δ ∈ i0,β(X)}. Now a simple observation gives the
following characterization of κ-complete ultrafilters on κ in L[D]:

Lemma 19.21. Assume V = L[D]. If U is a nonprincipal κ-ultrafilter on κ,
then there exists some δ < i0,ω(κ) such that

U = {X ⊂ κ : δ ∈ i0,ω(X)}.
Proof. Let j = jU be the canonical embedding of V = L[D] in UltU . We have
j(κ) = i0,α(κ) for some α. We shall show that α is a finite number; then the
lemma follows by (19.15).

First we note that because V = L[D] = L[U ], we have Ult(α)
D = UltU =

L[i0,α(D)] = L[j(U)]. Now if α ≥ ω, then in Ult(α)
D , i0,ω(κ) is an inaccessible

cardinal (because it is measurable in Ult(ω)
D ), while in UltU , i0,ω(κ) has cofi-

nality ω (because it has cofinality ω in V and UltU contains all ω-sequences
of ordinals). Hence α < ω. ��
Corollary 19.22. If V = L[D], there are exactly κ+ nonprincipal κ-complete
ultrafilters on κ.

Proof. If κ is measurable, then it is easy to obtain 2κ nonprincipal κ-complete
ultrafilters on κ (because there are 2κ subsets of κ of size κ such that |X∩Y | <
κ for any two of them). By Lemma 19.21, if V = L[D], there are at most
|i0,ω(κ)| = κ+ of them. ��
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Indiscernibles for L[D]

If there exist two measurable cardinals, κ < λ, then it is possible to prove
analogous theorems for the model L[D] as we did in Chapter 18 for L under
the assumption of one measurable cardinal. More specifically, one can prove
the existence of a closed unbounded set I ⊂ κ and a closed unbounded class J
of ordinals bigger than κ, such that I ∪ J contains all uncountable cardinals
except κ, that every X ∈ L[D] is definable in D from I ∪ J , and that the
elements of I ∪J are indiscernibles for L[D] in the following sense: The truth
value of

L[D] � ϕ[α1, . . . , αn, β1, . . . , βm]

is independent of the choice of α1 < . . . < αn ∈ I and β1 < . . . < βm ∈ J . In
analogy with Silver indiscernibles, the above situations can be described by
means of a certain set of formulas ϕ(x1, . . . , xn, y1, . . . , ym), which is called 0†

(zero-dagger).
If 0† exists, then one can prove the consistency of the theory ZFC +

“there exists a measurable cardinal;” and hence one cannot prove the relative
consistency of “0† exists” with ZFC + “there exists a measurable cardinal.”

We shall not give details of the theory of indiscernibles for L[D]. Instead,
let us present an argument showing that if there exist two measurable car-
dinals, κ < λ, then there is a proper class of cardinals that are inaccessible
in L[D].

Let U be a normal measure on λ and let for each α, i0,α be the elementary
embedding of V in Ult(α)

U ; let iα,β : Ult(α) → Ult(β). Let C be the class of all
cardinals α such that cf α > λ and γλ < α for all γ < α. By Lemma 19.15, if
α ∈ C, then i0,α(κ) = α and i0,α(β) = β for all β ∈ C greater than α. Hence
if α, β ∈ C, then iα,β(α) = β and iα,β(γ) = γ for all γ ∈ C that are greater
than β or less than α.

Now if D is a normal measure on κ, then because κ < λ, we have iα,β(D) =
D for all α, β ∈ C. Thus each iα,β (α, β ∈ C), restricted to L[D], is an
elementary embedding of L[D] in L[D] such that iα,β(α) = β and iα,β(γ) = γ
for all γ ∈ C below α or above β. Using these embeddings iα,β (as in the
proof of Lemma 18.26), one shows that the elements of C are indiscernibles
for the model L[D].

Since some elements of C are regular cardinals, and some are limit cardi-
nals, it follows that all elements of C are inaccessible cardinals in L[D].

In the above argument, it was not necessary that κ be a measurable
cardinal, only that κ be measurable in L[D]. Thus we have proved:

Lemma 19.23. Let κ be a measurable cardinal, and assume that :

(19.16) For some γ < κ, there exists a D ⊂ P (γ) such that L[D] � D is
a normal measure on γ.

Then there are arbitrarily large successor cardinals that are inaccessible
in L[D].
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We have proved in Lemma 19.21 that if U is a nonprincipal κ-complete
ultrafilter on κ, then jU (κ) < i0,ω(κ), where i0,ω is the embedding of L[D] in
Ult(ω)

D (L[D]). We can prove a stronger statement:

Lemma 19.24. If there is a κ-complete nonprincipal ultrafilter U on κ such
that jU (κ) ≥ i0,ω(κ), then (19.16) holds.

Proof. Let us work in the model M = UltU (V ). The cardinal j(κ) is mea-
surable while i0,ω(κ) has cofinality ω, and so i0,ω(κ) < j(κ). Let F be the
collection of all subsets X of i0,ω(κ) such that X ⊃ {i0,n(κ) : n ≥ n0} for
some n0. Using Lemma 19.10, we proceed as in the proof of Lemma 19.17 to
show that

L[F ] � F ∩ L[F ] is a normal measure on i0,ω(κ).

Thus (19.16) holds in M for j(κ). Since j is an elementary embedding,
(19.16) holds in V for κ. ��

Corollary 19.25. If κ is a measurable cardinal and 2κ > κ+, then (19.16)
holds. Consequently, it is impossible to prove the consistency of “κ is mea-
surable and 2κ > κ+” relative to ZFC + “κ is a measurable cardinal.”

Proof. On the one hand, |i0,ω(κ)| = (κ+)L[D] ≤ κ+; on the other hand, if
U is any κ-complete ultrafilter on κ, we have jU (κ) > 2κ > κ+. ��

General Iterations

We shall now describe two generalizations of iterated ultrapowers. The first
deals with iteration of ultrapowers of transitive models by ultrafilters that
are not necessarily members of the model.

Let M be a transitive model of set theory. In fact, it is not necessary
for the theory of iterated ultrapowers to assume that M satisfies all axioms
of ZFC. It is enough to assume that M is a model of ZFC−, set theory without
the Power Set Axiom. Thus M can be a set (e.g., (Lα,∈) is a model of ZFC−

when α is a regular uncountable cardinal in L).
Let κ be a cardinal in M , and let U be an M -ultrafilter on κ (Defini-

tion 18.21).

Definition 19.26. An M -ultrafilter U on κ is iterable if

(19.17) {α < κ : Xα ∈ U} ∈ M whenever 〈Xα : α < κ〉 ∈ M .

We shall consider normal iterable M -ultrafilters, i.e., M -ultrafilters that
are nonprincipal, κ-complete, normal (as in Definition 18.21) and iterable.

Let U be a normal iterable M -ultrafilter on κ. Using functions in M , we
form an ultrapower UltU (M), which may or may not be well-founded. Let
j = jU be the canonical elementary embedding j : M → UltU (M).
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Lemma 19.27. If UltU (M) is well-founded, and N is the transitive collapse
of the ultrapower, then

(i) P M (κ) = P N (κ).
(ii) j“U is a normal iterable N -ultrafilter on j(κ).

Proof. (i) It is a routine verification by induction that j(α) = α for all α < κ.
For every X ∈ P M (κ), we have X = j(X) ∩ κ, and therefore X ∈ P N (κ),
verifying P M (κ) ⊂ P N(κ).

If Y ∈ P N (κ), let f ∈ M be such that Y ∈ [f ]U . Then Y ∈ PM (κ) follows
(by (19.17)) because for all α < κ,

α ∈ Y if and only if {ξ < κ : α ∈ f(ξ)} ∈ U.

(ii) Let W = j“U . To verify that N and W satisfy (19.17), let 〈Xα :
α < j(κ)〉 ∈ N be represented in the ultrapower by f ∈ M . We may assume
that for each α, Xα ⊂ j(κ), and that f(ξ) = 〈Xξ

η : η < κ〉 for each ξ < κ.
By (19.17), we have {(ξ, η) : Xξ

η ∈ U} ∈ M . Thus if we define g(ξ) = {η < κ :
Xξ

η ∈ U}, we have g ∈ M . Now it is routine to show that [g]U = {α < j(κ) :
Xα ∈ W}. ��

If j is an elementary embedding j : M → N with critical point κ, and
if P M (κ) = P N (κ), then the M -ultrafilter {X : κ ∈ j(X)} is iterable; see
Exercise 19.8.

Let U be a normal iterable M -ultrafilter on κ. If the ultrapower UltU (M)
is well-founded, let M1 be its transitive collapse, let j : M → M1 be the
canonical elementary embedding, and let U (1) = j“U ; U (1) is a normal iter-
able M1-ultrafilter on κ(1) = j(κ). We can now proceed with the iteration
as when M = V and U ∈ M , as long as the iterated ultrapowers are well-
founded. At limit stages we take direct limits, and use the following lemma
that is quite routine to verify:

Lemma 19.28. Let α be a limit ordinal, and let for each β < α, U (β) be
a normal iterable Mβ-ultrafilter on κ(β), and assume that the direct limit
of {(Mβ,∈, U (β)), iβ,γ : β, γ < α} is well-founded. If (Mα,∈, U (α)) is the
transitive direct limit then U (α) is a normal iterable Mα-ultrafilter on κ(α) =
limβ→α κ(β). ��

The Representation Lemma 19.13 holds true in the present context as well.
The M -ultrafilters Uα are defined as before, starting with M -ultrafilters Un

on PM (κn):

(19.18) X ∈ Un+1 if and only if {ξ < κ : X(ξ) ∈ Un} ∈ U

where X(ξ) = {〈ξ1, . . . , ξn〉 : 〈ξ, ξ1, . . . , ξn〉 ∈ X}. By induction on n one
proves that each Un is an iterable M -ultrafilter on κn.

To define the ultrafilters Uα and the ultrapowers UltUα(M), we restrict
ourselves, as before, to sets Z ⊂ κα and functions f on κα with finite support,
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with the additional restriction imposed by M : If E = {α1, . . . , αn} with
α1 < . . . < αn is the support of Z or f then the restriction of Z or f to κE

is such that its isomorph Z̄ ⊂ κn or f̄ : κn → M is an element of M .
In general, iterated ultrapowers of M by an M -ultrafilter need not be

well-founded. If, however, all countable iterations are well-founded then all
iterations are well-founded (Exercise 19.9). An important sufficient condi-
tion for well-foundedness of iterated ultrapowers is the following (external
σ-completeness):

(19.19) For any {Xn}n∈ω ⊂ U ,
⋂∞

n=0 Xn is nonempty

(see Exercise 19.10).
The other generalization deals with iterated ultrapowers of an inner model

where each successor step α + 1 of the iteration is obtained as an ultrapower
of Mα by an arbitrary measure in Mα.

Definition 19.29. An iterated ultrapower of an inner model M is a sequence
〈Mγ : γ ≤ λ〉 constructed as follows:

(i) M0 = M .
(ii) Mγ+1 = UltU(γ)(Mγ) where U (γ) ∈ Mγ is a κγ-complete ultrafilter

on κγ , and the ultrapower is constructed in Mγ ; iγ,γ+1 : Mγ → Mγ+1

is the canonical embedding, and for all α < γ, iα,γ+1 = iγ,γ+1 ◦ iα,γ .
(iii) If γ is a limit ordinal, then Mγ is the direct limit of {Mα, iα,β : α ≤

β < γ}.

Theorem 19.30 (Mitchell). Let M be an inner model of ZFC. Every it-
erated ultrapower of M is well-founded.

Proof. First we outline the proof of the theorem for M = V . The idea is to
represent each iterated ultrapower Mγ as an ultrapower by an ultrafilter Uγ .
The ultrafilters Uγ are defined by induction on γ. For each γ we define an
ordinal function kγ (that represents κγ in the ultraproduct by Uγ), the set Dγ

(the domain of kγ), the algebra Pγ of subsets of Dγ , the class Fγ of functions
on Dγ and the ultrafilter Uγ on Pγ .

The domain Dγ of kγ is the set

{p ∈ Ordγ : ∀α < γ p(α) < kα(p�α)}.

The algebra Pγ and the class Fγ are

Pγ = {X ⊂ Dγ : X has finite support},
Fγ = {f ∈ V Dγ : f has finite support}.

If γ is a limit ordinal, we let Uγ =
⋃

α<γ Uα. If γ = α + 1, then assume that
Mα is transitive and isomorphic to UltUα(V ). Let kα ∈ Fα be a function
that represents κα, and let g ∈ Fα be a function that represents U (α), in
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the ultrapower Mα, i.e., [kα]Uα = κα, [g]Uα = U (α). Thus for Uα-almost all
p ∈ Dα, gα(p) is an ultrafilter on kα(p). For X ∈ Pα+1 we let

X ∈ Uα+1 if and only if {p ∈ Dα : X(p) ∈ g(p)} ∈ Uα

where X(p) = {ξ < kα(p) : p ∪ {(α, ξ)} ∈ X}. It is now routine to verify that
UltUα+1(V ) is isomorphic to UltU(α)(Mα).

The proof that each UltUα(V ) is well-founded uses the argument presented
in Exercise 19.10.

Now if M is an arbitrary inner model, and 〈Mγ : γ ≤ λ〉 is an iterated
ultrapower that is not necessarily defined inside M , we use an absoluteness
argument. We can still use the representation of Mγ by UltUα(M); in this
case the functions p ∈ Ordγ , the sets X ⊂ Dγ and the functions f ∈ V Dγ

are all assumed to be members of M .
If E ⊂ γ is a finite set, then PE and FE denote the subsets of Pγ and Fγ ,

respectively, of those sets or functions whose support is E. Let UE be the
restriction of Uγ to PE , and let ME be the ultrapower of M mod UE (using
functions in FE). For E ⊂ E′, let iE,E′ be the canonical elementary embed-
ding of ME in ME′ and let iE,γ be the embedding of ME in Mγ .

If some iterated ultrapower of M is not well-founded, then, as in Exer-
cise 19.9, one can show that there is a countable λ such that an iterated
ultrapower 〈Mγ : γ ≤ λ〉 is not well-founded. Let κ be the supremum of all
the κγ , γ ≤ λ, in this iteration. Let {an}n<ω be a decreasing sequence of ordi-
nals in Mλ, and let E0 ⊂ E1 ⊂ . . . ⊂ En ⊂ . . . be a sequence of finite subsets
of λ such that

⋃∞
n=0 En = λ, and that each En is a support for (a function

representing) an. For each n, let bn ∈ MEn be such that an = iEn,λ(bn). Let
η be sufficiently large so that bn ∈ V M

η for all n. Thus there exists a sequence
{(En, Mn, bn)}∞n=0 such that E0 ⊂ E1 ⊂ . . . ⊂ En ⊂ . . . are finite subsets
of λ, that each Mn is an iterated ultrapower of M indexed by En, bn is an
ordinal in Mn = UltEn(M), and for each n, Mn+1 � iEn,En+1(bn) > bn+1.

As each Mn is a finite iteration, it is clear that it is a class in M . Consider,
in M , the set of all triples (E, N, b) such that E is a finite subset of λ, N is
a finite ultrapower iteration indexed by E and using measures on ordinals ≤
κ, and b is an ordinal in N represented by a function in Vη. Let (E′, N ′, b′) <
(E, N, b) if E′ ⊃ E and if N ′ � iE,E′(b) > b′. We have established that
this relation < is not well-founded (in the universe). Thus by absoluteness
of well-foundedness, this relation is not well-founded in M . However, that
means that there is an iterated ultrapower constructed in M that is not well-
founded, contrary to the result of the first part of this proof. ��

The Mitchell Order

Definition 19.31. Let κ be a measurable cardinal. If U1 and U2 are normal
measures on κ, let

U1 < U2 if and only if U1 ∈ UltU2(V ).
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The relation U1 < U2 is called the Mitchell order.

The Mitchell order is transitive, and by Lemma 17.9(ii) is irreflexive.
Moreover, it is well-founded:

Lemma 19.32. The Mitchell order is well-founded.

Proof. Toward a contradiction, let κ be the least measurable cardinal on
which the Mitchell order is not well-founded, and let U0 > U1 > . . . > Un >
. . . be a descending sequence of normal measures on κ. Let M = UltU0(V )
and let j : V → M be the canonical elementary embedding. As κ < j(κ),
and j(κ) is the least measurable cardinal in M on which the Mitchell order
is not well-founded, we reach a contradiction once we show that U1 > U2 >
. . . > Un > . . . is a descending sequence in M .

The measures Un, n ≥ 1, are in M , and so is the sequence {Un}∞n=1, so
we need to verify that Un+1 < Un still holds in M . Since Un+1 ∈ UltUn(V ),
Un+1 is represented in the ultrapower by a function f = 〈uα : α < κ〉. As
P M (κ) = P (κ) and Mκ ⊂ M , the function f is in M , and represents Un+1

in the ultrapower UltM
Un

(M). Hence M � Un+1 < Un. ��

Definition 19.33. If U is a normal measure on κ, let o(U), the order of U ,
denote the rank of U in <. Let o(κ), the order of κ, denote the height of <.

Lemma 19.34. Let o be the function 〈o(α) : α < κ〉. If U is a normal
measure on κ then o(U) = [o]U .

Proof. Clearly, [o]U = oM (κ) where M = UltU (V ). The set {U ′ : U ′ < U}
is the set of all normal measures in M , and since < is absolute for M (see
Lemma 19.32), the order of U in V is the order of κ in M . ��

Thus o(U) > 0 if and only if U -almost all α < κ are measurable. If
κ is a measurable cardinal of order ≥ 2 then κ has a normal measure that
concentrates on measurable cardinals α < κ. Thus the consistency strength
of o(κ) ≥ 2 is more than measurability. Measurable cardinals of higher order
provide a hierarchy of large cardinal axioms. A consequence of Lemma 19.34
is that |o(U)| ≤ 2κ and therefore o(κ) ≤ (2κ)+. In particular, if GCH holds,
then o(κ) ≤ κ++ for every measurable cardinal κ.

There exist canonical inner models for measurable cardinals of higher
order, analogous to the model L[U ]. We shall now outline the theory of these
inner models.

The key technical device is the technique of coiteration. It is the method
used in the proof of Lemma 19.35 below. Let U be a set of normal measures
(on possibly different cardinals). U is closed if for every measure U ∈ U
on κ, every normal measure on κ in jU (U) is in U . If U is a closed set of
normal measures and U, W ∈ U , let U <U W mean that U ∈ jW (U). As
<U is a suborder of the Mitchell order it is well-founded and we define oU (U)
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and oU (κ) accordingly. The length of U , l(U), is the least ϑ such that κ < ϑ
for all κ with oU (κ) > 0.

Let M and N be inner models of ZFC, and let U ∈ M and W ∈ N be
closed sets of normal measures in M and N , respectively. We say that U is
an initial segment of W if

(i) l(U) ≤ l(W),
(ii) for every α < l(U), oU (α) = oW (α),
(iii) for every κ < l(U), if U ∈ M and W ∈ N are on κ and

oU (U) = oW (W ), then U ∩ M ∩ N = W ∩ M ∩ N .

(19.20)

Lemma 19.35. Let M and N be inner models of ZFC and let U and W be
closed sets of measures in M and N , respectively. Then there exist iterated
ultrapowers i0,λ : M → Mλ and j0,λ : N → Nλ, using measures in U and W ,
respectively, such that either i0,λ(U) is an initial segment of j0,λ(W), or vice
versa.

Proof. By induction on γ, we define iterated ultrapowers Mγ and Nγ , and
the embeddings iβ,γ : Mβ → Mγ and jβ,γ : Nβ → Nγ . We let M0 = M
and N0 = N , and if λ is a limit ordinal, Mλ and Nλ are direct limits of
{Mγ , iβ,γ : β, γ < λ} and {Nγ , jβ,γ : β, γ < λ}, respectively.

If at stage γ, Uγ = i0,γ(U) and Wγ = j0,γ(W) are not initial segments
of one another, then there exist ordinals αγ and δγ such that αγ < l(Uγ),
αγ < Wγ , Uγ�αγ and Wγ�αγ agree on Mγ ∩ Nγ , the measures on αγ of
order < δγ in Uγ and in Wγ agree on Mγ ∩ Nγ , and

either (i) δγ = oUγ (α) < oWγ (α), or
(ii) δγ = oWγ (αγ) < oUγ (αγ), or
(iii) δγ < oWγ (αγ), δγ < oUγ (αγ) and for some Uγ ∈ Uγ and Wγ ∈

Wγ of order δγ there exists an Xγ ∈ Mγ∩Nγ such that Xγ ∈ Uγ

but Xγ /∈ Wγ .

(19.21)

If (i) occurs, let iγ,γ+1 be the identity and jγ,γ+1 : Nγ → Nγ+1 = UltW (Nγ)
where W is any W ∈ Wγ such that oWγ (W ) = δγ . Similarly, if (ii) occurs,
then jγ,γ+1 is the identity and Mγ+1 is an ultrapower. If (iii) occurs, let
iγ,γ+1 : Mγ → Mγ+1 = UltUγ (Mγ) and jγ,γ+1 : Nγ → Nγ+1 = UltWγ (Nγ).

Note that if β < γ then αβ ≤ αγ . Moreover, in cases (i) and (ii) we have
αγ+1 > αγ as oUγ+1(αγ) = oWγ+1(αγ) = δγ , and the measures of order < δγ

agree.
We will show that the process eventually stops. Thus assume the contrary.
For every limit ordinal γ, Mγ is a direct limit, and so there exists some

β = β(γ) < γ such that αγ is in the range of iβ,γ , αγ = iβ,γ(α) for some
α = α(γ) < l(Uβ). There is a stationary class Γ1 of ordinals such that β(γ) is
the same β for all γ ∈ Γ1. Also, there is a stationary class Γ2 ⊂ Γ1 such
that α(γ) is the same α < l(Uβ) for all γ ∈ Γ2. It follows that if β < γ are
in Γ2 then iβ,γ(αβ) = αγ . Similarly there is a stationary class Γ3 ⊂ Γ2 such
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that jβ,γ(αβ) = αγ whenever β < γ are in Γ3. Continuing in this manner,
we find a stationary class Γ ⊂ Γ3 such that for all β < γ in Γ, iβ,γ(αβ , δβ) =
jβ,γ(αβ , δβ) = (αγ , δγ), and (in Case (iii)) iβ,γ(Xβ) = jβ,γ(Xβ).

Let β ∈ Γ and assume that (19.21)(i) occurs. Let γ ∈ Γ be greater than β.
Since iβ,β+1 is the identity, and crit(Uξ) = αξ ≥ αβ+1 > αβ for all ξ > β,
we have iβ,γ(αβ) = αβ , while jβ,γ(αβ) ≥ jβ,β+1(αβ) > αβ , contrary to
iβ,γ(αβ) = jβ,γ(αβ). Thus (i) does not occur, and similarly, (ii) leads to
a contradiction.

Case (iii) gives a contradiction as follows: Let γ > β be in Γ. Since Xβ ∈
Uβ , we have αβ ∈ iβ,γ(Xβ), and since Xβ /∈ Wβ , we have αβ /∈ jβ,γ(Xβ). This
contradicts iβ,γ(Xβ) = jβ,γ(Xβ), and therefore the process must eventually
stop. ��

The Models L[U ]

If Aα, α < θ, is a sequence of sets, let us define the model

(19.22) L〈Aα : α < θ〉

as the model L[A] where A = {(α, X) : X ∈ Aα}. Under this definition,
L〈Aα : α < θ〉 = L[〈Bα : α < θ〉], where Bα = Aα ∩ L〈Aα : α < θ〉 for all
α < θ.

If κα, α < θ, is a sequence of measurable cardinals, and for each α, Uα is
a κα-complete nonprincipal ultrafilter on κα, then in L〈Uα : α < θ〉, each
Uα ∩ L〈Uα : α < θ〉 is again a κα-complete nonprincipal ultrafilter on κα.

More generally, let U be a set of normal measures indexed by pairs of
ordinals (α, β) such that Uα,β is a measure on α. Then L[U ] denotes the
model L〈Uα,β : α, β〉.

The technique described in the preceding section can be used to gener-
alize many results about the model L[U ] to obtain canonical inner models
for measurable cardinals of higher order. We shall illustrate the method by
constructing a model with exactly two normal measures on a measurable
cardinal of order 2.

Definition 19.36. A canonical inner model for a measurable cardinal κ of
order 2 is a model

(19.23) L[U ] = L〈Uα, U0, U1〉α∈A

such that in L[U ]

(i) U1 is a normal measure on κ of order 1.
(ii) U0 is a normal measure on κ of order 0 and U0 < U1.
(iii) A ∈ U1, each Uα is a normal measure on α of order 0, and

〈Uα : α ∈ A〉 represents U0 in the ultrapower by U1.

(19.24)
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If o(κ) ≥ 2 then a canonical model L[U ] is obtained as follows: Let A ⊂ κ
be the set of all measurable cardinals below κ, let U1 be a normal measure
on κ of order 1, let U0 be a normal measure on κ such that U0 < U1,
and let Uα, α ∈ A, be normal measures such that [〈Uα : α ∈ A〉]U1 = U0.
Then L〈Uα, U0, U1〉α∈A is a canonical inner model (with U = 〈Uα ∩ L[U ],
U0 ∩ L[U ], U1 ∩ L[U ]〉α∈A).

The canonical model is unique (for the particular choice of the set A), in
the sense that if W = 〈Wα, W 0, W 1〉α∈A is any other sequence that satis-
fies (19.24), then L[U ] = L[W ]. We prove below a more general result.

Theorem 19.37 (Mitchell). Let A ⊂ κ, and let U = 〈Uα, U0, U1〉α∈A and
W = 〈Wα, W 0, W 1〉α∈A be such that for each α ∈ A, Uα and Wα are normal
measures on α of order 0, U0 and W 0 are normal measures on κ of order 0,
and U1 and W 1 are normal measures on κ of order 1. Then L[U ] = L[W ]
and

(i) Uα ∩ L[U ] = Wα ∩ L[W ] (all α ∈ A),
(ii) Uε ∩ L[U ] = W ε ∩ L[W ] (ε = 0, 1).

(19.25)

Proof. We use Lemma 19.35. Let D be the following set of measures:
The Uα’s, the Wα’s, U1, U0, W 1, W 0, and all the normal measures on κ
in jU1(U ∪W) and jW 1(U ∪W) (so that D is a closed set of measures).

By Lemma 19.35 (applied to D) there exist iterated ultrapowers i = i0,λ :
V → M and j = j0,λ : V → N such that i(D) is an initial segment of j(D).

We have l(i(D)) = i(κ) + 1, and by (19.20), oi(D)(i(κ)) = oj(D)(j(κ)) = 2
and for all α < i(κ), oi(D)(α) = oj(D)(α) = 1 if α ∈ i(A) and oi(D)(α) =
oj(D)(α) = 0 if α /∈ i(A). It follows that i(κ) = j(κ) and i(A) = j(A).

By (19.20)(iii), if D ∈ i(D) and E ∈ j(D) are normal measures on some
α ∈ i(A) then D∩M ∩N = E∩M ∩N ; the same is true if D ∈ i(D) and E ∈
j(D) are measures on i(κ) and oi(D)(D) = oi(D)(E). It follows that L[i(U)] =
L[j(U)] = L[j(W)] = L[i(W)] ⊂ M ∩N , i(Uε) ∩ L[i(U)] = j(Uε) ∩ L[i(U)] =
j(W ε) ∩ L[i(U)] = i(W ε) ∩ L[i(U)] (ε = 0, 1), and for every α ∈ i(A),
(iU)α = (iW)α, where 〈(iU)α, iU0, iU1〉α∈iA = iU = i(〈Uα, U0, U1〉α∈A).
(By induction on γ, one shows that Lγ [i(U)] = Lγ [i(W)]).

Now (19.25) follows since i is an elementary embedding, and i : L[U ] →
L[i(U)], i : L[W ] → L[i(W)]. ��

The analog of Theorem 19.14(i) for L[U ] is the following:

Theorem 19.38 (Mitchell). In L[U ], κ and α ∈ A are the only measurable
cardinals, and Uα, U0 and U1 are the only normal measures.

Proof. For every ordinal γ ≤ κ, let U�γ = 〈Uα : α ∈ A∩γ〉; if γ > κ, U�γ = U .
Toward a contradiction, let γ be the least ordinal such that in L[U�γ] there
are normal measures other than those in U�γ, and let D = U�γ. Let α be the
least cardinal in L[D] that carries a normal measure not in D, and let D be
such a measure of least Mitchell order.
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If α /∈ A ∪ {κ}, let M = L[D], N = UltD(L[D]) = L[jD(D)], and apply
Lemma 19.35 to M , N and (closed) sets of measures D and jD(D). There
are iterated ultrapowers i = i0,λ : M → Mλ and j = j0,λ : N → Nλ such
that i(D) is an initial segment of j(jD(D)) or vice versa. Now because of
the choice of D as a minimal counterexample in L[D] to the theorem, no
proper initial segment of either i(D) or j(jD(D)) can be a counterexample,
and consequently, Mλ = Nλ = L[i(D)] = L[j(jD(D))]. As jD(D)�(α + 1) =
D�(α + 1), we have i(α) = j(α) = α, which contradicts the fact that D ∈ M
but D /∈ N .

The same argument works if α ∈ A and Uα < D, or if α = κ and U1 < D.
If α ∈ A and o(D) = 0, let U = Uα; if α = κ and o(D) = ε (ε = 0, 1), let

U = U ε. Let M = UltU (L[D]) = L[jU (D)] and N = UltD(L[D]) = L[jD(D)].
By Lemma 19.35 there are iterated ultrapowers i : M → Mλ and j : N → Nλ

such that i(jU (D)) is an initial segment of j(jD(D)) or vice versa. Using
the minimality argument again, we get Mλ = Nλ = L[i(jU (D))] = L(E)
where E = i(jU (D)) = j(jD(D)). Again, jU (D)�(α + 1) = jD(D)�(α + 1), so
i(α) = j(α) = α.

To reach a contradiction we show that X ∈ U if and only if X ∈ D,
for every X ⊂ α in L[D]. We proceed as in the proof of Lemma 19.18. If
X ∈ P L[D](α) then X is definable in L[D] from D and ordinals that are not
moved by jU , jD, i or j. As in (19.8)–(19.10) it follows that X = Z∩α where
Z = i(X), that Z = j(Z ∩α) = j(X) and that X ∈ U if and only if α ∈ i(X)
if and only if α ∈ j(X) if and only if X ∈ D. ��

Theorems 19.37 and 19.38 admit a generalization to yield canonical inner
models for measurable cardinals of higher order. We shall state the following
result without proof:

Theorem 19.39 (Mitchell). There exists an inner model L[U ] such that

(i) for every α, oL[U ](α) = oU (α) = min{o(α), (α++)L[U ]};
(ii) U = 〈Uα,β : β < oU (α)〉;
(iii) each Uα,β is in L[U ] a normal measure of order β;
(iv) every normal measure in L[U ] is Uα,β for some α and β;
(v) L[U ] � GCH. ��

Exercises

19.1. Let κ be a measurable cardinal and j : V → M be the corresponding ele-
mentary embedding. Let M0 = V , M1 = M , and for each n < ω, Mn+1 = j(Mn)
and in,n+1 = j�Mn. The direct limit of {Mn, in,m : n, m < ω} is not well-founded.

[i0,ω(κ), i1,ω(κ), . . . , in,ω(κ), . . . is a descending sequence of ordinals in the
model.]

19.2. Show that if m ≤ n, then for each f on κm, im,n([f ]Um ) = [g]Un where g is
the function on κn defined by g(α0, . . . , αn−1) = f(α0, . . . , αm−1).
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19.3. Prove this version of �Loś’s Theorem (for functions with finite support):
(UltUα , Eα) � ϕ([f1], . . . , [fn]) if and only if {t : ϕ(f1(t), . . . , fn(t))} ∈ Uα.

Let Dn be the measure on κn defined from a normal measure D, and let κ(n) =

i0,n(κ) where i0,n : V → Ult
(n)
D .

19.4. The ordinal κ(n−1) is represented in UltDn by the function dn(α1, . . . , αn) =
αn.

19.5. A ∈ Dn if and only if (κ, κ(1), . . . , κ(n−1)) ∈ jDn(A).

19.6. If A ∈ Dn then there exists a B ∈ D such that [B]n ⊂ A.

[Let n = 3. Let B1 = {α1 : (α1, κ, κ(1)) ∈ i0,2(A)}, B2 = {α2 ∈ B1 : (∀α1 ∈ B1∩
α2) (α1, α2, κ) ∈ i0,1(A)} and B = B3 = {α3 ∈ B2 : (∀α2 ∈ B2∩α3)(∀α1 ∈ B2∩α2)
(α1, α2, α3) ∈ A}.]

Compare with Theorem 10.22.

19.7. Assume V = L[D]. If U is a κ-complete nonprincipal ultrafilter on κ and if
U �= D, then there is a monotone function f : κ → κ such that κ ≤ [f ]U < [d]U .
(Hence U does not extend the closed unbounded filter.)

[U satisfies (19.15) for some δ; if δ = κ(n) for some n, then U = D. Let n be

such that κ(n−1) < δ < κ(n); let g : κn → κ represents δ in UltDn . Let f(ξ) =
least α such that g(α1, . . . , αn−1, α) ≥ ξ for some α1 < . . . < αn−1 < α. The
function f is monotone. To show that [f ]U < [d]U , we argue as follows: For almost
all (mod Dn) α1, . . . , αn, g(α1, . . . , αn) > αn; hence for almost all α1, . . . , αn,
f(g(α1, . . . , αn)) < g(α1, . . . , αn). Hence (jDn(f))(δ) < δ, and hence for almost
all ξ (mod U), f(ξ) < ξ. Thus [f ]U < [d]U .]

19.8. If M and N are transitive models of ZFC−, if j : M → N is an elementary
embedding with critical point κ, and if P M (κ) = P N(κ), then {X ∈ P M (κ) : κ ∈
j(X)} is a normal iterable M -ultrafilter.

19.9. If UltUα(M) is well-founded for all α < ω1, then UltUα(M) is well-founded
for all α.

[Assume that UltUα(M) is not well-founded and let f0, f1, . . . , fn, . . . constitute
a counterexample. Each fn has a finite support En. Let β be the order-type of
S∞

n=0 En; we have β < ω1. Produce a counterexample in UltUβ (M).]

19.10. If arbitrary countable intersections of elements of U are nonempty, then
UltUα(M) is well-founded for all α.

[Let f0, f1, . . . , fn, . . . be a counterexample, let Xn = {t ∈ κα : fn(t) �
fn+1(t)}. To reach a contradiction, find t ∈ T∞

n=0 Xn. Construct t by induction
such that for each ν < α if α = ν + η, then t�ν has the property that for all n,
{s ∈ κn : (t�ν)�s ∈ Xn} ∈ Uη : Given t�ν, there is t(ν) such that the condition is
satisfied for t�(ν + 1). Then t ∈ T∞

n=0 Xn.]

19.11. Assume that every constructible subset of ω1 either contains or is disjoint
from a closed unbounded set. Let F be the closed unbounded filter on ω1. Then
D = F ∩ L is an iterable L-ultrafilter and UltDα(L) is well-founded (and hence
equal to L) for all α.

19.12. If L[U ], U = 〈Uα, U0, U1〉α∈A, is a canonical inner model for a measurable
cardinal of order 2, if B ∈ U1 is a subset of A, and if W = 〈Wα, W 0, W 1〉α∈B,
Wα = Uα ∩ L[W], W ε = Uε ∩ L[W], then L[W] is also a canonical inner model.

19.13. If there exist two different normal measures of order 1 on κ, then there
exist canonical inner models L[U ] and L[W] such that U = 〈Uα, U0, U1〉α∈A, W =
〈Wβ, W 0, W 1〉β∈B and such that A = U1 and B = W 1 are disjoint subsets of κ.
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Historical Notes

Most of the results in the first part of Chapter 19 are due to Kunen, who
in [1970] developed the method of iterated ultraproducts invented by Gaifman
(cf. [1964] and [1974]). Kunen found the representation of iterated ultraproducts
(Lemma 19.13) and generalized the construction for M -ultrafilters. Kunen applied
the method to obtain the main results of the model L[D] (Theorem 19.14).

Theorem 19.3 (the proof of the GCH in L[D]) is due to Silver [1971d].
The description of κ-complete ultrafilters on κ in L[D] (Lemma 19.21) is due

to Kunen [1970] and Paris [1969]. Lemma 19.4 was first proved by Solovay. The-
orem 19.7 is due to Gaifman; cf. [1974]. The proof of well-foundedness in Exer-
cise 19.10 is due to Kunen. Lemmas 19.20 and 19.24 are results of Kunen [1970].
0† was formulated by Solovay.

Kunen generalized the basic results on L[D] to the model L〈Dα : α < θ〉
constructed from a sequence of measures (with θ < the least measurable cardinal
in the sequence). Mitchell [1974] and [1983] generalized the theory of L[D] to inner
models for sequences of measures. The definition of o(κ), Theorem 19.30 (well-
foundedness of iterated ultrapowers) as well as the results on L[U ] are all due to
Mitchell.

The results in Exercises 19.9, 19.10 and 19.11 are due to Kunen [1970].
Exercise 19.7: Jech [1972/73].



20. Very Large Cardinals

This chapter studies properties of large cardinals that generalize measurabil-
ity. We are particularly interested in the method of elementary embeddings,
and introduce two concepts that have become crucial in the theory of large
cardinals: supercompact and Woodin cardinals.

Strongly Compact Cardinals

In Chapter 9 we proved that weakly compact cardinals are inaccessible car-
dinals satisfying the Weak Compactness Theorem for the infinitary lan-
guage Lκ,ω. If we remove the restriction on the size of sets of sentences in
the model theoretic characterization of weakly compact cardinals, we obtain
a considerably stronger notion. This notion, strong compactness, turns out to
be much stronger than measurability.

Strongly compact cardinals can be characterized in several different ways.
Let us use, as a definition, the property that is a natural generalization of
the Ultrafilter Theorem:

Definition 20.1. An uncountable regular cardinal κ is strongly compact if
for any set S, every κ-complete filter on S can be extended to a κ-complete
ultrafilter on S.

Obviously, every strongly compact cardinal κ is measurable, for any ul-
trafilter on κ that extends the filter {X : |κ − X | < κ} is nonprincipal.

Let us say that the language Lκ,ω (or Lκ,κ) satisfies the Compactness
Theorem if whenever Σ is a set of sentences of Lκ,ω (Lκ,κ) such that every
S ⊂ Σ with |S| < κ has a model, then Σ has a model.

Let A be a set of cardinality greater than or equal to κ. For each x ∈
Pκ(A), let x̂ = {y ∈ Pκ(A) : x ⊂ y}, and let us consider the filter on Pκ(A)
generated by the sets x̂ for all x ∈ Pκ(A); that is, the filter

(20.1) {X ⊂ Pκ(A) : X ⊃ x̂ for some x ∈ Pκ(A)}.

If κ is a regular cardinal, then the filter (20.1) is κ-complete. We call U a fine
measure on Pκ(A) if U is a κ-complete ultrafilter on Pκ(A) that extends the
filter (20.1); i.e., x̂ ∈ U for all x ∈ Pκ(A).



366 Part II. Advanced Set Theory

Lemma 20.2. The following are equivalent, for any regular cardinal κ:

(i) For any set S, every κ-complete filter on S can be extended to a κ-
complete ultrafilter on S.

(ii) For any A such that |A| ≥ κ, there exists a fine measure on Pκ(A).
(iii) The language Lκ,ω satisfies the compactness theorem.

Proof. (i) → (ii) is clear.
(ii) → (iii): Let Σ be a set of sentences of Lκ,ω and assume that every

S ⊂ Σ of size less than κ has a model, say AS . Let U be a fine measure
on Pκ(Σ), and let us consider the ultraproduct A = UltU{AS : S ∈ Pκ(Σ)}.
It is routine to verify that �Loś’s Theorem holds for the language Lκ,ω provided
the ultrafilter is κ-complete; in order to prove the induction step for infinitary
connective

∧
ξ<α ϕξ, one uses the κ-completeness of U . Thus we have, for any

sentence σ of Lκ,ω,

(20.2) A � σ if and only if {S : AS � σ} ∈ U.

Now if σ ∈ Σ, then {σ}∧ ∈ U and since AS � σ whenever S � σ, (20.2) implies
that σ holds in A. Hence A is a model of Σ.

(iii) → (i): Let S be a set and let F be a κ-complete filter on S. Let us
consider the Lκ,ω-language which has a unary predicate symbol Ẋ for each
X ⊂ S, and a constant symbol c. Let Σ be the set of Lκ,ω sentences consisting
of:

(a) all sentences true in (S, X)X⊂S ,
(b) Ẋ(c) for all X ∈ F .

Every set of less than κ sentences in Σ has a model: Take S as the universe,
interpret each Ẋ as X and let c be some element of S that lies in every X
whose name is mentioned in the given set of sentences; since F is κ-complete,
such c exists.

Hence Σ has a model A = (A, XA, c)X⊂S . Let us define U ⊂ P (S) as
follows:

X ∈ U if and only if A � Ẋ(c).

It is easy to verify that U is a κ-complete ultrafilter and that U ⊃ F :
For instance, U is κ-complete because if α < κ and X =

⋂
ξ<α Xξ, then

A satisfies the sentence
∧

ξ<α Ẋξ(c) → Ẋ(c). ��

Every strongly compact cardinal is measurable, but not every measurable
cardinal is strongly compact (although it is consistent that there is exactly one
measurable cardinal which is also strongly compact). We shall show that the
existence of strongly compact cardinals is a much stronger assumption than
the existence of measurable cardinals. We start with the following theorem:

Theorem 20.3 (Vopěnka-Hrbáček). If there exists a strongly compact
cardinal, then there is no set A such that V = L[A].
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Proof. Let us assume that V = L[A] for some set A. Since there is a set of
ordinals A′ such that L[A] = L[A′], we may assume that A is a set of ordinals.
Let κ be a strongly compact cardinal, and let λ ≥ κ be a cardinal such that
A ⊂ λ. There exists a κ-complete ultrafilter U on λ+ such that |X | = λ+ for
every X ∈ U (let U extend the filter {X : |λ+ − X | ≤ λ}).

Since U is κ-complete, the ultrapower UltU (V ) is well-founded, and thus
can be identified with a transitive model M . As usual, if f is a function
on λ+, then [f ] denotes the element of M represented by f . Let j = jU be
the elementary embedding of V into M given by U .

Let us now consider another version of ultrapower. Let us consider only
those functions on λ+ that assume at most λ values. For these functions, we
still define f =∗ g (mod U) and f ∈∗ g (mod U) in the usual way, and there-
fore obtain a model of the language of set theory, which we denote Ult−U (V ).
�Loś’s Theorem holds for this version of ultrapower too: If f , . . . are functions
on λ+ with | ran(f)| ≤ λ, then

(20.3) Ult− � ϕ(f, . . .) if and only if {α : ϕ(f(α), . . .)} ∈ U.

(Check the induction step for ∃.) Hence Ult− is a model of ZFC, elementarily
equivalent to V . Also, since U is κ-complete, Ult− is well-founded and thus
is isomorphic to a transitive model N . Every element of N is represented by
a function f on λ+ such that | ran(f)| ≤ λ. We denote [f ]− the element of N
represented by f . We also define an elementary embedding i : V → N by
i(x) = [cx]− where cx is the constant function on λ+ with value x.

For every function f on λ+ with | ran f | ≤ λ, we let

(20.4) k([f ]−) = [f ].

It is easy to see that the definition of k([f ]−) does not depend on the choice
of f representing [f ]− in N , and that k is an elementary embedding of N
into M . In fact, j = k ◦ i.

If γ < λ+, then every function from λ+ into γ has at most λ values, and
hence [f ]− = [f ] for all f : λ+ → γ. If f : λ+ → λ+ has at most λ values,
then f : λ+ → γ for some γ < λ+; it follows that i(λ+) = limγ→λ+ i(γ), and
we have k(ξ) = ξ for all ξ < i(λ+).

Similarly, i(A) = j(A), and we have M = L[j(A)] = L[i(A)] = N .
Now we reach a contradiction by observing that j(λ+) > i(λ+): Since

the diagonal function d(α) = α represents in M an ordinal greater than
each j(γ), γ < λ+, we have j(λ+) > limγ→λ+ j(γ). While N thinks that
i(λ+) is the successor of i(λ), M thinks that j(λ+) is the successor of j(λ)
(and j(λ) = i(λ)). Thus M �= N , a contradiction. ��

The following theorem shows that the consistency strength of strong com-
pactness exceeds the strength of measurability:

Theorem 20.4 (Kunen). If there exists a strongly compact cardinal then
there exists an inner model with two measurable cardinals.
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Kunen proved a stronger version (and the proof can be so modified): For
every ordinal ϑ there exists an inner model with ϑ measurable cardinals.
This was improved by Mitchell who showed that the existence of a strongly
compact cardinal leads to an inner model that has a measurable cardinal κ
of Mitchell order κ++.

We begin with a combinatorial lemma:

Lemma 20.5. Let κ be an inaccessible cardinal. There exists a family G of
functions g : κ → κ such that |G| = 2κ, and whenever H ⊂ G is a subfamily
of size < κ and {βg : g ∈ H} is any collection of ordinals < κ, then there
exists an α such that g(α) = βg for all g ∈ H.

Proof. Let A be a family of almost disjoint subsets of κ (i.e., |A| = κ for each
A ∈ A and |A ∩ B| < κ for any distinct A, B ∈ A), such that |A| = 2κ. For
each A ∈ A, let fA be a mapping of A onto κ such that for each β < κ, the
set {a ∈ A : fA(a) = β} has size κ. Let sα, α < κ, enumerate all subsets
s ⊂ κ of size < κ.

For each A ∈ A, let gA : κ → κ be defined as follows: If sα ∩ A = {x},
then gA(α) = fA(x); gA(α) = 0 otherwise. Let G = {gA : A ∈ A}.

If A �= B ∈ A, then it is easy to find sα such that gA(α) �= 0 and
gB(α) = 0; hence |G| = 2κ. If H ⊂ A has size < κ and if {βA : A ∈ H} are
given, then for each A ∈ H we choose xA ∈ A such that xA /∈ B for any other
B ∈ H and that fA(xA) = βA. Then if α is such that sα = {xA : A ∈ A}, we
have gA(α) = βA for every A ∈ H. ��
Lemma 20.6. Let κ be a strongly compact cardinal. For every δ < (2κ)+

there exists a κ-complete ultrafilter U on κ such that jU (κ) > δ.

Proof. Let δ < (2κ)+. Let G be a family of functions g : κ → κ of size |δ|
with the property stated in Lemma 20.5; let us enumerate G = {gα : α ≤ δ}.

For any α < β ≤ δ, let Xα,β = {ξ : gα(ξ) < gβ(ξ)}. Using the property
of G from Lemma 20.5, we can see that any collection of less than κ of
the Xα,β has a nonempty intersection and hence F = {X : X ⊃ Xα,β for
some α < β ≤ δ} is a κ-complete filter on κ. There exists a κ-complete
ultrafilter U extending F . It is clear that if α < β ≤ δ, then gα < gβ mod U ,
and hence jU (κ) > δ. ��

Combining Lemma 20.6 with Lemmas 19.23 and 19.24, we already have
a strong consequence of strong compactness.

We shall apply the technique of iterated ultrapowers to construct an inner
model with two measurable cardinals.

Let D be a normal measure on κ, and let i0,α denote, for each α, the
elementary embedding i0,α : V → Ult(α); let κ(α) = i0,α(κ) and D(α) =
i0,α(D).

First recall (19.5): If λ is a limit ordinal, then X ∈ Ult(λ) belongs to D(λ)

if and only if X ⊃ {κ(γ) : α ≤ γ < λ} for some α < λ. Let

(20.5) C = {ν : ν is a strong limit cardinal, ν > 2κ, and cf ν > κ}.
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By Lemma 19.15, if ν ∈ C then κ(ν) = ν, and i0,α(ν) = ν for all α < ν. Thus
if γ0 < γ1 < . . . < γn < . . . are elements of the class C, and if λ = limn→∞ γn,
then κ(λ) = λ, and X ∈ Ult(λ) belongs to D(λ) just in case X ⊃ {γn : n0 ≤ n}
for some n0.

If A is a set of ordinals of order-type ω, A = {γn : n ∈ ω}, we define
a filter F (A) on λ = sup A as follows:

(20.6) X ∈ F (A) if and only if ∃n0 (∀n ≥ n0) γn ∈ X.

The above discussion leads us to this: If A ⊂ C has order-type ω, and if
λ = sup A, then for every X ∈ Ult(λ), X ∈ D(λ) if and only if X ∈ F (A). In
other words,

(20.7) D(λ) = F (A) ∩ Ult(λ).

Hence F (A) ∩ Ult(λ) ∈ Ult(λ); and so, L[F (A)] = L[D(λ)]. Thus F (A) ∩
L[F (A)] = D(λ) ∩ L[D(λ)], and we have

(20.8) L[F (A)] � F (A) ∩ L[F (A)] is a normal measure on λ.

The only assumption needed to derive (20.8) is that κ is measurable and
A is a subset of the class C. We shall now use Lemma 20.6 and a similar
construction to obtain a model with two measurable cardinals.

Suppose that A = {γn : n ∈ ω} is as above, and that A′ = {γ′
n : n ∈ ω}

is another subset of C of order-type ω, such that γ′
0 > λ = sup A; let λ′ =

sup A′. Let F = F (A) and F ′ = F (A′). Our intention is to choose A and A′

such that the model L[F, F ′] has two measurable cardinals, namely λ and λ′,
and that F ∩ L[F, F ′] and F ′ ∩ L[F, F ′] are normal measures on λ and λ′,
respectively.

The argument leading to (20.8) can again be used to show that F∩L[F, F ′]
is a normal measure on λ in L[F, F ′]. This is because we have again

D(λ) = F ∩ Ult(λ);

moreover, i0,λ(γ′
n) = γ′

n for each n, and hence i0,λ(A′) = A′ and we have

(20.9) i0,λ(F ′) = F ′ ∩ Ult(λ).

Therefore
L[F, F ′] = L[D(λ), F ′] = L[D(λ), i0,λ(F ′)]

and

(20.10) F ∩ L[F, F ′] = D(λ) ∩ L[D(λ), i0,λ(F ′)],

which gives

(20.11) L[F, F ′] � F ∩ L[F, F ′] is a normal measure on λ.

In order to find A, A′ so that F ′ also gives a normal measure in L[F, F ′], let
us make the following observation: Let us think for a moment that A ⊂ κ and
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A′ ⊂ C. Then i0,λ′(A) = A and D(λ′) = F ′ ∩Ult(λ
′), and the same argument

as above shows that

(20.12) L[F, F ′] � F ′ ∩ L[F, F ′] is a normal measure on λ′.

We shall use this observation below.
Let us define the following classes of cardinals (compare with (18.29)):

(20.13) C0 = C, Cα+1 = {ν ∈ Cα : |Cα ∩ ν| = ν},
Cγ =

⋂
α<γ

Cα (γ limit).

Each Cα is nonempty; in fact each Cα is unbounded and δ-closed for all δ of
cofinality > κ.

Now we let

(20.14) γn = the least element of Cn,

A = {γn : n ∈ ω}, λ = limn→∞ γn

and let A′ = {γ′
n : n ∈ ω} be a subset of Cω+1.

Let us consider the model L[A, A′], and let for each n ≤ ω

(20.15) Mn = the Skolem hull of Cn in L[A, A′]

= the class of all x ∈ L[A, A′] such that

L[A, A′] � x = t[ν1, . . . , νk, γ0, . . . , γk, γ′
0, . . . , γ

′
k, A, A′]

where t is a Skolem term and ν1, . . . , νk ∈ Cn.

(Let us not worry about the problem whether (20.15) is expressible in the
language of set theory; it can be shown that it is, similarly as in the case
of ordinal definable sets. Alternatively, we can consider the model Lθ[A, A′]
where θ is some large enough cardinal in Cω+1.)

Each Mn is an elementary submodel of L[A, A′]; let πn be the transi-
tive collapse of Mn; then πn(Mn) = L[πn(A), πn(A′)] and jn = π−1

n is an
elementary embedding

jn : L[πn(A), πn(A′)] → L[A, A′].

Lemma 20.7. For each n < ω, πn(γn) < (2κ)+.

Proof. By induction on n. First let n = 0. Let α < γ0 be in M0. Then
α = t(ν1, . . . , νk, A, A′) for some Skolem term t and some ν1, . . . , νk ∈ C0.
Let i0,α be the elementary embedding into Ult(α)

U for some U on κ. Since γ0 is
the least element of C0, we have α < ν for all ν ∈ C0 and hence i0,α(ν) = ν
for all ν ∈ C0. Hence also i0,α(A) = A and i0,α(A′) = A′ and it follows that
i0,α(α) = α. Now i0,α(α) = α is possible only if α < κ. Hence each α < γ0

in M0 is less than κ and therefore π0(γ0) ≤ κ.
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Now let us assume that πn(γn) < (2κ)+ and let us show that πn+1(γn+1) <
(2κ)+. By Lemma 20.6 there exists a U such that jU (κ) > πn(γn). We shall
show that πn(α) < jU (κ) for all α < γn+1 in Mn+1; since πn+1(α) ≤ πn(α)
it follows that πn+1(γn+1) = sup{πn+1(α) : α < γn+1 and α ∈ Mn+1} ≤
jU (κ) < (2κ)+.

First notice that it follows from the definition of Cn+1 in (20.13) that
πn(ν) = ν for all ν ∈ Cn+1. Note also that γm ∈ Cn+1 for all m ≥ n + 1, and
A′ ⊂ Cn+1.

Let α < γn+1 be in Mn+1. Then (in L[A, A′]),

α = t(γ0, . . . , γn, ν1, . . . , νk, A, A′)

where t is some Skolem term and ν1, . . . , νk ∈ Cn+1. Hence (in L[πn(A),
πn(A′)])

πn(α) = t(πn(γ0), . . . , πn(γn), ν1, . . . , νk, πn(A), A′).

Now we argue inside the model UltU (V ) (which contains both πn(A) and A′):
Consider the αth iterated ultrapower (modulo some measure on jU (κ)). Since
πn(γ0), . . . , πn(γn) are all less than jU (κ), we have i0,α(πn(γi)) = πn(γi) for
all i = 0, . . . , n. We also have i0,α(ν) = ν for each ν ∈ Cn+1 (because α < ν
for each ν ∈ Cn+1 and Cn+1 ⊂ C). It follows that i0,α(πn(α)) = πn(α). Now
(because πn(α) ≤ α) this is only possible if πn(α) < jU (κ). ��

We can now complete the proof of Theorem 20.4. Let us consider the
model Mω, the Skolem hull in L[A, A′] of Cω. Let πω be the transitive collapse
of Mω and B = πω(A). Since A′ ⊂ Cω+1, we have πω(A′) = A′, and jω = π−1

ω

is an elementary embedding

jω : L[B, A′] → L[A, A′].

By Lemma 20.7, πω(γn) ≤ πn(γn) < (2κ)+ for all n, and hence πω(λ) <
(2κ)+. Let U be a κ-complete ultrafilter on κ such that jU (κ) > πω(λ).

In UltU , B is a subset of jU (κ) and A′ is a subset of the class C. Thus we
can apply (20.12) and get

UltU � (L[F (B), F (A′)] � F (A′) ∩ L[F (B), F (A′)] is
a normal measure on λ′).

Hence

L[B, A′] � (L[F (B), F (A′)] � F (A′) ∩ L[F (B), F (A′)] is
a normal measure on λ′),

and applying jω, we get

L[A, A′] � (L[F (A), F (A′)] � F (A′) ∩ L[F (A), F (A′)] is
a normal measure on λ′).

Therefore F ′∩L[F, F ′] is (in L[F, F ′]) a normal measure on λ′. This completes
the proof of Theorem 20.4. ��
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The following theorem provides further evidence of the effect of large
cardinals on cardinal arithmetic.

Theorem 20.8 (Solovay). If κ is a strongly compact cardinal, then the
Singular Cardinal Hypothesis holds above κ. That is, if λ > κ is a singu-
lar cardinal, then 2cf λ < λ implies λcf λ = λ+. (Consequently, if λ > κ is
a singular strong limit cardinal, then 2λ = λ+.)

We shall prove the theorem in a sequence of lemmas. An ultrafilter on λ
is uniform if every set in the ultrafilter has size λ.

Lemma 20.9. If κ is a strongly compact cardinal and λ > κ is a regular
cardinal, then there exists a κ-complete uniform ultrafilter D on λ with the
property that almost all (mod D) ordinals α < λ have cofinality less than κ.

Proof. Let U be a fine measure on Pκ(λ). Since U is fine, every α < λ belongs
to almost all (mod U) x ∈ Pκ(λ). Let us consider the ultrapower UltU (V )
and let f be the least ordinal function in UltU greater than all the constant
functions cγ , γ < λ:

(20.16) [f ] = limγ→λ jU (γ).

We note first that f(x) < λ for almost all x: Let g : Pκ(λ) → λ be the
function g(x) = sup x. If γ < λ, then γ ≤ g(x) for almost all x and hence
j(γ) ≤ [g]; thus [f ] ≤ [g] ≤ j(λ).

Let D be the ultrafilter on λ defined as follows:

(20.17) X ∈ D if and only if f−1(X) ∈ U (X ⊂ λ).

It is clear that D is κ-complete, and since f is greater than the constant
function, D is nonprincipal. For the same reason, the diagonal function d(α) =
α is greater (in UltD) than all the constant functions cγ , γ < λ, and since λ is
regular, D is uniform. In order to show that almost all (mod D) α < λ have
cofinality < κ, it suffices by (20.17), to show that cf(f(x)) < κ for almost
all x (mod U).

That will follow immediately once we show that for almost all x (mod U),

(20.18) f(x) = sup{α ∈ x : α < f(x)}.

We clearly have ≥ in (20.18). To prove ≤, consider the function h(x) =
sup{α ∈ x : α < f(x)}. For each γ < λ, γ is in almost every x and hence γ ≤
h(x) almost everywhere. Thus [h] ≥ jU (γ) for all γ < λ and so f(x) ≤ h(x)
almost everywhere. ��

Lemma 20.10. If κ is strongly compact and λ > κ is a regular cardinal,
then there exist a κ-complete nonprincipal ultrafilter D on λ and a collection
{Mα : α < λ} such that

(i) |Mα| < κ for all α < λ,
(ii) for every γ < λ, γ belongs to Mα for almost all α (mod D).

(20.19)
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(An ultrafilter D that has a family {Mα : α < λ} with property (20.19)
is called (κ, λ)-regular.)

Proof. Let D be the ultrafilter on λ constructed in Lemma 20.9. It follows
from the construction of D that [d]D = limγ→λ jD(γ). For almost all α
(mod D), there exists an Aα ⊂ α of size less than κ and cofinal in α. If
cf α ≥ κ, let Aα = ∅. Let A be the set of ordinals represented in UltD(V ) by
the function 〈Aα : α < λ〉. The set A is cofinal in the ordinal represented by
the diagonal function d; and since [d] = limγ→λ jD(γ), it follows that for each
η < λ there is η′ > η such that A ∩ {ξ : jD(η) ≤ ξ < jD(η′)} is nonempty.

We construct a sequence 〈ηγ : γ < λ〉 of ordinals < λ as follows: Let
η0 = 0 and ηγ = limδ→γ ηδ if γ is limit; let ηγ+1 be some ordinal such that
there exists ξ ∈ A such that jD(ηγ) ≤ ξ < jD(ηγ+1).

In other words, if we denote Iγ the interval {ξ : ηγ ≤ ξ < ηγ+1}, then
for every γ, the interval Iγ has nonempty intersection with almost every Aα.
Thus if we let

Mα = {γ < λ : Iγ ∩ Aα �= ∅}
for each α < λ, then {Mα : α < λ} has property (20.19)(ii). To see that
Mα has property (i) as well, notice that |Aα| < κ for all α and that since
the Iγ are mutually disjoint, each Aα intersects less than κ of them. ��

Lemma 20.11. If κ is strongly compact and λ > κ is a regular cardinal,
then there exists a collection {Mα : α < λ} ⊂ Pκ(λ) such that

(20.20) Pκ(λ) =
⋃

α<λ

P (Mα).

Consequently, λ<κ = λ.

Proof. Let {Mα : α < λ} be as in Lemma 20.10. If x is a subset of λ of
size less than κ, then by (20.19)(ii) and by κ-completeness of D, x ⊂ Mα for
almost all α. Hence x ∈ P (Mα) for some α < λ. This proves (20.20); since
κ is inaccessible, it follows that |Pκ(λ)| = λ. ��

Proof of Theorem 20.8. Let κ be a strongly compact cardinal. If λ > κ is an
arbitrary cardinal, then we have, by Lemma 20.11

λ<κ ≤ (λ+)<κ = λ+.

In particular, we have λℵ0 ≤ λ+ for every λ > κ. This implies that the
Singular Cardinal Hypothesis holds for every λ > κ. ��

Supercompact Cardinals

We proved in Lemma 20.2 that a strongly compact cardinal κ is characterized
by the property that every Pκ(A) has a fine measure. If we require the fine
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measure to satisfy a normality condition, then we obtain a stronger notion—
a supercompact cardinal. Ultrapowers by normal measures on Pκ(A) induce
elementary embeddings that can be used to derive strong consequences of su-
percompact cardinals. For instance, Theorems 20.3 and 20.4 become almost
trivial if the existence of a strongly compact cardinal is replaced by the exis-
tence of a supercompact cardinal. It is consistent to assume that a strongly
compact cardinal is not supercompact, or that every strongly compact car-
dinal is supercompact, but it is not known whether supercompact cardinals
are consistent relative to strongly compact cardinals.

Definition 20.12. A fine measure U on Pκ(A) is normal if whenever f :
Pκ(A) → A is such that f(x) ∈ x for almost all x, then f is constant on a set
in U . A cardinal κ is supercompact if for every A such that |A| ≥ κ, there
exists a normal measure on Pκ(A).

Let λ ≥ κ be a cardinal and let us consider the ultrapower UltU (V ) by
a normal measure U on Pκ(λ); let j = jU be the corresponding elementary
embedding. Clearly, a set X ⊂ Pκ(λ) belongs to U if and only if [d] ∈ j(X),
where d, the diagonal function, is the function d(x) = x.

Lemma 20.13. If U is a normal measure on Pκ(λ), then [d] = {j(γ) : γ <
λ} = j“λ, and hence for every X ⊂ Pκ(λ),

(20.21) X ∈ U if and only if j“λ ∈ j(X).

Proof. On the one hand, if γ < λ, then γ ∈ x for almost all x and hence
j(γ) ∈ [d]. On the other hand, if [f ] ∈ [d], then f(x) ∈ x for almost all x and
by normality, there is γ < λ such that [f ] = j(γ). ��

It follows from (20.21) that if f and g are functions on Pκ(λ), then

[f ] = [g] if and only if (jf)(j“λ) = (jg)(j“λ).

and
[f ] ∈ [g] if and only if (jf)(j“λ) ∈ (jg)(j“λ).

Consequently,

(20.22) [f ] = (jf)(j“λ)

for every function f on Pκ(λ).
For each x ∈ Pκ(λ), let us denote

(20.23) κx = x ∩ κ, and

λx = the order-type of x.

Note that the order-type of j“λ is λ and hence by (20.22), λ is represented
in the ultrapower by the function x �→ λx. Also, since λx < κ for all x, we
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have j(κ) > λ. By the κ-completeness of U , we have j(γ) = γ for all γ < κ;
and since κ is moved by j, it follows that j“λ ∩ j(κ) = κ and therefore κ is
represented by the function x �→ κx.

This gives the following characterization of supercompact cardinals:

Lemma 20.14. Let λ ≥ κ. A normal measure on Pκ(λ) exists if and only if
there exists an elementary embedding j : V → M such that

(i) j(γ) = γ for all γ < κ;
(ii) j(κ) > λ;
(iii) Mλ ⊂ M ; i.e., every sequence 〈aα : α < λ〉 of elements of M

is a member of M .

(20.24)

A cardinal κ is called λ-supercompact if it satisfies (20.24).

Proof. (a) Let U be a normal measure on Pκ(λ). We let M = UltU (V ) and
let j be the canonical elementary embedding j : V → Ult. We have already
proved (i) and (ii). To prove (iii), it suffices to show that whenever 〈aα :
α < λ〉 is such that aα ∈ M for all α < λ, then the set {aα : α < λ} belongs
to M . Let fα, α < λ, be functions representing elements of M : [fα] ∈ M . We
consider the function f on Pκ(λ) defined as follows: f(x) = {fα(x) : α ∈ x};
we claim that [f ] = {aα : α < λ}.

On the one hand, if α < λ, then α ∈ x for almost all x and hence [fα] ∈ [f ].
On the other hand, if [g] ∈ [f ], then for almost all x, g(x) = fα(x) for some
α ∈ x. By normality, there exists some γ < λ such that g(x) = fγ(x) for
almost all x, and hence [g] = aγ .

(b) Let j : V → M be an elementary embedding that satisfies (i), (ii),
and (iii). By (iii), the set {j(γ) : γ < λ} belongs to M and so the following
defines an ultrafilter on Pκ(λ):

(20.25) X ∈ U if and only if j“λ ∈ j(X).

A standard argument shows that U is a κ-complete ultrafilter. U is a fine
measure because for every α ∈ λ, {x : α ∈ x} is in U . Finally, U is normal: If
f(x) ∈ x for almost all x, then (jf)(j“λ) ∈ j“λ. Hence (jf)(j“λ) = j(γ) for
some γ < λ, and so f(x) = γ for almost all x. ��

We have seen several examples how large cardinals restrict the behavior of
the continuum function (e.g., if κ is measurable and 2κ > κ+, then 2α > α+

for cofinally many α < κ). This is more so for supercompact cardinals:

Lemma 20.15. If κ is λ-supercompact and 2α = α+ for every α < κ, then
2α = α+ for every α ≤ λ.

Proof. Let j : V → M witness that κ is λ-supercompact. If α ≤ λ, then
because λ < j(κ) and by elementarity, (2α)M = (α+)M . Now Mλ ⊂ M
implies that PM (α) = P (α) and so 2α ≤ (2α)M = (α+)M = α+. ��
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See Exercises 20.5–20.7 for a more general statement.

Lemma 20.16. If κ is supercompact, then there exists a normal measure D
on κ such that almost every α < κ (mod D) is measurable. In particular, κ is
the κth measurable cardinal.

Proof. Let λ = 2κ and let j : V → M witness the λ-supercompactness of κ.
Let D be defined by D = {X : κ ∈ j(X)}, and let jD : V → UltD be the
corresponding elementary embedding. Let k : UltD → M be the elementary
embedding defined in Lemma 17.4:

k([f ]D) = (jf)(κ).

Note that k(κ) = κ.
Now, P (κ) ⊂ M and every subset of M of size λ is in M ; hence every

U ⊂ P (κ) is in M and it follows that in M , κ is a measurable cardinal. Since
k is elementary and k(κ) = κ, we have UltD � κ is a measurable cardinal,
and the lemma follows. ��

In contrast to Lemma 20.16, it is consistent that the least strongly com-
pact cardinal is the least measurable. The following lemma and corollary also
show that strongly compactness and supercompactness are not equivalent.

Lemma 20.17. Let κ be a measurable cardinal such that there are κ strongly
compact cardinals below κ. Then κ is strongly compact.

Proof. Let F be a nonprincipal κ-complete ultrafilter on κ such that C ∈ F
where C = {α < κ : α is strongly compact}. Let A be such that |A| ≥ κ; we
shall show that there is a fine measure on Pκ(A).

For each α ∈ C, let Uα be a fine measure on Pα(A), and let us define
U ⊂ Pκ(A) as follows:

X ∈ U if and only if {α ∈ C : X ∩ Pα(A) ∈ Uα} ∈ F.

It is easy to verify that U is a fine measure on Pκ(A). ��

Corollary 20.18. If there exists a measurable cardinal that is a limit of
strongly compact cardinals, then the least such cardinal is strongly compact
but not supercompact.

Proof. Let κ be the least measurable limit of compact cardinals. By Lem-
ma 20.17, κ is strongly compact. Let us assume that κ is supercompact. Let
λ = 2κ and let j : V → M be an elementary embedding such that κ is the
least ordinal moved, and that Mλ ⊂ M . If α < κ is strongly compact, then
M � j(α) is strongly compact, but j(α) = α and therefore M � κ is a limit of
strongly compact cardinals. Since every U ⊂ P (κ) is in M , κ is measurable
in M and hence in M , κ is a measurable limit of strongly compact cardinals.
This is a contradiction because M thinks that j(κ) is the least measurable
limit of strongly compact cardinals. ��
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The assumption of Corollary 20.18 holds if there are extendible cardinals
(defined in the next section). There is also a consistency proof showing that
not every strongly compact cardinal is supercompact. (And another consis-
tency proof gives a model that has exactly one strongly compact cardinal and
the cardinal is supercompact.)

The construction of a normal measure from an elementary embedding
in (20.25) yields a commutative diagram analogous to (17.3). Let j : V → M
be an elementary embedding with critical point κ such that j(κ) > λ and
Mλ ⊂ M , cf. (20.24). Let

U = {X ∈ Pκ(λ) : j“λ ∈ j(X)}

be the normal measure defined from j. Let Ult = UltU (V ), and jU : V → Ult.
For each [f ] ∈ Ult, let

(20.26) k([f ]) = (jf)(j“λ).

As in Lemma 17.4, one verifies that k : Ult → M is an elementary embedding,
and j = k ◦ jU .

We claim that

(20.27) k(α) = α for all α ≤ λ.

To prove (20.27), let α ≤ λ, and let us denote, for each x ∈ Pκ(λ),

αx = the order-type of x ∩ α

(compare with (20.23)). Since the order-type of jU“λ ∩ jU (α) is α, it follows
from (20.22) that the function f(x) = αx represents α in the ultrapower:
[f ] = (jUf)(j“λ) = the order-type of jU“λ∩ jU (α) = α. Now (20.27) follows:

k(α) = k([f ]) = (jf)(j“λ) = the order-type of j“λ ∩ j(α) = α.

Lemma 20.19.

(i) If λ ≥ κ and if κ is µ-supercompact, where µ = 2λ<κ

, then for every
X ⊂ P (Pκ(λ)) there exists a normal measure on Pκ(λ) such that X ∈
UltU (V ).

(ii) If κ is 2κ-supercompact, then for every X ⊂ P (κ) there exists a normal
measure D on κ such that X ∈ UltD(V ).

Proof. (i) Assume on the contrary that there exists some X ⊂ P (Pκ(λ)) such
that ϕ(X , κ, λ) where ϕ is the statement

(20.28) X /∈ UltU for every normal measure U on Pκ(λ).

Let j : V → M be a witness to the µ-supercompactness of κ. As Mµ = M ,
the ultrapowers by normal measures on Pκ(λ) are correctly computed in M ,
and so M � ∃X ϕ(X , κ, λ).
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Let U = {X ∈ Pκ(λ) : j“λ ∈ j(X)} and let k : UltU → M be such
that j = k ◦ jU . By (20.27), k(κ) = κ and k(λ) = λ, and since k : Ult →
M is elementary, we have Ult � ∃X ϕ(X , κ, λ). Let X ∈ Ult be such that
Ult � ϕ(X , κ, λ). By (20.27) again, k(α) = α for all α ≤ λ, and it follows
that k(X ) = X . By elementarity again, M � ϕ(k(X ), k(κ), k(λ)) and so
M � ϕ(X , κ, λ). This contradicts (20.28) because X ∈ UltU .

(ii) Similar, using (17.3). ��

Corollary 20.20.

(i) If κ is supercompact then there are 22κ

normal measures on κ.
(ii) If κ is supercompact then for every λ ≥ κ there are 22λ<κ

normal
measures on Pκ(λ).

(iii) If κ is supercompact then the Mitchell order of κ is (2κ)+ ≥ κ++.

Proof. (i) If D is a normal measure on κ and X ⊂ P (κ) is in UltD, then
X is represented by a function f on κ such that f(α) ⊂ P (α) for all α < κ.
Since the number of such functions is 2κ, it follows that UltD contains only
2κ subsets of P (κ). However, by Lemma 20.19(ii), each X ⊂ P (κ) is contained
in some ultrapower UltD where D is a normal measure on κ, and therefore
there must exist 22κ

normal measures on κ.
(ii) Similar, using Lemma 20.19(i).
(iii) There is an increasing chain of length (2κ)+ of normal measures on κ

in the Mitchell order: Given at most 2κ such measures, one can code them as
some X ⊂ P (κ). By Lemma 20.19(ii) there exists a normal measure U on κ
such that X ∈ UltU . ��

We conclude this section with the following theorem reminiscent of the
Diamond Principle.

Theorem 20.21 (Laver). Let κ be a supercompact cardinal. There exists
a function f : κ → Vκ such that for every set x and every λ ≥ κ such that λ ≥
|TC(x)| there exists a normal measure U on Pκ(λ) such that jU (f)(κ) = x.

(Such an f is called a Laver function.)

Proof. Assume that the theorem is false. For each f : κ → Vκ, let λf be the
least cardinal λf ≥ κ for which there exists an x with |TC(x)| ≤ λx such
that jU (f)(κ) �= x for every normal measure U on Pκ(λf ). Let ν be greater
than all the λf and let j : V → M be a witness to the ν-supercompactness
of κ.

Let ϕ(g, δ) be the statement that for some cardinal α, g : α → Vα and
δ is the least cardinal δ ≥ α for which there exists an x with |TC(x)| ≤ δ
such that there is no normal measure U on Pα(δ) with (jUg)(α) = x. (Let λg

denote this δ.) Since Mν ⊂ M , we have M � ϕ(f, λf ), for all f : κ → Vκ.
Let A be the set of all α < κ such that ϕ(g, λg) holds for all g : α → Vα.

Clearly, κ ∈ j(A).
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Now we define f : κ → Vκ inductively as follows. If α ∈ A, we let f(α) =
xα where xα witnesses ϕ(f�α, λf�α); otherwise, f(α) = ∅.

Let x = (jf)(κ). It follows from the construction of f that x witnesses
ϕ(f, λf ) in M , and hence in V . Let U = {X ∈ Pκ(λ) : j“λ ∈ j(X)}; we
shall reach a contradiction by showing that (jUf)(κ) = x. Let k : UltU → M
be the elementary embedding from (20.26) such that j = k ◦ jU . By (20.27),
k(x) = x, and therefore

(jUf)(κ) = k−1((jf)(κ)) = k−1(x) = x. ��

Beyond Supercompactness

Elementary embeddings can be used to define large cardinals that are stronger
than supercompact.

Definition 20.22. A cardinal κ is extendible if for every α > κ there exist
an ordinal β and an elementary embedding j : Vα → Vβ with critical point κ.

Lemma 20.23. Let λ ≥ κ be a regular cardinal and let κ be λ-supercompact.
Let α < κ. If α is γ-supercompact for all γ < κ, then α is λ-supercompact.

Proof. Let U be a normal measure on Pκ(λ), and let us consider jU : V →
UltU . Since j(α) = α, we have Ult � (α is γ-supercompact for all γ < j(κ)); in
particular, Ult � α is λ-supercompact. Hence there is D such that Ult � D is
a normal measure on Pα(λ). Now, |Pα(λ)| = λ and Ultλ ⊂ Ult, and hence
every subset of Pα(λ) is in Ult. It follows that D is a normal measure on Pα(λ).

��

Theorem 20.24.

(i) If κ is extendible, then κ is supercompact.
(ii) If κ is extendible, then there is a normal measure D on κ such that

{α < κ : α is supercompact} ∈ D.

Proof. (i) Let α > κ be a limit cardinal with the property that if Vα � (κ is
λ-supercompact for all λ), then κ is supercompact. (Such an α exists by the
Reflection Principle.) Thus it suffices to show that κ is λ-supercompact for
all regular λ < α.

Let j : Vα → Vβ be such that κ is the critical point. Consider the sequence
κ0 = κ, κ1 = j(κ), . . . , κn+1 = j(κn), . . . , as long as j(κn) is defined. First
we note that by Exercise 17.8 either there is some n such that κn < α ≤ j(κn)
or α = limn→∞ κn. Therefore, it is sufficient to prove, by induction on n, that
κ is λ-supercompact for each regular λ < κn (if λ < α).

Clearly, κ is λ-supercompact for each λ < κ1. Thus let n ≥ 1 and let
us assume that κ is λ-supercompact for all λ < κn. Applying j, we get:
Vβ � (j(κ) is λ-supercompact for all regular λ < κn+1). Now we also have
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Vβ � (κ is γ-supercompact for all γ < j(κ)) and we can apply Lemma 20.23
(in Vβ) to conclude that Vβ � (κ is λ-supercompact for all regular λ < κn+1).
This completes the induction step.

(ii) Let α be some limit ordinal greater than κ and let j : Vα → Vβ be
such that κ is the critical point. Let D = {X ⊂ κ : κ ∈ j(X)}. By (i),
κ is supercompact, and so Vβ � (κ is γ-supercompact for all γ < j(κ)).
Hence A ∈ D, where A = {α < κ : α is γ-supercompact for all γ < κ}. By
Lemma 20.23, every α ∈ A is supercompact. ��

Let us consider now the following axiom schema called Vopěnka’s Prin-
ciple (VP):

(20.29) Let C be a proper class of models of the same language. Then
there exist two members A, B of the class C such that A can be
elementarily embedded in B.

Lemma 20.25. If Vopěnka’s Principle holds, then there exists an extendible
cardinal.

Proof. Let A be the class of all limit ordinals α such that cf α = ω and that for
every κ < α, if Vα � (κ is extendible), then κ is extendible; and for κ < γ < α,
if there is an elementary embedding j : Vγ → Vδ with critical point κ, then
Vα � (there is an elementary embedding). Using the Reflection Principle, we
see that A is a proper class. Let C consist of the models (Vα+1,∈), for α ∈ A.

By Vopěnka’s Principle, there exist α, β ∈ A and an elementary embed-
ding j : Vα+1 → Vβ+1. Since j(α) = β, j moves some ordinal; its critical
point is measurable and so it is not α (which has cofinality ω). Let κ be the
critical point.

Now Vα � (κ is extendible) because for every γ < α, j�Vγ reflects to
a witness to extendibility. By definition of A, κ is extendible. ��

A similar argument shows that Vopěnka’s Principle implies existence of
arbitrarily large extendible cardinals.

Definition 20.26. A cardinal κ is huge if there exists an elementary em-
bedding j : V → M with critical point κ such that M j(κ) ⊂ M .

“Huge” is expressible in ZF: see Exercise 20.11.

Lemma 20.27. If κ is a huge cardinal, then Vopěnka’s Principle is consis-
tent : (Vκ,∈) is a model of VP.

Proof. We shall show that if C is a set of models and rank(C) = κ, then
there exist two members A, B ∈ C and an elementary embedding h : A → B.

Let j : V → M be such that κ is the least cardinal moved and that
M j(κ) ⊂ M . Since rank(C) = κ, there exists an A0 ∈ j(C) such that A0 /∈ C.
It follows that j(A0) �= A0.
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Let e0 = j�A0; it is easy to see that e0 is an elementary embedding of A0

into j(A0), and since |A0| < j(κ), we have e0 ∈ M . Hence

M � there exists an A ∈ j(C), A �= j(A0), and there
exists an elementary e : A → j(A0);

and so there exists some A ∈ C, A �= A0, and there exists an elementary
e : A → A0. Let A, e be such; clearly,

M � e is an elementary embedding of A into A0,

and because rank(A) < κ, we have A = j(A), and hence A ∈ j(C), and so

M � there exist distinct A, B ∈ j(C), and there exists
an elementary h : A → B.

It follows that there exist distinct A, B ∈ C, and an elementary embedding
h : A → B. ��

While the least huge cardinal is greater than the least measurable cardinal
(see Exercise 20.13), it is smaller than the least supercompact cardinal (if
both exist) even though the consistency of “there exists a huge cardinal” is
stronger than the consistency of “there exists a supercompact cardinal.” See
Exercise 20.12.

Finally, consider the following axiom:

(20.30) There exists a nontrivial elementary embedding j : Vλ → Vλ where
λ is a limit ordinal.

Let κ be the critical point of an elementary embedding j : Vλ → Vλ. The
necessarily λ ≥ κn for each n (where κn are as in Theorem 17.7), and it
follows from Exercise 17.8 that λ = limn→∞ κn. It is easily seen that κ is
huge (by Exercise 20.11), in fact n-huge for all n; see Exercise 20.15.

In view of Kunen’s Theorem 17.7, axiom (20.30) (and its variants) is the
strongest possible large cardinal axiom.

Extenders and Strong Cardinals

In this section we show how elementary embeddings can be analyzed using
direct limits of ultrapowers. An elementary embedding can be approximated
by a system of measures called extenders. The theory of extenders plays
a crucial role in the inner model theory. While this theory is too weak to
describe supercompactness, it is strong enough to describe a weak version of
it that is considerably stronger than measurability.

Definition 20.28. A cardinal κ is a strong cardinal if for every set x there
exists an elementary embedding j : V → M with critical point κ such that
x ∈ M .
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Clearly, every supercompact cardinal is strong. Strong cardinals have
more consistency strength than measurable cardinals, and allow some of the
techniques associated with supercompactness; see Exercises 20.16–20.19.

It follows from the theory of extenders below that “strongness” is express-
ible in ZF. As with supercompactness, one can also define local versions of
strongness: κ is λ-strong, where λ ≥ κ, if there exists some j : V → M with
critical point κ such that j(κ) > λ and Vλ ⊂ M . A cardinal κ is strong if and
only if it is λ-strong for all λ ≥ κ.

Let j : V → M be an elementary embedding with critical point κ and let
κ ≤ λ ≤ j(κ). We shall define the (κ, λ)-extender derived from j.

For every finite subset a ⊂ λ, let Ea be the measure on [κ]<ω defined as
follows:

(20.31) X ∈ Ea if and only if a ∈ j(X);

note that Ea concentrates on [κ]|a|. The (κ, λ)-extender derived from j is the
collection

(20.32) E = {Ea : a ∈ [λ]<ω};

κ is the critical point of E and λ is the length of the extender.
Let a ∈ [λ]<ω. The measure Ea on [κ]<ω is κ-complete; let UltEa denote

the ultrapower of V by Ea and let ja : V → UltEa be the corresponding ele-
mentary embedding. If for each equivalence class [f ] of a function f on [κ]<ω

we let

(20.33) ka([f ]) = j(f)(a),

then ka is an elementary embedding ka : UltEa → M and ka ◦ ja = j.
The measures Ea, a ∈ [λ]<ω , are coherent, in the following sense: Let

a ⊂ b, where b = {α1, . . . , αn} with α1 < . . . < αn. Then πb,a : [λ]|b| → [λ]|a|

is defined by

(20.34) πb,a({ξ1, . . . , ξn}) = {ξi1 , . . . , ξim}, (ξ1 < . . . < ξn)

where a = {αi1 , . . . , αim}, and

(20.35) X ∈ Ea if and only if {s : πb,a(s) ∈ X} ∈ Eb.

(Compare with Lemma 19.12.)
It follows that ia,b : UltEa → UltEb

defined by

ia,b([f ]Ea) = [f ◦ πb,a]Eb

is an elementary embedding, and

(20.36) {UltEa , ia,b : a ⊂ b ∈ [λ]<ω}

is a directed system. The direct limit UltE of (20.36) is well-founded: Note
that the embeddings ka have a direct limit k : UltE → M such that k◦jE = j
where jE is the elementary embedding jE : V → UltE .
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There is another description of the direct limit UltE : The elements of UltE

are equivalence classes [a, f ]E where a ∈ [λ]<ω and f : [κ]|a| → V . Here
(a, f) and (b, g) are equivalent if {s ∈ [κ]|a∪b| : f̃(s) = g̃(s)} ∈ Ea∪b, where
f̃ = f ◦πa∪b,a and g̃ = g ◦πa∪b,b. The embedding jE : V → UltE is defined by
jE(x) = [∅, cx] where cx is the constant function with value x. The embedding
k : UltE → M is defined by

(20.37) k([a, f ]) = j(f)(a).

Now k ◦ jE = j follows.

Lemma 20.29.

(i) k(α) = α for all α < λ.
(ii) jE has critical point κ and jE(κ) ≥ λ.
(iii) UltE = {jE(f)(a) : a ∈ [λ]<ω , f : [κ]<ω → V }.

Proof. For each a ∈ [λ]<ω , let ja,∞ : UltEa → UltE be the direct limit
embedding such that ja,∞ ◦ ja = jE ; then k ◦ ja,∞ = ka. If x ∈ UltE then
x = ja,∞([f ]) for some [f ] ∈ UltEa , and

k(x) = k(ja,∞([f ])) = ka([f ]) = j(f)(a)

(see also (20.37)). Hence

(20.38) k“ UltE = {j(f)(a) : a ∈ [λ]<ω , f ∈ [κ]<ω → V }.

(i) By letting f be the identity function, we get from (20.38) that a ∈
k“ UltE , for each a ∈ [λ]<ω. Hence λ ⊂ k“ UltE , and therefore k(α) = α for
all α < λ.

(ii) This follows from (i), because j = k ◦ jE .
(iii) Since k(a) = a for every a ∈ [λ]<ω, it follows from (20.38) that for

every x ∈ UltE , k(x) = j(f)(a) = k(jE(f))(k(a)) = k(jE(f)(a)) for some a
and f , and hence x = jE(f)(a). ��

Hence jE is an elementary embedding, jE : V → UltE , with critical
point κ. Since j = k ◦ jE and since k(a) = a for all a ∈ [λ]<ω, it follows that
for all X ∈ [κ]|a|, a ∈ jE(X) if and only if a ∈ j(X). Hence E is the extender
derived from jE .

Extenders can be defined directly, without reference to an embedding j.
The following, somewhat technical, properties guarantee that the (κ, λ)-
extender is derived from the direct limit embedding jE : Let κ ≤ λ, and
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let E = {Ea : a ∈ [λ]<ω}. E is a (κ, λ)-extender if

(i) Each Ea is a κ-complete measure on [κ]|a|, and
(a) at least one Ea is not κ+-complete,
(b) for each α ∈ κ, at least one Ea contains the set {s ∈ [κ]|a| :

α ∈ s}.
(ii) (Coherence) The Ea’s are coherent, i.e., satisfy (20.35).
(iii) (Normality) If {s ∈ [κ]|a| : f(s) ∈ max s} ∈ Ea, then for some

b ⊃ a, {t ∈ [κ]|b| : (f ◦ πb,a)(t) ∈ t} ∈ Eb.
(iv) The limit ultrapower UltE is well-founded.

(20.39)

We leave out the verification that the extender derived from some j satis-
fies (20.39), and that the properties (20.39) suffice to prove (ii) and (iii) of
Lemma 20.29, and that E is derived from jE .

An immediate consequence of the above technique is the following char-
acterization of strong cardinals:

Lemma 20.30. A cardinal κ is strong if and only if for every λ ≥ κ there
is a (κ, |Vλ|+)-extender E such that Vλ ⊂ UltE and λ < jE(κ). ��

Hence “strongness” is expressible in ZFC.
We conclude by introducing a large cardinal property that was isolated

by Woodin and that has played a central role in the study of determinacy
and inner models:

Definition 20.31. A cardinal δ is a Woodin cardinal if for all A ⊂ Vδ there
are arbitrarily large κ < δ such that for all λ < δ there exists an elementary
embedding j : V → M with critical point κ, such that j(κ) > λ, Vλ ⊂ M ,
and A ∩ Vλ = j(A) ∩ Vλ.

Being a Woodin cardinal is expressible in ZFC, in terms of extenders. Ev-
ery supercompact cardinal is Woodin, and below a Woodin cardinal δ, there
are δ cardinals that are λ-strong for every λ < δ. While Woodin cardinals are
inaccessible (and Mahlo), the least Woodin cardinal is not weakly compact,
as δ being Woodin is a Π1

1 property of (Vδ,∈).

Exercises

20.1. If κ is strongly compact then Lκ,κ satisfies the Compactness Theorem.
[Verify �Loś’s Theorem]

20.2. If κ is strongly compact, λ ≥ κ, and A ⊂ λ, then λ+ is an ineffable cardinal
in L[A].

[Let U be as in Theorem 20.3, let M = UltU (L[A]), N = Ult−U (L[A]), let
j : L[A] → M , i : L[A] → N , and let k : N → M be as there. Again, M = N , and
i(λ+) is the least ordinal moved. By Lemma 17.32, N thinks that i(λ+) is ineffable;
hence λ+ is ineffable in L[A].]
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20.3. The following are equivalent, for κ ≤ λ:

(i) There is a fine measure on Pκ(λ).
(ii) For any set S, every κ-complete filter on S generated by at most λ sets can

be extended to a κ-complete ultrafilter on S.

20.4. If U is a normal measure on Pκ(λ), then every closed unbounded subset
of Pκ(λ) is in U .

[If C ⊂ Pκ(λ) is closed unbounded, then D = {j(x) : x ∈ C} is a directed subset
of j(C) and |D| = λ<κ < j(κ). Hence

S

D ∈ j(C), and since
S

D = {j(γ) : γ < λ},
we have C ∈ U .]

20.5. Let λ ≥ κ and let U be a normal measure on Pκ(λ). The ultraproduct
UltU{(Vλx ,∈) : x ∈ Pκ(λ)} is isomorphic to (Vλ,∈).

20.6. If κ is inaccessible then Vκ ≺Σ1 V .

20.7. If κ is supercompact then Vκ ≺Σ2 V .
[Let x ∈ Vκ such that ∃y ϕ(x, y) where ϕ is Π1. Let j : V → M be such that

y ∈M ∩ Vj(κ). In M , Vj(κ) � ∃y ϕ(x, y), hence Vκ � ∃y ϕ(x, y).]

Let κ be supercompact and let λ ≥ κ be a cardinal. A normal measure D
on Pκ(λ) is strongly normal if there exists X ∈ D such that for every function f
on X, if for each nonempty x ∈ X, f(x) is in X, f(x) ⊂ x and f(x) �= x, then f is
constant on some Y ∈ D.

20.8. The following are equivalent:

(i) D is strongly normal.
(ii) There is X ∈ D such that if {Zx : x ∈ X} ⊂ D, then �x∈X Zx ∈ D where

�x∈X Zx = {y : y ∈ Zx for each x ⊂ y such that x �= y and x ∈ X}.
(iii) D has this partition property: If F : [Pκ(λ)]2 → {0, 1} is a partition, then

there is X ∈ D such that F is constant on {{x, y} ∈ [X]2 : x � y or y � x}.
(iv) There is X ∈ D such that if x, y ∈ X, x �= y and x ⊂ y, then λx < κy .

[(i)→ (ii): Let X ∈ D be a witness to strong normality. Prove by contradiction
that D is closed under �x∈X Zx.

(ii) → (iii): Let F : [Pκ(λ)]2 → {0, 1}; for each x, let Fx : x̂ → {0, 1} be
Fx(y) = F (x, y). For each x there is Zx ⊂ x̂, Zx ∈ D, such that Fx is constant
on Zx. Let X ∈ D be as in (ii) and such that the constant value of Fx is the same
for all x ∈ X. Then X ∩�x∈X Zx is homogeneous for F in the sense of (iii).

(iii)→ (iv): Note that if X ∈ D, then there exist x, y ∈ X such that x � y and
λx < κy .

(iv) → (i): Let X ∈ D be as in (iv) and let f : X → X be such that f(x) ⊂ x
and f(x) �= x for all x. In UltD, if x ∈ jD(X) and x ⊂ j“λ, then |x| < j“λ ∩ κ = κ
and hence x = j(y) for some y ∈ Pκ(λ). Hence (jf)(j“λ) = j(y) for some y and so
f(x) = y for almost all x.]

It has been proved that if κ is supercompact, then every Pκ(λ) has a strongly
normal measure; however, not every normal measure is necessarily strongly normal:

20.9. If λ > κ is measurable, then there is a normal measure U on Pκ(λ) that is
not strongly normal.

[Let j : V → M be elementary, κ least moved, j(κ) > λ, and Mλ ⊂ M . Let D
be a normal measure on λ. Let us define a normal measure U on Pκ(λ) as follows:
X ∈ U if and only if {α < λ : j“α ∈ j(X)} ∈ D. If X ∈ U , then there exist α < β
such that j“α and j“β are in j(X); hence M � ∃x, y ∈ j(X) such that x is an
initial segment of y. Thus ∃x, y ∈ X such that x is an initial segment of y, and so
λx ≥ κy .]
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20.10. If κ is extendible then Vκ ≺Σ3 V .
[Use Exercise 20.7, and show that there are arbitrarily large inaccessible λ > κ

such that Vκ ≺ Vλ.]

20.11. A cardinal κ is huge, with j : V → M and j(κ) = λ if and only if there is
a normal κ-complete ultrafilter U on {X ⊂ λ : order-type(X) = κ}.

[X ∈ U if and only if j“λ ∈ j(X).]

20.12. Let κ be the least huge cardinal and let µ be the least supercompact car-
dinal. Then κ < µ.

[If κ = µ then by 20.27, 20.25, 20.24, and 20.23 we get: Vµ � VP, Vµ � (∃ super-
compact α), there is a supercompact α < µ, a contradiction. If κ < µ, let j : V →M

with λ = j(κ) and Mλ ⊂ M . Since µ is supercompact, let i : V → N be such that
i(µ) > λ and Vλ+2 ⊂ N . If U is a normal measure witnessing the hugeness of κ,
then U ∈ N , and hence N � (∃ huge cardinal below i(µ)). Thus there exists a huge
cardinal below µ, a contradiction.]

20.13. The least huge cardinal is greater than the least measurable cardinal.
[Show that M � κ is measurable; hence there exists a measurable cardinal less

than κ.]

A cardinal κ is n-huge if there exists an elementary j : V → M with critical

point κ such that M jn(κ) ⊂M .

20.14. If κ is (n + 1)-huge then there is a normal measure D on κ such that
{α < κ : α is n-huge} ∈ D.

20.15. If there exists an elementary j : Vλ → Vλ with critical point κ then κ is
n-huge for every n.

20.16. If there is a strong cardinal, then V �= L[A] for any set A.

20.17. If κ is strong then o(κ) = (2κ)+.
[As in Corollary 20.20(iii).]

20.18. If κ is strong then Vκ ≺Σ2 V .
[As in Exercise 20.7.]

20.19. If κ is strong, then there exists a function g : κ→ Vκ such that for every x
and every λ ≥ κ such that λ ≥ |TC(x)| there exists a (κ, λ)-extender E such that
jE(g)(κ) = x.

20.20. A (κ, λ)-extender {Ea : a ∈ [λ]<ω} has well-founded limit ultrapower if
and only if for every 〈am : m ∈ ω〉 and every sequence 〈Xm : m ∈ ω〉 such that
Xm ∈ Eam , there exists a function h :

S

m∈ω am → κ such that h“am ∈ Xm for
all m.

Historical Notes

Strongly compact cardinals were introduced by Keisler and Tarski in [1963/64];
supercompact cardinals were defined by Reinhardt and Solovay. Theorem 20.3 is
due to Vopěnka and Hrbáček [1966]; Theorem 20.4 is due to Kunen [1971b].
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Solovay discovered that the Singular Cardinal Hypothesis holds above a compact
cardinal (Theorem 20.8); see [1974].

Menas and Magidor obtained several results on the relative strength of compact
and supercompact cardinals. Menas in [1974/75] showed that it is consistent (rela-
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to Solovay; see Solovay, Reinhardt, and Kanamori [1978]; Magidor’s paper [1971a]
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is due to Menas [1974/75]. Theorem 20.21 is due to Laver [1978].

Extendible cardinals were introduced by Reinhardt; he proved that extendible
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as Lemmas 20.23 and 20.25 are due to Magidor [1971b].

Lemma 20.27: Powell [1972].
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Kanamori and Magidor, as well as Kanamori’s book [1994].
Strong cardinals were used by Mitchell [1979a] to develop a theory of inner mod-

els for weak versions of supercompactness, and further studied by Baldwin [1986].
Extenders were introduced by Jensen and Dodd; see Dodd [1982].

Woodin cardinals were introduced by Woodin in 1984. They were used, among
others, in the proof of projective determinacy by Martin and Steel [1989].

Exercises 20.7, 20.10, 20.11, 20.14, and 20.15: Solovay, Reinhardt and Kanamori
[1978].

Exercise 20.9: Solovay.
Exercise 20.12: Morgenstern [1977].
Exercise 20.19: Gitik and Shelah [1989].



21. Large Cardinals and Forcing

Many forcing techniques have been developed specifically for use with large
cardinals. Firstly, when investigating the effect of large cardinals on cardinal
arithmetic, it is desirable to establish the relative consistency of statements
about the continuum function with the existence of various large cardinals.
The main technical question here is whether large cardinal properties are pre-
served under various forcing extensions. Secondly, it follows from the Cover-
ing Theorem that an attempt to violate the Singular Cardinal Hypothesis, or
even to change cofinalities, necessarily involves large cardinals. Indeed, forc-
ing techniques have been developed for changing cofinalities and for violating
SCH that use large cardinals. And thirdly, as the large cardinal hierarchy
serves as a gauge of consistency strength, forcing that uses large cardinals
provides an upper bound for the consistency strength of the problems that
the forcing proves consistent.

Mild Extensions

We begin with an early discovery that “mild” forcing extensions do not effect
large cardinal properties, i.e., whether κ is a large cardinal is not changed by
forcing of size less than κ.

Theorem 21.1 (Lévy-Solovay). Let κ be a measurable cardinal in the
ground model. Let (P, <) be a notion of forcing such that |P | < κ. Then
κ is measurable in the generic extension.

Proof. We give a proof using elementary embeddings since similar arguments
will be used in subsequent constructions; for a direct proof, see Exercise 21.1.
Let B = B(P ); since |B| < κ, we may assume B ∈ Vκ. We can also assume
that P is a dense subset of B. Let G be a generic ultrafilter on B; let us work
in V [G].

Since κ is measurable in V , there is an elementary embedding j : V → M
with critical point κ, and M transitive. We shall extend j to an elemen-
tary embedding (denoted also j) of V [G] into M [G], thus showing that κ is
measurable in V [G].

Since B ∈ Vκ, we have j(B) = B, and B is a complete Boolean algebra
in M . Since G is generic over V , G is also generic over M . Note that the
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interpretation of Boolean names in MB by G is the same whether computed
in V or in M . We define j(x) for x ∈ V [G] as follows: Let ẋ ∈ V B be a name
for x, x = ẋG. Let

(21.1) j(x) = (j(ẋ))G.

Since ẋ ∈ V B, we have j(ẋ) ∈ MB and so (j(ẋ))G ∈ M [G]. However, we have
to show that the definition (21.1) does not depend on which name for x we
choose.

Let ẏ be another B-valued name and let p ∈ G be such that

(21.2) p � ẋ = ẏ.

When we apply j to (21.2), we have (in M)

j(p) � j(ẋ) = j(ẏ).

But j(p) = p ∈ G and therefore

(j(ẋ))G = (j(ẏ))G.

Finally we show that j : V [G] → M [G] is elementary. Let ϕ be a formula
such that

V [G] � ϕ(x, . . .).

Let ẋ, . . . be such that (ẋ)G = x, . . . . There is some p ∈ G such that

(21.3) p � ϕ(ẋ, . . .).

Applying j to (21.3), we get (in M)

p � ϕ(j(ẋ), . . .)

(because j(p) = p). Hence

M [G] � ϕ(j(ẋ), . . .)

and since ϕ was arbitrary, j is elementary. ��

It turns out that practically every large cardinal property is unchanged
by mild extension:

Theorem 21.2. Let κ be an infinite cardinal, and let (P, <) be a notion
of forcing such that |P | < κ. Let G be a V -generic filter on P . Then κ is
inaccessible (Mahlo, weakly compact, Ramsey, measurable, strongly compact,
supercompact, huge, strong, Woodin) in V if and only if it is inaccessible
(Mahlo, weakly compact, Ramsey, measurable, strongly compact, supercom-
pact, huge, strong, Woodin) in V [G].
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Proof. If κ is inaccessible in V , then firstly κ is regular in V [G] because all
cardinals and cofinalities above |P | are preserved. Secondly, if α < κ, then
(2α)V [G] ≤ |B(P )|α < κ and hence κ is inaccessible in V [G]. Conversely, if
κ is inaccessible in V [G], then κ is inaccessible in V .

If κ is Mahlo in V , then firstly κ is inaccessible in V [G]. Secondly, every
α > |P | is a regular cardinal in V [G] if and only if it is a regular cardinal in V
and so the set S = {α < κ : |P | < α and α is regular in V [G]} is stationary
in V . It is easy to see that every closed unbounded set C ⊂ κ in V [G] has
a closed unbounded subset D in V (Exercise 21.2). Thus, S is also stationary
in V [G] and hence κ is Mahlo in V [G]. Conversely, if κ is Mahlo in V [G],
then κ is Mahlo in V because V ⊂ V [G].

If κ is weakly compact in V , let F : [κ]2 → {0, 1} be a partition of [κ]2

in V [G]. Let Ḟ ∈ V B be its name such that ‖Ḟ : [κ]2 → {0, 1}‖ = 1. For all
α �= β ∈ κ, let G(α, β) = ‖Ḟ (α, β) = 0‖; G is (in V ) a partition of [κ]2 into
|B(P )| pieces. Since |B(P )| < κ, there is an H ⊂ κ of size κ homogeneous
for G, and it is easy to see that H is homogeneous for F .

Conversely, if κ is weakly compact in V [G], let F : [κ]2 → {0, 1} be
a partition of [κ]2 in V . There is, in V [G], a set K ⊂ κ of size κ, homogeneous
for F . As in Exercise 21.2, K has an unbounded subset H ∈ V ; hence F has
in V a homogeneous set of size κ.

The argument for Ramsey cardinals is exactly the same as for weakly
compact cardinals.

If κ is measurable in V , then it is measurable in V [G] by Theorem 21.1.
Conversely, if κ is measurable in V [G], let U ∈ V [G] be a κ-complete non-
principal ultrafilter on κ, let J be the dual prime ideal, and let J̇ ∈ V B be
its name. (Without loss of generality we assume that ‖J̇ is a κ-complete non-
principal prime ideal‖ = 1.) Let I = {X ⊂ κ : ‖X ∈ J̇‖ = 1}. It is easy to
verify that I is a κ-complete ideal containing all singletons. We claim that I is
|P |+-saturated: If p � X̌ /∈ J̇ and p � Y̌ /∈ J̇ , then p � X̌ ∩ Y̌ /∈ J̇ (because
J̇ is prime). Hence if X and Y are such that X /∈ I, Y /∈ I, and X ∩ Y ∈ I,
then ‖X̌ /∈ J̇‖·‖Y̌ /∈ J̇‖ = 0, and it follows that I is |P |+-saturated. However,
since I is ν-saturated for some ν < κ and κ is inaccessible, κ is measurable,
by Exercise 21.3.

If κ is strongly compact, let λ ≥ κ and let us show that in V [G], there
is a fine measure on Pκ(λ). Let U be a fine measure on Pκ(λ) in V , and
let j = jU be the canonical elementary embedding jU : V → UltU (V ). The
standard argument shows that X ∈ U if and only if H ∈ j(X), where H is
the set in UltU (V ) represented by the function d(Z) = Z on Pκ(α); also,
H ⊃ j“λ (and is equal to it if U is normal). Similarly, as in the proof of
Theorem 21.1 we extend j to V [G] as follows:

j(x) = (j(ẋ))G

where ẋ is a name for x; the definition is legitimate because we assume,
without loss of generality, that P ∈ Vκ and hence j(p) = p for all p ∈ P , and
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j(P ) = P . Now we define, in V [G], an ultrafilter W on Pκ(λ) as follows:

X ∈ W if and only if H ∈ j(X).

It is routine to verify that W is a fine measure on Pκ(λ); for instance, if
Z0 ∈ Pκ(λ), then {Z ∈ Pκ(λ) : Z ⊃ Z0} ∈ W because j(Z0) = {j(α) :
α ∈ Z0} ⊂ H .

Conversely, if κ is strongly compact in V [G], let S be a set in V and let
F be a κ-complete filter on S (in V ); let us show that there is a κ-complete
ultrafilter in V extending F . Every set X ⊂ F of size < κ in V [G] is included
in some Y ⊂ F of size < κ such that Y ∈ V (this is because |P | < κ).
Hence F generates a κ-complete filter in V [G] and that in turn is included
in a κ-complete ultrafilter on U . Let J be the dual prime ideal. As in the
proof for measurable cardinals above, the ideal I = {X ⊂ S : ‖X ∈ J̇‖ = 1}
is κ-complete and |P |+-saturated, and clearly X ∈ F implies S − X ∈ I.
Since κ is inaccessible and I is ν-saturated for some ν < κ, I has an atom A.
If X ∈ F , then X ∩ A /∈ I and so {X ⊂ S : X ∩ A /∈ I} is a κ-complete
ultrafilter extending F .

The proofs for the remaining large cardinal properties are similar. ��

There are numerous examples when κ ceases to be large when we use a no-
tion of forcing of size ≥ κ (a good example is the Lévy collapse). The example
in Exercise 21.4 is quite interesting since inaccessibility of κ is preserved by
any notion of forcing that is α-distributive for all α < κ.

Kunen-Paris Forcing

It is an immediate consequence of the Lévy-Solovay Theorem that if κ is
a measurable cardinal, λ < κ, and F is a function on regular cardinals below λ
such that (i) F (α) ≤ F (β) if α ≤ β, (ii) cf(F (α)) > α, and (iii) F (α) < κ
for all α in its domain, then there is a model in which κ is measurable and
2α = F (α) for all α ∈ dom(F ).

One can also prescribe the values of the continuum function on regular
cardinals greater than the measurable cardinal; this can be done by a κ-closed
forcing; see Exercise 21.5.

The proof of the next theorem uses a method that preserves measurability
of κ while adding subsets to an unbounded set of cardinals below κ. It is vital
however that the set A ⊂ κ has a normal measure 0.

Theorem 21.3 (Kunen-Paris). Assume GCH and let κ be a measurable
cardinal. Let D be a normal measure on κ and let A be a set of regular
cardinals below κ such that A /∈ D; let F be a function on A such that
F (α) < κ for all α ∈ A, and :

(i) cf F (α) > α;
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(ii) F (α1) ≤ F (α2) whenever α1 ≤ α2.

Then there is a generic extension V [G] of V with the same cardinals and
cofinalities, such that κ is measurable in V [G], and for every α ∈ A,

(21.4) V [G] � 2α = F (α).

Moreover, given any regular cardinal λ > κ+, we can find V [G] so that there
are λ normal measures on κ in V [G].

Proof. Let j : V → M be the elementary embedding given by the ultra-
power UltD. As we assume that A /∈ D, we have κ /∈ j(A).

Let (P, <) be the Easton product of Pα, α ∈ A, where each Pα is the no-
tion of forcing that adjoins F (α) subsets of α. Thus conditions are 0–1 func-
tions whose domain consists of triples (α, ξ, η) where α ∈ A, ξ < α, and
η < F (α), and such that for every regular cardinal γ,

|{(α, ξ, η) ∈ dom(p) : α ≤ γ}| < γ.

In particular, |p| < κ for all p ∈ P , hence P ⊂ Vκ and so j(p) = p for each
p ∈ P .

We shall however use not P but j(P ) as our notion of forcing. Thus
j(P ) is, in M , the Easton product of Pα for α ∈ j(A). Note that P ⊂ j(P )
and that j(P ) is isomorphic to P × Q where P = (jP )<κ and Q = (jP )≥κ.

Let G be a V -generic filter on j(P ). We claim that V [G] has the same
cardinals and cofinalities as V and satisfies (21.4) and that κ is a measurable
cardinal in V [G]. Let G1 = G ∩ P ; since j(P ) is isomorphic to P × Q, there
is a V [G1]-generic filter G2 on Q such that V [G] = V [G1 × G2].

As we have noted before, κ /∈ j(A), and so Q = (jP )≥κ is in fact =
(jP )>κ, and hence is, in M , κ-closed. But since Mκ ⊂ M , Q is κ-closed
in V . Moreover, we have |P | = κ and |j(P )| = |j(κ)| = κ+. Thus for each
regular λ ≤ κ, we can break j(P ) into a product of two notions of forcing,
one that satisfies the λ+-chain condition and one that is λ-closed, and hence
all cardinals ≤ κ+ are preserved. Since |j(P )| = κ+, all cardinals > κ+ are
also preserved.

We prove (21.4) similarly to Easton’s Theorem. For α ∈ A, we regard j(P )
as a product (jP )>α × (jP )≤α; and since (jP )≤α = P≤α and (jP )>α is α-
closed, we conclude that (2α)V [G] = F (α).

The crucial step is to show that κ is a measurable cardinal in V [G]. We
shall first extend j : V → M to an elementary embedding

(21.5) j : V [G1] → M [G].

We define j(x) for x ∈ V [G1] as follows: If ẋ ∈ V P is a name for x, we let

(21.6) j(x) = (j(ẋ))G

where j(ẋ) is, in M , a j(P )-name. As in the proof of Theorem 21.1, we show
that (21.6) does not depend on the choice of ẋ. Since j(p) = p for all p ∈ P
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and because G1 ⊂ G, it follows that if some p ∈ G1 forces ẋ = ẏ, then (in M)
p � j(ẋ) = j(ẏ) and therefore (j(ẋ))G = (j(ẏ))G. The same reasoning shows
that j : V [G1] → M [G] is elementary.

Using (21.5), we define an V [G1]-ultrafilter U on κ as follows:

(21.7) X ∈ U if and only if κ ∈ j(X),

for all X ⊂ κ in V [G1]. A standard argument shows that U is κ-complete;
and since j extends the original j = jD, U is nonprincipal.

Now we use again the fact that j(P ) is isomorphic to P × Q, where
|P | = κ and Q is κ-closed. Thus every subset of κ is in V [G1] and therefore
U is in V [G] a κ-complete nonprincipal ultrafilter on κ.

To get a model with λ normal measures on κ we modify the construction
above as follows: Let R be the κ+-product of λ copies of Q, i.e., the set of all
functions f ∈ Qλ such that |{i < λ : f(i) �= ∅}| ≤ κ. We consider the notion
of forcing P × R.

Let G×H be a generic filter on P ×R. We claim that the model V [G×H ]
has the required properties.

Since R is κ-closed, all subsets of κ are contributed by G; hence 2κ = κ+

holds in V [G × H ]. Standard arguments show that cardinals are preserved
and 2κ+

= λ in V [G × H ].
To find λ distinct normal measures, let us look more closely at the defini-

tion (21.7) of U : U has a name U̇ ∈ V P×Q such that for all p ∈ P and q ∈ Q,
and any name Ẋ ∈ V P for a subset of κ,

(21.8) p ∪ q � (Ẋ ∈ U̇ ↔ κ ∈ j(Ẋ)).

If q is represented in UltD by 〈qα : α < κ〉 (with qα ∈ Pα for each α < κ),
we have

(21.9) p ∪ q � Ẋ ∈ U̇ if and only if {α : p ∪ qα � α ∈ Ẋ} ∈ D.

For each i < λ, let Qi denote the ith copy of Q and let U̇i be the canonical
name for a normal measure using Qi instead of Q in (21.8). It suffices to show
that for any i �= k < λ, U̇i and U̇k denote different measures in V [G × H ].

The last assertion follows by a standard argument using genericity, and
we leave its proof to the reader: Given i �= k and a condition (p, r) in P ×R,
use (21.9) to find a stronger condition (p′, r′) and some P -valued name Ẋ
such that (p′, r′) forces Ẋ ∈ U̇i but Ẋ /∈ U̇k. ��

Silver’s Forcing

We shall now construct a model that has a measurable cardinal κ for which
2κ > κ+. By Corollary 19.25, the consistency strength of this is more than
measurability. It has been established that the failure of GCH at a measurable
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cardinal is equiconsistent with the existence of a measurable cardinal κ of
Mitchell’s order κ++. The lower bound is obtained by Mitchell’s method of
iterated ultrapowers from Chapter 19, while the upper bound follows from
improvements (due to Woodin and Gitik) on Silver’s forcing construction
presented below.

Theorem 21.4 (Silver). If there exists a supercompact cardinal κ, then
there is a generic extension in which κ is a measurable cardinal and 2κ > κ+.

Silver’s construction uses iterated forcing. As 2κ > κ+ for a measurable
cardinal implies that 2α > α+ for many α below κ, the iteration adjoins not
only subsets of κ, but, iteratively, subsets of regular cardinals below κ. The
iteration combines direct and inverse limits, in a manner similar to Easton’s
forcing.

Definition 21.5. Let α ≥ 1, and let Pα be an iterated forcing of length α
(see Definition 16.29). Pα is an iteration with Easton support if for every
p ∈ Pα and every regular cardinal γ ≤ α, |s(p) ∩ γ| < γ. Equivalently, for
every limit ordinal γ ≤ α, Pγ is a direct limit if γ is regular, and an inverse
limit otherwise.

When using iterated forcing that combines direct and inverse limits, we
can apply Theorem 16.30 to calculate the chain condition, and Exercise 16.19
to calculate the degree of closedness. We shall need the following variant:

Definition 21.6. A notion of forcing (P, <) is λ-directed closed if whenever
D ⊂ P is such that |D| ≤ λ and for any d1, d2 ∈ D there is some e ∈ D with
e ≤ d1 and e ≤ d2, then there exists a p ∈ P such that p ≤ d for all d ∈ D.

Lemma 21.7.

(i) If P is λ-directed closed, and if �P Q̇ is λ-directed closed, then P ∗Q̇ is
λ-directed closed.

(ii) If cf α > λ, if Pα is a direct limit and if for each β < α, Pβ is
λ-directed closed, then Pα is λ-directed closed.

(iii) Let Pα be a forcing iteration of 〈Q̇β : β < α〉 such that for each limit
ordinal β ≤ α, Pβ is either a direct limit or an inverse limit. Assume
that for each β < α, Q̇β is a λ-directed closed forcing in V Pβ . If for
every limit ordinal β ≤ α such that cf β ≤ λ, Pβ is an inverse limit,
then Pα is λ-directed closed.

Proof. (i) Let D = {(pα, q̇α) : α < λ} be a directed subset of P ∗ Q̇. Clearly,
D1 = {pα : α < λ} is a directed subset of P and hence there is p ∈ P
stronger than all pα, α < λ. Since for any α, β < λ there is γ < λ such that
(pγ , q̇γ) ≤ (pα, q̇α) and (pγ , q̇γ) ≤ (pβ , q̇β), it is clear that p � (q̇γ ≤ q̇α and
q̇γ ≤ q̇β) and thus p forces that {q̇α : α < λ} is a directed subset of Q̇. Hence

p � ∃q ∈ Q̇ stronger than all the q̇α
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and therefore there is a q̇ such that ‖q̇ ∈ Q̇‖ = 1 and

p � q̇ ≤ q̇α for all α < λ.

It follows that (p, q̇) ≤ (pα, q̇α) for all α < λ.
(ii) Let D be a directed subset of P , |D| ≤ λ. For each d ∈ D there is

γd < α such that if d = 〈pβ : β < α〉, then pi = 1 for all i ≥ γd. Since
λ < cf α, there is γ < α such that each d ∈ D is as follows:

d = (d�γ)�1�1�1� . . . .

Now Dγ = {(d�γ) : d ∈ D} is a directed subset of Pγ ; and since Pγ is λ-
directed closed, Dγ has a lower bound p ∈ Pγ . Then p�1�1�1� . . . is a lower
bound for D in P .

(iii) By induction on α. It follows from (i) and (ii) that the assertion is
true if α is a successor or if Pα is the direct limit. Thus assume that Pα is an
inverse limit.

Let D = 〈pν : ν < λ〉 be a directed subset of Pα; for each ν let pν = 〈pν
β :

β < α〉. We shall construct, by induction on β < α, a function p = 〈pβ :
β < α〉 ∈ Pα stronger than all pν , ν < λ.

We construct p such that for each β < α, p�β is in Pβ and is stronger
than all pν�β, ν < λ. Having constructed p�β, we let pβ be such that

p�β � pβ ≤ pν
β for all ν < λ.

Moreover, if pν
β = 1 for all ν < λ, we let pβ = 1 too.

If γ ≤ α is a limit ordinal, we have to show that 〈pβ : β < γ〉 ∈ Pγ . If Pγ is
the inverse limit, then there is nothing to prove, so let us assume that Pγ is
the direct limit. By the assumption, we have cf γ > λ and therefore there is
a δ < γ such that for all ν < λ, pν

β = 1 for all β such that δ ≤ β < γ. Hence
we have pβ = 1 for all β such that δ ≤ β < γ, and so 〈pβ : β < γ〉 ∈ Pγ .
Thus we have p = 〈pβ : β < α〉 ∈ Pα, and it is clear from the construction
that p ≤ pν for all ν < λ. ��

An important feature of iterated forcing is that often, under reasonable
assumptions, an iteration Pα+β is equivalent to Pα ∗ Ṗ

(α)
β where P

(α)
β is an

iteration of length β inside V Pα . The following lemma is used in applications
of iteration with Easton support:

Lemma 21.8 (The Factor Lemma). Let Pα+β be a forcing iteration
of 〈Q̇ξ : ξ < α + β〉, where each Pξ, ξ ≤ α + β is either a direct limit
or inverse limit. In V Pα , let Ṗ

(α)
β be the forcing iteration of 〈Q̇α+ξ : ξ < β〉

such that for every limit ordinal ξ < β, Ṗ
(α)
ξ is either a direct or inverse

limit, according to whether Pα+ξ is a direct limit or inverse limit. If Pα+ξ is
an inverse limit for every limit ordinal ξ ≤ β such that cf ξ ≤ |Pα|, then
Pα+β is isomorphic to Pα ∗ Ṗ

(α)
β .
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This formulation is not quite accurate. The name Q̇α+ξ is in V Pα+ξ while
P

(α)
ξ is an iteration in V Pα+β that at stage ξ should use a V Pα -name for

a name Q̇
(α)
ξ ∈ V Ṗ

(α)
ξ . However, the Factor Lemma yields, for each ξ, an

isomorphism between V Pα+ξ and the Boolean-valued model V Ṗ
(α)
ξ inside V Pα ,

and so Q̇α+ξ is identified with a V Pα -name for some Q̇
(α)
ξ ∈ V Ṗ

(α)
ξ .

Proof. By induction on β. Let β be an ordinal number; we shall construct an
isomorphism π between Pα ∗ Ṗ

(α)
β and Pα+β .

If β = 0, then Pα ∗ Ṗ
(α)
β = {(p, 1) : p ∈ Pα} and we let π(p, 1) = p. Thus

let β > 0. A typical element of Pα ∗ Ṗ
(α)
β is a pair (p, q̇) where p ∈ Pα and

q̇ is an element of V Pα such that in V Pα , q̇ is a β-sequence and satisfies the
conditions on iterated forcing; in particular, for each ξ < β, q̇�ξ is in Ṗ

(α)
ξ

and the ξth term of q̇ is in Q̇α+ξ.
We shall define a β-sequence 〈pα+ξ : ξ < β〉 and let π(p, q̇) = p�〈pα, pα+1,

. . . , pα+ξ, . . .〉. This mapping π will be an isomorphism between Pα ∗ Ṗ
(α)
β

and Pα+β . For ξ < β, let q̇ξ ∈ V Pα be such that q̇ξ is the ξth term of q̇.
Hence

�Pα (�
Ṗ

(α)
ξ

q̇ξ ∈ Q̇α+ξ).

By the induction hypothesis, Pα+ξ is isomorphic to Pα ∗ Ṗ
(α)
ξ . Let pα+ξ ∈

V Pα+ξ be the element corresponding to q̇ξ under the isomorphism between
(V Pα)Ṗ

(α)
ξ and V Pα+ξ .

Let π(p, q̇) = p�〈pα, pα+1, . . . , pα+i, . . .〉. All we have to do now is to show
that π is an isomorphism between Pα ∗ Ṗ

(α)
β and Pα+β . We shall show that

for each (p, q̇) ∈ Pα ∗ Ṗ
(α)
β , π(p, q̇) is in Pα+β and leave the rest to the reader,

namely to show that

(p, q̇) ≤ (p′, q̇′) if and only if π(p, q̇) ≤ π(p′, q̇′).

We want to show that for each γ ≤ β, p�〈pα+ξ : ξ < γ〉 is an element
of Pα+γ . We need to show that if γ is a limit ordinal and Pα+γ is the direct
limit, then there exists i0 < γ such that pα+i = 1 for all i, i0 ≤ i < γ.

Thus let γ ≤ β be a limit ordinal such that Pα+γ is the direct limit of
Pα+ξ, ξ < γ. Hence in V Pα , Ṗ

(α)
γ is the direct limit, and therefore

(21.10) �Pα (∃ξ0 < γ)(∀ξ ≥ ξ0) the ξth term of q̇ is 1.

Now we have made an assumption that if Pα+γ is the direct limit, then
cf γ > |Pα|. It is easy to see that because |Pα| < cf γ, (21.10) implies that
there exists ξ0 < γ such that for all ξ ≥ ξ0, �Pα q̇i = 1. Thus for all ξ ≥ ξ0,
�Pα+ξ

pα+ξ = 1 and hence pα+ξ = 1 for all ξ ≥ ξ0. ��

Proof of Theorem 21.4. Let κ be a supercompact cardinal and assume 2κ =
κ+. We shall construct a generic extension in which κ is measurable and
2κ = κ++.
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We use iterated forcing with Easton support, successively adjoining to
each inaccessible cardinal α ≤ κ, α++ subsets of α. At limit stages of the
iteration we use direct limits when the ordinal is a regular cardinal and inverse
limits otherwise.

Let us define, by induction on α, the αth iterate Pα (and the corresponding
forcing relation �α and the algebra Bα = B(Pα)) and the Bα-valued notion
of forcing Q̇α:

(21.11) (i) If α is an inaccessible cardinal, let Q̇α be the notion of forcing
in V Pα that adjoins α++ subsets of α; that is, we let Q̇α be in V Pα , the set
of all 0–1 functions p whose domain is a subset of size < α of α × α++ (and
Q̇α is ordered by ⊃). If α is not an inaccessible cardinal, let Q̇α = {1} (as
usual, 1 denotes the greatest element of each notion of forcing).

(ii) Pα is the set of all α-sequences 〈pξ : ξ < α〉 satisfying the following:
(a) For every γ < α, p�γ ∈ Pγ and �γ pγ ∈ Q̇γ .
(b) If α is a regular cardinal, then ∃ξ0 ∀ξ ≥ ξ0 pξ = 1.

(iii) If p, q ∈ Pα, then p ≤α q if and only if

(∀γ < α)(p�γ ≤γ q�γ and p�γ �γ pγ is stronger than qγ).

Finally, let P = Pκ+1, and let B = B(P ).
Let G be a generic filter on P and let V [G] be the generic extension

of V by G. We shall prove that κ is a measurable cardinal in V [G] and that
V [G] � 2κ = κ++. Since P is isomorphic to the two-step iteration Pκ ∗ Q̇κ,
we have V [G] = V [Gκ][Hκ], where Gκ is V -generic on Pκ and Hκ is V [Gκ]-
generic on Qκ = (Q̇κ)Gκ . Now Pκ is the direct limit of Pα, α < κ; and since
κ is a Mahlo cardinal, there is a stationary set of α < κ such that Pα is also
a direct limit. Since |Pα| < κ for all α < κ, it follows by Theorem 16.30 that
Pκ satisfies the κ-chain condition and hence κ is a regular cardinal in V [Gκ].
Also, |Pκ| = κ, and hence V [Gκ] satisfies (∀α < κ) 2α ≤ κ. In V [Gκ], Qκ is
a notion of forcing that adjoins κ++ subsets of κ and preserves all cardinals.
Thus V [G] � (κ is a regular cardinal and 2κ = κ++).

It remains to prove that κ is a measurable cardinal in V [G]. This will
be done by first constructing an elementary embedding of V [G] and then
showing that the induced measure is in V [G].

Let λ = κ++. Since κ is supercompact, there is an elementary embedding
j : V → M with critical point κ such that Mλ ⊂ M and j(κ) > λ. It
follows that |P | = λ, P ∈ M , and moreover, P is defined in M by the same
definition (21.11).

Since P ∈ M , G is also an M -generic filter on P , and we can consider the
model M [G]. We need the following lemma:

Lemma 21.9. (M [G])λ ∩ V [G] ⊂ M [G].

Proof. It suffices to show that if f ∈ V [G] is a function from λ into ordinals,
then f ∈ M [G]. Let ḟ be a name for f and let p0 ∈ G be a condition that
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forces that ḟ is a function from λ into the ordinals. For each α < λ, let

Aα = {p ≤ p0 : ∃β p � ḟ(α) = β}.

Each Aα is dense below p0 (and hence Aα ∩G �= ∅). For each α < λ and each
p ∈ Aα, let g(α, p) be the unique β such that p � ḟ(α) = β. Since |P | = λ,
we have |g| = λ and hence g ∈ M . Now it is easy to see that f ∈ M [G]
because it is defined in M [G] as follows: f(α) = the unique β such that for
some p ∈ G, g(α, p) = β. ��

Let us now consider j(P ). In M , j(P ) is a notion of forcing obtained by
iteration up to j(κ) + 1. We claim that in M we can apply the Factor Lemma
to j(P ) at α = κ + 1. First we note that (jP )α = Pα for all α < κ, and since
(jP )κ is the direct limit, we have (jP )κ = Pκ. Since Q̇κ is the same in V
and M , it follows that (jP )κ+1 = Pκ+1. The first nontrivial step above α in
the iteration occurs at the least inaccessible cardinal (in M) above κ, thus
the first nontrivial direct limit is taken far above λ and then only at regular
cardinals. Since |Pκ+1| = λ, the assumption of the Factor Lemma is satisfied.

Hence j(P ) is isomorphic to a two-step iteration (in M)

(21.12) (jP )κ+1 ∗ (jP )(κ+1)
j(κ)+1.

Now the first factor of (21.12) is equal to Pκ+1 = P . Let us denote Q̇ the
second factor. By the Factor Lemma, Q̇ is, in MP , a notion of forcing obtained
by iteration, with Easton support, from κ + 1 to j(κ) + 1. At each ξ > κ, the
iteration uses a notion of forcing in MPξ that is either trivial or adjoins
ξ++ subsets of ξ (if ξ is inaccessible in M); in either case, the notion of
forcing is λ-directed closed in MPξ . By Lemma 21.7, Q̇ is λ-directed closed
in MP . Thus we can write

(21.13) j(P ) = P ∗ Q̇

where Q̇ ∈ MP is a λ-directed closed notion of forcing. Thus Q = Q̇G is
a λ-directed closed notion of forcing in M [G].

Let p ∈ P . Then by (21.13), j(p) is (represented by) a pair (s, q̇) where
s ∈ P and q̇ ∈ MP is in Q̇. By the definition of P , p = 〈pξ : ξ < κ + 1〉 and
there is ξ0 < κ such that pξ = 1 for all ξ, ξ0 ≤ ξ < κ. Thus j(p) = 〈p′ξ :
ξ < j(κ) + 1〉 and p′ξ = 1 for all ξ, ξ0 ≤ ξ < j(κ). In particular, p′κ = 1; and
since p′ξ = pξ for all ξ < κ, and s = j(p)�(κ + 1), we have s = (p�κ)�1. This
implies that if p ∈ G and j(p) = (s, q̇), then s ∈ G.

Now let

D = {q ∈ Q : for some p ∈ G, q = (q̇)G where j(p) = (s, q̇)}.

Since P has size λ, we have j�P ∈ M and therefore D ∈ M [G]. It is easy
to see that D is directed, i.e., if q1, q2 ∈ D, then there is q ∈ D such that
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q ≤ q1 and q ≤ q2 (this is because G is directed). We have (in M [G]),
|D| ≤ |G| ≤ |P | = λ; and because Q is λ-directed closed, there exists some
a ∈ Q (a master condition) such that a ≤ q for all q ∈ D.

We shall now consider a generic extension of V [G]. Let H be a V [G]-
generic filter on Q such that H contains the master condition a. Since H is
also M [G]-generic, and j(P ) = P ∗ Q̇, there is an M -generic filter K on j(P )
such that M [K] = M [G][H ]; in fact

K = {(s, q̇) : s ∈ G and (q̇)G ∈ H}.

Now we extend the elementary embedding j : V → M to an embedding
of V [G] into M [K]. We work in V [G][H ] and define, for all x ∈ V [G],

(21.14) j(x) = (j(ẋ))K

where ẋ is some P -name for x.
We have to show that the definition (21.14) does not depend on the choice

of the name ẋ; the verification of elementarity of j is then straightforward.
Here we use the master condition a. If p ∈ G, then j(p) = (s, q̇) where s ∈ P
and � q̇ ∈ Q̇. We have shown that s ∈ G, and if q = (q̇)G, then, because
p ∈ G, we have q ≥ a and therefore q ∈ H . Thus (s, q̇) ∈ K, and it follows
that

j“G ⊂ K.

Now if p ∈ G forces ẋ = ẏ, then j(p) ∈ K forces j(ẋ) = j(ẏ) and hence
(j(ẋ))K = (j(ẏ))K .

Thus we have (in V [G][H ]) an elementary embedding

j : V [G] → M [K]

and we can define, in the usual way, a V [G]-ultrafilter on κ:

U = {X ⊂ κ : κ ∈ j(X)}.

U is nonprincipal and κ-complete. It suffices to show that U ∈ V [G]; then
V [G] satisfies that κ is a measurable cardinal.

By Lemma 21.9, Q is λ-closed not only in M [G], but also in V [G]. Thus
the generic extension V [G][H ] of V [G] does not add any new λ-sequences
in V [G], and because |U | = λ we have U ∈ V [G]. ��

Prikry Forcing

Let us address the following problem: Can one construct a generic extension
in which all cardinals are preserved but the cofinality of some cardinals is
different from their cofinality in the ground model? Obviously, in order to
do this we have to change some (weakly) inaccessible cardinal into a singular
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cardinal. Corollary 18.31 of Jensen’s Covering Theorem tells us that for this,
it is necessary to assume at least 0� in the ground model. Thus we formulate
the problem as follows: Let κ be some large cardinal and let λ < κ be a regular
cardinal. Find a cardinal preserving generic extension, in which cf κ = λ.

The forcing presented below was devised by Karel Prikry and has become
a standard tool of the large cardinal theory.

Theorem 21.10 (Prikry). Let κ be a measurable cardinal. There is a generic
extension in which cf κ = ω and no cardinals are collapsed. Moreover, every
bounded subset of κ in V [G] is in the ground model.

Proof. Let κ be a measurable cardinal and let D be a normal measure on κ.
Let (P, <) be the following notion of forcing. A forcing condition is a pair
p = (s, A) where s ∈ [κ]<ω, i.e., s is a finite subset of κ, and A ∈ D.
A condition (s, A) is stronger than a condition (t, B) if:

(i) t is an initial segment of s, i.e., t = s ∩ α for some α;
(ii) A ⊂ B;
(iii) s − t ⊂ B.

(21.15)

We immediately note that any two conditions (s, A), (s, B) with the same
first coordinate are compatible, and hence any antichain W ⊂ P has size at
most κ. We also note that if (s, A) and (t, B) are compatible, then either s is
an initial segment of t, or t is an initial segment of s.

Let G be a generic filter on P . We shall show that in V [G], κ has cofi-
nality ω, that every bounded subset of κ is in V , and that all cardinals and
cofinalities above κ are preserved.

The last statement is immediate since P satisfies the κ+-chain condition.
It is also easy to show that cf κ = ω in V [G]: If (s, A) and (t, B) are in G, then
either s is an initial segment of t or vice versa; hence S =

⋃
{s : (s, A) ∈ G

for some A} is a subset of κ of order type ω. By the genericity of G, S is
clearly an unbounded subset of κ, and hence cf κ = ω.

It remains to show that if X ∈ V [G] is such that X ⊂ λ for some λ < κ,
then X ∈ V . For this, we need the property of P stated in Lemma 21.12 be-
low. The proof uses Theorem 10.22 which states that every partition of [κ]<ω

into less than κ pieces has a homogeneous set H ∈ D.

Lemma 21.11. Let σ be a sentence of the forcing language. There exists
a set A ∈ D such that the condition (∅, A) decides σ, i.e., either (∅, A) � σ,
or (∅, A) � ¬σ.

Proof. Let S+ be the set of all s ∈ [κ]<ω such that (s, X) � σ for some X and
let S− = {s : ∃X (s, X) � ¬σ}. Let T = [κ]<ω−(S+∪S−). By Theorem 10.22,
there is a set A ∈ D such that for every n, either [A]n ⊂ S+ or [A]n ⊂ S− or
[A]n ⊂ T . We shall prove that (∅, A) decides σ.

If not, then there are conditions (s, X) and (t, Y ), both stronger than (∅, A)
such that one forces σ and the other forces ¬σ. We may assume that |s| = |t|,
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say |s| = |t| = n. Since (s, X) ≤ (∅, A), we have s ∈ [A]n; and similarly,
t ∈ [A]n. But s ∈ S+ and t ∈ S−, which is a contradiction since S+

and S− are disjoint and therefore cannot both have a nonempty intersec-
tion with [A]n. ��

Lemma 21.12. Let σ be a sentence of the forcing language and let (s0, A0)
be a condition. Then there exists a set A ⊂ A0 in D such that the condi-
tion (s0, A) decides σ.

Proof. A slight modification of the preceding proof; we may assume that
min(A0) > max(s0). Let S+ be the set of all s ∈ [A0]<ω such that
(s0 ∪ s, X) � σ for some X ⊂ A0 and let S− be defined similarly. As be-
fore, there exists some A ⊂ A0 in D such that for no n, [A]n intersects both
S+ and S−. It follows that (s0, A) decides σ. ��

Now let λ < κ and let X ⊂ λ; we will show that X ∈ V . Let Ẋ be a name
for X , and let p0 ∈ G be a condition such that p � Ẋ ⊂ λ. It suffices to show
that for each p ≤ p0 there is a q ≤ p and a set Z ⊂ λ such that q � Ẋ = Z.

Let p ≤ p0, p = (s, A). For each α < λ, there is, by Lemma 21.12,
a set Aα ⊂ A in D such that (s, Aα) decides the sentence α ∈ Ẋ . Let
B =

⋂
α<λ Aα; we have B ∈ D and q = (s, B) decides α ∈ Ẋ for each α < λ.

Thus if Z = {α < λ : q � α ∈ Ẋ}, we have q � Ẋ = Z.
This completeness the proof of Theorem 21.10. ��

An immediate consequence of Theorems 21.4 and 21.10 is the indepen-
dence of SCH:

Corollary 21.13. It is consistent (relative to the existence of a supercom-
pact cardinal) that there is a strong limit singular cardinal κ such that
2κ > κ+.

Proof. Let κ be a supercompact cardinal. First we construct a generic ex-
tension in which κ is measurable and 2κ > κ+. Then we extend the model
further to make κ a singular cardinal. The new model still satisfies 2κ > κ+,
and κ is a strong limit cardinal. ��

We now prove a characterization of Prikry generic sequences due to Math-
ias. Let us first generalize the diagonal intersection as follows: If {As : s ∈
[κ]<ω} is a collection of subsets of κ, let

(21.16) s As = {α < κ : α ∈
⋂
{As : max(s) < α}}.

It is routine to show that every normal ultrafilter on κ is closed under diagonal
intersections (21.16).

Theorem 21.14 (Mathias). Let M be a transitive model of ZFC, let U
be, in M , a normal measure on κ, and let P be the Prikry forcing defined
from U . For every set S ⊂ κ of order-type ω, S is P -generic over M if and
only if for every X ∈ U , S − X is finite.
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Proof. In the easy direction, let G be a generic filter on P and let S =⋃
{s : (s, A) ∈ G}. For every X ∈ U , S − X is finite because for every

condition (s, A), the stronger condition (s, A ∩ X) forces that every α ∈ S
above s is in X .

For the other direction, let S ⊂ κ, of order-type ω, be such that S −X is
finite for all X ∈ U . We want to show that the filter

G = {(s, A) ∈ P : s is an initial segment of S and S − s ⊂ A}

is M -generic; let D ∈ M be an open dense subset of P and let us show that
G ∩ D �= ∅.

For each s ∈ [κ]<ω, let F : [κ]<ω → {0, 1} be a partition such that
F (t) = 1 if and only if max(s) < min(t) and ∃X (s ∪ t, X) ∈ D. Let As ∈ U
be a homogeneous set for F ; if there is an X such that (s, X) ∈ D, let
Bs = As ∩ X , and otherwise, let Bs = As. Let A = s Bs be the diagonal
intersection. Since D is open dense, we have for all s ∈ [κ]<ω:

(21.17) If ∃X (s, X) ∈ D then (s, A � s) ∈ D

where A � s = A − (max(s) + 1).
By the assumption on S, S has an initial segment s such that S − s ⊂ A.

By density of D there exist a t ∈ [B � s]<ω and X such that (s ∪ t, X) ∈ D.
Let u ⊂ S − s be such that |u| = |t|; the homogeneity of A � s ⊂ As for Fs

implies that for some Y , (s ∪ u, Y ) ∈ D. By (21.17) we have (s∪u, A�u) ∈ D
and since (s ∪ u, A � u) ∈ G, D ∩ G �= ∅. ��

The following theorem shows the relationship between Prikry forcing and
iterated ultrapowers. Let U be a normal measure on κ, and consider the
iterated ultrapowers Mα = Ult(α), and the embeddings iα,β : Mα → Mβ. Let
κα = κ(α) = i0,α(κ), and let U (α) = i0,α(U) be the measure on κα in Mα.

Theorem 21.15. Let M = Mω, N =
⋂

n<ω Mn and let P ∈ M be the
Prikry forcing for the measure U (ω) on κω in M . The set S = {κn : n < ω}
is P -generic over M , and M [S] = N .

Proof. The genericity follows from Lemma 19.10 and Theorem 21.14. N is
easily seen to be a model of ZF, and since M [S] ⊂ Mn for all n, we have
M [S] ⊂ N . In order to prove N ⊂ M [S], it suffices, by Theorem 13.28, to
prove that every set of ordinals in N is in M [S].

First we claim that for every ordinal ξ

(21.18) for eventually all n < ω, in,ω(ξ) = iω,ω+ω(ξ).

As ξ ∈ Mω, let n be such that ξ = in,ω(ξn) for some ξn. Thus

Mn � ξ is the image of ξn under the embedding from Mn into Mω.
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Applying in,ω, we have

in,ω(Mn) � in,ω(ξ) is the image of in,ω(ξn) under the
embedding from in,ω(Mn) into in,ω(Mω).

Since in,ω(Mn) = Mω and in,ω(Mω) = Mω+ω, we get

in,ω(ξ) is the image of ξ under iω,ω+ω,

establishing (21.18).
Now let x be a set of ordinals in N . Hence x ∈ Mn for each n. By the

representation of iterated ultrapowers, there is for each n < ω a function fn

on [κ]n such that x = i0,n(fn)(κ0, . . . , κn−1). Since in,ω(κi) = κi for i < n, we
have in,ω(x) = i0,ω(f)(κ0, . . . , κn−1). Now the sequence 〈i0,ω(fn) : n < ω〉 =
i0,ω(〈fn : n < ω〉) is in Mω and therefore the sequence 〈in,ω(x) : n < ω〉 is in
Mω[〈κn : n < ω〉] = M [S] .

If ξ is an ordinal then ξ ∈ x if and only if for any n, in,ω(ξ) ∈ in,ω(x), and
by (21.18), if for eventually all n < ω, iω,ω+ω(ξ) ∈ in,ω(x). Since iω,ω+ω is
definable in M , x is definable from the sequence 〈in,ω(x) : n < ω〉 in M [S].
Hence x ∈ M [S], and N ⊂ M [S]. ��

Measurability of ℵ1 in ZF

In ZF (without the Axiom of Choice), one can still define measurability in
the usual way: An uncountable cardinal κ is measurable if there exists a κ-
complete nonprincipal ultrafilter on κ. In the absence of the Axiom of Choice,
a measurable cardinal is still regular, but not necessarily a limit cardinal. The
absence of AC has no effect on the consistency strength: If U is a nonprin-
cipal κ-complete ultrafilter on κ > ω, then in L[U ] (a model of ZFC), κ is
a measurable cardinal. The following theorem shows that in ZF, ℵ1 can be
measurable:

Theorem 21.16. Let M be a transitive model of ZFC+“there is a measur-
able cardinal.” There is a symmetric model N ⊃ M of ZF such that N � ℵ1 is
measurable.

We shall construct a symmetric extension of M . Recall the theory of
symmetric models from Chapter 15. We consider a complete Boolean al-
gebra B, a group G of automorphisms of B, and a normal filter F on G
(see (15.34)). For every ẋ ∈ MB we let sym(ẋ) be the symmetry group of ẋ,
sym(ẋ) = {π ∈ G : π(ẋ) = ẋ}, and call ẋ symmetric if sym(ẋ) ∈ F . We denote
HS the class of all hereditarily symmetric names. If G is an M -generic ultra-
filter on B, we let N be the G-interpretation of the class HS ; N is a model
of ZF and N ⊃ M .

Let us call a subset A ⊂ B symmetric if

{π ∈ G : π(a) = a for all a ∈ A} ∈ F .
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Lemma 21.17. Let κ be measurable in M , and let N be a symmetric exten-
sion of M (via B, G, F , G). If every symmetric subset of B has size < κ,
then κ is measurable in N .

Proof. Let U be, in M , a κ-complete nonprincipal ultrafilter on κ. We show
that U generates a κ-complete nonprincipal ultrafilter on κ in N . It suffices
to show that if γ < κ and {Xα : α < γ} is a partition of κ in N , then for
some α < γ, Xα includes some Y ∈ U .

We give the proof for γ = 2 since the general case is analogous. Let
X ∈ N be a subset of κ, and let Ẋ ∈ HS be a symmetric name for X . Let
A = {‖α ∈ Ẋ‖ : α < κ}. If π ∈ G is such that π(Ẋ) = Ẋ, then (because
π(α̌) = α̌ for all α) π(a) = a for all a ∈ A; thus A is a symmetric subset of B.

Hence |A| < κ. For each a ∈ A, let Ya = {α : ‖α ∈ Ẋ‖ = a}. Clearly,
{Ya : a ∈ A} is a partition of κ into fewer than κ pieces, and hence one
Y = Yα is in U . Now if a ∈ G, then we have Y ⊂ X , and if a /∈ G, then
Y ⊂ κ − X . Hence either X or κ − X has a subset that is in U . ��

Proof of Theorem 21.16. Let κ be a measurable cardinal in M . Let P be the
set of all one-to-one finite sequences p = 〈α0, α1, . . . , αn−1〉 of ordinals less
than κ; p is stronger than q if p extends q (P collapses κ; cf. Example 15.20).
Let G be the set of all permutations of κ; every π ∈ G induces an automor-
phism of (P, <) as follows:

π(〈α0, . . . , αn−1〉) = 〈π(α0), . . . , π(αn−1)〉

and, in turn, an automorphism of B = B(P ). Thus we identify G with the
group of automorphisms so induced.

For each γ < κ, let

Hγ = {π ∈ G : π(α) = α for all α < γ}

and let F be the normal filter on G generated by {Hγ : γ < κ}. Thus ẋ ∈ MB

is symmetric if and only if there is some γ < κ such that π(ẋ) = ẋ whenever
π(α) = α for all α < γ.

Let G be an M -generic filter on B and let N be the symmetric model
given by B, G, F , G. We shall show that κ = (ℵ1)N and that κ is measurable
in N .

If γ < κ, then γ is countable in N : Let ḟ be the name such that

‖ḟ(n) = α‖ =
∑

{p ∈ P : p(n) = α}

for all n < ω and α < γ. Clearly, ḟ is symmetric because π(ḟ ) = ḟ for every
π ∈ Hγ , and hence ḟ ∈ HS . The interpretation of ḟ is a one-to-one function
of a subset of ω onto γ.

It remains to show that κ is measurable in N . By Lemma 21.17 it suffices
to show that every symmetric A ⊂ B has size < κ. Let A ⊂ B be symmetric.
There exists a γ < κ such that π(a) = a for all a ∈ A and all π ∈ Hγ .
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For every a ∈ A, let Sa = {p ∈ P : p ≤ a}. If π ∈ Hγ and p ∈ Sa,
then π(p) ∈ Sa because π(p) ≤ π(a) = a. Let Ta = {p ∈ Sa : p(n) < γ + ω
for all n ∈ dom(p)}. If π ∈ Hγ and p ∈ Ta, then π(p) ∈ Sa. Conversely, if
p ∈ Sa, there is a π ∈ Hγ that maps all α ∈ ran(p) greater than γ into γ + ω;
since π ∈ Hγ and p ∈ Sa, we have π(p) ∈ Sa and hence π(p) ∈ Ta. Thus
Sa = {π(p) : p ∈ Ta and π ∈ Hγ}, and consequently

(21.19) if a �= b ∈ A, then Ta �= Tb.

However, each Ta is a set of finite sequences in γ + ω; and since κ is inacces-
sible, (21.19) implies that |A| < κ. ��

Exercises

21.1. Let κ be measurable and |P | < κ; let U be a κ-complete ultrafilter on κ.
Then in V [G], the filter W = {X ⊂ κ : X ⊃ Y for some Y ∈ U} is a κ-complete
ultrafilter on κ.

[For instance, to show that W is an ultrafilter, consider Ẋ ∈ V B such that
‖Ẋ ⊂ κ‖ ∈ G. The function α �→ ‖α ∈ Ẋ‖ is a partition of κ into |B| < κ pieces,
and by the κ-completeness of U there is a Y ∈ U such that ‖α ∈ Ẋ‖ is the same
for all α ∈ Y . Now either X ∈W or κ−X ∈ W according to whether this B-value
is in G or not.]

21.2. If κ is an inaccessible cardinal and |P | < κ, then every closed unbounded
set C ⊂ κ in V [G] has a closed unbounded subset in V . (See Lemma 22.25 for
a stronger result.)

[For each b ∈ B(P ), let Cb = {α : ‖α ∈ Ċ‖ = b}. Using |B| < κ, show that for
some b ∈ G, Cb is unbounded. Let D be the closure of Cb.]

21.3. Let κ be a regular uncountable cardinal and let ν < κ. If I is a κ-complete
ν-saturated ideal on κ then either κ is measurable or κ ≤ 2ν .

[Use the proof of Lemma 10.9.]

21.4. Let κ be an inaccessible cardinal. There is a notion of forcing (P, <) such
that |P | = κ and P is α-distributive for all α < κ, and such that κ is not a Mahlo
cardinal in the generic extension.

[Forcing conditions are sets p ⊂ κ such that |p∩ γ| < γ for every regular γ ≤ κ;
p ≤ q if and only if p is an end-extension of q, i.e., if q = p∩α for some α. To show
that for any α < κ, P does not add any new α-sequence, observe that for every p
there is a q ≤ p such that Pq = {r ∈ P : r ≤ q} is α-closed.]

21.5. If κ is a measurable cardinal and P is a κ-closed notion of forcing (or just
κ-distributive), then κ is measurable in the generic extension.

21.6. It is consistent that 2cf κ < κ and κ+ < κcf κ < 2κ.
[Extend the model in Corollary 21.13 by adding a large number of subsets of ω1.]

The Prikry model V [G] of Theorem 21.10 provides an example of a singular
Rowbottom cardinal. The exercise below shows that κ has in V [G] the combinatorial
property equivalent to being a Rowbottom cardinal.
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21.7. In the Prikry model, for every partition F : [κ]<ω → λ into λ < κ pieces
there exists a set H ⊂ κ of size κ such that F takes at most ℵ0 values on [H ]<ω.

[Let Ḟ be a name for F and let (s0, A0) be a condition (such that max(s0) <
min(A0)). Let g be a partition of [κ]<ω × [κ]<ω into λ pieces, defined as follows:
If s ∈ [A0]

<ω and for some X ⊂ A0, (s0 ∪ s, X) � Ḟ (t) = α, then let g(s, t) = α;
otherwise, let g(s, t) = 0. Show that there is A ⊂ A0 in D and a countable S ⊂ λ
such that g([A]<ω × [A<ω]) ⊂ S. Then (s0, A) � Ḟ ([A]<ω) ⊂ S.]

Historical Notes

Theorem 21.1 is due to Lévy and Solovay [1967]. Theorem 21.3 was proved by
Kunen and Paris in [1970/71] Theorem 21.4 is an unpublished result of Silver;
an account of Silver’s forcing appeared in Menas [1976]. Theorem 21.10 is due to
Prikry [1970]. The characterization of Prikry sequences (Theorem 21.14) appeared
in Mathias [1973]. Theorem 21.15 was proved by Bukovský [1973, 1977] and by
Dehornoy [1975, 1978]. Theorem 21.16 is due to Jech [1968] and Takeuti [1970].

Exercise 21.4: Jensen.
Exercise 21.7: Prikry [1970].



22. Saturated Ideals

One of the key concepts in the theory of large cardinals is saturation of ideals.
In this chapter we investigate σ-saturated, κ-saturated and κ+-saturated κ-
complete ideals on κ.

Let κ be a regular uncountable cardinal. Let I be a κ-complete ideal on κ
containing all singletons; thus X ∈ I whenever X ⊂ κ is such that |X | < κ.
We shall be using the following terminology: X has measure zero if X ∈ I,
measure one if κ − X ∈ I, and positive measure if X /∈ I; the phrase almost
all α means that the set of all contrary α’s has measure 0.

Let us consider the Boolean algebra B = P (κ)/I. Recall that if λ is
a cardinal, then B is called λ-saturated if every pairwise disjoint family of
elements of B has size less than λ; sat(B) is the least λ such that B is
λ-saturated. Let us say that I is λ-saturated if B is λ-saturated and let

sat(I) = sat(B).

In other words, I is λ-saturated just in case there exists no collection W of
size λ of subsets of κ such that X /∈ I for all X ∈ W and X ∩Y ∈ I whenever
X and Y are distinct members of W . If sat(I) is finite, then κ is the union
of finitely many atoms of I; if sat(I) is infinite, then it is uncountable and
regular, by Theorem 7.15. If λ ≤ κ, then I is λ-saturated if and only if there
is no disjoint collection W of size λ of subsets X of κ such that X /∈ I (see
Exercise 22.1). Clearly, every I on κ is (2κ)+-saturated. Thus if I is atomless,
then sat(I) is a regular cardinal and

ℵ1 ≤ sat(I) ≤ (2κ)+.

Since I is κ-complete, it follows that B = P (κ)/I is a κ-complete Boolean
algebra.

Real-Valued Measurable Cardinals

By Ulam’s Theorem 10.1, if there exists a nontrivial σ-additive measure then
either there exists a measurable cardinal or there exists a real-valued mea-
surable cardinal.

In this section we prove the following theorems:
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Theorem 22.1 (Solovay).

(i) If κ is a real-valued measurable cardinal, then there is a transitive
model of set theory in which κ is measurable.

(ii) If κ is a measurable cardinal, then there exists a generic extension in
which κ = 2ℵ0 and κ is real-valued measurable.

Theorem 22.2 (Prikry). If 2ℵ0 is real-valued measurable, then 2λ = 2ℵ0

for all infinite λ < 2ℵ0 .

If µ is a κ-additive real-valued measure on κ, then the ideal Iµ of all sets
of measure 0 is a σ-saturated κ-complete ideal on κ. We have proved that if
an uncountable cardinal κ carries a σ-saturated κ-complete ideal, then κ is
weakly inaccessible.

We shall prove Theorem 22.1(i) and Theorem 22.2 for this generalization
of real-valued measurability, namely under the assumption that κ is uncount-
able and carries a σ-saturated κ-complete ideal. Thus let κ be an uncountable
cardinal and let I be a σ-saturated κ-complete ideal. Thus let κ be an un-
countable cardinal and let I be a σ-saturated κ-complete ideal on κ.

Let us call A ⊂ κ an atom if A has positive measure and is not the union
of two disjoint sets of positive measure. I is atomless if it has no atoms. What
we proved in Lemma 10.9(ii) can be formulated as follows: If I is atomless,
then κ ≤ 2ℵ0 . It follows that if 2ℵ0 < κ, then every set X of positive measure
contains an atom A ⊂ X , and hence there exists an at most countable disjoint
collection W of atoms such that κ =

⋃
{A : A ∈ W}.

We start with the following analog of Theorem 10.20. We recall that a κ-
complete ideal on κ is normal if every function f : S → κ regressive on a set
S ⊂ κ of positive measure is constant on some T ⊂ S of positive measure.
A real-valued measure µ is normal if Iµ is normal.

Lemma 22.3.

(i) If I is a σ-saturated κ-complete ideal on an uncountable cardinal κ,
then there exists a function f : κ → κ such that

J = f∗(I) = {X ⊂ κ : f−1(X) ∈ I}

is a normal σ-saturated κ-complete ideal on κ.
(ii) If µ is a κ-additive real-valued measure on κ, then there exists a func-

tion f : κ → κ such that ν = f∗(µ) defined by

ν(X) = µ(f−1(X)) (X ⊂ κ)

is a normal κ-additive real-valued measure on κ.

Proof. We shall prove (i) and leave the completely analogous proof of (ii) to
the reader. Let us say that a function g : S → κ is unbounded on a set S of
positive measure if there is no γ < κ and no T ⊂ S of positive measure such
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that g(α) < γ for all γ ∈ T . Let us consider the family F of all functions g
into κ defined on a set of positive measure and unbounded on its domain.
Let us define g < h if dom(g) ⊂ dom(h) and if g(α) ≤ h(α) everywhere on
dom(g). Let us also define g ≤ h if dom(g) ⊂ dom(h) and if g(α) ≤ h(α)
everywhere on dom(g). Let us call g ∈ F minimal if there is no h ∈ F such
that h < g.

We shall first show that there exists a minimal g ∈ F . Otherwise, for
every g ∈ F there is h ∈ F such that h < g. Thus let g ∈ F be arbitrary.
Let W be a maximal collection of elements of F such that h < g for each
h ∈ W , and that dom(h1) ∩ dom(h2) = ∅ whenever h1 and h2 are distinct
elements of W . Since I is σ-saturated, W is at most countable and by our
assumption, the set dom(g) −

⋃
{dom(h) : h ∈ W} has measure zero. Thus

if we let f =
⋃
{h : h ∈ W}, we have dom(g) − dom(f) ∈ I, and f < g.

Since g was arbitrary, we can construct a countable sequence g0 > g1 > . . . >
gn > . . . such that dom(gn) − dom(gn+1) ∈ I for each n. It follows that⋂∞

n=0 dom(gn) has positive measure and we get a contradiction since for any
α ∈

⋂∞
n=0 dom(gn) we would have g0(α) > g1(α) > . . ..

The same argument shows that for every h ∈ F there exists a minimal
g ∈ F such that g ≤ h. Thus if W is a maximal family of minimal functions
g ∈ F such that dom(g1) ∩ dom(g2) = ∅ whenever g1 and g2 are distinct
elements of W , W is at most countable and

⋃
{dom(g) : g ∈ W} has measure

one. Thus if we let f =
⋃
{g : g ∈ W}, then dom(f) has measure one and

f is a least unbounded function: On the one hand, if γ < κ, then there is no
S ⊂ κ of positive measure such that f(α) < γ everywhere on S; on the other
hand, if S is a set of positive measure and g is a function on S such that
g(α) < f(α) everywhere on S, then g is constant on some T ⊂ S of positive
measure. We can clearly assume that dom(f) = κ.

Let f : κ → κ be a least unbounded function; we shall show that J =
f∗(I) is a normal σ-saturated κ-complete ideal on κ. It is obvious that J is
a κ-complete ideal. For every γ ∈ κ, f−1({γ}) has measure zero and hence
{γ} ∈ J . If X /∈ J , then f−1(X) /∈ I, and if X ∩ Y = ∅, then f−1(X) ∩
f−1(Y ) = ∅, and hence J is σ-saturated because I is σ-saturated.

To show that J is normal, let S /∈ I, and let g(α) < α for all α ∈ S. Then
g(f(ξ)) < f(ξ) for all ξ ∈ f−1(S) and since f is a least unbounded function,
g(f(ξ)) is constant on some X ⊂ f−1(S) of positive I-measure. Hence g is
constant on f(X) and f(X) /∈ J . ��

Lemma 22.4. Let I be a normal σ-saturated κ-complete ideal on κ. If S is
a set of positive measure and f : S → κ is regressive on S, then f is bounded
almost everywhere on S; that is, there exists γ < κ such that {α ∈ S :
f(α) ≥ γ} ∈ I.

Proof. For every X ⊂ S of positive measure there exists Y ⊂ X of positive
measure such that f is constant on Y . Thus let W be a maximal disjoint
family of sets X ⊂ S of positive measure such that f is constant on X . Let
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T =
⋃
{X : X ∈ W}. The family W is at most countable and hence there

is γ such that f(α) < γ for all α ∈ T . Clearly, S − T has measure 0. ��

Corollary 22.5. If κ is real-valued measurable (or if κ carries a σ-saturated
κ-complete ideal), then κ is a weakly Mahlo cardinal.

Proof. Let I be a normal σ-saturated κ-complete ideal on κ. Since I is normal,
every closed unbounded set has I-measure one (see Lemma 8.11). Because
κ is weakly inaccessible, it suffices to show that the set of all regular cardinals
α < κ has measure one.

Let us assume that the set S of all limit ordinals α < κ such that cf α < α
has positive measure. Considering the regressive function α �→ cf α, we find
a set T of positive measure and some λ < κ such that cf α = λ for all α ∈ T .
For each α ∈ T , let 〈αν : ν < λ〉 be an increasing λ-sequence with limit α.

For each ν < λ, the function α �→ αν is regressive on T and so, by
Lemma 22.4 there is γν such that αν < γν for almost all α ∈ T . Let γ =
sup{γν : ν < λ}. Since λ < κ, we conclude, by κ-completeness of I, that for
almost all α ∈ T , αν < γ of all ν < λ. But this means that for almost all
α ∈ T , α = limν αν ≤ γ. This is a contradiction since T is unbounded. ��

Since every closed unbounded set has measure one (if I is a normal σ-
saturated κ-complete ideal on κ), every set of positive measure is stationary.
It can even be proved that if S has positive measure, then S ∩α is stationary
in α for almost all α. Then it follows that κ is the κth weakly Mahlo cardinal,
κth cardinal which is a limit of weakly Mahlo cardinals, etc. We shall return
to this subject later in this chapter.

We shall now show that every real-valued measurable cardinal is a Row-
bottom cardinal; we shall show that the statement of Lemma 17.36 for
a measurable cardinal holds under the weaker assumption that κ carries a σ-
saturated κ-complete ideal.

Lemma 22.6. Let I be a normal σ-saturated κ-complete ideal on κ, and let λ
be an infinite cardinal less than κ. Let A = (A, . . .) be a model of a language L
such that |L| ≤ λ, and let A ⊃ κ. If P ⊂ A is such that |P | < κ, then A has
an elementary submodel B = (B, . . .) such that B ∩ κ has measure one and
|P ∩ B| ≤ λ. Moreover, if X ⊂ A has size at most λ, then we can find B
such that X ⊂ B.

The proof of Lemma 22.6 uses Skolem functions and arguments similar to
those in Theorem 17.27 and Lemma 17.36. The key ingredient is the following
lemma:

Lemma 22.7. Let I be a normal σ-saturated κ-complete ideal on κ, let γ < κ
and let f : [κ]<ω → γ be a partition. Then there exists H ⊂ κ of measure one
such that the image of [H ]<ω under f is at most countable.
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Proof. We proceed as in the proof of Theorem 10.22. It suffices to show that
for each n = 1, 2, . . . there is Hn of measure one such that f([H ]n) is at
most countable; then we take H =

⋂∞
n=1 Hn.

We prove, by induction on n, that for every partition of [κ]n into less
than κ pieces there is H ⊂ κ of measure one such that f([H ]n) is at most
countable. For n = 1, let f : κ → γ and γ < κ; let W be a maximal
pairwise disjoint family of subsets X ⊂ κ such that X has positive measure
and f is constant on X . Let H =

⋃
{X : X ∈ W}. Since |W | ≤ ℵ0, we have

|f(H)| ≤ ℵ0, and since γ < κ and I is κ-complete, we clearly have κ−H ∈ I.
Let us assume that the assertion is true for n and let us prove that it

holds also for n + 1. Let f : [κ]n+1 → γ where γ < κ. For each α < κ, we
define fα on [κ − {α}]n by fα(x) = f({α} ∪ x). By the induction hypothesis,
there exists for each α < κ a set Xα of measure one such that fα([Xα]n) is
at most countable; let Aα be the image of [Xα]n under fα. Let X be the
diagonal intersection

X = {α < κ : α ∈
⋂

ξ<α

Xξ}

The set X has measure one since I is normal; also if α < α1 < . . . <
αn are in X , then {α1, . . . , αn} ∈ [Xα]n and so f({α, α1, . . . , αn}) =
fα({α1, . . . , αn}) ∈ Aα.

For each α ∈ X , let Aα = {aα,n : n < ω}. For each n, consider the
function gn : X → γ defined by gn(α) = aα,n. There exists a set Hn ⊂ X of
measure one such that gn(Hn) is at most countable. Thus let H =

⋂∞
n=0 Hn;

the set H has measure one, and moreover
⋃
{Aα : α ∈ H} =

⋃∞
n=0 gn(H) is

at most countable. It follows that f([H ]n+1) is at most countable. ��

We can now proceed as in Theorem 19.3 and prove that if I is a normal
σ-saturated κ-complete ideal on κ and V = L[I], then GCH holds. In fact,
if D denotes the filter dual to I, that is, the filter of all sets of I-measure
one, then the proof of Theorem 19.3 goes through in the present context (use
P = {Y ⊂ λ : Y ≤L[D] X}).

Now we recall the results of Chapter 18: If κ carries a σ-saturated κ-
complete ideal then either κ ≤ 2ℵ0 or κ is measurable. Thus we conclude:
If I is a normal σ-saturated κ-complete ideal on κ and V = L[I], then κ is
measurable.

Proof of Theorem 22.1(i). Let κ be real-valued measurable. Then there is
a normal κ-additive measure µ on κ by Lemma 22.3. Let I be the ideal of
sets of measure zero. I is a normal σ-saturated κ-complete ideal on κ. Let
J = I ∩ L[I]. We have L[J ] = L[I], and in L[I], J is a normal ℵ1-saturated
κ-complete ideal on κ. (If we could assume that ℵL[I]

1 = ℵ1, it would now
follow that κ is a measurable cardinal in L[I].)

Since we are not able to show directly that if I is σ-saturated, then I ∩ L[I]
is σ-saturated in L[I], let us consider a somewhat more general situation.
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Let ν be a regular uncountable cardinal less than κ, and let us consider
ν-saturated κ-complete ideals on κ.

Lemmas 22.3 and 22.4 hold again; in Lemma 22.7 we have to replace “at
most countable” by “of size less than ν.” Lemma 22.6 holds for all λ ≥ ν and
the analog of Theorem 19.3 is: If V = L[I] and I is normal, then 2<ν = ν
and 2λ = λ+ for all λ ≥ ν.

Lemma 10.9 can also be generalized, and we get: If I is atomless, then
κ ≤ 2<ν . Hence if V = L[I], every set of positive measure contains a subset
that is an atom, and therefore κ is the union of a disjoint family W of atoms
such that |W | < ν.

Lemma 22.8. Let ν < κ be a regular uncountable cardinal, and let I be
a normal ν-saturated κ-complete ideal on κ; let F be the dual filter. Then
in L[F ], F ∩ L[F ] is a normal measure on κ (and L[F ] is the model L[D] of
Chapter 19 ).

Proof. It is easy to verify that L[F ] = L[I], and that in L[F ], I ∩ L[I] is
a normal ν-saturated κ-complete ideal on κ. Thus we may assume that V =
L[F ]; we want to show that F is an ultrafilter.

We know that κ is the union of a disjoint family W of atoms. (What we
want to show is that W has only one element.) For A ∈ W , let

FA = {X ⊂ κ : X ∩ A has positive measure}.

Since A is an atom, FA is a filter, and FA is in fact a normal measure on κ.
Hence FA ∩ L[FA] is the unique normal measure D in L[FA], and L[FA] is
the model L[D].

We shall now show that F ∩L[D] = D. Let X ∈ L[D] be a subset of κ. If
X ∈ F , then X ∈ FA for all A ∈ W and hence X ∈ FA∩L[FA] = D. If X /∈ F ,
then there is A ∈ W such that X /∈ FA and hence X /∈ FA ∩ L[FA] = D. It
follows that F ∩ L[D] = D and so F ∩ L[D] ∈ L[D].

Consequently, L[F ] = L[D]; since we assumed that V = L[F ] and because
F ∩ L[D] = D, we have F = D. ��

Proof of Theorem 22.1(ii). Let κ be a measurable cardinal, and let λ ≥ κ be
a cardinal such that λℵ0 = λ. We shall construct a generic extension in which
2ℵ0 = λ and κ is real-valued measurable.

Let F be a σ-algebra of sets and let µ be a measure on F . Let I ⊂ F be the
ideal of sets of measure 0 and let us consider the Boolean algebra B = F/I.
That is, the members of B are equivalence classes [X ] where X ∈ F and
where X ≡ Y if and only if µ(X  Y ) = 0.

Since both F and I are countably complete, it follows that B is countably
saturated and

∑∞
n=0[Xn] = [

⋃∞
n=0 Xn]. Since µ is a measure, I is countably

saturated and so B satisfies the countable chain condition. Now a Boolean
algebra that is both σ-complete and σ-saturated is complete, and so B is
a complete Boolean algebra.
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For [X ] ∈ B, let us define m([X ]) = µ(X). Clearly, the definition of m
does not depend on the particular choice of X , and furthermore, m has the
following properties:

(i) m is a real-valued function on B;
(ii) m(0) = 0, m(a) > 0 if a �= 0, and m(1) = 1;
(iii) if a ≤ b, then m(a) ≤ m(b);
(iv) if an, n = 0, 1, . . . , are pairwise disjoint, then

m
( ∞∑

n=0
an

)
=

∞∑
n=0

m(an).

(22.1)

A Boolean algebra B with a measure m (satisfying (22.1)) is called a measure
algebra; a set S with a field of sets F and a measure µ on F is called a measure
space.

We need from measure theory the following basic fact about products of
measure spaces. Let I be a set (of indices), and for each i ∈ I let (Si,Fi, µi)
be a measure space. Let us consider the product S =

∏
i∈I Si, and let us

consider the following σ-algebra of subsets of S: Let E be a finite subset of I,
and for each i ∈ E, let Zi ∈ Fi. Let Z ⊂ S be as follows: If t ∈

∏
i∈I Si, then

(22.2) t ∈ Z if and only if t(i) ∈ Zi for all i ∈ E.

Let F be the least σ-algebra of subsets of S such that F contains every Z ⊂ S
of the form (22.2), for any finite E ⊂ I and any Zi ∈ Fi, i ∈ E.

There exists a unique measure µ on F (the product measure) such that
for every Z of the form (22.2), µ(Z) is the product of µi(Zi), i ∈ E. (In case
of the product S = S1 ×S2, the measure of a “rectangle” Z1 ×Z2 is equal to
µ(Z1) · µ(Z2).)

We shall use the following simple example of a product measure space (cf.
Example 15.31). Let I be an infinite set, and for each i ∈ I let us consider
the space {0, 1} of two elements. We give measure 1/2 to both {0} and {1}:

(22.3) Si = {0, 1}, Fi = P (Si),

µi({0}) = µi({1}) = 1/2, µi(∅) = 0, µi({0, 1}) = 1.

Let S =
∏

i∈I Si, and let µ be the product measure on F , the least σ-algebra
of subsets of S containing the sets {t ∈ {0, 1}I : t(i) = 0} for all i ∈ I.

Let M be a transitive model of ZFC (the ground model). In M let λ be
an infinite cardinal such that λℵ0 = λ. Let (S,F , µ) be the product measure
space {0, 1}I defined above, where I = λ × ω. Let B be the corresponding
measure algebra F/the ideal of sets of measure 0.

Let G be an M -generic ultrafilter on B. Since B satisfies the countable
chain condition, the generic extension M [G] preserves cardinals. We shall
show that in M [G], 2ℵ0 = λ.
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On the one hand, an easy computation gives |F| = λ (because λℵ0 = λ)
and since B satisfies the c.c.c., we get |B| = λ. Therefore

(2ℵ0)M [G] ≤ (|B|ℵ0)M = λ

and we have (2ℵ0)M [G] ≤ λ.
On the other hand, we shall exhibit λ distinct subsets of ω in M [G]. For

each α < λ and each n < ω, let uα,n = [Uα,n], where Uα,n is as follows:

(22.4) Uα,n = {t ∈ {0, 1}λ×ω : t(α, n) = 1}.

For α < λ, let ẋα be the B-valued subset of ω such that

(22.5) ‖n ∈ ẋα‖ = uα,n (n < ω).

Let xα be the G-interpretation of ẋα.
We shall show that xα �= xβ whenever α �= β, and in fact that

‖ẋα = ẋβ‖ = 0. Let k be any natural number. Then

‖ẋα ∩ k = ẋβ ∩ k‖ = [Nα,β,k],

where
Nα,β,k = {t : t(α, n) = t(β, n) for all n < k}.

It is easy to verify that for each k, µ(Nα,β,k) = 1/2k. But ‖ẋα = ẋβ‖ =∏∞
k=0[Nα,β,k] = [

⋂∞
k=0 Nα,β,k] = 0 since µ(

⋂∞
k=0 Nα,β,k) = 0. This completes

the proof that 2ℵ0 = λ in M [G].
Now let us assume that κ is a measurable cardinal in the ground model,

and let λ ≥ κ be such that λℵ0 = λ. We construct a generic extension M [G]
of M , using the measure algebra described above. In M [G], we have 2ℵ0 = λ,
and we show that κ is real-valued measurable in M [G]. This follows from this
general lemma:

Lemma 22.9. Let κ be a measurable cardinal in the ground model M , let
B be (in M) a measure algebra, and let G be an M -generic ultrafilter on B.
Then in M [G], there exists a nontrivial κ-additive measure on κ.

Proof. Let U be a κ-complete nonprincipal ultrafilter on κ. Let B be a com-
plete Boolean algebra and let m be a measure on B. We shall define a B-
valued name µ̇ and show that if G is a generic ultrafilter, then the G-
interpretation of µ̇ is a nontrivial κ-additive measure on κ.

Let a be a nonzero element of B, and let Ȧ ∈ MB be a B-valued name
such that a � Ȧ ⊂ κ. For each α < κ, we let

(22.6) fa(Ȧ, α) =
m(a · ‖α ∈ Ȧ‖)

m(a)
.
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Since U is a κ-complete, there is a unique real number r such that fa(Ȧ, α) =
r for almost all α (mod U). Thus let

(22.7) µa(A) = the unique r such that fa(A, α) = r almost everywhere
(mod U).

Note that if a � Ȧ = Ȧ′, then µa(Ȧ) = µa(Ȧ′). Also, if a � Ȧ1 ⊂ Ȧ2,
then µa(Ȧ1) ≤ µa(Ȧ2). If X ⊂ κ is in M , then fa(X̌, α) = 1 for all α ∈ X
and fa(X̌, α) = 0 for all α /∈ X . Hence µa(X̌) = 1 if X ∈ U and µa(X̌) = 0
if X /∈ U .

Let γ < κ and let Ȧξ, ξ < γ, be such that a � Ȧξ ⊂ κ for all ξ < γ, and
that a � Ȧξ ∩ Ȧη = ∅ whenever ξ �= η. Let Ȧ be such that a � Ȧ =

⋃
ξ<γ Ȧξ.

Then fa(Ȧ, α) =
∑

ξ<γ fa(Ȧξ, α) for all α < κ, and hence (because U is
κ-complete),

(22.8) µa(Ȧ) =
∑
ξ<γ

µa(Ȧξ).

Let r be a real number, 0 ≤ r ≤ 1, and let {an}∞n=0 be a partition of a ∈ B.
If µan(Ȧ) < r for all n, then for almost all α, m(an ·‖α ∈ Ȧ‖) < r ·m(an), and
it follows that for almost all α, m(a · ‖α ∈ Ȧ‖) < r · m(a); hence µa(Ȧ) < r.

As a consequence, we obtain:

(22.9) If for every nonzero b ≤ a there is a nonzero c ≤ b such that
µc(Ȧ) < r, then µa(Ȧ) < r.

(And a similar statement holds when < is replaced by ≤, > or ≥.)
Now if b � Ȧ ⊂ κ, we define

(22.10) µ∗
b(Ȧ) = infa≤b µa(Ȧ).

Again, if b � Ȧ1 ⊂ Ȧ2, then µ∗
b(Ȧ1) ≤ µ∗

b(Ȧ2), and if X ∈ M , then µ∗
b(X̌) = 1

if X ∈ U and µ∗
b(X̌) = 0 if X /∈ U . However, µ∗

b is not additive and we only
have (using (22.8)), for γ < κ:

(22.11) µ∗
b(Ȧ) ≥

∑
ξ<γ

µ∗
b(Ȧξ)

under the assumption that b � Ȧξ ∩ Ȧη = ∅ whenever ξ �= η, and that
b � Ȧ =

⋃
ξ<γ Ȧξ.

Note that if b1 ≤ b2, then µb1(Ȧ) ≥ µb2(Ȧ).
Now we are ready to define µ̇. Let G be a generic ultrafilter; in M [G], we

define µ : P (κ) → [0, 1] as follows:

(22.12) µ(A) = supb∈G µ∗
b(Ȧ)

where Ȧ is a name for A. Let µ̇ be the canonical name for µ (defined in MB

by (22.12) using the canonical Ġ).
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It is clear that µ does not depend on the name Ȧ for A, that A1 ⊂ A2

implies µ(A1) ≤ µ(A2) and that if X ∈ M , then µ(X) = 1 if X ∈ U and
µ(X) = 0 if X /∈ U . It remains to show that µ is κ-additive.

Let r be a real number (in M) such that 0 ≤ r ≤ 1. We claim that

(22.13) µ∗
b (Ȧ) ≥ r if and only if b � µ̇(Ȧ) ≥ ř.

If µ∗
b(Ȧ) ≥ r, then for every generic G such that b ∈ G, µ(A) ≥ r, and hence

b � µ̇(Ȧ) ≥ ř. Thus assume that b � µ̇(Ȧ) ≥ ř. Then

b � ∀q < ř ∃d ∈ Ġ µ∗
d(Ȧ) ≥ q,

that is,

(22.14) ∀q < r ∀c ≤ b ∃d ≤ c µ∗
d(Ȧ) ≥ q.

Let q < r; we claim that µ∗
b (Ȧ) ≥ q. If a ≤ b, then ∀c ≤ a ∃d ≤ c such that

µ∗
d(Ȧ) ≥ q and hence (by a variant of (22.9)), µa(Ȧ) ≥ q. Thus µ∗

b(Ȧ) ≥ q.
Since this holds for any q < r, we have µ∗

b(Ȧ) ≥ r.
Next we show that µ is finitely additive. Let Ȧ, Ȧ1, and Ȧ2 be such that

every condition forces that Ȧ is the disjoint union of Ȧ1 and Ȧ2. If r1 and r2

are real numbers and if b � (µ̇(Ȧ1) ≥ ř1 and µ(Ȧ2) ≥ ř2), then by (22.13)
and (22.11), b � µ̇(Ȧ) ≥ ř1 + ř2; hence µ(A) ≥ µ(A1) + µ(A2). Conversely,
let us assume that µ(A) > µ(A1) + µ(A2). There are reals r1, r2 ∈ M and
b ∈ G such that

b � µ̇(Ȧ1) < ř1, µ̇(Ȧ2) < ř2, and µ̇(Ȧ) ≥ ř1 + ř2.

Since b � µ̇(Ȧ1) < ř1, there is for each c ≤ b some d ≤ c such that
µd(Ȧ1) < r1; hence by (22.9), µb(Ȧ1) < r1. Similarly, µb(Ȧ2) < r2, and so
µ∗

b (Ȧ) ≤ µb(Ȧ) < r1 + r2. This is a contradiction.
Now when we know that µ is finitely additive, it suffices to show that

µ(
⋃

ξ<γ Aξ) ≤
∑

ξ<γ µ(Aξ) for any family {Aξ : ξ < γ} of fewer than κ
subsets of κ. Thus let γ < κ and let Ȧξ, ξ < γ, and Ȧ be such that ‖Ȧ =⋃

ξ<γ Ȧξ‖ = 1, and let us assume that µ(A) >
∑

ξ<γ µ(Aξ). Then there exist
r ∈ M and b ∈ G such that

b �
∑
ξ<γ

µ̇(Ȧξ) < ř and µ̇(Ȧ) > ř.

Let E ⊂ γ be an arbitrary finite set, let AE =
⋃

ξ∈E Aξ. Since ‖µ̇(ȦE) ≤∑
ξ∈E µ̇(Ȧξ)‖ = 1, we have b � µ̇(ȦE) < ř. By (22.9), we get µb(ȦE) < r.
Since µb(ȦE) < r for all finite E ⊂ γ, it follows from (22.8) that

µb(Ȧ) ≤ r. Hence µ∗
b(Ȧ) ≤ r, a contradiction.

This completes the proof that in M [G] µ is a nontrivial κ-additive measure
on κ. ��
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Example 22.10 (A model in which 2ℵ0 carries a σ-saturated ideal).
Let κ be a measurable cardinal, and let λ ≥ κ be a cardinal such that λℵ0 = λ.
We shall construct a generic extension that satisfies 2ℵ0 = λ and such that
there is a σ-saturated κ-complete ideal on κ.

Let P be the notion of forcing that adjoins λ Cohen reals; i.e., a condition
is a finite 0–1 function p with dom(p) ⊂ λ. If G is a generic filter on P , then
V [G] � 2ℵ0 = λ, and all cardinals are preserved in V [G] because P satisfies
the countable chain condition. That κ carries in V [G] a σ-saturated ideal
follows from this lemma:

Lemma 22.11. Let κ be a measurable cardinal and let I be a nonprincipal
κ-complete prime ideal on κ. Let P be a notion of forcing that satisfies the
countable chain condition. Then in V [G], the ideal J generated by I is a σ-
saturated κ-complete ideal on κ.

Proof. Let J be the ideal in V [G] defined as follows:

X ∈ J if and only if X ⊂ Y for some Y ∈ I.

First we show that J is κ-complete. Let X = {Xξ : ξ < γ} be a family of
fewer than κ elements of J ; let Ẋ be a name for X and let p0 ∈ G be such
that p0 � ∀ξ < γ Ẋξ ∈ J̇ .

For each ξ < γ and each p ≤ p0, there exist q ≤ p and some Y ∈ I
such that q � Ẋξ ⊂ Y̌ . Let Wξ be a maximal antichain of q ≤ p0 for which
there is Yξ,q such that q � Ẋξ ⊂ Y̌ξ,q. Since P satisfies the countable chain
condition, each Wξ is countable, and hence Y =

⋃
{Yξ,q : ξ < γ and q ∈ Wξ}

belongs to I. Now it is easy to verify that p0 �
⋃

ξ<γ Ẋξ ⊂ Y̌ and hence⋃
X ∈ J .
To prove that J is countably saturated, let us assume that X = {Xξ :

ξ < ω1} is a family of pairwise disjoint sets of positive J-measure. Let Ẋ be
a name for X and let p ∈ G be such that p � Ẋξ /∈ J̇ , for each ξ < ω1, and
p � Ẋξ ∩ Ẋη = ∅ for all ξ �= η.

For each ξ < ω1, let Yξ = {α < κ : some q ≤ p forces α ∈ Ẋξ}. Clearly
p � Ẋξ ⊂ Y̌ξ, and so Yξ /∈ I. By the κ-completeness of I, we have Y =⋂

ξ<ω1
Yξ /∈ I. Thus Y �= ∅, and let α be some element of Y . For each ξ < ω1,

let qξ ≤ p be such that qξ � α ∈ Ẋξ. Since P satisfies the countable chain
condition, there are ξ, η such that qξ and qη are compatible. Let q be stronger
than both qξ and qη; then q � α ∈ Ẋξ ∩ Ẋη, a contradiction. ��

Proof of Theorem 22.2. We shall prove that if 2ℵ0 carries a σ-saturated 2ℵ0-
complete ideal then 2λ = 2ℵ0 for all λ < 2ℵ0 . Let λ be a regular cardinal; two
functions f , g on λ are almost disjoint if there is γ < λ such that f(α) �= g(α)
for all α ≥ γ.

Lemma 22.12. Let κ carry a σ-saturated κ-complete ideal, and let λ < κ be
a regular uncountable cardinal. If F is a family of almost disjoint functions
f : λ → κ, then |F| ≤ κ.



420 Part II. Advanced Set Theory

Proof. If |F| > κ, then because every f : λ → κ is bounded by some β < κ,
there exist some G ⊂ F and some β < κ such that |G| = κ and every f ∈ G
is bounded by β.

Let F : [G]2 → λ be the following partition: F ({f, g}) = some γ such that
f(α) �= g(α) for all α ≥ γ. By Lemma 22.7, there exists H ⊂ G of size κ
such that the image A of [H]2 under F is at most countable. Let α > sup(A).
Then f(α) �= g(α) whenever f, g ∈ H, which is a contradiction since |H| = κ
and f(α) < β for all f ∈ H. ��

Now we are ready to prove the theorem. Let κ = 2ℵ0 . We prove 2λ = κ
by induction on λ < κ. If λ is a singular cardinal and 2ν = κ for all ν < λ,
then 2λ = κ by Corollary 5.17. Thus let λ < κ be regular and let us assume
that 2ν = κ for all ν < λ.

For each X ⊂ λ, let fX = 〈X ∩ α : α < λ〉. If X �= Y , then fX and fY

are almost disjoint. For each α < λ, the set {fX(α) : X ⊂ λ} has size κ, and
hence {fX : X ⊂ λ} yields a family F of 2λ almost disjoint functions from λ
into κ. By Lemma 22.12 we get |F| ≤ κ and therefore 2λ = κ. ��

Generic Ultrapowers

We shall now introduce a powerful method for dealing with ideals on regu-
lar uncountable cardinals. The method is a generalization of the method of
ultrapowers from Chapter 10.

Let κ be a regular uncountable cardinal and let I be an ideal on κ. Let
us view the universe as a ground model, let us denote this ground model M
and let us consider the generic extension of M given by the completion of
the Boolean algebra P (κ)/I. In other words, consider the notion of forcing
(P,⊂), where P is the collection of all subsets of κ of positive measure:

(i) X ∈ P if and only if X /∈ I;
(ii) X is stronger than Y if and only if X ⊂ Y

(22.15)

Let G be a generic filter on P .

Lemma 22.13.

(i) G is an M -ultrafilter on κ extending the filter dual to I.
(ii) If I is κ-complete in M , then G is a κ-complete M -ultrafilter.
(iii) If I is normal, then G is normal.

Proof. (i) If X ⊂ κ has measure one, then {Y ∈ P : Y ⊂ X} is dense in P
and hence X ∈ G. That G is an M -ultrafilter is obvious.

(ii) If {Xα : α < γ}, γ < κ, is (in M) a partition of κ, then by the κ-
completeness of I, the set {Y ∈ P : Y ⊂ some Xα} is dense in P and hence
Xα ∈ G for some α.
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(iii) If X ∈ G and if f ∈ M is a regressive function on X , then {Y ⊂ X :
f is constant on Y } is dense below X , and hence f is constant on some
Y ∈ G. ��

From now on assume that I is a κ-complete ideal on κ containing all
singletons. Then G is a nonprincipal κ-complete M -ultrafilter on κ. Note
that if I is atomless, then G /∈ M (if I is prime, then G is the dual of I and
so G ∈ M).

Let us consider (in M [G]) the ultrapower UltG(M); let us call this ultra-
power a generic ultrapower. The generic ultrapower is a model of ZFC, but
is not necessarily well-founded. We have the analog of �Loś’s Theorem, in this
form

(22.16) UltG(M) � ϕ([f1], . . . , [fn])

if and only if {α : M � ϕ(f1(α), . . . , fn(α))} ∈ G

whenever f1, . . . , fn ∈ M are functions defined on a set X ∈ G. In particu-
lar, we have an elementary embedding, the canonical embedding jG : M →
UltG(M), defined by

jG(x) = [cx]

where cx is the constant function on κ with value x, and [cx] is its equivalence
class in the ultrapower.

Let us denote the generic ultrapower by N and jG = j. The ordinal
numbers of the model N form a linearly ordered class, not necessarily well-
ordered, but we shall show that (because I is κ-complete), OrdN has an
initial segment of order-type κ. If x ∈ OrdN , let us call the order-type of x
the order-type of the set {y ∈ OrdN : y <N x}. If the order-type of x is an
ordinal number, we take the liberty of identifying x with this ordinal.

Lemma 22.14.

(i) For every γ < κ, j(γ) = γ; hence OrdN has an initial segment of
order-type κ.

(ii) j(κ) �= κ.
(iii) If I is normal, then there exists x ∈ OrdN such that x = κ; in fact

[d] = κ where d is the diagonal function d(α) = α.

Proof. G is κ-complete, nonprincipal, and if I is normal then G is normal. ��

Let us mention again the fact that we already mentioned and that is fairly
easy to verify: If P is the notion of forcing (22.15) then B(P ) = B(P (κ)/I);
the mapping X �→ [X ] gives the natural correspondence.

To illustrate the method of generic ultrapowers we present two examples.
The first is (a modification of) Silver’s proof of Theorem 8.12; the other is
a theorem of Jech and Prikry.
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Example 22.15 (Proof of Silver’s Theorem 8.12). Let us consider this
typical special case: Let κ be a singular cardinal of cofinality ℵ1, and assume
that 2λ = λ+ for all λ < κ. We shall show that 2κ = κ+, using a generic
ultrapower.

Let I be the ideal of nonstationary subsets of ω1, let P be the correspond-
ing notion of forcing (i.e., forcing conditions are stationary sets) and let G be
a generic filter on P . Note that since |P | = 2ℵ1 < κ (in M), all cardinals ≥ κ
remain cardinals in M [G].

Let us work in M [G]. G is a normal σ-complete M -ultrafilter on ωM
1 . Let

N = UltG(M) be the generic ultrapower and let j : M → N be the canonical
elementary embedding. N is not necessarily well-founded.

Let 〈κα : α < ω1〉 be (in M) an increasing continuous sequence of cardi-
nals converging to κ. Let e be the cardinal number in N represented by the
function e(α) = κα. Let e+ denote the successor cardinal of e in N .

For each X ⊂ κ in M let fX be the function on ωM
1 defined by fX(α) =

X ∩ κα. Clearly, each fX represents in N a subset of e. Moreover, if X �= Y ,
then fX and fY are almost disjoint and hence represent distinct subsets of e.
It follows that |P M (κ)| ≤ |P N (e)|, where P N (e) denotes the collection of all
subsets of e in N .

Now N � 2e = e+ (because M � 2κα = κ+
α for all α), which means that

in the model N there is a one-to-one correspondence between the power set
of e and e+. It follows that there is a one-to-one correspondence between
PN (e) and the set ext(e+) = {x ∈ OrdN : x <N e+}. Thus we have so far
|PM (κ)| ≤ | ext(e+)|.

Next we observe that e = sup{j(κγ) : γ < ωM
1 }. This is because if f rep-

resents an ordinal less than e, then there is a set of limit ordinals X ∈ G such
that f(α) < κα for all α ∈ X ; thus f(α) < κγ(α) for some γ(α) < α, and
by normality of G, there is γ such that [f ] <N κγ . Now for each γ < ωM

1 ,
| ext(j(κγ))| ≤ |(κℵ1

γ )M | < κ, and therefore | ext(e)| ≤ κ.
If x <N e+, then there is in N a one-to-one mapping of x into e, and

therefore, | ext(x)| ≤ | ext(e)| ≤ κ. Thus ext(e+) is a linearly ordered set
whose each initial segment has size at most κ. Therefore | ext(e+)| ≤ κ+, and
we have

|PM (κ)| ≤ κ+.

We have argued so far in M [G]; in other words, we have proved that
|PM (κ)|M [G] ≤ (κ+)M [G]. But since all cardinals ≥ κ in M remain cardi-
nals in M [G], it is necessary that |PM (κ)|M ≤ (κ+)M ; in other words we
have proved that 2κ = κ+ (in M). ��

Theorem 22.16. Let I be a σ-complete ideal on ω1. If 2ℵ0 < ℵω1 then
2ℵ1 ≤ 2ℵ0 · sat(I).

Corollary 22.17. If there exists an ℵ2-saturated ideal on ω1, then

(i) 2ℵ0 = ℵ1 implies 2ℵ1 = ℵ2;
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(ii) ℵ1 < 2ℵ0 < ℵω1 implies 2ℵ0 = 2ℵ1 . ��

Proof of Theorem 22.16. Let 2ℵ0 = ℵγ < ℵω1 and let I be a σ-complete
λ-saturated ideal on ω1. We shall show that 2ℵ1 ≤ ℵγ · λ.

Let P be the notion of forcing corresponding to I, and let G be generic
on P . Since sat(P ) = sat(I) ≤ λ, all cardinals ≥ λ in M are cardinals
in M [G].

Let us work in M [G], and let N = UltG(M) and j = jG : M → N . For
each X ⊂ ω1 in M let fX be the function on ωM

1 defined by fX(α) = X ∩ α.
Each fX represents in N a subset of the countable ordinal d represented by
the function d(α) = α; moreover, if X = Y , then fX and fY are almost
disjoint and hence [fX ] �= [fY ]. It follows that |PM (ωM

1 )| ≤ |PN (d)|. Let e
be the cardinal number in N such that N � 2ℵ0 = e (we recall that ωN = ω).
Since N � |P (d)| = e, we have |P N (d)| = | ext(e)| and so

(22.17) |P M (ωM
1 )| ≤ | ext(e)|.

Next we shall compute the size of ext(e). Since M � 2ℵ0 = ℵγ and j :
M → N is elementary, we have e = j(ωγ). We shall now prove by induction
on γ < ωM

1 that

(22.18) | ext(j(ωM
γ ))| ≤ λ · |ωM

γ |.

Let us denote j(ωM
γ ) = eγ for all γ < ωM

1 . By Lemma 22.14, the ordinals
of N have an initial segment of order-type ωM

1 ; thus the infinite cardinals
of N also have an initial segment of order-type ωM

1 , namely {eγ : γ < ωM
1 }.

If γ = 0, then eγ = ω and (22.18) is true. If γ is a limit ordinal, then
eγ = sup{eδ : δ < γ} and (22.18) is again true provided it is true for all
δ < γ. If γ = 1, then ext(e1) is a linearly ordered set whose each initial
segment is countable, and hence | ext(e1)| ≤ ℵ1. Since λ is a cardinal (now
we are in M [G]), we have ℵ1 ≤ λ, and (22.18) holds.

Let us assume that (22.18) holds for γ and let us show that it also
holds for γ + 1. Every function f : ω1 → ωγ+1 in M is bounded by some
constant function, and therefore j(ωγ+1) = sup{j(ξ) : ξ < ωγ+1}. Hence
the linearly ordered set ext(eγ+1) has a cofinal set of order-type ωM

γ+1 and
each its initial segment has size ≤ λ · |ωM

γ | (because if ξ < ωγ+1, then
| ext(j(ξ))| ≤ | ext(eγ)| ≤ λ · |ωM

γ |). It follows that | ext(eγ+1)| ≤ λ · |ωM
γ+1|.

Now we put (22.17) and (22.18) together and get

|PM (ωM
1 )| ≤ λ · ℵM

γ .

This we proved in M [G]; but since all cardinals ≥ λ in M remains cardinals
in M [G], the same must be true in M . Hence (in M)

2ℵ1 ≤ λ · ℵγ . ��
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Precipitous Ideals

In an early application of generic ultrapowers, Solovay proved that if I is
κ+-saturated then the generic ultrapower is well-founded (see Lemma 22.22
in the next section). It has been recognized that this property of ideals is
important enough to single out and study such ideals.

Definition 22.18. A κ-complete ideal on κ is precipitous if the generic ul-
trapower UltG(M) is well-founded.

We give below several necessary and sufficient (combinatorial) conditions
on I to be precipitous.

Let I be a κ-complete ideal on κ containing all singletons. Let S be a set
of positive measure. An I-partition of S is a maximal family W of subsets
of S of positive measure such that X ∩ Y ∈ I for any distinct X, Y ∈ W . An
I-partition W1 of S is a refinement of an I-partition W2 of S, W1 ≤ W2, if
every X ∈ W1 is a subset of some Y ∈ W2. A functional on S is a collection F
of functions such that WF = {dom(f) : f ∈ F} is an I-partition of S and
dom(f) �= dom(g) whenever f �= g ∈ F .

We define F < G for two functionals on S to mean that:

(i) each f ∈ F ∪ G is a function into the ordinals;
(ii) WF ≤ WG; and
(iii) if f ∈ F and g ∈ G are such that dom(f) ⊂ dom(g), then f(α) < g(α)

for all α ∈ dom(f).

The reason we define functionals is that they represent functions in the
Boolean-valued model MB (and so are canonical representatives for elements
of UltG(M)): Let ḟ ∈ MB be such that

(22.19) S � ḟ is a function with dom(ḟ) ∈ Ġ and ḟ ∈ M .

Then there is an I-partition W of S, and for each X ∈ W a function fX on X
such that for all X ∈ W , X � ḟ�X̌ = f̌X . Thus the functional {fX : X ∈ W}
represents the Boolean-valued ḟ on S.

Conversely, if F is functional on S, then there is some ḟ ∈ MB such that
(22.19) holds; and for each f ∈ F , if X = dom(f), then X � ḟ�X̌ = f̌ .

Note also that if F < G are functionals on S and ḟ , ġ are corresponding
Boolean-valued names, then

(22.20) S � ḟ , ġ ∈ M and dom(ḟ) ⊂ dom ġ and ḟ(α) < ġ(α) for all α ∈
dom(ḟ).

Conversely, if ḟ and ġ satisfy (22.20), then there are functionals F and G
that represent ḟ and ġ, and F < G.

Lemma 22.19. The following are equivalent :
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(i) I is precipitous.
(ii) Whenever S is a set of positive measure and {Wn : n < ω} are I-

partitions of S such that W0 ≥ W1 ≥ . . . ≥ Wn ≥ . . ., then there exists
a sequence of sets X0 ⊃ X1 ⊃ . . . ⊃ Xn ⊃ . . . such that Xn ∈ Wn for
each n, and

⋂∞
n=0 Xn is nonempty.

(iii) For no set S of positive measure is there a sequence of functionals
on S such that F0 > F1 > . . . > Fn > . . ..

Proof. In view of the preceding discussion on functionals, (ii) is equivalent
to (i): If F0 > F1 > . . . are functionals on S, and ḟ0, ḟ1, . . . , the corresponding
elements of MB, then S forces that [ḟ0], [ḟ1], . . . is a descending sequence of
ordinals in the generic ultrapower. Conversely, if S forces that UltG(M) has
a descending sequence of ordinals, we construct F0, F1, . . . on S such that
F0 > F1 > . . ..

The implication (ii) → (iii) is easy. If F0 > F1 > . . . are functionals
on S, then the partitions WF0 , WF1 , . . . constitute a counterexample: If
X0 ⊃ X1 ⊃ . . . are elements of WF0 , WF1 , . . . , let f0 ∈ F0 be the function with
domain X0, f1 ∈ F1 with domain X1, etc.; now if

⋂∞
n=0 Xn were nonempty,

we would get f0(α) > f1(α) > . . . for α ∈
⋂∞

n=0 Xn.
To show (iii) → (ii), let W0 ≥ W1 ≥ . . . be partitions of some S /∈ I that

fail (ii). We shall construct functionals on S such that F0 > F1 > . . ..
Without loss of generality, let us assume that if X ∈ Wn+1, Y ∈ Wn, and

X ⊂ Y , then X �= Y . Let T =
⋃∞

n=0 Wn; note that the partially ordered set
(T,⊂) is an upside-down tree (of height ω).

For each z ∈ S, let us consider the set Tz = {X ∈ T : z ∈ X}. Since every
descending sequence X0 ⊃ X1 ⊃ . . . in T has empty intersection, it follows
that for every z, Tz has no infinite descending sequence X0 ⊃ X1 ⊃ . . .;
hence the relation ⊂ on Tz is well-founded. Thus there is, for each z, an
ordinal function ρz on T (the rank function) such that ρz(X) < ρz(Y ) when
X ⊂ Y . It is clear that if X ∈ Wn+1, Y ∈ Wn, and z ∈ X ⊂ Y , then
ρz(X) < ρz(Y ).

Thus we define, for each X ∈ T , a function fX on X as follows:

fX(z) = ρz(X) (all z ∈ X).

Now it is clear that if we let Fn = {fX : X ∈ Wn} for each n, then F0, F1, . . .
are functionals on S and F0 > F1 > . . .. ��

Lemma 22.20. Let κ be a regular uncountable cardinal. The ideal I =
{X ⊂ κ : |X | < κ} is not precipitous.

Proof. Let I = {X ⊂ κ : |X | < κ}. A set X ⊂ κ has positive measure just
in case |X | = κ. For each such X , let fX be the unique order-preserving
function from X onto κ.

For each set X of positive measure there exists a set Y ⊂ X of positive
measure such that fY (α) < fX(α) for all α ∈ Y ; namely if we let Y =
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{α ∈ X : fX(α) is a successor ordinal}, then fX(α) = fY (α) + 1 for all
α ∈ Y . Thus for each X /∈ I there is an I-partition WX of X such that for
all Y ∈ WX , fY (α) < fX(α) on Y .

Now we construct I-partitions W0 ≥ W1 ≥ . . . as follows: We let W0 =
{κ}, and for each n, we let Wn+1 =

⋃
{WX : X ∈ Wn}. For each n, we let

Fn be the functional Fn = {fX : X ∈ Wn}. It is clear that F0 > F1 > . . . >
Fn > . . ., and therefore I is not precipitous. ��

An alternate characterization of precipitousness is in terms of infinite
games. GI is the infinite game played by two players, Empty and Nonempty,
who alternately choose sets Sn of positive I-measure such that Sn+1 ⊂ Sn.
Empty plays first and wins if

⋂∞
n=0 Sn = ∅.

Lemma 22.21. I is precipitous if and only if Empty has no winning strategy
in the game GI .

Proof. If I is not precipitous then there is a set S of positive measure and
a sequence of functionals on S such that F0 > F1 > . . . > Fn > . . .. Empty
chooses S0 = S for his first move. When Nonempty plays S2n−1, Empty finds
some f ∈ Fn such that the set X = dom(f)∩S2n−1 has positive measure and
chooses S2n = X for his move. It follows that

⋂∞
n=0 Sn is empty, and hence

Empty wins.
Now suppose that I is precipitous and σ is a strategy for Empty; we will

show that σ is not a winning strategy. Let S0 be Empty’s first move by σ.
Then S0 forces that in M [G] there is an infinite sequence 〈Sn : n ∈ ω〉 of
moves in which Empty follows σ and each Sn ∈ G. If j : M → UltG(M) is
the canonical embedding then 〈j(Sn) : n ∈ ω〉 is an infinite sequence of moves
(of j(GI)) in which Empty follows j(σ) and κ ∈

⋂∞
n=0 j(Sn). Since UltG(M) is

well-founded, there exists (by absoluteness) such a sequence in UltG(M), and
since j is elementary, there exists a sequence 〈Sn : n ∈ ω〉 in M in which
Empty follows σ but for some α < κ, α ∈

⋂∞
n=0 Sn. Thus σ is not a winning

strategy. ��

Saturated Ideals

Results from Chapter 10 and those proved earlier in this chapter establish the
following facts about the existence of a σ-saturated κ-complete ideal on κ:
If κ carries a σ-saturated κ-complete ideal then either κ is measurable, or
κ ≤ 2ℵ0 and κ is weakly inaccessible (Lemma 10.9 and 10.14). If a σ-saturated
ideal exists then there exists a normal one (Lemma 22.3), and its consistency
strength is that of a measurable cardinal (Lemma 22.8). These results gener-
alize easily to ν-saturated ideals for ν < κ; the analog of Lemma 10.9 (with
the same proof) is that either κ is measurable, or κ ≤ 2<ν .

In this section we investigate κ-saturated and κ+-saturated ideals. We
shall employ the technique of generic ultrapowers; this is particularly useful
because the generic ultrapower is well-founded:
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Lemma 22.22. Let κ be a regular uncountable cardinal. Every κ+-saturated
κ-complete ideal on κ is precipitous.

Proof. Let I be a κ+-saturated κ-complete ideal on κ. Let S be a set of
positive measure and let W0 ≥ W1 ≥ . . . be I-partitions of S. We shall find
X0 ⊃ X1 ⊃ . . . in W0, W1, . . . such that

⋂∞
n=0 Xn is nonempty.

We shall first modify each Wn to obtain a new I-partition W ′
n that is

almost like Wn but is disjoint. We proceed by induction on n. Since |W0| ≤ κ,
let W0 = {Xα : α < θ} where θ ≤ κ, and for each α < θ, let X ′

α =
Xα −

⋃
β<α Xβ ; then we let W ′

0 = {X ′ : X ∈ W}. Since I is κ-complete,
we have X − X ′ ∈ I for all X ∈ W0 and thus W ′

0 is an I-partition of S;
moreover, W ′

0 is disjoint, and is a partition of S0 =
⋃

W ′
0 and S − S0 ∈ I.

Having constructed W ′
n, we enumerate Wn+1 = {Xα : α < θ} where θ ≤ κ,

and for each α < θ, let X ′
α = (Xα −

⋃
β<α Xβ) ∩ Z where Z is the unique

Z ∈ W ′
n that is almost all of the unique Y ∈ Wn such that Xα ⊂ Y .

We let W ′
n+1 = {X ′ : X ∈ Wn+1}; W ′

n is a partition of Sn+1 =
⋃

W ′
n+1,

S − Sn+1 ∈ I, and X − X ′ ∈ I for all X ∈ Wn+1.
Since each Sn is almost all of S, the set

⋂∞
n=0 Sn is nonempty; let z be an

element of this intersection. For each n there is a unique Yn ∈ W ′
n such that

z ∈ Yn; let Xn be the unique Xn ∈ Wn such that Yn ⊂ Xn. It is clear that
X0 ⊃ X1 ⊃ . . . ⊃ Xn ⊃ . . ., and

⋂∞
n=0 Xn �= ∅. ��

In the next section we shall generalize Lemma 22.8: We shall prove that
if κ carries a precipitous ideal then it is measurable in an inner model.

Let us first consider κ-saturated ideals. First we observe that the proof
of Lemmas 22.3(i) and 22.4 works as well when I is only κ-saturated, and so
we have:

Lemma 22.23.

(i) If there exists a κ-saturated κ-complete ideal on an uncountable car-
dinal κ, then there exists a normal κ-saturated κ-complete ideal on κ.

(ii) Let I be a normal κ-saturated κ-complete ideal on κ. If S /∈ I and if
f : S → κ is regressive on S, then there is γ < κ such that f(α) < γ
for almost all α ∈ S. ��

Also, the proof of Lemma 10.14 works also for κ-saturated ideals, and so
we have:

Lemma 22.24. If κ carries a κ-saturated κ-complete ideal then κ is weakly
inaccessible. ��

It is consistent (relative to the existence of a measurable cardinal) that
an inaccessible cardinal κ carries an ideal I such that sat(I) = κ. (Such κ
cannot be weakly compact, see Exercise 22.13.)

We shall now prove the main result on κ-saturated ideals, using generic
ultrapowers. First we need a lemma on preservation of stationary sets by
forcing:
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Lemma 22.25. Let κ be a regular uncountable cardinal. Let V [G] be a generic
extension of V by a κ-c.c. notion of forcing. Then every closed unbounded
C ⊂ κ in V [G] has a closed unbounded subset D ∈ V . Consequently, if S ∈ V
is stationary in V , then S remains stationary in V [G].

Proof. Let Ċ be a name such that every condition forces that Ċ is a closed
unbounded subset of κ. Let D = {α : ‖α ∈ Ċ‖ = 1}. Clearly, D is a subset
of C and is closed; we have to prove only that D is unbounded.

Let α0 < κ; we wish to find α > α0 such that every condition forces α ∈ Ċ.
For every p, there is q ≤ p and some β > α0 such that q � β ∈ Ċ. Thus there
is a maximal incompatible set W of conditions, and for each q ∈ W an ordinal
β = βq such that q � β ∈ Ċ. Since |W | < κ, we let α1 = sup{βq : q ∈ W};
we have α1 < κ and

p � (∃β ∈ Ċ) α0 < β ≤ α1

for all conditions p. Similarly, we find α1 < α2 < α3 < . . . such that for
every n and every condition p,

p � (∃β ∈ Ċ) αn < β ≤ αn+1.

If we let α = limn αn, it is clear that ‖α ∈ Ċ‖ = 1. ��

Theorem 22.26 (Solovay). Let κ be a regular uncountable cardinal and
assume that κ carries a κ-saturated ideal.

(i) κ is weakly Mahlo;
(ii) {α < κ : α is weakly Mahlo} is stationary;
(iii) if X ⊂ κ has measure one in a normal κ-saturated ideal, then X ∩

M(X) has measure one, where

M(X) = {α < κ : cf α > ω and X ∩ α is stationary in α}.

Proof. If there exists a κ-saturated ideal on κ, then κ is weakly inaccessi-
ble by Lemma 22.24, and there exists a normal κ-saturated ideal on κ (by
Lemma 22.23). Let I be a normal κ-saturated ideal on κ. We first prove:

Lemma 22.27. If S ⊂ κ is stationary, then for I-almost all α < κ, S ∩ α is
stationary in α.

Proof. If not, then there is a set X of positive measure such that S ∩α is not
stationary in α (or cf α = ω) for all α ∈ X . Let G be a generic ultrafilter on κ
(corresponding to I) such that X ∈ G. Let N = UltG(M). N is a transitive
model. Since I is normal, κ is represented in N by the function d(α) = α.
Since S = j(S) ∩ κ, we have N � S is not stationary.

However, the notion of forcing is κ-saturated and hence κ is a regular
cardinal in M [G], and by Lemma 22.25, M [G] � S is stationary. Now N ⊂
M [G] and so N � S is stationary. A contradiction. ��
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Since I is normal, every set of positive measure is stationary. Thus (iii) fol-
lows since if X has measure one then M(X) has measure one by Lemma 22.27,
and so does X ∩ M(X).

To prove (i), it suffices to show that almost all α < κ are regular cardinals.
Otherwise, let X be a set of positive measure such that all α ∈ X are singular.
Let G � X be generic and let N = UltG(M). Then N � κ is singular, contrary
to the fact that κ is regular in M [G] and N ⊂ M [G].

Now (ii) follows by an application of (iii): Let X = {α < κ : α is regular},
then X ∩ M(X) = {α < κ : α is weakly Mahlo}. ��

As a corollary of Theorem 22.26 we have Solovay’s original proof of The-
orem 8.10:

Let κ be a regular uncountable cardinal and let S be a stationary subset
of κ. We claim that S is the disjoint union of κ stationary subsets.

Otherwise, the ideal I = {X ⊂ κ : X ∩ S is nonstationary} is a normal
κ-saturated ideal. By Lemma 22.27, S − M(S) has measure zero and hence
is nonstationary, which contradicts Lemma 8.9. ��

Now let us consider κ+-saturated ideals.

Lemma 22.28. Let I be a κ+-saturated κ-complete ideal on κ.

(i) There exists a least unbounded function, i.e., a function f : κ → κ such
that for any γ < κ there is no S of positive measure such that f(α) < γ
on S (unbounded) and that for any g : κ → κ, if g(α) < f(α) on a set
of positive measure then g is constant on a set of positive measure.

(ii) There exists a normal κ+-saturated κ-complete ideal on κ.

Proof. By Lemma 22.22 I is precipitous. Since I is κ+-saturated, the Boolean-
valued names for functions on κ in the ground model can be represented
not by functionals but by ordinary functions: Let F be a functional (on κ).
Let W = {dom(f) : f ∈ F}; since I is κ+-saturated, W can be replaced
by a disjoint W ′ such that for each X ∈ W there is X ′ ∈ W ′ such that
X ′ ⊂ X and X − X ′ ∈ I. If we replace each f ∈ F by its restriction to
the corresponding X ′ ∈ W ′, we get a functional F ′ whose elements have
disjoint domains. Then f =

⋃
F ′ is a function, and if ḟ ∈ V B is the name

corresponding to F , then ‖ḟ = f̌‖ = 1.
Let ḟ ∈ V B be such that ‖ḟ represents κ̌ in the generic ultrapower‖ = 1

and let f : κ → κ be such that ‖ḟ = f̌‖ = 1. Then f is the least unbounded
function.

If f is the least unbounded function then f∗(I) = {X ⊂ κ : f−1(X) ∈ I}
is a normal κ-complete ideal and is κ+-saturated. ��

Unlike κ-saturation, the existence of a κ+-saturated ideal on κ does not
imply that κ be a limit cardinal. However, the consistency strength of a κ+-
saturated ideal on a successor cardinal κ is considerably stronger than mea-
surability (while the existence of an ideal I on an inaccessible κ such that
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sat(I) = κ+ is equiconsistent with measurability). It is consistent, relative
to a Woodin cardinal, that the nonstationary ideal on ℵ1 is ℵ2-saturated; we
shall study this problem in Part III. We shall also return to the subject of
saturation of the nonstationary ideal in general in Chapter 23.

Saturated ideals have influence on cardinal arithmetic, similar to measur-
able cardinals:

Lemma 22.29. Let κ be a regular uncountable cardinal and let I be a κ+-
saturated ideal on κ. If 2λ = λ+ for all λ < κ, then 2κ = κ+.

Proof. Let M be the ground model. Let P be the notion of forcing corre-
sponding to I, let G be generic on P , and let N = UltG(M). Since I is
κ+-saturated, N is well-founded and hence we identify it with a transitive
model N ⊂ M [G]. Let j : M → N be the canonical embedding. We have
j(γ) = γ for all γ < κ, and j(κ) > κ. If X ⊂ κ and X ∈ M , then X ∈ N
because X = j(X) ∩ κ. Thus P M (κ) ⊂ P N (κ).

We assume that M � (2λ = λ+ for all λ < κ) and hence N � (2λ = λ+ for
all λ < j(κ)), and in particular, N � |P (κ)| = κ+, where α+ denotes the least
cardinal greater than α. Now (κ+)N ≤ (κ+)M [G]; and because sat(P ) = κ+

(in M), (κ+)M is a cardinal in M [G] and we have also (κ+)M [G] = (κ+)M .
Thus we have, in M [G],

|PM (κ)| ≤ (κ+)M

and since all cardinals above κ+ in M are preserved, the last formula is also
true in M , and we have 2κ = κ+. ��

Lemma 22.30. Let I be an ℵ2-saturated ideal on ω1. Then

(i) If 2ℵ0 = ℵ1, then 2ℵ1 = ℵ2.
(ii) If ℵ1 < 2ℵ0 < ℵω1 , then 2ℵ1 = 2ℵ0 .
(iii) If 2ℵ0 = ℵω1 , then 2ℵ1 ≤ ℵω2 .
(iv) If ℵω1 is strong limit, then 2ℵω1 < ℵω2 .
(v) Let Φ(α) denote the αth member of the class {κ : ℵκ = κ}. If Φ(ω1) is

strong limit, then 2Φ(ω1) < Φ(ω2).

Proof. (i) and (ii) are as in Corollary 22.17.
Let G be a generic ultrafilter on ω1, let N = UltG(M) and let j : M → N .

N is a transitive model, N ⊂ M [G].
Let us denote κ = ωM

1 . We have j(γ) = γ for all γ < κ, and j(κ) > κ.
Thus κ is a countable ordinal in N . Moreover, every f : κ → Ord in M
belongs to N , and so every γ < ωM

2 is countable in N . Since sat(I) = ℵ2,
ωM

2 is a cardinal in M [G], hence in N , and so

j(ωM
1 ) = ωM

2 .

We shall now prove (iii), (iv), and (v). To prove (iii), let us assume that
M � 2ℵ0 = ℵω1 . Since N � |ωM

1 | = ℵ0, and j is elementary, we have M [G] �
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|PM (κ)| ≤ (2ℵ0)N and N � 2ℵ0 = ℵj(κ). Now ℵN
j(κ) ≤ ℵM [G]

j(κ) ; and since
j(κ) = ωM

2 , ℵM [G]
j(κ) is the ωM

2 th cardinal in M [G]. However, all cardinals ≥ ℵM
2

are preserved and hence ℵM [G]
j(κ) = ℵM

ω2
. Thus

|PM (ωM
1 )| ≤ ℵM

ω2

holds in M [G]; and because cardinals above ℵ2 are preserved, this also holds
in M .

To prove (iv) or (v), note that if ℵω1 (or Φ(ω1)) is strong limit, then
2ℵω1 = ℵℵ1

ω1
(2Φ(ω1) = (Φ(ω1))ℵ1). Let λ denote ℵω1 in (iv) and Φ(ω1) in (v).

It is easy to see that j(λ) > λ. Now N � ∀α < j(λ) |ακ| < j(λ), and because
(λκ)M ⊂ (λκ)N , we have M [G] � |(λκ)M | ≤ j(λ).

In case (iv) we have j(λ) ≤ ℵM
ω2

as in (iii); and in case (v) we obtain
similarly j(λ) ≤ Φ(j(κ)) ≤ Φ(ω2). The rest of the proof of either (iv) or (v)
is as before. ��

To conclude this section we prove a generalization of Lemma 22.11; we
show in Lemma 22.32 that for all λ ≤ κ+, if V [G] is a generic extension by
λ-saturated forcing, then a λ-saturated ideal in V generates a λ-saturated
ideal in V [G].

Lemma 22.31. Let I be a κ+-saturated κ-complete ideal on κ. Let G be
a corresponding generic ultrafilter and let N = UltG(M) be the generic ultra-
power. Then every s : κ → M in M [G] is in N .

Proof. Let ṡ be a name for s; for each α < κ, let ṡα be a name such that
‖ṡ(α) = ṡα‖ = 1. Each ṡα is represented by a function fα ∈ M on κ. Let
h : κ → κ be the least unbounded function. Let f be the function on κ
defined by f(α) = 〈fβ(α) : β < h(α)〉. Then f represents ṡ in the generic
ultrapower. ��

Lemma 22.32. Let B be a complete Boolean algebra, let G be a V -generic
ultrafilter on B and let κ be an uncountable regular cardinal. Let λ ≤ κ+ be
regular and assume that sat(B) ≤ λ and sat(B) < κ. If I is a λ-saturated
κ-complete ideal on κ, then in V [G], I generates a λ-saturated κ-complete
ideal.

Proof. Let J ∈ V [G] be the ideal generated by I. Since satB ≤ κ, J is κ-
complete. Let J̇ ∈ V B be the canonical name for J , and let Ċ ∈ V B be the
Boolean algebra Ċ = P (κ̌)/J̇ .

We want to show that V B � Ċ is λ̌-saturated; by Lemma 16.5 it suffices
to show that B ∗ Ċ is λ-saturated because B is λ-saturated. Let D = P (κ)/I.
We shall find in V D a Boolean algebra Ė such that V D � Ė is λ̌-saturated,
and such that D ∗ Ė is isomorphic to B ∗ Ċ. Since D is λ-saturated, it will
follow that D ∗ Ė is λ-saturated and we shall be done.

In V D, consider the generic ultrapower N = UltĠ(V ), where Ġ is the
canonical ultrafilter on Ď. Let j : V → N be the corresponding elementary
embedding. Let Ė = j(B).
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Let sat(B) = ν < κ. Since j is elementary, we have N � sat(j(B̌)) = j(ν);
and since j(ν) = ν and by Lemma 22.31 all ν-sequences in V D are in N , we
have V D � sat(Ė) = ν. Thus V D � Ė is λ-saturated.

It remains to show that B ∗ Ċ and D ∗ Ė are isomorphic. Let ċ ∈ B ∗ Ċ.
Then ċ ∈ V B and ‖ċ ∈ Ċ‖B = 1. Thus there is some Ẋ ∈ V B such that
‖Ẋ ⊂ κ‖B = 1 and that

‖ċ is the equivalence class of Ẋ mod J̇‖B = 1.

Let f : κ → B be the function f(α) = ‖α ∈ Ẋ‖. Since f(α) ∈ B for all
α < κ, f represents in N = UltG(B) ⊂ V D an element ė ∈ j(B̌) = Ė; and
ė ∈ D ∗ Ė. We let h(ċ) = ė.

The proof is completed by verifying that the definition of h(ċ) does not
depend on the choice of Ẋ and that h is an isomorphism. ��

Consistency Strength of Precipitousness

Theorem 22.33.

(i) If κ is a regular uncountable cardinal that carries a precipitous ideal,
then κ is measurable in an inner model of ZFC.

(ii) If κ is a measurable cardinal, then there exists a generic extension in
which κ = ℵ1, and κ carries a precipitous ideal.

The proof of (i) uses the technique of iterated ultrapowers (compare with
(20.5)–(20.8)).

Let κ be a regular uncountable cardinal, and let I be a precipitous ideal
on κ. Let C be the class of all strong limit cardinals ν > 2κ such that
cf ν ≥ sat(I). Let γ0 < γ1 < . . . < γn < . . . (n < ω), be elements of C such
that |γn ∩ C| = γn, let A = {γn : n = 0, 1, . . .} and let λ = sup(A).

Lemma 22.34. There exists an L[A]-ultrafilter W on κ such that W is
nonprincipal, κ-complete normal and iterable, and every iterated ultrapower
Ult(α)

W (L[A]) is well-founded.

Proof. Since I is precipitous, the generic ultrapower is well-founded, and so
the diagonal function d(α) = α represents some ordinal number in UltG(V ).
Thus there is a set S of positive measure, and an ordinal γ such that

(22.21) S � ď represents γ̌ in UltG(V ).

We shall first show that for every X ∈ L[A], X ⊂ κ, either S ∩ X or S − X
has measure 0, and so

(22.22) U = {X ∈ P (κ) ∩ L[A] : X ∩ S has positive measure}

is an L[A]-ultrafilter.
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Let H = HL[A](κ ∪ C ∪ {A}) be the class of all sets definable in L[A]
from elements of κ ∪ C ∪ {A} (this is expressible in ZF similarly to the way
in which ordinal definability is; or we can use Lθ[A] for some large θ). Since
|C ∩ γn| = γn for each n, it follows that if π is the transitive collapse of H ,
then π(A) = A and π(H) = L[A]. Now if X ⊂ κ and X ∈ L[A], then
because π is the identity on κ, we have X = π(Y ) = Y ∩ κ for some Y ∈ H ,
and Y = {ξ : L[A] � ϕ(ξ, E, A)}. Thus for every X ∈ P (κ) ∩ L[A] there is
a formula ϕ and a finite set E ⊂ κ ∪ K such that

(22.23) X = {ξ < κ : L[A] � ϕ(ξ, E, A)}.

We shall now show that (22.22) defines an L[A]-ultrafilter. Recall that
for any generic ultrafilter G on κ, jG is the identity on κ, and moreover,
jG(ν) = ν for all ν ∈ C (this follows from the definition of C).

If X ∈ L[A], and X ∩ S has positive measure, then because X � X̌ ∈ Ġ
and because (22.21) holds, we have

X ∩ S � γ̌ ∈ jG(Ẋ).

Now using (22.23), and the fact that jG(A) = A and jG(E) = E, we have

(22.24) X ∩ S � (L[Ǎ] � ϕ(γ̌, Ě, Ǎ)).

But the formula forced by X ∩S in (22.24) is about V , and thus true. Hence

‖γ̌ ∈ jG(X̌)‖ = 1,

and by (22.21),
S � X̌ ∈ Ġ.

This, however, means that S − X has measure 0.
Since I is κ-complete, it is clear that U is L[A]-κ-complete, and moreover

the intersection of any countable family of elements of U is nonempty. It is
less clear that U is iterable: Let 〈Xα : α < κ〉 ∈ L[A]; it suffices to show
that S � ({α : Xα ∈ U} ∈ L[A]). If G is generic such that S ∈ G, then
{α < κ : Xα ∈ U} = {α < κ : γ ∈ jG(Xα)}, but this is in L[A] because
jG(〈Xα : α < κ〉) ∈ L[jG(A)] and jG(A) = A.

By Exercise 19.10, UltU (L[A]) is well-founded; let f : κ → κ be the
function that represents κ in UltU (L[A]). Let W = f∗(U).

It is easy to verify that W is a normal, L[A]-κ-complete, iterable L[A]-
ultrafilter on κ, and that the intersection of any countable family of elements
of W is nonempty. By Exercise 19.10, every iterated ultrapower Ult(α)

W (L[A])
is well-founded. ��

Proof of Theorem 22.33(i). Let A = {γn : n = 0, 1, . . . } be as above, let
λ = sup(A), and let W be an L[A]-ultrafilter as in Lemma 22.34. Let us
define in L[A]

(22.25) F = {X ⊂ λ : ∃n0 ∀n ≥ n0 γn ∈ X}
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(compare with (20.6)). We claim that D = F ∩ L[F ] is a normal measure
on λ in L[D].

For each α, let i0,α : L[A] → Ult(α)
W (L[A]) be the canonical elementary

embedding. It follows from the definition of the class C that:

(22.26) if α < γn, then i0,α(γn) = γn;

i0,γn(κ) = γn;

if α < λ, then i0,α(λ) = λ.

Hence for all α < λ, i0,α(L[A]) = L[A], i0,α(F ) = F , and i0,α(D) = D.
We shall now prove that D is an ultrafilter in L[D]. Otherwise, let X ⊂ λ

be the least X (in the canonical well-ordering of L[D]) such that X /∈ D and
λ − X /∈ D. Since i0,α(D) = D for all α < λ, we have i0,α(X) = X for all
α < λ; in particular, i0,γn(X) = X for all n. Now for any n, if γn ∈ X , then
i0,γn(κ) ∈ i0,γn(X) and hence κ ∈ X , and vice versa. Hence either all γn are
in X or none, and so either X ∈ F or λ − X ∈ F , a contradiction.

The proof that D is λ-complete (in L[D]) and normal is similar and is
left to the reader.

Thus we have proved that there exists a D in L[A] such that

(22.27) L[D] � D is a normal measure on λ.

The proof will be complete if we find a transitive model M and an elementary
embedding i : M → L[D] such that i(κ) = λ. Then κ is measurable in some
transitive model.

Let us recall that for each α, i0,α is the elementary embedding i0,α :
L[A] → Ult(α)

W (L[A]). As we have seen, if α < λ, then i0,α(λ) = λ and
i0,α(L[A]) = L[A]. Let C1 be a proper class of ordinals, greater than λ such
that i0,λ(ν) = ν for all ν ∈ C1.

Let H = HL[D](κ ∪ {λ} ∪ C1) be the class of all sets definable in L[D]
from elements of κ∪ {λ}∪C1. (As before, the problem of expressibility of H
in ZF can be overcome by replacing L[D] by a suitable large segment Lθ[D].)
H is an elementary submodel of L[D].

If α < λ, then i0,α(ν) = ν for all ν ∈ κ ∪ {λ} ∪ C1; it follows that
i0,α(x) = x for all x ∈ H . Observing that for every ν such that κ ≤ ν < λ
there exists α < λ such that i0,α(ν) > ν, we conclude that H contains no
ordinal ν such that κ ≤ ν < λ. Hence if π is the transitive collapse of H ,
and M = π(H), then π(λ) = κ; thus i = π−1 is an elementary embedding of
some transitive model M into L[D], and i(κ) = λ. ��

The proof of (ii) uses the notion of forcing which collapses all α < κ
onto ω and makes κ = ℵ1 (the Lévy collapse).

Proof of (ii). Let κ be a measurable cardinal. We shall show that if V [G] is
the generic extension by the Lévy collapse such that κ becomes ℵ1, then V [G]
has a precipitous ideal on ℵ1.
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Let P be the set of all functions p such that dom(p) is a finite subset of
κ × ω and such that p(α, n) < α for all (α, n) ∈ dom(p); p is stronger than q
if p ⊃ q. Let G be a V -generic filter on P . In V [G], κ is ℵ1.

Let D be a normal measure on κ, let M = UltD(V ) and let j : V → M be
the elementary embedding j = jD. In V [G], let I be the ideal on κ generated
by the dual of D; i.e.,

(22.28) X ∈ I if and only if X ∩ Y = ∅ for some Y ∈ D.

A routine argument (using satP = κ) shows that I is in V [G] a countably
complete ideal containing all singletons. It can be proved that I is precipitous;
instead, we shall prove a weaker (but sufficient) property, namely that there
exists an S ⊂ ℵ1, S /∈ I, such that I�S = {X ⊂ ℵ1 : X ∩ S ∈ I} is
a precipitous ideal.

For that, it suffices to show that there exists an S /∈ I such that (when
forcing with sets X /∈ I) S forces that the generic ultrapower is well-founded.
In turn, it suffices to construct an extension of V [G] in which there exists
a V [G]-ultrafilter W on κ, generic over V [G] (with respect to forcing with
sets X /∈ I) such that the generic ultrapower UltW (V [G]) is well-founded.

For every ν, let Pν be the set of all p ∈ P such that α < ν whenever
(α, n) ∈ dom(p), and let P ν = {p ∈ P : α ≥ ν for all (α, n) ∈ dom(p)}; P is
isomorphic to the product Pν × P ν .

Let us consider the notion of forcing j(P ). Clearly, (j(P ))κ = P , and thus
j(P ) is isomorphic to P × Q where Q = (j(P ))κ. Every q ∈ Q is represented
in the ultrapower M by a function 〈qα : α < κ〉 such that qα ∈ Pα for all
α < κ.

Let H be a V [G]-generic filter on Q; thus G × H is V -generic on P × Q.
As in Theorem 21.3 we define in V [G × H ] a V [G]-ultrafilter W on κ as
follows:

(22.29) X ∈ W if and only if κ ∈ (j(Ẋ))G×H .

The definition (22.29) does not depend on the choice of the name Ẋ because
p ∈ G implies j(p) ∈ G×H . Let Ẇ be the canonical name for W . As in (21.8)
we have for any p ∈ P , q ∈ Q,

(22.30) (p, q) � Ẋ ∈ Ẇ if and only if for almost all α, p ∪ qα � α̌ ∈ Ẋ

(here Ẋ is a P -valued name and 〈qα : α < κ〉 represents q in M ; “almost all”
refers to the normal measure D).
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First we observe that the ultrapower UltW (V [G]) is well-founded. This is
because the following commutative diagram holds:

UltW (V [G])

V [G] M [G × H ]
j

k
jW

�

�

�
�

�
�

�
���

.

In the diagram, j is the extension of j : V → M defined by

j(x) = (j(ẋ))G×H

and k is defined as follows: If f ∈ V [G] is a function on κ representing [f ]
in UltW (V [G]), then

k([f ]) = (j(f))(κ).

Both j and k are elementary and the diagram commutes.
It remains to show that W is V [G]-generic with respect to forcing with

sets X /∈ I. It suffices to show that if X = {Xi : i < θ} is an I-partition of κ,
then Xi ∈ W for some i. Let Ẋ ∈ V P be a name for X and let Ẋi, i < θ, be
names for the Xi. Let us assume that there are conditions p ∈ G and q ∈ H
such that

p � Ẋ is an İ-partition of κ̌

and for each i < θ,
(p, q) � Ẋi /∈ Ẇ .

We shall derive a contradiction.
Let q be represented in M by 〈qα : α < κ〉. By (22.30) there is for each i

a set Ai ∈ D such that for all α ∈ Ai,

(22.31) p ∪ qα � α /∈ Ẋi.

Let us define (in V [G]),

(22.32) T = {α < κ : qα ∈ G}.

We shall prove that T /∈ I and that T ∩ Xi ∈ I for all i < θ, thus reaching
a contradiction since X is an I-partition.

For each i < θ, if α ∈ T and α ∈ Ai, then p∪qα ∈ G and hence, by (22.31),
α /∈ Xi. It follows that T ∩ Xi ∩ Ai = ∅, and so by (22.28), T ∩ Xi ∈ I.

Let us finally show that T /∈ I. It suffices to show that T ∩Z �= ∅ whenever
Z ∈ D. Thus let Z ∈ D, and let us prove that qα ∈ G for some α ∈ Z. Let

E = {r ∈ P : r ≤ qα for some α ∈ Z}.

It is easy to see that E is dense in P because Z is unbounded and qα ∈ Pα

for each α < κ. Thus E ∩ G �= ∅ and hence T ∩ Z �= ∅. ��
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Exercises

22.1. Let I be a κ-complete ideal and let λ ≤ κ. If I is not λ-saturated then there
exists a family {Zα : α < λ} of pairwise disjoint sets of positive I-measure.

[If {Xα : α < λ} is such that Xα ∩ Xβ ∈ I whenever α �= β, let Zα = Xα −
S

β<α Xβ .]

22.2. Let I be a κ-complete σ-saturated ideal on κ. If g is a minimal unbounded
function then g∗(I) is a normal κ-complete σ-saturated ideal.

22.3. Let ẋα be as in (22.5). Show that xα /∈M .
[Let a ∈M . Show that for each k, ‖ẋα∩k = ǎ∩k‖ = [Dk] where µ(Dk) = 1/2k.]

22.4. Let I be a σ-saturated κ-complete ideal on κ, and let {Yξ : ξ < ω1} be
a family of sets of positive measure. Then there is an uncountable W ⊂ ω1 such
that

T

ξ∈W Yξ is nonempty.
[Assume that {Yξ : ξ < ω1} is a counterexample. For each ν < ω1, let Zν =

T

ξ≥ν (κ− Yξ). Show that Z0 ⊂ Z1 ⊂ . . . ⊂ Zν ⊂ . . . and that
S

ν<ω1
Zν = κ. Hence

there is γ < ω1 such that Z =
S

ν<γ Zν , then κ − Z ∈ I . This is a contradiction
since Yγ ⊂ κ− Z.]

22.5. If I is a σ-saturated κ-complete ideal on κ and P is a σ-saturated notion of
forcing then in V [G], the ideal generated by I is a σ-saturated κ-complete ideal.

[Proceed as in Lemma 22.11 and use Exercise 22.4 to show that J is σ-saturated.]

If κ is measurable and if we adjoin λ ≥ κ Cohen reals, then κ carries a σ-
saturated κ-complete ideal but is not real-valued measurable:

22.6. Show that in V [G] there are functions fα : ω → ω, α < λ, such that whenever
g : ω → ω, then for at most countably many α’s we have fα(n) ≤ g(n) for all n.

[V [G] is also obtained by forcing with the product of λ copies of the notion of
forcing that adjoins a generic function f : ω → ω, thus V [G] = V [〈fα : α < λ〉].
Show that if g : ω → ω, then there is a countable A ⊂ λ such that g ∈ V [〈fα :
α < A〉]; if β /∈ A, use the genericity of fβ over V [〈fα : α < A〉] to show that
fβ(n) > g(n) for some n.]

22.7. In V [G], κ is not real-valued measurable.
[Use Exercise 22.6 and the proof of Lemma 10.16.]

22.8. If I is κ+-saturated, then P (κ)/I is a complete Boolean algebra.
[By Exercise 7.33 it suffices to show that B is κ+-complete. Show that

P

W
exists in B for every incompatible W ⊂ B. Extend W to a partition Z of B;
Z = {[Xα] : α < κ}. Let Yα = Xα −

S

β<α Xβ , and Y =
S{Yα : [Xα] ∈ W}. Show

that [Y ] =
P

W in B.]

22.9. If the GCH holds and B = P (κ)/I is complete, then I is κ+-saturated.
[If B is not κ+-saturated, let W be an incompatible subset of B of size κ+.

For each X ⊂ W let ux =
P

X. It follows that |B| ≥ 2κ+
, but clearly |B| ≤ 2κ;

a contradiction.]

22.10. If I is normal, then P (κ)/I is κ+-complete.
[Let Xα, α < κ, be disjoint subsets of κ such that Xα /∈ I for all α. For each

α < κ let Yα be Xα without the least element of Xα; let Y =
S

α<κ Yα. On the
one hand, [Y ] ≥ [Xα] for all α; on the other hand, if Z ⊂ Y and Z /∈ I , let f be
the function on Z defined such that for all x ∈ Yα, f(x) = the least element of Xα.
Since f is regressive, and I is normal, f is constant on some S /∈ I , and hence
Z ∩ Yα /∈ I for some α. Thus [Y ] =

P

α<κ[Xα].]
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22.11. Let I be a normal κ-complete ideal on κ. If I is not κ+-saturated, then
there exists an almost disjoint family of κ+ sets of positive measure.

[Let Xi, i < κ+, be sets of positive measure such that Xi ∩ Xj has measure
zero. For each i < κ+, enumerate {Xj : j < i} by {Zα : α < κ}, and let Yi be the
diagonal intersection of {Xi − Zα : α < κ}. Now Yi contains almost all elements
of Xi, and Yi ∩ Zα ⊂ α + 1 for every α < κ. Thus any Yi, Yj are almost disjoint.]

22.12. If I is a κ-complete ideal on κ with the property that every regressive
function is bounded almost everywhere (i.e., if f(α) < α for almost all α, then
there is γ < κ such that f(α) < γ for almost all α), then I is κ-saturated (and
normal).

[Otherwise, let Xα, α < κ, be a partition of κ into disjoint sets of positive
measure. For α > 0, let Yα = Xα − {aα} where aα = min Xα, and let Y0 =
X0∪{aα : α > 0}. The function f that has value aα on each Yα is regressive almost
everywhere but is not bounded almost everywhere.]

22.13. If I is an atomless κ-complete κ-saturated ideal on an inaccessible cardi-
nal κ, then κ is not weakly compact.

[Show that κ does not have the tree property. Use I to construct a tree (T,⊃)
whose elements are sets of positive measure. At successor steps, split each X on
the top level into two disjoint sets of positive measure. At limit steps, take all those
intersections along branches that have positive measure. Since I is κ-saturated,
each level has size < κ; each level α < κ is nonempty because κ is inaccessible and
I is κ-complete. Then use sat(I) ≤ κ to show that T has no branch of length κ.]

22.14. If I is a precipitous ideal on κ, then there exists a minimal unbounded
function.

[There is a set X of positive measure and a function f on X such that X forces
that f represents κ in the generic ultrapower.]

Historical Notes

Saturated ideals, a concept introduced by Tarski in [1945], were brought to promi-
nence in Solovay’s work [1971]. Solovay introduced the technique of generic ultra-
powers and proved Theorems 22.1 and 22.26 (as well as Theorem 8.10).

Theorem 22.2 is due to Prikry [1975], and so is the model in Example 22.10 in
which κ carries a σ-saturated ideal [1970]. Theorem 22.16 is due to Jech and Prikry
([1976] and [1979]).

Precipitous ideals were introduced by Jech and Prikry in [1976]; their pa-
per [1979] investigates generic ultrapowers. Lemma 22.21: Jech [1976]. Lemma 22.28:
Solovay [1971]. Lemmas 22.29 and 22.30: Jech and Prikry [1976, 1979].

Kunen’s paper [1978] contains a number of results on saturated ideals. Kunen
constructs several generic extensions with saturated ideals, including a model (using
a huge cardinal) in which ℵ1 carries an ℵ2-saturated ideal. In [1970], Kunen proves
that if κ carries a κ+-saturated ideal then there is an inner model with a measurable
cardinal; in [1971a] Kunen shows that if moreover κ is a successor cardinal then
there is an inner model with many measurable cardinals. Mitchell [1983] improved
this to measurable cardinals of order κ+. Part (i) of Theorem 22.33 is due to Jech
and Prikry and part (ii) was proved by Mitchell; see Jech et al. [1980].

Exercise 22.4: Silver.
Exercises 22.5, 22.6 and 22.7: Prikry [1970].
Exercise 22.8: Smith and Tarski.
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Exercise 22.9: Solovay [1971].
Exercise 22.11: Baumgartner, Hajnal, and Máté [1975].
Exercise 22.12: Kanamori [1976]
Exercise 22.13: Lévy, Silver.



23. The Nonstationary Ideal

Stationary sets play a fundamental role in modern set theory. In particular,
the analysis of the nonstationary ideal INS on ω1 has been used in the study
of forcing axioms, large cardinals and determinacy. These will be dealt with in
later chapters; this chapter continues the investigations began in Chapters 8
and 22. Throughout this chapter “almost all” means all except nonstationary
many.

Some Combinatorial Principles

We begin with combinatorial principles that involve stationary sets. Let us
recall Jensen’s Principle (♦): There exist sets Sα ⊂ α such that for every
X ⊂ ω1, the set {α < ω1 : X ∩ α = Sα} is stationary. There are several vari-
ants of ♦ (see e.g. Exercise 15.25); most notably the following weak version:

Lemma 23.1. The following principle is equivalent to ♦: There exists a se-
quence 〈Sα : α < ω1〉 of countable sets such that for each X ⊂ ω1 the set
{α < ω1 : X ∩ α ∈ Sα} is stationary.

Proof. Let 〈Sα : α < ω1〉 be a sequence as in the lemma; we shall produce
a diamond sequence. First, let f be a one-to-one mapping of ω1 onto ω1 × ω
such that f“α = α × ω for all limit ordinals α. For every limit ordinal α, let
Aα = {f“x : x ∈ Sα} (and Aα = ∅ otherwise). Note that for each Y ⊂ ω1×ω
the set {α < ω1 : Y ∩ (α × ω) ∈ Aα} is stationary.

For each α, let Aα = {an
α : n ∈ ω}. It follows that for each X ⊂ ω1 × ω

there exists some n such that the set {α : X ∩ (α × ω) = an
α} is stationary.

For each α < ω1 and each n, let Sn
α = {ξ < α : (ξ, n) ∈ an

α}. We complete
the proof by showing that for some n, 〈Sn

α : α < ω1〉 is a diamond sequence.
If not, there exist sets Xn ⊂ ω1 such that {α < ω1 : Xn ∩ α = Sn

α} are
nonstationary. Letting X =

⋃
n∈ω(Xn × {n}), it follows that for each n,

{α < ω1 : X ∩ (α × ω) �= an
α} is nonstationary; a contradiction. ��

The Diamond Principle admits a generalization from ω1 to any regular
cardinal κ. Even more generally, let E be a stationary subset of a regular
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cardinal κ. ♦(E) is the following principle (and ♦κ is ♦(κ)):

(23.1) There exists a sequence of sets 〈Sα : α ∈ E〉 with Sα ⊂ α such that
for every X ⊂ κ, the set {α ∈ E : X ∩α = Sα} is a stationary subset
of κ.

The proof of Theorem 13.21 generalizes to show that if V = L, then
♦(E) holds for any regular cardinal κ and any stationary set E ⊂ κ.

For a successor cardinal κ+ and a stationary subset E, consider the fol-
lowing:

(23.2) There exists a sequence of sets 〈Sα : α ∈ E〉 such that |Sα| ≤ κ for
each α, and for every X ⊂ κ+, the set {α ∈ E : X ∩ α ∈ Sα} is
stationary.

The proof of Lemma 23.1 generalizes and shows that (23.2) is equivalent
to ♦(E).

While the Diamond Principle holds in L, as well as in L[U ] and other
inner models for large cardinals, restrictions of ♦ to various stationary sets
can be proved just from assumptions on cardinal arithmetic. Let λ < κ+ be
a regular cardinal, and recall (8.4) that Eκ+

λ is the set of all ordinals α < κ+

of cofinality λ.

Theorem 23.2 (Gregory). If λ is regular such that κλ = κ and if 2κ = κ+,
then ♦(Eκ+

λ ) holds.

In particular, if 2ℵ0 = ℵ1 and 2ℵ1 = ℵ2 then ♦(Eℵ2
ℵ0

) holds.

Proof. We prove the version of ♦(E) from (23.2) where E = Eκ+

λ ; by
Lemma 23.1, ♦(E) follows. Let 〈xα : α < κ+〉 enumerate all bounded subsets
of κ+ (this is possible by 2κ = κ+). For each α ∈ E, we let Sα be the set of all
Y ⊂ α such that Y is the union of at most λ elements of the set {xβ : β < α}.
Since κλ = κ, we have |Sα| ≤ κ.

We claim that 〈Sα : α ∈ E〉 satisfies (23.2). Let X ⊂ κ+; we will show
that X∩α ∈ Sα for almost all α ∈ E. Let C be the set of all α < κ+ such that
for every β < α, X ∩β = xγ for some γ < α. The set C is closed unbounded.

We claim that if α ∈ C ∩ E then X ∩ α ∈ Sα. Let Z ⊂ α be a set cofinal
in α such that |Z| = λ. If for each β ∈ Z, γ(β) < α is such that X∩β = xγ(β),
then X ∩ α =

⋃
{xγ(β) : β ∈ Z}, and hence X ∩ α ∈ Sα. ��

A property related to ♦ is club-guessing. This has been introduced and
investigated in detail by Shelah. Let κ be a regular uncountable cardinal and
let E be a stationary subset of κ. If C ⊂ κ is closed unbounded and if each
cα, α ∈ E, is cofinal in α, we say that 〈cα : α ∈ E〉 guesses C if for all α ∈ E,
C contains an end segment of cα, i.e., C ⊃ cα − β for some β < α.

Theorem 23.3 (Shelah). Let κ ≥ ℵ3 be a regular uncountable cardinal, and
let λ be a regular uncountable cardinal such that λ+ < κ. Then there exists
a sequence 〈cα : α ∈ Eκ

λ〉 with each cα ⊂ α closed unbounded, such that for
every closed unbounded set C ⊂ κ, the set {α ∈ Eκ

λ : cα ⊂ C} is stationary.
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Proof. It suffices to find a family {cα : α ∈ Eκ
λ} such that each cα is a closed

subset of α, and for every closed unbounded C ⊂ κ, the set {α ∈ Eκ
λ : cα is

unbounded in α and cα ⊂ C} is stationary.
Assume that no such {cα : α ∈ Eκ

λ} exists. Let {c0
α : α ∈ Eκ

λ} be any
collection of closed unbounded subsets of the α’s of order-type λ. By induction
on ν < λ+, we construct closed unbounded sets Cν ⊂ κ and collections
{cν

α : α ∈ Eκ
λ} as follows: cν

α = c0
α ∩

⋂
ξ<ν Cξ, and Cν is such that the set

{α ∈ Eκ
λ : cν

α is unbounded in α and cν
α ⊂ Cν} is nonstationary.

Let C be the closed unbounded set C =
⋂

ν<λ+ Cν , and for each α let
cα = c0

α ∩ C. The set S = {α ∈ Eκ
λ : C ∩ α is unbounded in α} is stationary,

and for each α ∈ S there exists a ν(α) < λ+ such that cα = c
ν(α)
α (because

c0
α ⊃ c1

α ⊃ . . . of length λ+).
There exist a ν < λ+ and a stationary set T ⊂ S such that cα = cν

α for
all α ∈ T . If α ∈ T then cν

α = cν+1
α = cν

α ∩ Cν , and so cν
α ⊂ Cν , contrary to

the choice of Cν . ��

The sequence 〈cα : α ∈ Eκ
λ〉 guesses every closed unbounded set at sta-

tionary many α’s. The same proof shows that for every stationary E ⊂ Eκ
λ

there exists a sequence 〈cα : α ∈ E〉 that guesses every closed unbounded set
at stationary many α ∈ E (Exercise 23.1). We state, without proof, a fur-
ther refinement that will be used later in this chapter in the proof of the
Gitik-Shelah Theorem 23.17.

Lemma 23.4. Let κ and λ be regular uncountable cardinals such that λ+ <
κ. For every stationary set E ⊂ Eκ

λ there exists a sequence 〈cα : α ∈ E〉 with
each cα ⊂ α closed unbounded, such that for every closed unbounded C ⊂ κ,
the set {α ∈ E : cα ∈ C} is stationary, and moreover,

(23.3) if α ∈ E is a limit of ordinals of cofinality greater than λ, then all
nonlimit elements of cα have cofinality greater than λ.

Proof. For proof, see Gitik and Shelah [1997]. ��

This cannot be improved much further; see Exercise 23.2.
One of the most fundamental combinatorial principles is Jensen’s Square

Principle. Let κ be an uncountable cardinal; �κ (square-kappa) is as follows:

(�κ) There exists a sequence 〈Cα : α ∈ Lim(κ+)〉 such that
(i) Cα is a closed unbounded subset of α;
(ii) if β ∈ Lim(Cα) then Cβ = Cα ∩ β;
(iii) if cf α < κ then |Cα| < κ.

(23.4)

The sequence 〈Cα : α ∈ Lim(κ+)〉 is called a square-sequence. Note that by
(ii) and (iii), the order-type of every Cα is at most κ.

Using the fine structure theory of L, Jensen proved that in L, �κ holds
for every uncountable cardinal κ. (We elaborate on this in Part III). This has
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been extended to most inner models for large cardinals: the Square Principles
hold in L[U ], L[U ], an in more general inner models.

Squares are relatively easy to obtain by forcing; as an example, see Exer-
cise 23.3.

Definition 23.5. Let κ be a regular uncountable cardinal and let α < κ be
a limit ordinal of uncountable cofinality. We say that a stationary set S ⊂ κ
reflects at α if S ∩ α is a stationary subset of α.

Corollary 17.20 states that if κ is a weakly compact cardinal then every
stationary subset of κ reflects. We address the subject of reflection of sta-
tionary sets later in this chapter. See also Exercises 23.4 and 23.5. In general,
squares provide examples of nonreflecting stationary sets:

Lemma 23.6. �ω1 implies that there exists a stationary set S ⊂ Eℵ2
ℵ0

that
does not reflect.

Proof. Let 〈Cα : α ∈ Lim(ω2)〉 be a square-sequence. For each α < ω2 of
cofinality ω1, the order-type of Cα is ω1. It follows that there exists a count-
able limit ordinal η such that the set S = {γ ∈ Eℵ2

ℵ0
: γ is the ηth element of

some Cα} is stationary. But for every α of cofinality ω1, S has at most one
element in common with Cα. Hence S does not reflect. ��

Stationary Sets in Generic Extensions

If κ is a regular uncountable cardinal then a closed unbounded subset of κ
in the ground model remains a closed unbounded subset of κ in a generic
extensions (but κ may fail to remain a cardinal or its cofinality may change).
It follows that if S ∈ V is stationary in V [G] then S is stationary in V .
A stationary set in V may, however, be no longer stationary in V [G], as
there may exist a new closed unbounded set in V [G] that is disjoint from it.

We recall Lemma 22.25 that states that if the forcing satisfies the κ-chain
condition then every stationary subset of κ in V is preserved; i.e., remains
stationary in V [G]. Another condition on preservation of stationary sets is
the following:

Lemma 23.7. Let κ be a regular uncountable cardinal and let P be a notion
of forcing. If P is <κ-closed then every stationary S ⊂ κ remains stationary
in V [G].

Proof. Let p � Ċ is closed unbounded; we find a γ ∈ S and a q ≤ p such
that q � γ ∈ Ċ as follows: We construct an increasing continuous ordinal
sequence 〈γα : α < κ〉 and a decreasing sequence 〈pα : α < κ〉 of conditions
such that pα+1 � γα+1 ∈ Ċ. If α is a limit ordinal then γα = limξ<α γξ and
pα is a lower bound of {pξ : ξ < α}. There exists a limit ordinal α such that
γα ∈ S. It follows that pα � γα ∈ Ċ. ��
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The basic method for destroying stationary sets by forcing is the following
forcing known as “shooting a closed unbounded set.”

Theorem 23.8. Let S be a stationary subset of ω1. There is a notion of
forcing PS that adds generically a closed unbounded set C ⊂ ω1 such that
C ⊂ S, and such that PS adds no new countable sets.

Since PS adds no countable sets, ℵ1 is preserved. The set ω1 − S is non-
stationary in V [G]; thus if S is chosen so that its complement is stationary,
the forcing destroys some stationary set.

Proof. PS consists of all bounded closed sets of ordinals p such that p ⊂ S;
p is stronger than q if p is an end-extension of q (if q = p ∩ α for some α).

If G is a generic filter, let C =
⋃

G. Clearly, C is a subset of S, and
because for every α < ω1 the set {p ∈ P : max(p) ≥ α} is dense in PS , C is
an unbounded subset of ω1. Also, sup(C ∩ α) ∈ C holds for every α < ω1,
and so C is a closed unbounded set. It remains to prove that ℵ1 is preserved
and that there are no new countable sets of ordinals.

Lemma 23.9. PS is ω-distributive.

Proof. Let p � ḟ : ω → Ord ; we shall find a q ≤ p and some f so that
q � ḟ = f .

By induction on α we construct a chain {Aα : α < ω1} of countable
subsets of PS . Let A0 = {p}, and Aα =

⋃
β<α Aβ if α is a limit ordinal.

Given Aα, let γα = sup{max(q) : q ∈ Aα}. For each q ∈ Aα and each n, we
choose some r = r(q, n) ∈ PS so that r ≤ q, r decides ḟ(n), and max(r) > γα.
Then we let Aα+1 = Aα ∪ {r(q, n) : q ∈ Aα, n < ω}.

The sequence 〈γα : α < ω1〉 is increasing and continuous. Let C = {λ : if
α < λ then γα < λ}. As C is closed unbounded, there exists a limit ordinal λ
such that λ ∈ C∩S. Let 〈αn : n < ω〉 be an increasing sequence with limit λ;
then limn γαn = λ as well.

There is a sequence of conditions 〈pn : n < ω〉 such that p0 = p and
that for every n, pn+1 ∈ Aαn+1 , pn+1 ≤ pn, and pn+1 decides ḟ(n). Since
γαn < max(pn+1) ≤ γαn+1 , we have limn max(pn) = λ, and because λ ∈ S,
the closed set q ∈

⋃∞
n=0 pn ∪ {λ} is a condition. Since q ≤ pn for all n,

q decides each ḟ(n), and so there exists some f such that q � ḟ = f . ��

The forcing PS can be generalized for cardinals κ greater than ℵ1 but
additional assumptions on S must be made in order to preserve κ. See, e.g.,
Exercises 23.7 and 23.8.

Precipitousness of the Nonstationary Ideal

In Theorem 22.33(ii) we showed that if κ is a measurable cardinal and P is
the Lévy collapse (with finite conditions, making κ = ℵ1) then in V [G],



446 Part II. Advanced Set Theory

there exists a precipitous ideal on ℵ1. We now improve this to making the
nonstationary ideal precipitous:

Theorem 23.10 (Magidor). It is consistent, relative to the existence of
a measurable cardinal, that the nonstationary ideal on ℵ1 is precipitous.

Proof. Let κ be a measurable cardinal, and let us assume that 2κ = κ+. Let
U be a normal measure on κ. Let M be the ultrapower M = UltU (V ) with
j : V → M the canonical embedding.

Let P be the Lévy collapse: a condition p ∈ P is a finite function with
dom(p) ⊂ κ × ω such that p(α, n) < α for every (α, n) ∈ dom(p).

Let G be a P -generic filter. In V [G] (where κ = ℵ1) let I0 be the ideal
generated by the dual of U : I0 = {X ⊂ κ : X ∩ Y = ∅ for some Y ∈ U}.
The proof of Theorem 22.33(ii) shows that in V [G], for every X ⊂ κ, X /∈ I0,
there exists an I0-generic ultrafilter D0 with X ∈ D0 such that UltD0(V [G]) is
well-founded. Let G×H be j(P )-generic that contains some condition (p, q)
with (p, q) �j(P ) κ ∈ j(Ẋ); then j : V → M extends in V [G × H ] to an
elementary j : V [G] → M [G × H ] by setting j(ẋG) = (j(ẋ))G×H for every
P -name ẋ, and D0 = {ẊG : κ ∈ (j(Ẋ))G×H}.

Our model will be of the form V [G, C] where G is P -generic and C = 〈Cα :
α < κ+〉, with each Cα a closed unbounded subset of κ, is V [G]-generic on
a set Qκ+ of conditions. The sets Qα, α ≤ κ+, will be defined by induction
on α, together with ideals Iα on κ in V [G, C�α].

Since 2κ = κ+, we can define a sequence 〈Ȧα : α < κ+〉 such that for
each α < κ+, Ȧα is a name for a subset of κ in V [G, C�α] and for all α < κ+

every subset of κ in V [G, C�α] has a name Ȧγ for some γ ≥ α. We will show
that Qκ+ satisfies the κ-chain condition; it will follow that every subset of κ
in V [G, C] is in V [G, C�α] for some α < κ+.

The forcing Qκ+ is, in V [G], a countable support iteration of shooting
a closed unbounded subset Cα of κ − Ȧα, if Ȧα ∈ Iα. More precisely:

A condition q ∈ Qα is a sequence 〈qβ : β < α〉 in V [G] such that
(i) qβ = ∅ for all but countably many β < α,
(ii) qβ is a closed countable subset of κ, for all β < α,
(iii) qβ�β ∈ Qβ for all β < α,
(iv) if α = β + 1 then either q�β � Ȧβ /∈ Iβ or q�β � qβ ∩ Ȧβ = ∅.

(23.5)

(The ideals Iα, α < κ+, will be defined in Lemma 23.12 below.) If q, q′ ∈ Qα

then q ≤ q′ if for each β < α, qβ is an end-extension of q′β .
In a generic extension of V [G] by Qκ+ , for every α < κ+ the union of

all qα, with q = 〈qα : α < κ+〉 in the generic filter, is a closed unbounded
subset of κ.

Lemma 23.11. Qκ+ satisfies the κ+-chain condition.

Proof. Let W be a maximal antichain. Since |Qα| ≤ κ for each α < κ+ there
exists an α < κ+ such that for every q ∈ W there is some q′ ∈ W ∩ Qα with
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q′ ≤ q�α. But q ∪ q′ is a condition, so q′ and q are compatible, and so q = q′.
Hence W ⊂ Qα and |W | ≤ κ. ��

Working in V [G × H], let us consider again the elementary embedding
j : V [G] → M [G × H ]. If α < κ+, then |P (Qα)V [G]| = κ+ < j(κ) and
therefore P (Qα)V [G] is countable in V [G × H ], and hence there exists a Qα-
generic set C = 〈Cβ : β < α〉. Because each Cβ ⊂ κ and |α| ≤ κ, it follows
that C ∈ M [G × H] (for the proof see Lemma 21.9).

In the following arguments, we consider sequences C = 〈Cβ : β < α〉 of
closed unbounded subsets of κ, and q = 〈qβ : β < α〉 of conditions in Qα,
and use the notation q ∈ C to mean that each qβ is an initial segment of Cβ .

For any α < κ+, we define (in M [G × H ]), for any Qα-generic sequence C,
the sequence qC = 〈qCγ : γ < j(α)〉 by

(23.6) qCγ =
{

Cβ ∪ {κ} if γ = j(β),

∅ otherwise.

Lemma 23.12. qC ∈ j(Qα) and qC ≤ j(q) for any q ∈ C.

Proof. By induction on α. Simultaneously, we define the ideals Iα for α > 0.
Assuming that the lemma holds, we define Iα as follows: If X ∈ V [G, C�α],
then X ∈ Iα if and only if for some p ∈ G and some q ∈ C�α

(23.7) p �j(P ) (for every C � q, Qα-generic over M [G], qC �j(Qα) κ /∈ j(Ẋ)).

Now assume that the lemma has been proved for all β < α. When we
define qC by (23.7), we have qC ∈ M [G × H ], and once we verify that qC is
a condition in j(Qα) then the rest of the lemma follows. The only nontrivial
verification of qC ∈ j(Qα) is clause (iv) of (23.5).

Thus let α = β +1 and assume that qC�j(β) does not force j(Ȧβ) /∈ j(Iβ);
we want qC�j(β) � qCj(β) ∩ j(Ȧβ) = ∅.

Let ξ ≤ κ = max(qCj(β)), and first consider the case ξ < κ. Assume
that (in some extension of M [G ∩ H] by a generic filter containing qC�j(β)),
ξ ∈ qCj(β) ∩ j(Ȧβ). Since ξ = j(ξ), we have ξ ∈ Cβ , and there is some q ∈ Qα

such that q ∈ C, ξ ∈ qβ, and q�β � ξ ∈ Ȧβ . Hence q�β � Ȧβ /∈ Iβ , therefore
j(q�β) � j(Ȧβ) /∈ Ij(β) and because qC�j(β) ≤ j(q�β), we have qC�j(β) �
j(Ȧβ) /∈ Ij(β), a contradiction.

Now consider the case ξ = κ. Let q ∈ C�β be such that q decides Ȧβ ∈ Iβ .
The assumption q � Ȧβ /∈ Iβ leads to a contradiction as in the preceding
case; thus assume that q � Ȧβ ∈ Iβ . Then, by definition of Iβ , we have
qC�j(β) � κ /∈ j(Ȧβ), and so qC�j(β) � qCj(β) ∩ j(Ȧβ) = ∅.

Hence qC satisfies (23.5)(iv). ��

Lemma 23.13. If β < α then Iβ = Iα ∩ V [G, C�β].
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Proof. It is clear that Iβ ⊂ Iα. Thus let Ẋ be a P ∗ Qβ-name for a subset
of κ, and let p ∈ P and q ∈ Qα be such that (p, q) forces Ẋ ∈ Iα and Ẋ /∈ Iβ .
By the latter,

p �j(P ) ∃Qβ-generic C′ over M [G] with q�β ∈ C and
∃q′ ≤ qC

′
such that q′ �j(Qβ) κ ∈ j(Ẋ).

In M [G × H], Qα is countable, so C′ ∈ M [G, H�δ] for some δ < j(κ). In
M [G × H ], find a Qα-generic C′′ over M [G] such that C�β = C′ and q ∈ C′′.
Then q′ ∪ qC

′′
is stronger than qC

′′
and forces κ ∈ j(Ẋ). It follows that (p, q)

does not force Ẋ ∈ Iα, a contradiction. ��
We let I =

⋃
α<κ+ Iα.

Lemma 23.14. I is a normal ideal.

Proof. Let f ∈ V [G, C] be a function f : κ → κ, and assume that

(23.8) (p, q) � {α : f(α) < α} /∈ I and (∀γ < κ) {α : f(α) = γ} ∈ I.

By Lemma 23.11, f ∈ V [G, C�α] for some α < κ+, and (23.8) holds for Iα in
place of I. Let G × H be j(P )-generic with p ∈ G, and work in M [G × H ].
There exists a Qα-generic C′ with q ∈ C′ such that some q′ < qC

′
forces

j(f)(κ) < κ. Then some q′′ < q′ forces j(f)(κ) = γ, for some γ, and hence
(p, q) does not force {α : f(α) = γ} ∈ Iα, a contradiction. ��
Lemma 23.15. I is, in V [G, C], the nonstationary ideal on ℵ1 = κ.

Proof. That κ = ℵ1 in V [G, C] follows from the normality of I. Each Cα is
a closed unbounded subset of ω1, and since Cα ∩Aα = ∅ if Aα ∈ I, every set
in I is nonstationary. On the other hand let Ċ be a name for a subset of κ
and let q ∈ C be such that q � Ċ is a closed unbounded set. Then for every
C′ � q,

qC
′ � j(Ċ) is closed and j(Ċ) ∩ κ is unbounded in κ

and so qC
′ � κ ∈ j(Ċ). It follows that q � κ − Ċ ∈ Iα and so every nonsta-

tionary set is in I. ��
It remains to show that I is precipitous.
Let R(I) denote the forcing with I-positive sets; a generic filter on R(I)

is an ultrafilter that extends the dual of I. Let (p1, q1) be a condition in P ∗Q
and let Ẋ be a name for a subset of κ, such that (p1, q1) � Ẋ /∈ I. We want
to find generic G and C with p1 ∈ G and q1 ∈ C, and an R(I)-generic D with
Ẋ ∈ D such that UltD V [G, C] is well-founded.

Since (p1, q1) forces Ẋ /∈ I, there exist p′1 ∈ j(P ) and α < κ+ such that
p′1 < p1, p′1 � Ẋ ∈ V [G, C�α] and

(23.9) p′1 �j(P ) ∃Qα-generic C′ over M [G] with q1 ∈ C′

such that qC
′ �j(Qα) κ /∈ j(Ẋ).

Let G × H be j(P )-generic over V with p′1 ∈ G × H . Let C′ ∈ M [G × H ] be
as in (23.9), and pick q′1 ∈ j(Qα) such that q′1 ≤ qC

′
and q′1 � κ ∈ j(Ẋ).



23. The Nonstationary Ideal 449

We shall find C and C∗ so that j extends to j : V [G, C] → M [G × H, C∗].
We require that j(q) ∈ C∗ whenever q ∈ C, or C = {q ∈ Q : j(q) ∈ C∗}.

Let Q∗ be the following subordering of j(Q) in V [G × H ]. For each q ∈
j(Q) let Cq = {q′ ∈ Q : j(q′) ≥ q}, and let

(23.10) Q∗ = {q ∈ j(Q) : (∃α < κ+) Cq ⊂ Qα and

Cq is Qα-generic over V [G]}.

Then q′1 ∈ Q∗, so we can find a set C∗ that is Q∗-generic over V [G × H ] with
q∗1 ∈ C∗, and let C = j−1(C∗).

Lemma 23.16. C is Q-generic over V [G] and C∗ is j(Q)-generic over
M [G × H ].

Proof. We first show that for all α < κ+, the set

Bα = {q ∈ Q∗ : Cq�α is Qα-generic over V [G]}

is dense in Q∗. Let q ∈ Q∗. If q /∈ Bα then by (23.10) there exists some
β < α such that Cq ⊂ Qβ and Cq is Qβ-generic over V [G]. But P (Qα)∩V [G]
is countable in M [G × H ] so there exists a C′ Qα-generic over V [G] such
that C′�β = Cq. Since |Qα| = κ, this C′ is in M [G × H ] and we can take
q′ = q ∪ qC

′
. Then q′ ≤ q and q′ ∈ Q∗ ∩ Bα.

Now let A be an open dense subset of Q in V [G]. Since Q satisfies the
κ+-chain condition in V [G], A contains a maximal antichain of cardinality κ.
Thus for some α < κ+, A∩Qα is dense in Qα. Since Bα is dense in Q∗, there is
a q ∈ C∗ such that Cq�α is Qα-generic over V [G] and hence C∩A ⊃ Cq∩A �= ∅,
and so C is Q-generic over V [G].

Similarly, if A ∈ M [G × H ] is open dense in j(Q) then (because j(Q) sat-
isfies the j(κ+)-chain condition in M [G × H] and j(κ+) =

⋃
α<κ+ j(α))

A ∩ j(Qα) is dense in j(Qα) for some α < κ+. Since Bα is dense in Q∗,
C∗�j(α) is j(Qα)-generic over V [G × H] and hence A ∩ C∗ �= ∅, and so C∗ is
j(Q)-generic over M [G × H ]. ��

Hence j extends to an elementary embedding j : V [G, C] → M [G × H, C∗].
Let

D = {z ∈ P (κ) ∩ V [G, C] : κ ∈ j(z)};
D is an ultrafilter extending the dual of I, and UltD V [G, C] is well-founded.
Also, Ẋ ∈ D because (p′1, q

′
1) ∈ G × H × C∗; it remains to show that D is

R(I)-generic over V [G, C].
Toward a contradiction, let W be a subset of R(I) in V [G, C] such that

W ∩ D = ∅; we will show that W is not dense in R(I). Since W is disjoint
from D, there exist p2 ∈ G × H and q2 ∈ C∗, and some Ȧ such that (p2, q2) ≤
(p1, q1) and

(23.11) p2 �j(P ) q2 �Q∗ Ȧ ∈ W and κ /∈ j(Ȧ).
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Since (p2, q2) ∈ M = UltU (V ), there is a function f : κ → P ∗ Q such that
(p2, q2) = j(f)(κ). Let T = {α : f(α) ∈ G × C}. Then since κ ∈ j(T ) if and
only if (p2, q2) ∈ G × H × C∗, we can rewrite (23.11) as

(23.12) �j(P )�Q∗ (∀A ∈ W ) κ /∈ j(A ∩ T ).

For any A ∈ W , let αA be such that q2 ∈ j(QαA) and A ∈ V [G, C�αA].
By (23.12) and (23.10) we have

�j(P ) for every QαA-generic C′ over V [G], qC
′ �j(Q) κ /∈ j(A ∩ T ).

This says that A ∩ T ∈ I for all A ∈ W . But T ∈ D, and hence T /∈ I. This
contradicts W being dense. ��

Thus the consistency strength of “INS on ω1 is precipitous” is exactly
the existence of a measurable cardinal. For cardinals greater than ω1 the
consistency is considerably stronger. For instance, “INS on ω2 is precipitous”
is equiconsistent with a measurable cardinal of order 2 (Gitik); for larger
cardinals it is much stronger. Most of the best results to date are due to
Gitik.

Saturation of the Nonstationary Ideal

By Solovay’s Theorem 8.10, the nonstationary ideal INS on κ is nowhere κ-
saturated. For κ = ℵ1 it is consistent that INS is κ+-saturated; its consistency
strength is roughly that of a Woodin cardinal. We shall return to this subject
in Part III.

For κ greater than ℵ1, the nonstationary ideal is not κ+-saturated:

Theorem 23.17 (Gitik-Shelah). For every regular cardinal κ ≥ ℵ2, the
ideal INS on κ is not κ+-saturated.

The proof of Theorem 23.17 appears in Gitik and Shelah [1997]. Most
special cases were proved earlier by Shelah, and we present this proof first,
as it is somewhat easier. The complete proof will follow.

The results presented here are somewhat more general as they apply to
other normal ideals. If I is a normal ideal, I+ denotes the collection {S ⊂ κ :
S /∈ I} of sets of positive I-measure. For S ∈ I+, I�S denotes the ideal
{X ⊂ κ : X ∩ S ∈ I}; we say that I�S concentrates on S.

We shall use the method of generic ultrapowers, and start with several ob-
servations. Let I be a normal κ+-saturated κ-complete ideal on a regular un-
countable cardinal κ. The generic ultrapower M = UltG(V ) is well-founded,
and since the forcing with sets of positive I-measure satisfies the κ+-chain
condition, κ+ is a cardinal in V [G], and hence in M .
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Lemma 23.18. Let I be a normal κ+-saturated κ-complete ideal on κ, let
R(I) be the forcing with I-positive sets, let G be the R(I)-generic ultrafilter
and let M = UltG(V ). Then P M (κ) = P V [G](κ), and all cardinals (and
cofinalities) < κ are preserved in V [G].

Proof. The Boolean algebra B = P (κ)/I is complete (see Exercise 22.9). If
Ȧ is a name for a subset A = ȦG of κ in V [G], let Sα ∈ I+ be, for each
α < κ, such that ‖α ∈ Ȧ‖ = [Sα]. If j : V → M is the canonical embedding,
we have, for each α, α ∈ A if and only if Sα ∈ G if and only if κ ∈ j(Sα),
and so the set A = {α ∈ κ : κ ∈ j(Sα)} is in M .

If λ < κ is a cardinal then since κ is the critical point of j, λ is a cardinal
in M . Since P V [G](λ) = P M (λ), λ is a cardinal in V [G]. ��

We shall use a combinatorial lemma due to Shelah. Let λ be a cardinal
and let α < λ+ be a limit ordinal. A family {Xξ : ξ < λ+} of subsets of α is
strongly almost disjoint if every Xξ ⊂ α is unbounded, and if for every ϑ < λ+

there exist ordinals δξ < α, for ξ < ϑ, such that the sets Xξ − δξ, ξ < ϑ, are
pairwise disjoint. If κ is a regular cardinal then there exists a strongly almost
disjoint family of κ+ subsets of κ (see Exercise 23.10).

Lemma 23.19. If α < λ+ and cf α �= cf λ then there exists no strongly
almost disjoint family of subsets of α.

Proof. Assume to the contrary that {Xξ : ξ < λ+} is a strongly almost
disjoint family of subsets of α. We may assume that each Xξ has order-
type cf α. Let f be a function that maps λ onto α. Since cf λ �= cf α there
exists for each ξ some γξ < λ such that Xξ ∩ f“γξ is cofinal in α. There exist
some γ and a set W ⊂ λ+ of size λ such that γξ = γ for all ξ ∈ W . Let
ϑ > sup W . By the assumption on the Xξ there exist ordinals δξ < α, ξ < ϑ,
such that the Xξ − δξ are pairwise disjoint. Thus f−1(Xξ − δξ), ξ ∈ W , are
λ pairwise disjoint nonempty subsets of γ. A contradiction. ��
Corollary 23.20. If κ is a regular cardinal and if a notion of forcing P
makes cf κ �= cf |κ|, then P collapses κ+.

Proof. Assume that κ+ is preserved; thus in V [G], (κ+)V = λ+ where λ = |κ|.
In V there is a strongly almost disjoint family {Xξ : ξ < (κ+)V }, and it
remains strongly almost disjoint in V [G], and has size λ+. Since cf κ �= cf λ
(in V [G]), this contradicts Lemma 23.19. ��
Corollary 23.21. If κ = λ+, if ν �= cf λ is a regular cardinal, and if I is
a normal κ-complete κ+-saturated ideal on κ, then Eκ

ν = {α < κ : cf α =
ν} ∈ I.

Proof. Assume that Eκ
ν ∈ I+, and let G be a generic ultrafilter on P (κ)/I.

By Lemma 23.18, all cardinals ≤ λ, as well as κ+, are preserved in V [G]. If
Eκ

ν ∈ G, then in M , cf κ = ν, and so (by Lemma 23.18) cf κ = ν in V [G]. Thus
we have, in V [G], cf κ = ν and |κ| = λ while κ+ is preserved, contradictory
Corollary 23.20. ��
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It follows that if κ is a successor cardinal greater than ℵ1 then the nonsta-
tionary ideal on κ is not κ+-saturated: In fact INS�Eκ

ν is not κ+-saturated,
for all regular ν �= cf λ where λ is the predecessor of κ.

We complete the proof of Theorem 23.17 using Lemma 23.4 on club-
guessing. We shall show that for every regular κ ≥ ℵ3 and every uncountable
regular λ such that λ+ < κ, the ideal INS�Eκ

λ is not κ+-saturated.
Thus let κ and λ be regular uncountable such that λ+ < κ. Let E be

a stationary subset of Eκ
λ . By Lemma 23.4 there exists a sequence 〈cα : α ∈ E〉

with each cα cofinal in α, that satisfies (23.3) and such that for every closed
unbounded C, the set

G(C) = {α ∈ E : (∃β < α) C ⊃ cα − β}

is stationary.

Lemma 23.22. If INS�Eκ
λ is κ+-saturated then there exists a stationary set

Ẽ ⊂ E such that for every closed unbounded C, Ẽ − G(C) is nonstationary
(C is guessed at almost every α ∈ Ẽ).

Proof. If not, then for every stationary S ⊂ E there exists a closed unbounded
set C such that S − G(C) is stationary. By the κ+-saturation, there exists
a collection {(Si, Ci) : i < κ} such that W = {Si − G(Ci) : i < κ} is
a maximal antichain in P (κ)/INS below E. Let C = i<κ Ci. For every i < κ,
Ci contains an end-segment of C, and hence G(Ci) contains an end-segment
of G(C). As G(C) is stationary, this contradicts the maximality of W . ��

Now we use the κ+-saturation again, and using Lemma 23.22 obtain
a maximal antichain {Si : i < κ} of pairwise disjoint stationary subsets
of Eκ

λ , and for each i a sequence 〈cα : α ∈ Si〉 of cofinal cα satisfying (23.3)
such that every closed unbounded C is guessed at almost every α ∈ Si. Then
〈cα : α ∈

⋃
i<κ Si〉 guesses every C almost everywhere, contrary to Exer-

cise 23.2.
This completes the proof of Theorem 23.17. ��

The question whether various restrictions of the nonstationary ideal can
be κ+-saturated has been studied extensively. For instance, it is proved
in Jech and Woodin [1985] that it is consistent, relative to a measurable
cardinal, that κ is a Mahlo cardinal and INS� Reg is κ+-saturated, where
Reg = {α < κ : α is a regular cardinal}. It is open whether (for instance)
INS�Eℵ2

ℵ1
can be ℵ3-saturated.

Reflection

There has been a large number of results on reflecting stationary sets. Let us
recall that a stationary set S reflects at α if S ∩α is a stationary subset of α.
In this section we investigate the simplest case, namely κ = ℵ2.
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There are two kinds of limit ordinals below ω2: those of cofinality ℵ0 and
those of cofinality ℵ1; the sets Eℵ2

ℵ0
and Eℵ2

ℵ1
. By Exercise 23.4, the set Eℵ2

ℵ1

does not reflect (at any ordinal α < ω2). By Exercise 23.5, the set Eℵ2
ℵ0

reflects
at every α ∈ Eℵ2

ℵ1
; the question is whether every stationary S ⊂ Eℵ2

ℵ0
can

reflect. By Lemma 23.6, if every S ⊂ Eℵ2
ℵ0

reflects then �ω1 fails, and this is
known (due to Jensen) to imply that ℵ2 is a Mahlo cardinal in L. On the
other hand, it is consistent relative to the existence of a Mahlo cardinal, that
every stationary S ⊂ Eℵ2

ℵ1
reflects (Harrington and Shelah [1985]).

The following theorem shows that a stronger version of reflection is con-
sistent, if fact equiconsistent with weak compactness:

Theorem 23.23 (Magidor). The following are equiconsistent :

(i) the existence of a weakly compact cardinal,
(ii) every stationary set S ⊂ Eℵ2

ℵ0
reflects at almost all α ∈ Eℵ2

ℵ1
.

This result does not generalize to cardinals greater than ℵ2; see Exer-
cise 23.12. Reflection for stationary subsets of κ > ℵ2 is considerably more
complicated.

We shall prove that (ii) implies that ℵ2 is weakly compact in L, and then
give a brief account of the consistency proof of (ii). If every stationary set S ⊂
Eℵ2

ℵ0
reflects then ℵ2 is a Mahlo cardinal in L. Using Jensen’s Theorem 27.1

we prove a somewhat weaker statement.

Lemma 23.24. If every stationary S ⊂ Eℵ2
ℵ0

reflects then ℵ2 is inaccessible
in L.

Proof. Let κ = ℵ2. Assume that κ is in L the successor of some λ, κ = (λ+)L.
In L, there exists a square-sequence 〈Cα : α ∈ Lim(κ)〉, and the order-type
of each Cα is at most λ. By Fodor’s Theorem, there exists a stationary set
A ⊂ Eℵ2

ℵ1
such that all Cα, α ∈ A, have the same order-type.

The set
⋃
{Cα : α ∈ A} is stationary, and it follows that there exists

a limit ordinal η such that the set S = {γ ∈ Eℵ2
ℵ0

: γ is the ηth element of
some Cα} is stationary. As in Lemma 23.6, S does not reflect. ��

Note that if every stationary S ⊂ Eℵ2
ℵ0

reflects at almost every α ∈ Eℵ2
ℵ1

then every two stationary sets S1, S2 ⊂ Eℵ2
ℵ1

reflect at the same α. The
following lemma completes the proof:

Lemma 23.25. If for any stationary sets S1, S2 ⊂ Eℵ2
ℵ0

there exists an
δ ∈ Eℵ2

ℵ1
such that both S1 ∩ δ and S2 ∩ δ are stationary, then ℵ2 is Π1

1-
indescribable in L.

Proof. Let ϕ(X) be a second order formula with only first order quantifiers
and assume that for each α < ω2 there exists some Xα ∈ L, Xα ⊂ α, such
that Lα � ϕ(Xα). We shall find an X ∈ L, X ⊂ ω2, such that Lω2 � ϕ(X).
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Let Xα be the least such Xα in L. There exists a β < (α+)L such that
Xα ∈ Lβ, and let β be the least such β. Let Zα ∈ L be such that Zα ∈ {0, 1}α

and that Zα codes the model (Lβ ,∈, Xα).
For every δ < ω2 of cofinality of ω1, let

Cδ = {α < δ : Zα = Zδ�α and Xα = Xδ�α}.

The set Cδ is a closed unbounded subset of δ.
For each γ < ω2 and each t ∈ L such that t ∈ {0, 1}δ, let

St = {α ∈ Eℵ2
ℵ0

: t ⊂ Zα}.

Since ℵ2 is inaccessible in L, there exists for each γ < ω2 some t ∈ {0, 1}γ

such that St is stationary. Now let γ1 ≤ γ2 and ti ∈ {0, 1}γi (i = 1, 2),
and assume that both St1 and St2 are stationary. By the assumption of the
lemma, there exists a δ < ω2 of cofinality ω1 such that both St1 ∩ δ and
St2 ∩ δ are stationary. Let α1, α2 ∈ Cδ be such that αi ∈ Sti (i = 1, 2). Since
ti ⊂ Zαi ⊂ Zδ, it follows that t1 ⊂ t2.

Hence for each γ < κ there is a unique tγ such that Stγ contains almost all
ordinals in Eℵ2

ℵ0
; Stγ ⊃ Eℵ2

ℵ0
∩Dγ with Dγ closed unbounded. Let D = γ Dγ ;

then for every α ∈ Eℵ2
ℵ0

∩ D we have tα = Zα. Now let Z =
⋃
{tγ : γ < ω2}.

The set Z codes some model (Lη,∈, X) with X ⊂ ω2 and X ∈ L. It follows
that X ∩ α = Xα for almost all α ∈ Eℵ2

ℵ0
.

We finish the proof by verifying Lω2 � ϕ(Xα). This holds because Lα �
ϕ(Xα) for all α and therefore Lω2 � ϕ(X ∩ α) for almost all α ∈ Eℵ2

ℵ0
. ��

This completes the proof that the existence of a weakly compact cardinal
is necessary for the consistency of (ii). We shall not present the consistency
proof of (ii) and instead give a brief description of the methods involved.

One starts with a ground model where κ is a weakly compact cardinal,
and GCH holds. First one uses the Lévy collapse Q with countable conditions
that makes κ = ℵ2 (all cardinals between ℵ1 and κ are collapsed). In V Q,
one constructs a forcing iteration P of length κ+, with ℵ1-support. At every
stage α of the iteration, one considers (in V Q) a Pα-name for a stationary set
S ⊂ Eκ

ω and shoots a closed unbounded set through the set T = Tr(S) ∪Eκ
ω.

Forcing conditions are closed bounded subsets of T . It is not difficult to
verify that such forcing is ω-closed, and that the iteration satisfies the κ-
chain condition. Thus one can arrange the iteration so that every potential
stationary set S ⊂ Eκ

ω is considered.
The main point of the proof is to show that ℵ1 is preserved by the iter-

ation, and that at each stage, if S ⊂ Eκ
ω is stationary then Tr(S) ∩ Eκ

ω1
is

unbounded. This is proved using arguments similar to those used in Theo-
rem 23.10.

Weak compactness of κ is used as follows: At a given stage α of the
iteration, there is a transitive model M ⊃ α of size κ of a sufficiently large
fragment of ZFC, and (by weak compactness) there is an elementary j :
M → N , cf. Lemma 17.17. This j extends to j : MQ → N j(Q).
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For details, consult Magidor [1982].

Exercises

23.1. Let κ and λ be regular, λ ≥ ℵ1 and λ+ < κ. For every stationary E ⊂ Eκ
λ

there exists a sequence 〈Cα : α ∈ E〉 of closed unbounded subsets of the α’s such
that for every closed unbounded C ⊂ κ, the set {α ∈ E : cα ⊂ C} is stationary.

23.2. Let κ and λ be regular, λ ≥ ℵ1 and λ+ < κ. There exists no sequence
〈Cα : α ∈ Eκ

λ〉 with each cα ⊂ α closed unbounded, that guesses every closed
unbounded C ⊂ κ almost everywhere (i.e., C contains an end-segment of cα for
almost all α ∈ Eκ

λ) and satisfies (23.3).
[Assume 〈cα : α ∈ Eκ

λ〉 is such. Let E = {ξ < κ : cf ξ > λ} and let C0 = E′. For
each n, let Cn+1 ⊂ C′

n be closed unbounded such that C′
n contains an end-segment

of cα, for all α ∈ Eκ
λ ∩ Cn+1. Let C =

T

n<ω Cn and let α be the least element of
C∩Eκ

λ ; C contains an end-segment of Cα. There is a β ∈ C∩cα such that cf β > λ.
It follows that there exists some γ ∈ C∩β∩Eκ

λ , contradicting the minimality of α.]

23.3. There exists an ℵ0-closed, ℵ1-distributive notion of forcing such that V [G] sat-
isfies �ω1 .

[A forcing condition is a sequence p = 〈Cα : α ≤ γ〉, where γ < ω2 is a limit
ordinal, and the Cα satisfy (23.4). A condition 〈Cα : α ≤ γ〉 is stronger than
〈C′

α : α ≤ γ′〉 if γ ≥ γ′ and Cα = C′
α for all α < γ′. To verify ℵ1-distributivity, let ḟ

be a name for a function on ω1 and let p0 be a condition. Construct an ω1-chain of
conditions p0 ⊂ p1 ⊂ . . . ⊂ pα ⊂ . . ., α < ω1, such that each pα+1 decides ḟ(α) and
that each limit ordinal α < ω1, if γα = limξ→α(dom pξ), then γα ∈ dom pα, and for
each limit ordinal β < α, Cγβ is an initial segment of Cγα . Then if γ = limα→ω1 γα,
let Cγ =

S

α<ω1
Cγα and p = 〈Cξ : ξ ≤ γ〉; p is a condition and decides ḟ(α) for all

α < ω1.]

23.4. Let κ be regular uncountable, α < κ and cf α > ω. If S ⊂ κ is stationary
and if cf β ≥ cf α for all β ∈ S, then S does not reflect at α.

[There is a closed unbounded C ⊂ α such that cf β < cf α for all β ∈ C.]

23.5. Let κ and α be as above, let λ < κ be regular and λ < cf α. Then Eκ
λ reflects

at α.

23.6. Let PS be the forcing (in Theorem 23.8) for shooting a closed unbounded
subset of S. Show that every stationary subset of S (in V ) remains stationary.

[Let T ⊂ S be stationary and let p � Ċ is closed unbounded; find a q ≤ p and
some λ ∈ T such that q � λ ∈ Ċ: As in Lemma 23.9, construct a chain {Aα}α of
countable subsets of PS and an increasing continuous sequence 〈γα : α < ω1〉, such
that for each q ∈ Aα there exist some stronger r(q) ∈ Aα+1 and β(q) > γα with
r(q) � β ∈ Ċ. Then find λ ∈ T , and a sequence 〈pn : n ∈ ω〉 of conditions such that
limn max(pn) = limn β(pn) = λ.]

23.7. Let S be a stationary subset of ω2 such that S ⊃ Eℵ2
ℵ0

and that S ∩ Eℵ2
ℵ1

is stationary. Let PS be the set of all bounded closed subsets of S (ordered by
end-extension). Then PS preserves ℵ2.

23.8. Let κ be inaccessible and let S ⊂ κ be such that S contains every singular
limit ordinal α < κ. Then PS is essentially <κ-closed, i.e., for every regular λ < κ,
PS has a dense subset that is λ-closed. Hence PS preserves κ (and adds no λ-
sequences for λ < κ).

[For each λ < κ, consider {p ∈ PS : max(p) > λ}.]
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23.9. If INS on ω1 is ℵ2-saturated then every nontrivial normal κ-complete ideal
on ω1 is ℵ2-saturated.

[Use Exercise 22.11, and that every S ∈ I+ is stationary.]

23.10. If κ is a regular cardinal then there exists a strongly almost disjoint family
{Xξ : ξ < κ+} of subsets of κ.

23.11. It is consistent that sat(INS) < 2ℵ1 .
[Assume GCH and add more than ℵ4 Cohen reals. Let {Si : i < ω4} ∈ V [G] be

a family of stationary sets such that each Si ∩Sj is nonstationary. Let i �= j. There
exists a nonstationary set Ai,j ⊃ Si∩Sj in V . Since the forcing notion is c.c.c., there
exists an Ai,j ∈ INS such that � Si ∩ Sj ⊂ Ai,j . Apply the Erdős-Rado Theorem
(namely ℵ4 → (ℵ3)

2
ℵ2) to find some set H ⊂ ω4 of size ℵ3 and some A ∈ INS such

that � Si ∩ Sj ⊂ A for all i, j ∈ H . Get ℵ3 disjoint subsets Si −A of ω1 in V [G],
a contradiction.]

23.12. There exist stationary sets S ⊂ Eℵ3
ℵ0

and A ⊂ Eℵ3
ℵ1

such that S does not
reflect at any α ∈ A.

[Let Si, i < ω2, be pairwise disjoint stationary subsets of Eℵ3
ℵ0

. For each α ∈ Eℵ3
ℵ1

,
let Cα ⊂ α be closed unbounded of size ℵ1. For every α there exists an iα such that
Si ∩ Cα = ∅ for all i ≥ iα. There exists a stationary set A ⊂ Eℵ3

ℵ1
such that iα is

constant on A, iα = i. The set Si does not reflect at any α ∈ A.]

Historical Notes

The equivalence in Lemma 23.1 is due to Kunen. Theorem 23.2 is due to Gre-
gory [1976]. Club-guessing principles were introduced by Shelah; see Gitik and
Shelah [1997] for details. Lemma 23.6 is due to Jensen.

The construction in Theorem 23.8 (shooting a closed unbounded set) appears
in Baumgartner et al. [1976]. Theorem 23.10 uses a construction of Magidor, see
Jech et al. [1980]. There is a sequence of results on the strength of precipitousness
of INS on cardinals κ > ℵ1: Jech [1984], Gitik [1984, 1995, 1997] See the detailed
discussion in Jech [∞].

Theorem 23.17 uses the work of Shelah [1982] (Lemma 23.19 and Corollaries
23.20 and 23.21) and Gitik and Shelah [1997]. The paper Jech and Woodin [1985]
investigates saturation of INS� Reg for inaccessible cardinals.

Theorem 23.23 appears in Magidor [1982].
Exercise 23.2: Gitik and Shelah [1997].
Exercise 23.9: Baumgartner et al. [1977],
Exercise 23.11: Baumgartner.
Exercise 23.12: Shelah.



24. The Singular Cardinal Problem

In this chapter we use combinatorial methods to prove theorems (in ZFC) on
cardinal arithmetic of singular cardinals. We introduce a powerful theory of
Shelah, the pcf theory, and apply the theory to present a most remarkable
result of Shelah on powers of singular cardinals.

The Galvin-Hajnal Theorem

Following Silver’s Theorem 8.12 on singular cardinals of uncountable cofinal-
ity, Galvin and Hajnal proved a related result:

Theorem 24.1 (Galvin-Hajnal [1975]). Let ℵα be a strong limit singular
cardinal of uncountable cofinality. Then 2ℵα < ℵγ where γ = (2|α|)+.

Note that the theorem gives a nontrivial information only if ℵα is not
a fixed point of the aleph function.

In order to simplify the notation, we consider the special case α = ω1. The
following lemma implies the theorem (as in the proof of Silver’s Theorem).
Two functions f and g on ω1 are almost disjoint if {α : f(α) = g(α)} is at
most countable.

Lemma 24.2. Assume that ℵℵ1
α < ℵω1 for all α < ω1. Let F be an almost

disjoint family of functions

F ⊂
∏

α<ω1

Aα

such that |Aα| < ℵω1 for all α < ω1. Then |F | < ℵγ where γ = (2ℵ1)+.

Proof. We first introduce the following relation among functions ϕ : ω1 → ω1

(24.1) ϕ < ψ if and only if {α < ω1 : ϕ(α) ≥ ψ(α)} is nonstationary.

Since the closed unbounded filter is σ-complete, it follows that there is no
infinite descending sequence

ϕ0 > ϕ1 > ϕ2 > . . . .



458 Part II. Advanced Set Theory

Otherwise, the set {α < ω1 : ϕn(α) ≤ ϕn+1(α) for some n} is nonstationary
and so there is an α such that

ϕ0(α) > ϕ1(α) > ϕ2(α) > . . . ,

a contradiction.
Hence the relation ϕ < ψ is well-founded and we can define the rank ‖ϕ‖

of ϕ in this relation (called the norm of ϕ) such that

‖ϕ‖ = sup{‖ψ‖ + 1 : ψ < ϕ}.

Note that ‖ϕ‖ = 0 if and only if ϕ(α) = 0 for a stationary set of α’s.
Lemma 24.2 follows from

Lemma 24.3. Assume that ℵℵ1
α < ℵω1 for all α < ω1. Let ϕ : ω1 → ω1 and

let F be an almost disjoint family of functions

F ⊂
∏

α<ω1

Aα

such that
|Aα| ≤ ℵα+ϕ(α)

for every α < ω1. Then |F | ≤ ℵω1+‖ϕ‖.

To prove Lemma 24.2 from Lemma 24.3, we let ϕ be such that |Aα| ≤
ℵα+ϕ(α). If ϑ is the length of the well-founded relation ϕ < ψ, then certainly
|ϑ| ≤ 2ℵ1 and so ϑ < (2ℵ1)+. Hence ω1 + ‖ϕ‖ < (2ℵ1)+ for every ϕ and
Lemma 24.2 follows. ��

Proof of Lemma 24.3. By induction on ‖ϕ‖. If ‖ϕ‖ = 0, then ϕ(α) = 0 on
a stationary set and the statement is precisely Lemma 8.16.

To handle the case ‖ϕ‖ > 0, we first generalize the definition of ϕ < ψ.
Let S ⊂ ω1 be a stationary set. We define

(24.2) ϕ <S ψ if and only if {α ∈ S : ϕ(α) ≥ ψ(α)} is nonstationary.

The same argument as before shows that ϕ <S ψ is a well-founded relation
and so we define the norm ‖ϕ‖S accordingly. Note that if S ⊂ T , then ‖ϕ‖T ≤
‖ϕ‖S . In particular, ‖ϕ‖ ≤ ‖ϕ‖S, for any stationary S. Moreover,

(24.3) ‖ϕ‖S∪T = min{‖ϕ‖S, ‖ϕ‖T }

as can easily be verified.
For every ϕ : ω1 → ω1, we let Iϕ be the collection of all nonstationary

sets along with those stationary S such that ‖ϕ‖ < ‖ϕ‖S. If S is stationary
and X is nonstationary, then ‖ϕ‖S∪X = ‖ϕ‖S. This and (24.3) imply that
Iϕ is a proper ideal on ω1.
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If ‖ϕ‖ is a limit ordinal, then

S = {α < ω1 : ϕ(α) is a successor ordinal} ∈ Iϕ

because if S /∈ Iϕ, then ‖ϕ‖ = ‖ϕ‖S = ‖ψ‖S + 1, where ψ(α) = ϕ(α) − 1 for
all α ∈ S. Hence

{α < ω1 : ϕ(α) is a limit ordinal} /∈ Iϕ.

Similarly, if ‖ϕ‖ is a successor ordinal, then

{α < ω1 : ϕ(α) is a successor ordinal} /∈ Iϕ.

Now we are ready to proceed with the induction.
(a) Let ‖ϕ‖ be a limit ordinal, ‖ϕ‖ > 0. Let

S = {α < ω1 : ϕ(α) > 0 and is a limit ordinal}.

It follows that S /∈ Iϕ.
We may assume that Aα ⊂ ℵα+ϕ(α) for every α, and so we have f(α) <

ℵα+ϕ(α) for every f ∈ F . Given f ∈ F , we can find for each α ∈ S some β <
ϕ(α) such that f(α) < ωα+β; call this β = ψ(α). For α /∈ S, let ψ(α) = ϕ(α).
Since S /∈ Iϕ, we have ‖ψ‖ ≤ ‖ψ‖S < ‖ϕ‖S = ‖ϕ‖. We also have f ∈ Fψ,
where

Fψ = {f ∈ F : f(α) < ωα+ψ(α) for all α},
and so

F =
⋃
{Fψ : ‖ψ‖ < ‖ϕ‖}.

By the induction hypothesis, |Fψ | ≤ ℵω1+‖ψ‖ < ℵω1+‖ϕ‖ for every ψ such
that ‖ψ‖ < ‖ϕ‖. Since the number of functions ψ : ω1 → ω1 is 2ℵ1 , and
2ℵ1 < ℵω1 , we have |F | ≤ ℵω1+‖ϕ‖.

(b) Let ‖ϕ‖ be a successor ordinal, ‖ϕ‖ = γ + 1. Let

S0 = {α < ω1 : ϕ(α) is a successor}.

It follows that S0 /∈ Iϕ.
Again, we may assume that Aα ⊂ ωα+ϕ(α) for each α < ω1. First we

prove that for every f ∈ F , the set

Ff = {g ∈ F : ∃S ⊂ S0, S /∈ Iϕ, (∀α ∈ S) g(α) ≤ f(α)}

has cardinality ℵω1+γ . If S ⊂ S0 and S /∈ Iϕ, let

Ff,S = {g ∈ F : (∀α ∈ S) g(α) ≤ f(α)}.

Let ψ : ω1 → ω1 be such that ψ(α) = ϕ(α) − 1 for α ∈ S, and ψ(α) = ϕ(α)
otherwise. Since S /∈ Iϕ, we have ‖ψ‖ ≤ ‖ψ‖S < ‖ϕ‖S = ‖ϕ‖ = γ + 1 and so
‖ψ‖ = γ. Since Ff,S ⊂

∏
α<ω1

Bα, where |Bα| ≤ ℵα+ψ(α) for all α, we use the
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induction hypothesis to conclude that |Ff,S | ≤ ℵω1+γ . Then it follows that
|Ff | ≤ ℵω1+γ .

To complete the proof, we construct a sequence

(24.4) 〈fξ : ξ < ϑ〉

such that ϑ ≤ ℵω1+γ+1 and

(24.5) F =
⋃
{Ffξ

: ξ < ϑ}.

Given fν , ν < ξ, we let fξ ∈ F (if it exists) be such that fξ /∈ Ffν , for all
ν < ξ. Then the set

{α ∈ S0 : fξ(α) ≤ fν(α)}
belongs to Iϕ, and so fν ∈ Ffξ

, for each ν < ξ.
Since |Ffξ

| ≤ ℵω1+γ and Ffξ
⊃ {fν : ν < ξ}, it follows that ξ < ℵω1+γ+1

if fξ exists. Thus the sequence (24.4) has length ϑ ≤ ℵω1+γ+1. Then we have

F =
⋃
{Ffξ

: ξ < ϑ}

and so |F | ≤ ℵω1+γ+1. ��

Ordinal Functions and Scales

The proof of the Galvin-Hajnal Theorem suggests that ordinal functions play
an important role in arithmetic of singular cardinals. We shall now embark
on a systematic study of ordinal functions and introduce Shelah’s pcf theory.

Let A be an infinite set and let I be an ideal on A.

Definition 24.4. For ordinal functions f , g on A, let

f =I g if and only if {a ∈ A : f(a) �= g(a)} ∈ I,

f ≤I g if and only if {a ∈ A : f(a) > g(a)} ∈ I,

f <I g if and only if {a ∈ A : f(a) ≥ g(a)} ∈ I.

If F is a filter on A, then f <F g means f <I g where I is the dual ideal,
and similarly for f ≤F g and f =F g.

The relation ≤I is a partial ordering (of equivalence classes). If S is a set
of ordinal functions on A then g is an upper bound of S if f ≤I g for all
f ∈ S, and g is a least upper bound of S if it is an upper bound and if g ≤I h
for every upper bound h.

The relation <I is also a partial ordering (different from ≤I unless I is
a prime ideal), and if I is σ-complete then <I is well-founded. If I is the
nonstationary ideal on a regular uncountable cardinal κ, then the rank of an
ordinal function f on κ is the (Galvin-Hajnal) norm ‖f‖.

The following lemma shows that for every η < κ+ there is a canonical
function fη on κ of norm η:
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Lemma 24.5. Let κ be a regular uncountable cardinal. There exist ordinal
functions fη, η < κ+, on κ such that

(i) f0(α) = 0 and fη+1(α) = fη(α) + 1, for all α < κ,
(ii) if η is a limit ordinal then fη is a least upper bound of {fξ : ξ < η}

in ≤INS .

The functions are unique up to =INS , and for every stationary set S ⊂ κ,
‖fη‖S = η.

Proof. Let 〈ξν : ν < cf η〉 be some sequence with limit η. If cf η < κ, let
fη(α) = sup{fξν (α) : ν < cf η}, and if cf η = κ, let fη(α) = sup{fξν (α) :
ν < α} (for every limit ordinal α), the diagonal limit of fξ, ξ < η. ��

For η ≥ κ+, canonical functions may or may not exist. The existence of fη

for all ordinals η is equiconsistent with a measurable cardinal. For the relation
between canonical functions and canonical stationary sets, see Exercise 24.10.

A subset A of a partially ordered set (P, <) is cofinal if for every p ∈ P
there exists some a ∈ A such that p ≤ a. The cofinality of (P, <) is the small-
est size of a cofinal set (it need not be a regular cardinal—see Exercise 24.11).
The true cofinality of (P, <) is the least cardinality of a cofinal chain (if it
exists—see Exercise 24.12). The true cofinality is a regular cardinal (or 1 if
P has a greatest element).

Consider again an infinite set A, an ideal I on A, and an indexed set
{γa : a ∈ A} of limit ordinals.

Definition 24.6. A scale in
∏

a∈A γa is a <I -increasing transfinite sequence
〈fα : α < λ〉 of functions in

∏
a∈A γa that is cofinal in

∏
a∈A γa in the partial

ordering <I .

If
∏

a∈A γa has a λ-scale (i.e., a scale of length λ) and λ is a regular
cardinal then it has true cofinality λ, and is λ-directed, i.e., every set B ⊂∏

a∈A γa of size < γ has an upper bound. The ordinal function 〈γa : a ∈ A〉
is the least upper bound of

∏
a∈A γa; moreover, it is an exact upper bound :

Definition 24.7. In a partially ordered set (P, <), g is an exact upper bound
of a set S if S is cofinal in the set {f ∈ P : f < g}.

The following theorem is a precursor of the pcf theory. We note that the
pcf theory shows, among others, that different sequences 〈λn : n < ω〉 with
the same limit will generally result in different cofinalities of

∏
n<ω λn.

Theorem 24.8 (Shelah). Let κ be a strong limit cardinal of cofinality ω.
There exists an increasing sequence 〈λn : n < ω〉 of regular cardinals with
limit κ such that the true cofinality of

∏
n<ω λn modulo the ideal of finite

sets is equal to κ+.
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Proof. Let I be the ideal of finite subsets of ω. We shall find the λn’s and
a κ+-scale in

∏
n λn in the partial ordering <I .

First we choose any increasing sequence κn, n < ω, of regular cardinals
with limit κ. As every subset of

∏
n<ω κn of size κ has an upper bound in

(
∏

n<ω κn, <I), we can construct inductively a <I -increasing κ+-sequence
F = 〈fξ : ξ < κ+〉 of functions in

∏
n κn.

Lemma 24.9. There exists a function g : ω → κ that is an upper bound of F
in <I , and is ≤I-minimal among such upper bounds.

Proof. Let g0 = 〈κn : n < ω〉; we shall construct a maximal transfinite ≤I-
decreasing sequence 〈gν〉ν of upper bounds of F . It suffices to show that the
length of the sequence 〈gν〉ν is not a limit ordinal: Then the last function is
≤I -minimal.

Thus let ϑ be a limit ordinal, and let 〈gν : ν < ϑ〉 be a ≤I-decreasing
sequence of upper bounds for F . We shall find a function g such that g >I fξ

for all ξ < κ+, and g ≤I gν for all ν < ϑ.
First we claim that |ϑ| ≤ 2ℵ0 . Thus assume that |ϑ| ≥ (2ℵ0)+ and consider

the partition G : [ϑ]2 → ω defined as follows (for α < β):

G(α, β) = the least n such that gα(n) > gβ(n).

By the Erdős-Rado Partition Theorem 9.6 there exists an infinite set of or-
dinals α0 < α1 < α2 < . . . such that for some n, gα0(n) > gα1(n) > gα2(n) >
. . ., a contradiction.

Let A =
⋃

ν<ϑ ran(gν) and let S = Aω . Since |ϑ| ≤ 2ℵ0 , we have |S| ≤ 2ℵ0 .
For every g ∈ S, if g is not an upper bound for F , let ξg be such that fξg �<I g.
Since |S| ≤ 2ℵ0 , there is some η < κ+ greater than all the ξg’s. Now let

g(n) = the least γ ∈ A such that γ > fη(n).

The function g is an upper bound for F : If not then fξg �<I g but fξg <I

fη <I g. We complete the proof of the lemma by showing that g ≤I gν for
all ν < ϑ. If ν < ϑ then gν(n) > fη(n) for all but finitely many n and, since
gν(n) ∈ A, we have gν ≥ g. ��

Let g be the function given by Lemma 24.9. We claim that g is an exact
upper bound of F . If not, let f <I g be such that f �<I fξ for all ξ. For
each ξ < κ+, let Aξ be the infinite set of all n such that f(n) > fξ(n).
Since 2ℵ0 < κ, there exists an infinite set A, such that for κ+ many ξ’s,
f(n) > fξ(n) for all a ∈ A. It follows that f�A >I fξ�A for every ξ < κ+,
and therefore the function g′ = f�A∪g�(ω − A) ≤I g is an upper bound of F
but g′ �=I g, a contradiction.

Now, if g is increasing with limit κ and if every g(n) is a regular cardinal,
then we let λn = g(n) and are done. In general, all but finitely many g(n) are
limit ordinals; without loss of generality, all are. For each n, let Yn be a closed
unbounded subset of g(n) whose order-type is a regular cardinal γa. Note that
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supn γn = κ; otherwise, |
∏

n Yn| < κ and hence bounded by some fξ. So let
〈λn : n < ω〉 = 〈γkn : n < ω〉 be an increasing subsequence of 〈γn〉n.

For each f ∈ F , let hf be the function

hf (n) = the least α ∈ Ykn such that α ≥ f(kn).

and let H = {hf : f ∈ F}. For every f ∈
∏

n Yn there exists some h ∈ H such
that f <I h. Also, |H | = κ+ since every smaller set of functions is bounded
by some fξ. Thus we can find in H a <I -increasing transfinite sequence
〈hξ : ξ < κ+〉 such that for every f ∈

∏
n Yn, there is a ξ with f <I hξ.

By copying
∏

n Yn onto
∏

n λn, we get a sequence 〈hξ : ξ < κ+〉 with the
required properties. ��

As an application of Theorem 24.8 we give a short proof of Kunen’s The-
orem 17.7, due to Zapletal [1996].

Assume that j : V → M is elementary, with critical point κ, and let
λ = limn jn(κ). As λ is a strong limit cardinal of cofinality ω, let 〈λn : n < ω〉
be an increasing sequence of regular cardinals with limit λ such that κ < λ0

and that
∏

n λn has a λ+-scale F = 〈fξ : ξ < λ+〉 (modulo finite). Since
j(λ) = λ, we have j(λ+) = λ+, and j(F ) is a λ+-scale in

∏
n j(λn).

Since j“λ+ is cofinal in j(λ+) = λ+, j“F is cofinal in j(F ) and thus
in

∏
n j(λn). However, let g ∈

∏
n j(λn) be the function g(n) = sup j“λn;

we have g(n) < j(λn) because j(λn) is regular. If f ∈
∏

n λn then g >
j(f) pointwise because j(f) = j“f . Hence g is an upper bound for j“F ,
a contradiction. ��

Toward the pcf theory, we shall now prove several results on ordinal func-
tions and scales. Let I be an ideal on A.

Lemma 24.10. If λ > 2|A| is a regular cardinal then every <I-increasing
λ-sequence of ordinal functions on A has an exact upper bound.

Proof. Let F = 〈fα : α < λ〉 be <I-increasing. Let M be an elementary
submodel of Hϑ for a sufficiently large ϑ such that I ∈ M , F ∈ M , |M | = 2|A|

and M |A| ⊂ M . For every α, let

gα(a) = the least β ∈ M such that β ≥ fα(a) (a ∈ A).

Since M |A| ⊂ M , we have gα ∈ M , and since |M | < λ, there exists some
f ∈ M such that f = gα for λ many α’s. Since 〈fα〉α is increasing and f ≥I fα

for λ many α’s, f is an upper bound of F .
To show that whenever h <I f then h <I fα for some α, it is enough to

show this for every h ∈ M . Thus let h ∈ M be such that h <I f .
Let α be any α such that f = gα. For every a ∈ A such that h(a) < gα(a)

we necessarily have h(a) < fα(a) because h(a) ∈ M and gα(a) is the least
β ∈ M such that β ≥ fα(a). Hence h <I fα. ��
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If F is a set of ordinal functions on A and g is an upper bound of F , then
we say that F is bounded below g if it has an upper bound h <I g; F is cofinal
in g if it is cofinal in

∏
a∈A g(a). If X ∈ I+ then f <I g on X , etc., means

f <I�X g where I�X is the ideal generated by I ∪ {A − X}.

Corollary 24.11. If λ > 2|A| is regular, F = 〈fα : α < λ〉 is <I-increasing
and g is an upper bound of F , then either F is bounded below g, or F is
cofinal in g, or A = X ∪ Y with X, Y ∈ I+ such that F is bounded below g
on X and is cofinal in g on Y .

Proof. Let f be an exact upper bound of F and let X = {a ∈ A : f(a) <
g(a)}. ��

Corollary 24.12. Let λ > 2|A| be a regular cardinal, let γa, a ∈ A, be
limit ordinals, and assume that

∏
a∈A γa is λ-directed in <I . Then either∏

a∈A γa is λ+-directed, or has a λ-scale, or A = X ∪Y with X, Y ∈ I+ such
that

∏
a∈A γa has a λ-scale on X and is λ+-directed on Y .

Proof. Assume that
∏

a∈A γa is λ-directed but not λ+-directed, and let S ⊂∏
a∈A γa be such that |S| = λ and S is not bounded. Using the λ-directness,

we construct an increasing sequence F = 〈fα : α < λ〉 such that for every
f ∈ S, there exists an α < λ such that f <I fα. As F is not bounded, there
exists some Z ∈ I+ such that F is a scale on Z.

Now let Z be the collection of all Z ∈ I+ that have a λ-scale, and for
each Z ∈ Z let 〈fZ

α : α < λ〉 be a λ-scale on Z. Let S = {fZ
α : α < λ,

Z ∈ Z}; since 2|A| = λ, we have |S| = λ, and we can construct an increasing
λ-sequence F = 〈fα : α < λ〉 such that for every f ∈ S there is an α < λ
with f ≤I fα.

Either F is a scale, or A = X∪Y such that F is bounded on X and cofinal
on Y . To complete the proof, we show that

∏
a∈A γa is λ+-directed; i.e., that

for every set of size λ is bounded on X . If not, we repeat the argument above
and find a Z ⊂ X that has a scale. This contradicts the fact that S is bounded
on X . ��

Definition 24.13. Let F = 〈fα : α < λ〉, λ regular, be a <I -increasing
sequence of ordinal functions on A and let γ < λ be a regular uncountable
cardinal. F is γ-rapid if for every β < λ of cofinality γ there exists a closed
unbounded set C ⊂ β such that for every limit ordinal α < β, fα >I sC∩α,
where sC∩α is the pointwise supremum of {fξ(a) : ξ ∈ C ∩ α}:

sC∩α(a) = sup{fξ(a) : ξ ∈ C ∩ α} (a ∈ A).

Lemma 24.14. Let F = 〈fα : α < λ〉 be γ-rapid, with γ > |A|. For each
a ∈ A, let Sa ⊂ λ be such that |Sa| < γ. Then there exists an α < λ with the
property that for every h ∈

∏
a∈A Sa, if h >I fα, then h is an upper bound

of F .
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Proof. Assume by contradiction that for every α < λ there exists an
h ∈

∏
a∈A Sa such that h >I fα but h is not an upper bound of F . By

induction, we construct a continuous increasing sequence αξ, ξ < γ, and
functions hξ ∈

∏
a∈A Sa such that for every ξ, fαξ

<I hξ and fαξ+1 �I hξ.
Let β = limξ→γ αξ.

As F is γ-rapid, there exists a closed unbounded C ⊂ β such that fα >I

sC∩α for every α ∈ C. We may assume that αξ ∈ C for every ξ < γ (otherwise
replace {αξ}ξ<γ by its intersection with C).

For each ξ < γ we have sC∩αξ
<I fαξ

<I hξ �I fαξ+1 and so there exists
some aξ ∈ A such that

sC∩αξ
(aξ) < fαξ

(aξ) < hξ(aξ) < fαξ+1(aξ).

As γ > |A|, there exist a set Z ⊂ γ of size γ and some a ∈ A such that aξ = a
for all ξ ∈ Z. Now if ξ and η are in Z, such that ξ+1 < η, then αξ+1 ∈ C∩αη

and we have
hξ(a) < fαξ+1(a) ≤ sC∩αη(a) < hη(a).

This is a contradiction because |Sa| < γ while |Z| = γ. ��

Corollary 24.15. If F = 〈fα : α < λ〉 is γ-rapid, with |A| < γ < λ, and if
f is the least upper bound of F , then cf f(a) ≥ γ for I-almost all a ∈ A.

Proof. Let f be an upper bound of F , and assume that B = {a ∈ A :
cf f(a) < γ} ∈ I+. We shall find an upper bound h of F such that h <I f
on B.

For a ∈ B, let Sa be a cofinal subset of f(a) of size < γ. By Lemma 24.14
there is an α < λ such that for every h ∈

∏
a∈B Sa, h >I fα on B implies

that h is an upper bound of F on B. Given this α, we consider a function
h ∈

∏
a∈B Sa as follows: If fα(a) < f(a), let h(a) ∈ Sa be such that fα(a) <

h(a) < f(a). The function h is an upper bound of F on B, and h <I f
on B. ��

Theorem 24.16 (Shelah). Let κ be a regular uncountable cardinal, and let
I = INS be the nonstationary ideal on κ. Let 〈ηξ : ξ < κ〉 be a continuous
increasing sequence with limit η. Then

∏
ξ<κ ℵηξ+1 has true cofinality ℵη+1

(in <I).

We shall prove this theorem only under the assumption 2κ < ℵη (we only
need the weaker version for the proof of Theorem 24.33). For the general
proof, see Burke and Magidor [1990].

Proof. Let λ = ℵη+1. We wish to find a λ-scale. It is not difficult to see that∏
ξ<κ ℵηξ+1 is λ-directed. By Corollary 24.12 (as we assume 2κ < λ), if there

is no λ-scale then there is a stationary set S ⊂ κ such that
∏

ξ∈S ℵηξ+1 is
λ+-directed.

We shall construct a <I-increasing λ-sequence in
∏

ξ∈S ℵηξ+1 that is γ-
rapid for all regular γ < ℵη. For every limit ordinal β < λ, let Cβ ⊂ β be
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closed unbounded, of size cf β. We construct F = 〈fα : α < λ〉 by induction.
Let α be a limit ordinal. For each limit β > α, let sβ be the pointwise
supremum of {fν : ν ∈ Cβ ∩ α}. For eventually all ξ < κ, sν(ξ) < ℵηξ+1, so
sν ∈

∏
ξ∈S ℵηξ+1. Since

∏
ξ∈S ℵηξ+1 is λ+-directed, we can find fα so that

fα >I sβ on S for all limit β < λ. This guarantees that F is γ-rapid for every
regular uncountable γ < λ.

By Lemma 24.10, F has an exact upper bound g, and without loss of
generality, g(ξ) ≤ ℵηξ+1 for all ξ ∈ S. We claim that g(ξ) ≥ ℵηξ+1 for almost
all ξ ∈ S, and hence F is a scale on S, contrary to the assumption on S. If
g(ξ) < ℵηξ+1 for stationary many ξ, then cf g(ξ) < ℵηξ

, and hence for some
γ < ℵη+1, cf g(ξ) < γ for stationary many ξ. This contradicts Corollary 24.15,
as F is γ-rapid for all γ < λ. ��

The pcf Theory

Shelah’s pcf theory is the theory of possible cofinalities of ultraproducts of
sets of regular cardinals. Let A be a set of regular cardinals, and let D be
an ultrafilter on A.

∏
A =

∏
a∈A{a : a ∈ A} denotes the product {f :

dom(f) = A and f(a) ∈ a}; the ultraproduct
∏

A/D is linearly ordered, and
cof D = cof

∏
A/D is its cofinality.

Definition 24.17. If A is a set of regular cardinals, then

pcf A = {cof D : D is an ultrafilter on A}.

The set pcf A is a set of regular cardinals, includes A (for every a ∈ A
consider the principal ultrafilter given by a), has cardinality at most 22|A|

and satisfies pcf(A1 ∪ A2) = pcf A1 ∪ pcf A2.
We shall investigate the structure of pcf in the next section. In this section

we explore the relation between pcf and cardinal arithmetic. Instead of the
general theory we concentrate on the special case when A = {ℵn}∞n=0. We
prove the following theorem:

Theorem 24.18 (Shelah). If ℵω is a strong limit cardinal then

max(pcf{ℵn}∞n=0) = 2ℵω .

A stronger theorem is true: If 2ℵ0 < ℵω then max(pcf{ℵn}∞n=0) = ℵℵ0
ω ;

again, we refer the reader to Burke and Magidor [1990].
We say that a set of regular cardinals A is an interval if it contains every

regular λ such that min A ≤ λ < sup A.

Lemma 24.19. Let A be an interval of regular cardinals such that min A =
(2|A|)+. Then pcf A is an interval.



24. The Singular Cardinal Problem 467

Proof. Let D be an ultrafilter on A and let λ be a regular cardinal such that
min A ≤ λ < cof D. We shall find an ultrafilter E on A such that cof E = λ.

Let {fα : α < cof D} be a D-increasing sequence in
∏

A. Since λ > 2|A|,
the sequence has a least upper bound g in ≤D (by Lemma 24.10). For each
a ∈ A let h(a) = cf g(a) and let Sa be a cofinal subset of g(a) of order-
type h(a). It is easy to see that

∏
a∈A Sa/D has an increasing λ-sequence

cofinal in g, and hence
∏

a∈A h(a)/D has a cofinal sequence {hα : α < λ}.
For D-almost all a, h(a) > 2|A|: This is because the number of functions

from A into 2|A| is less than λ. Thus we may assume that h(a) ∈ A for all
a ∈ A. Let E be the ultrafilter on A defined by

E = {X ⊂ A : h−1(X) ∈ D}.

We now construct, by induction on α, functions gα, α < λ, such that the
sequence {gα ◦h : α < λ} is D-increasing and cofinal in h. Then {gα : α < λ}
is E-increasing and cofinal in

∏
A/E. ��

Corollary 24.20. If ℵω is a strong limit cardinal, then pcf{ℵn}∞n=0 is an
interval and suppcf{ℵn}∞n=0 < ℵℵω .

Proof. Apply Lemma 24.19 to the interval A = [(2ℵ0)+,ℵω), and use
| pcf A| ≤ 22ℵ0

< ℵω. ��

Toward the proof of Theorem 24.18, we assume that ℵω is strong limit
and let

λ = sup pcf{ℵn}∞n=0.

We shall show that 2ℵω = λ. Since cf 2ℵω > ℵω (by König’s Theorem) and
λ < ℵℵω , it follows that 2ℵω is a successor cardinal, and therefore 2ℵω =
max(pcf{ℵn}∞n=0).

Lemma 24.21. There exists a family F of functions in
∏∞

n=0 ℵn, |F | = λ,
such that for every g ∈

∏∞
n=0 ℵn there is some f ∈ F with g(n) ≤ f(n) for

all n.

Proof. For every ultrafilter D on ω choose a sequence 〈fD
α : α < cof D〉 that

is cofinal in
∏∞

n=0 ℵn/D, and let F be the set of all f = max{fD1
α1

, . . . , fDm
αm

}
where {D1, . . . , Dm} is a finite set of ultrafilters and {α1, . . . , αm} a finite set
of ordinals. Since λ > ℵω > 22ℵ0 , we have |F | = λ.

Assume, by contradiction, that there is a g ∈
∏∞

n=0 ℵn that is not ma-
jorized by any f ∈ F . Thus if we let, for every D and every α, XD

α = {n :
g(n) > fD

α (n)}, then the family {XD
α }α,D has the finite intersection property,

and so extends to an ultrafilter U . Then g <U fU
α for some α, a contradic-

tion. ��

Let us fix such a family F of size λ, and let k < ω be such that 2ℵ0 ≤ ℵk

and λ < ℵℵk
. Let ϑ be sufficiently large, and consider elementary submodels of
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(Hϑ,∈, <) where < is some well-ordering of Hϑ. For every countable subset a
of ℵω we shall construct an elementary chain of models Ma

α, of length ωk.
Each Ma

α will have size ℵk and will be such that Ma
α ⊃ a ∪ ωk.

We choose Ma
0 of size ℵk so that Ma

0 ⊃ a∪ωk. If α < ωk is a limit ordinal,
we let Ma

α =
⋃

β<α Ma
β . Given Ma

α, we find Ma
α+1 as follows. Let

(24.6) χa
α(n) = sup(Ma

α ∩ ωn) (all n > k),

the characteristic function of Ma
α. There exists a function fa

α ∈ F such that
fa

α(n) ≥ χa
α(n) for all n > k; let Ma

α+1 be such that fa
α ∈ Ma

α+1.
Then we let Ma =

⋃
α<ωk

Ma
α, and

χa(n) = sup(Ma ∩ ωn) (all n > k).

Lemma 24.22. If a and b are countable subsets of ℵω and if χa = χb, then
Ma ∩ ℵω = M b ∩ ℵω.

Proof. By induction on n we show that Ma ∩ ℵn = M b ∩ ℵn, for all n ≥ k.
This is true for n = k; thus assume that this is true for n and prove it for
n + 1. Both Ma ∩ℵn+1 and M b ∩ℵn+1 contain a closed unbounded subset of
the ordinal χa(n + 1) = χb(n + 1) (of cofinality ℵk), and so there is a cofinal
subset C of this ordinal such that C ⊂ Ma and C ⊂ M b. For every γ ≥ ωn

in C there is a one-to-one function π that maps ωn onto γ. If we let π be the
≺-least such function in Hϑ, then π is both in Ma and in M b. It follows that
γ ∩ Ma = γ ∩ M b. Consequently, ωn+1 ∩ Ma = ωn+1 ∩ M b and the lemma
follows. ��

We shall complete the proof of Theorem 24.18 by showing that the set
{χa : a ⊂ ℵω countable} has size at most λ. Since each Ma has ℵk countable
subsets it will follow that there are at most λ countable subsets of ℵω, and
therefore 2ℵω = λ.

For each a and each n we have

χa(n) = supα<ωk
χa

α(n) = supα<ωk
fa

α(n).

If S is any subset of ωk of size ℵk, then χa(n) = sup{fa
α(n) : α ∈ S} and so

the set {fa
α : α ∈ S} determines χa.

Lemma 24.23. There exists a family Fλ of λ subsets of λ, each of size ℵk,
such that for every subset Z ⊂ λ of size ℵk there exists an X ∈ Fλ such that
X ⊂ Z.

Proof. We prove (by induction on α) that for every ordinal α such that
2ℵk ≤ α ≤ λ there is a family Fα ⊂ [α]ℵk , |Fα| ≤ |α| such that for every
Z ∈ [α]ℵk there is an X ∈ Fα such that X ⊂ Z. This is true for α = 2ℵk . If
α is not a cardinal, then Fα can be obtained by a one-to-one transformation
from F|α|. If α is a cardinal then since α ≤ λ < ℵℵk

, we have cf α �= ℵk, and
it follows that Fα =

⋃
β<α Fβ has the required property. ��
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Now we complete the proof of Theorem 24.18. For each countable subset a
of ℵω let Za = {fa

α : α < ωk}; each Za is a subset of F , and |Z| = ℵk. Apply
Lemma 24.23 to the set F (instead of λ) and obtain a family Fλ ⊂ [F ]ℵk such
that for each a there exists some X ∈ Fλ such that X ⊂ Z. Since |X | = ℵk,
X determines χa. It follows that |{χa : a ⊂ ℵω countable}| ≤ λ. ��

The Structure of pcf

Let A be a set of regular cardinals and let pcf A denote the set of all possible
cofinalities of

∏
A. First we mention some facts about pcf:

(i) A ⊂ pcf A.
(ii) If A1 ⊂ A2 then pcf A1 ⊂ pcf A2.
(iii) pcf(A1 ∪ A2) = pcf A1 ∪ pcf A2.
(iv) | pcf A| ≤ 22|A|

.
(v) sup pcf A ≤ |

∏
A|.

(24.7)

In Lemma 24.19 we showed:

(vi) If A is an interval and 2|A| < min A then pcf A is an interval.

This is true in general, under the assumption |A| < min A (see Shelah [1994]).
In the following Lemma 24.24 we prove

(vii) If | pcf A| < min A then pcf(pcf A) = pcf A.

Finally, Theorem 24.18 is true in general, and under weaker assumptions; we
state this without a proof.

(viii) If A is an interval without a greatest element and (minA)|A| <
sup A, then (supA)|A| = maxpcf A.

For proof, see e.g. Burke and Magidor [1990].

Lemma 24.24. If | pcf A| < min A then pcf(pcf A) = pcf A.

Proof. Let B = pcf A. For each λ ∈ B choose Dλ on A such that cof Dλ = λ,
and let 〈fλ

α : α < λ〉 be cofinal in
∏

A/Dλ. Let µ ∈ pcf B; choose D on B
with cof D = µ, and let 〈gα : α < µ〉 be cofinal in

∏
B/D. Let

E = {X ⊂ A : {λ ∈ B : X ∈ Dλ} ∈ D}.

E is an ultrafilter on A and we shall show that cof E = µ, thus proving
µ ∈ pcf A, and hence pcf B = B.



470 Part II. Advanced Set Theory

For every α < µ, let

hα(a) = supλ∈B fλ
gα(λ)(a) (all a ∈ A).

Since min A > |B|, we have hα(a) < a for all a ∈ A. We will show that for
each h ∈

∏
A, eventually all hα are ≥E h. The we can find a subsequence of

〈hα : α < µ〉 that is cofinal in
∏

A/E.
Let h ∈

∏
A. For each λ ∈ B there exists a g(λ) < λ such that h <Dλ

fλ
g(λ). For eventually all α < µ we have g <D gα, and we claim that whenever

g <D gα then h <E hα.
Let α be such that g <D gα. Let X = {a ∈ A : h(a) < hα(a)}. If λ is such

that g(λ) < gα(λ) then for Dλ-almost all a, h(a) < fλ
g(λ)(a) < fλ

gα(λ)(a) ≤
hα(a) and hence a ∈ X . Thus X ∈ Dλ for D-almost all λ, and so X ∈ E. ��

The fundamental theorem of the pcf theory is the following.

Theorem 24.25 (Shelah). If A is a set of regular cardinals such that 2|A| <
min A, then there exist sets Bλ ⊂ A, λ ∈ pcf A, such that for every λ ∈ pcf A

(a) λ = maxpcf Bλ.
(b) λ /∈ pcf(A − Bλ).
(c)

∏
{a : a ∈ Bλ} has a λ-scale mod Jλ where Jλ is the ideal generated

by the sets Bν , ν < λ.

(To see that Jλ is an ideal, we observe that if X ∈ Jλ then X ⊂ Bν1 ∪
. . . ∪ Bνk

, hence pcf X ⊂ pcf Bν1 ∪ . . . ∪ pcf Bνk
and so by (a), λ /∈ pcf X .

Hence X �= A.)
The theorem is true under the weaker assumption |A| < min A; see She-

lah [1994] or Burke and Magidor [1990].
Note that (a) and (b) can be formulated as follows:

(a) For every ultrafilter D on Bλ, cof D ≤ λ; and there exists some D
on Bλ such that cof D = λ.

(b) For every ultrafilter D on A, if cof D = λ then Bλ ∈ D.

The sets Bλ, λ ∈ pcf A, are called the generators of pcf A. It follows from
(a) and (b) that the cofinality of an ultrafilter on A is determined by which
generators it contains:

(24.8) cof D = the least λ such that Bλ ∈ D.

Corollary 24.26. If 2|A| < min A then | pcf A| ≤ 2|A|.

Proof. The number of generators is at most 2|A|. ��

Corollary 24.27. If ℵω is strong limit then 2ℵω < ℵ(2ℵ0 )+ .

Proof. Corollary 24.26, Corollary 24.20 and Theorem 24.18. ��
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Corollary 24.28. If 2|A| < min A then pcf A has a greatest element.

Proof. Assume that pcf A does not have a greatest element. Then the set
{A − Bλ : λ ∈ pcf A} has the finite intersection property, and so extends to
an ultrafilter D. By (b), Bcof D ∈ D, a contradiction. ��

Proof of Theorem 24.25. We shall apply the results on ordinal functions
proved earlier in this chapter. If I is an ideal on a set A of regular cardi-
nals then we say that I has a λ-scale if

∏
A has a λ-scale in <I ; similarly,

we say that I is λ-directed if
∏

A is λ-directed in ≤I .
We construct the generators Bλ by induction, so that for each cardinal κ ≤

sup pcf A the following conditions are satisfied:

(i) the ideal Jκ generated by {Bλ : λ < κ and λ ∈ pcf A} is κ-
directed;

(ii) if κ /∈ pcf A then Jκ is κ+-directed;
(iii) if κ ∈ pcf A and κ is not a maximal element of pcf A then there

exists a Bκ ∈ J+
κ such that Jκ has a κ-scale on Bκ and Jκ[Bκ],

the ideal generated by Jκ ∪ {Bκ}, is a κ+-directed ideal;
(iv) if κ = max(pcf A) then Jκ has a κ-scale on A (and we let

Bκ = A).

(24.9)

If the conditions (24.9) are satisfied, then the sets Bλ satisfy Theorem 24.25:
To prove (a), let λ ∈ pcf A. Choose an ultrafilter D on Bλ that extends

the dual filter of Jλ. Jλ has a λ-scale on Bλ, and this scale is also a scale
for <D; therefore cof D = λ, and so λ ∈ pcf Bλ. Also, if D is any ultrafilter
on Bλ, then either D ∩ Jλ = ∅ in which case cof D = λ, or else there is some
ν < λ such that Bν ∈ D. If ν is the least such ν then D is an ultrafilter on Bν

and D ∩ Jν = ∅. Since Jν has a ν-scale on Bν , we have cof D = ν. In either
case, cof D ≤ λ.

To prove (b), let D be an ultrafilter on A such that Bλ /∈ D; we claim
that cof D �= λ. Either D � Bλ for some ν < λ in which case cof D < λ, or
else D ∩ Jλ[Bλ] �= ∅, and since Jλ[Bλ] is λ+-directed, D is λ+-directed, and
we have cof D > λ.

Finally, (c) follows from (24.9)(iii) and (iv). We prove (24.9) by induction
on κ ≤ sup pcf A:

(i) If κ ≤ min A then Jκ = {∅} is κ-directed. If κ is a limit cardinal, then
Jκ =

⋃
λ<κ Jλ and the claim follows easily. If κ = λ+ then either λ /∈ pcf A

and Jκ = Jλ is λ+-directed by (ii), or λ ∈ pcf A and Jκ = Jλ[Bλ] is λ+-
directed by (iii).

(ii) Let κ /∈ pcf A and κ ≥ min A; hence κ > 2|A|. If κ is singular,
then it is easy to see that since Jκ is κ-directed, it is κ+-directed. If κ is
regular, assume by contradiction that Jκ is κ-directed but not κ+-directed.
By Corollary 24.12, Jκ has a κ-scale on some X ∈ J+

κ . Let D be any ultrafilter
on X such that D∩Jκ = ∅. Then cof D = κ and so κ ∈ pcf A, a contradiction.
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(iii) Let κ ∈ pcf A be such that κ < sup pcf A. We claim that Jκ is not
κ+-directed and that Jκ does not have a κ-scale on A. Then a Bκ exists by
Corollary 24.12. Assume by contradiction that Jκ is κ+-directed, and let D
be any ultrafilter on A. If D � Bλ for some λ < κ, then cof D < κ. Otherwise,
D ∩ Jκ = ∅ and since Jκ is κ+-directed, D is κ+-directed and so cof D > κ.
In either case cof D �= κ, hence κ /∈ pcf A, a contradiction.

Now assume that Jκ does have a κ-scale on A. Then for every ultrafilter D
on A, either D � Bλ for some λ < κ, and then cof D < κ, or D ∩ Jκ = ∅, so
D has a κ-scale and cof D = κ. Hence κ = max(pcf A), a contradiction.

(iv) Let κ = max(pcf A) and again assume, by contradiction, that Jκ does
not have a scale on A. Then by Corollary 24.12 there exists a Y ∈ J+

κ such
that Jκ[Y ] is κ+-directed. If D is any ultrafilter on A such that D∩Jκ[Y ] = ∅
then <D is κ+-directed and so cof D > κ. Hence κ is not the maximal element
of pcf A, a contradiction. ��

The same argument that shows that pcf A has a greatest element yields
the following property of pcf, called compactness :

Corollary 24.29. Let Bλ, λ ∈ pcf A, be generators of pcf A. For every X ⊂
A there exists a finite set {ν1, . . . , νk} ⊂ pcf X such that X ⊂ Bν1 ∪ . . .∪Bνk

.

Proof. Assume the contrary. Then {X − Bν : ν ∈ pcf X} has the finite
intersection property and there exists an ultrafilter D on X such that Bν /∈
D for all ν ∈ pcf X . If λ = cof D then Bλ ∈ D by Theorem 24.25(b),
a contradiction. ��

We conclude this section with the following improvement of Theorem
24.16:

Corollary 24.30. Let κ be a regular uncountable cardinal, and let ℵη be
a singular cardinal of cofinality κ such that 2κ < ℵη. Then there is a closed
unbounded set C ⊂ η such that max(pcf{ℵα+1 : α ∈ C}) = ℵη+1;∏

α∈C ℵα+1 has true cofinality ℵη+1 mod I where I is the ideal of all bounded
subsets of C.

Proof. Let C0 be any closed unbounded subset of η of order-type κ such that
2κ < ℵα0 where α0 = min C0. Let A0 = {ℵα+1 : α ∈ C0}, let λ = ℵη+1, and
let Bλ be a generator for pcf A0, for this λ (by Theorem 24.16, λ ∈ pcf A0).
Let X = {α ∈ C0 : ℵα+1 ∈ Bλ}. If D is any ultrafilter on C0 that extends
the closed unbounded filter, then by Theorem 24.16, cof

∏
α∈C0

ℵα+1/D = λ,
and by Theorem 24.25(b), X ∈ D. Thus X contains a closed unbounded
set C. Let A = {ℵα+1 : α ∈ C}. By Theorem 24.25(a), max(pcf A) ≤ λ, and
therefore = λ.

Now let Bν , ν ≤ λ, denote the generators of pcf A. Every Bν for ν < λ is
a bounded subset of A and so the ideal of all bounded subsets of A extends Jλ,
the ideal generated by the Bν , ν < λ. Thus

∏
α∈C ℵα+1/I has a λ-scale. ��
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Transitive Generators and Localization

Let A be a set of regular cardinals with 2|A| < min A, let Bλ, λ ∈ pcf A,
be generators for pcf A, and let Jκ be, for each κ ≤ max(pcf A), the ideal
generated by {Bλ : λ < κ}. The following shows that the ideals Jκ are
independent of the choice of generators for pcf A:

(24.10) For every X ⊂ A, X ∈ Jκ if and only if cof D < κ for every
ultrafilter D on X .

To see this, note first that if X ∈ Jκ then X ⊂ Bν1 ∪ . . . ∪ Bνk
for some

ν1, . . . , νk < κ, and so max(pcf X) < κ. Conversely, if X /∈ Jκ then the set
{X − Bλ : λ < κ} has the finite intersection property, and so there exists an
ultrafilter D on X such that Bλ /∈ D for all λ < κ. By Theorem 24.25(b),
cof D ≥ κ. Each generator Bλ is uniquely determined up to equivalence
mod Jλ; if B is any set such that B  Bλ ∈ Jλ, then B also satisfies (a)
and (b) of Theorem 24.25. To see this, note that by (24.10), if X  Y ∈ Jλ

then pcf X − λ = pcf Y − λ; thus max pcf B = λ and λ /∈ pcf(A − B).
We shall now produce generators for pcf that are transitive:

Lemma 24.31 (Transitive Generators). Let A be a set of regular cardi-
nals such that A = pcf A and (2|A|)+ < min A. There exist generators Bλ,
λ ∈ A, for pcf A with the property

(24.11) if µ ∈ Bλ then Bµ ⊂ Bλ.

In other words, the relation “µ ∈ Bλ” of µ and λ is transitive. The lemma
holds under weaker assumptions on A; see Shelah [1994].

Proof. Let Bλ, λ ∈ A, be generators for pcf A. We shall replace each Bλ by
an equivalent generator Bλ so that (24.11) is satisfied.

For each λ ∈ A there exists a sequence 〈fλ
α : α < λ〉 of functions in

∏
A

that is <Jλ
-increasing and is cofinal on Bλ. Moreover, by Lemma 24.10 we

may assume that for each λ and each α of cofinality greater than 2|A|, fλ
α is

an exact upper bound of {fλ
β : β < α}.

Let κ = (2|A|)+. Let ϑ be sufficiently large, and consider elementary sub-
models of (Hϑ,∈, <) where < is some well-ordering of Hϑ. Consider a con-
tinuous elementary chain

M0 ≺ M1 ≺ . . . ≺ Mη ≺ . . . ≺ Mκ = M ≺ Hϑ

of models, each of size κ, such that M0 contains A, each λ ∈ A, all subsets
of A, each 〈fλ

α : α < λ〉, every function from a subset of A into A<ω, and
such that

(24.12) 〈Mξ : ξ ≤ η〉 ∈ Mη+1 (all η < κ).
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Let χη, η ≤ κ, be the characteristic functions of Mη:

(24.13) χη(λ) = sup(Mη ∩ λ) (for all λ ∈ A),

and let χ = χκ, the characteristic function of M . Each χη (η < κ) belongs
to Mη+1 and therefore to M . If ξ < η then χξ(λ) < χη(λ) for all λ ∈ A, and
〈χη(λ) : η < κ〉 is an increasing continuous sequence with limit χ(λ) < λ.

We claim that for each λ ∈ A, χ is the <Jλ
-exact upper bound of 〈fλ

α :
α ∈ M ∩ λ〉 on Bλ and consequently,

(24.14) fλ
χ(λ)(µ) = χ(µ) for Jλ-almost all µ ∈ Bλ.

If α ∈ M ∩ λ then fλ
α ∈ M and so fλ

α(µ) < χ(µ) for all µ ∈ A. Hence χ is
an upper bound of 〈fλ

α : α ∈ M ∩ λ〉. To show that χ is the <Jλ
-exact upper

bound on Bλ, it suffices to show that for each η < κ, χη <Jλ
fλ

α on Bλ for
some α ∈ M ∩ λ, since χ is the pointwise supremum of {χη : η < κ}, and
|A| < κ. Thus let η < κ; there exists an α < λ such that χη <Jλ

fλ
α on Bλ,

and since M is an elementary submodel, there exists such an α in M .
Since cf χ(λ) = κ > 2|A|, fλ

χ(λ) is a <Jλ
-exact upper bound of {fλ

α : α ∈
M ∩ λ} on Bλ, and (24.14) follows.

Now we let, for each λ ∈ A,

(24.15) B∗
λ = {µ ∈ Bλ : fλ

χ(λ)(µ) = χ(µ)};

if follows from (24.14) that B∗
λ is Jλ-equivalent to Bλ.

The transitive generators Bλ are defined as follows:

(24.16) ν ∈ Bλ if and only if there exists a finite increasing sequence (with
k ≥ 0) 〈ν0, . . . , νk〉 such that ν0 = ν, νk = λ and νi ∈ B∗

νi+1
for

every i = 0, . . . , k − 1.

It is clear that Bλ is transitive, B∗
λ ⊂ Bλ, and λ = maxBλ. It remains

to prove that Bλ is Jλ-equivalent to Bλ; for that it suffices to show that
Bλ ∈ Jλ+ = Jλ[Bλ].

For each ν ∈ Bλ, fix a finite sequence ϕ(ν) = 〈ν0, . . . , νk〉 to sat-
isfy (24.16). Note that the function ϕ on Bλ belongs to M . Let 〈gα : α < λ〉
be the λ-sequence of functions in

∏
A defined as follows:

If ν /∈ Bλ, we let gα(ν) = 0. If ν ∈ Bλ then ϕ(ν) = 〈ν0, . . . , νk〉 with
ν0 = ν and νk = λ, and we consider the sequence 〈β0, . . . , βk〉, where βi < νi

for each i, obtained as follows (by descending induction):

(24.17) βk = α,

βi = f
νi+1
βi+1

(νi) (i = k − 1, . . . , 0).

and let gα(ν) = β0.
As M is an elementary submodel and ϕ ∈ M , the sequence 〈gα : α < λ〉

is defined in M . Since Jλ+ is λ+-directed, there exists a function g ∈
∏

A



24. The Singular Cardinal Problem 475

such that gα < g mod Jλ+ for every α < λ. Since M ≺ Hϑ, such a function g
exists in M . Since g ∈ M , we have g(ν) < χ(ν) for all ν and therefore gα < χ
mod Jλ+ for every α < λ.

Now let α = χ(λ). We shall finish the proof by showing that gα(ν) = χ(ν)
for every ν ∈ Bλ. This implies that Bλ ∈ Jλ+ .

So let ν ∈ Bλ. Let 〈ν0, . . . , νk〉 = ϕ(ν), and let 〈β0, . . . , βk〉 be the sequence
obtained in (24.17) for α = χ(λ). We claim that for each i, βi = χ(νi), and
therefore gα(ν) = β0 = χ(ν0) = χ(ν).

For each i we have νi ∈ B∗
νi+1

, and so by (24.15), f
νi+1

χ(νi+1)
(νi) = χ(νi). For

i = k, we have βk = α = χ(λ) = χ(νk), and then for each i = k − 1, . . . , 0,
we have by (24.17)

βi = f
νi+1
βi+1

(νi) = f
νi+1

χ(νi+1)
(νi) = χ(νi). ��

Using transitive generators we now prove the Localization Lemma:

Lemma 24.32 (Localization). Let A be a set of regular cardinals such that
2| pcf A| < min A, let X ⊂ pcf A and let λ ∈ pcf X. There exists a set W ⊂ X
such that |W | ≤ |A| and such that λ ∈ pcf W .

Again, the Localization Lemma holds under the weaker assumption
| pcf A| < min A.

Proof. First, since 2|X| < min X , there exist generators for pcf X , and in
particular there exists a set Y ⊂ X with max(pcf Y ) = λ. Let A = pcf A.
By (24.7)(vii) we have pcf A = A, and since 2|A| < min A, we can find
transitive generators Bν , ν ∈ A, for pcf A.

For every ν ∈ Y , let BA
ν = Bν ∩ A. Since Y ⊂ pcf A, there exists an

ultrafilter D on A with cof D = ν, and by Theorem 24.25, Bν ∈ D. Hence
ν ∈ pcf BA

ν . Let
E =

⋃
{BA

ν : ν ∈ Y }.
Since ν ∈ pcf E for every ν ∈ Y , we have Y ⊂ pcf E, hence pcf Y ⊂ pcf pcf E,
and since (by (24.7)(vii)) pcf pcf E = pcf E, we have pcf Y ⊂ pcf E. In
particular, λ ∈ pcf E.

Since E ⊂ A, there exists a set W ⊂ Y of size ≤ |A| such that E ⊂⋃
{BA

ν : ν ∈ W}. We shall prove that λ ∈ pcf W .
Assume, by contradiction, that λ /∈ pcf W . By compactness (Corol-

lary 24.29) there exist λ1, . . . , λn ∈ pcf W such that W ⊂ Bλ1 ∪ . . . ∪ Bλn ,
and since max pcf W ≤ maxpcf Y = λ, we have λi < λ for all i = 1, . . . , n.
Now

E ⊂
⋃
{Bν : ν ∈ W} ⊂

⋃
{Bν : ν ∈ Bλ1} ∪ . . . ∪

⋃
{Bν : ν ∈ Bλn},

and since, by transitivity (Lemma 24.31),
⋃

ν∈Bµ
Bν ⊂ Bµ for every µ, we

have
E ⊂ Bλ1 ∪ . . . ∪ Bλn .

It follows that pcf E ⊂ pcf(Bλ1 ∪ . . . ∪ Bλn) = pcf Bλ1 ∪ . . . ∪ pcf Bλn , and
so max(pcf E) ≤ max{λ1, . . . , λn} < λ, a contradiction. ��
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Shelah’s Bound on 2ℵω

As an application of the pcf theory, we shall now present the following result
of Shelah:

Theorem 24.33 (Shelah). If ℵω is a strong limit cardinal then 2ℵω < ℵω4 .

Proof. Let us assume that ℵω is strong limit. We already know, by Corol-
lary 24.27, that 2ℵω = maxpcf{ℵn}∞n=0 < ℵℵω . We shall prove that

maxpcf{ℵn}∞n=0 < ℵω4 .

Let ϑ be the ordinal such that 2ℵω = ℵϑ+1; we shall prove that ϑ < ω4.

Lemma 24.34. There exists an ordinal function on P (ϑ) with the following
properties:

(i) If X ⊂ Y then F (X) ≤ F (Y ).
(ii) For every limit ordinal η < ϑ of uncountable cofinality there is

a closed unbounded set C ⊂ η such that F (C) = η.
(iii) If X ⊂ ϑ has order-type ω1 then there exists some γ ∈ X such

that F (X ∩ γ) ≥ sup X.

(24.18)

Proof. Let X ⊂ ϑ and consider the set A = {ℵξ+1 : ξ ∈ X}. As 2|A| = ℵk

for some finite k, max(pcf A) exists and is equal to some ℵγ+1. We define
F (X) = γ.

It is clear that X ⊂ Y implies F (X) ≤ F (Y ) and that F (X) ≥ sup X .
Property (ii) follows from Corollary 24.30. If κ = cf η then κ < ℵω and so

2κ < ℵω < ℵη and the corollary applies.
Property (iii) is a consequence of the Localization Lemma 24.32: If X ⊂ ϑ

then {ℵξ+1 : ξ ∈ X} ⊂ pcf{ℵn}∞n=0 and since 2|pcf{ℵn}n| ≤ 22ℵ0
< ℵω,

Lemma 24.32 applies (with e.g. λ = ℵη+1 where η = sup X) and X has
a countable subset W such that F (W ) ≥ sup X . ��

We complete the proof of Shelah’s Theorem by showing that ϑ < ω4.
Assume, by contradiction, that ϑ ≥ ω4. Let 〈Cα : α ∈ Eℵ3

ℵ1
〉 be a club-

guessing sequence (see Theorem 23.3). Each Cα is a closed unbounded subset
of α, and for every closed unbounded C ⊂ ω3, the set {α ∈ Eℵ3

ℵ1
: Cα ⊂ C} is

stationary.
Let Mα, α < ω3, be a continuous elementary chain of models of size ℵ3

that contain the family {Cα}α, are closed under F , such that 〈Mξ : ξ ≤ α〉 ∈
Mα+1 for each α, and that for each α, ηα = Mα ∩ ω4 is an ordinal. Let
η : ω3 → ω4 be the continuous function η(α) = ηα. By (24.18)(ii) there
is a closed unbounded set C ⊂ ω3 such that F (η“C) = supα ηα. Let α ∈
Eℵ3

ℵ1
be such that Cα ⊂ C. By (24.18)(iii) there exists a β < α such that

F (η“(Cα ∩ β)) ≥ η(α). Let X = η“(Cα ∩ β).
Since Cα ∈ Mα and η�β ∈ Mα, we have X ∈ Mα. Since X ⊂ η“C we

have F (X) ≤ F (η“C) < ω4. As Mα is closed under F , we have F (X) ∈ Mα,
and since ω4 ∩Mα = η(α), it follows that F (X) < η(α), a contradiction. ��
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Exercises

24.1. If β < ω1 and if 2ℵα ≤ ℵα+β for a stationary set of α’s, then 2ℵω1 ≤ ℵω1+β.
[By induction on β: If ϕ(α) ≤ β on a stationary set, then ‖ϕ‖ ≤ β.]

24.2. If β < ω1, if 2ℵ1 < ℵω1 , and if ℵℵ0
α ≤ ℵα+β for a stationary set of α’s, then

ℵℵ1
ω1 ≤ ℵω1+β.

24.3. If 2ℵα ≤ ℵα+2 holds for all cardinals of cofinality ω, then the same holds for
all singular cardinals.

24.4. If ℵ1 ≤ cf ℵη < ℵη, if β < cf ℵη, and if 2ℵα ≤ ℵα+β for all α < η, then
2ℵη ≤ ℵη+β.

24.5. If 2ℵα ≤ ℵα+α+1 for a stationary set of α < ω1, then 2ℵω1 ≤ ℵω1+ω1+1.
[If ϕ(α) = α for all α < ω1, then ‖ϕ‖ = ω1.]

24.6. If 2ℵω1+α < ℵω1+α+α for all α < ω1, then 2ℵω1+ω1 < ℵω1+ω1+ω1 .
[Use the sets Aα = ωω1+α.]

24.7. If 2ℵ1 < ℵω1 and if ℵℵ0
α ≤ ℵα+α+1 for all α < ω1, then ℵℵ1

ω1 ≤ ℵω1+ω1+1.

24.8. If κ is a strong limit cardinal, κ = ℵη, and cf κ ≥ ℵ1, then 2κ < ℵγ , where
γ = (|η|cf κ)+.

24.9. If ℵ1 ≤ cf κ < κ and if λcf κ < κ for all λ < κ, then κcf κ < ℵγ , where
γ = (|η|cf κ)+.

The next exercise uses the notation from Chapter 8. Let κ be a regular uncount-
able cardinal, let M0 = κ, Mη+1 = Tr(Mη), Mη =

T

ν<cf η Mξν or Mη = �ν<κ Mξν

(if cf η = κ) as long as Mη is stationary.

24.10. Let fη, η < κ+, be the canonical functions on κ. Let Sη = {α < κ : o(α) =
fη(α)}. Show that Sη = Mη−Mη+1 mod INS and that o(S) = η for every stationary
S ⊂ Sη.

The sets Sη are the canonical stationary sets (of order η).

24.11. Find a partially ordered set of cofinality ℵω; of cofinality 1, 2, 3, etc.

24.12. The lexicographical ordering ω × ω1 does not have true cofinality.

24.13. Let I = INS be the nonstationary ideal on ω1, let cγ , γ < ω1, be the
constant functions (with value γ) on ω1, and let d(α) = α be the diagonal function.
The function d is a least upper bound, but not an exact upper bound of the set
{cγ : γ < ω1}, in <I .

Historical Notes

The Galvin-Hajnal Theorem appeared in [1975]. Shelah’s investigation leading to
the pcf theory started in [1978], and the book [1982] contains the first proof of
a bound on 2ℵω . In a sequence of papers starting in 1978, Shelah developed the
theory of possible cofinalities. A complete presentation is in his book [1994].

There are several papers that give an exposition and/or simplified proofs of
Shelah’s results; we mention Burke and Magidor [1990] and Jech [1992].



25. Descriptive Set Theory

Descriptive set theory is the study of definable sets of real numbers, in par-
ticular projective sets, and is mostly interested in how well behaved these
sets are. A prototype of such results is Theorem 11.18 stating that Σ1

1 sets
are Lebesgue measurable, have the Baire property, and have the perfect set
property. This chapter continues the investigations started in Chapter 11.
Throughout, we shall work in set theory ZF + DC (the Principle of Depen-
dent Choice).

The Hierarchy of Projective Sets

Modern descriptive set theory builds on both the classical descriptive set
theory and on recursion theory. It has become clear in the 1950’s that the
topological approach of classical descriptive set theory and the recursion theo-
retic techniques of logical definability describe the same phenomena. Modern
descriptive set theory unified both approaches, as well as the notation. An
additional ingredient is in the use of infinite games and determinacy; we shall
return to that subject in Part III.

We first reformulate the hierarchy of projective sets in terms of the light-
face hierarchy Σ1

n, Π1
n and ∆1

n and its relativization for real parameters.
While we introduce these concepts explicitly for subsets of the Baire space
N = ωω, analogous definitions and results apply to product spaces N × N ,
N r as well as the spaces ω, ωk, ωk ×N r.

Definition 25.1.

(i) A set A ⊂ N is Σ1
1 if there exists a recursive set R ⊂

⋃∞
n=0(ω

n × ωn)
such that for all x ∈ N ,

(25.1) x ∈ A if and only if ∃y ∈ ωω ∀n ∈ ω R(x�n, y�n).

(ii) Let a ∈ N ; a set A ⊂ N is Σ1
1(a) (Σ1

1 in a) if there exists a set R
recursive in a such that for all x ∈ N ,

x ∈ A if and only if ∃y ∈ ωω ∀n ∈ ω R(x�n, y�n, a�n).
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(iii) A ⊂ N is Π1
n (in a) if the complement of A is Σ1

n (in a).
(iv) A ⊂ N is Σ1

n+1 (in a) if it is the projection of a Π1
n (in a) subset

of N ×N .
(v) A ⊂ N is ∆1

n (in a) if it is both Σ1
n and Π1

n (in a).

A similar lightface hierarchy exists for Borel sets: A set A ⊂ N is Σ0
1

(recursive open or recursively enumerable) if

(25.2) A = {x : ∃n R(x�n)}

for some recursive R, and Π0
1 (recursive closed) if it is the complement of

a Σ0
1 set. Thus Σ1

1 sets are projections of Π0
1 sets, and as every open set is Σ0

1

in some a ∈ N (namely an a than codes the corresponding union of basic
open intervals), we have

Σ1
1 =

⋃
a∈N

Σ1
1(a),

and more generally, every Σ1
n (Π1

n) set is Σ1
n (Π1

n) in some parameter a ∈ N .
For n ∈ ω, the lightface hierarchy of Σ0

n and Π0
n sets describes the arith-

metical sets: For instance, a set A is Σ0
3 if

A = {x ∈ N : ∃m1 ∀m2 ∃m3 R(m1, m2, x�m3)}

for some recursive R, etc. Arithmetical sets are exactly those A ⊂ N that
are definable (without parameters) in the model (HF ,∈) of hereditary finite
sets.

The following lemma gives a list of closure properties of projective rela-
tions on N . We use the logical (rather than set-theoretic) notation for Boolean
operations; compare with Lemma 13.10.

Lemma 25.2. Let n ≥ 1.

(i) If A, B are Σ1
n(a) relations, then so are ∃xA, A ∧ B, A ∨ B, ∃m A,

∀m A.
(ii) If A, B are Π1

n(a) relations, then so are ∀xA, A ∧ B, A ∨ B, ∃m A,
∀m A.

(iii) If A is Σ1
n(a), then ¬A is Π1

n; if A is Π1
n(a), then ¬A is Σ1

n.
(iv) If A is Π1

n(a) and B is Σ1
n(a), then A → B is Σ1

n(a); if A is Σ1
n(a)

and B is Π1
n(a), then A → B is Π1

n(a).
(v) If A and B are ∆1

n(a), then so are ¬A, A∧B, A∨B, A → B, A ↔ B,
∃m A, ∀m A.

Proof. We prove the lemma for n = 1; the general case follows by induction.
Moreover, clauses (ii)–(v) follow from (i).

First, let A ∈ Σ1
1(a) and let us show that ∃xA is Σ1

1(a). We have

(x, y) ∈ A ↔ ∃z ∀n (x�n, y�n, z�n, n) ∈ R,
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where R is recursive in a. Thus

y ∈ ∃xA ↔ ∃x∃z ∀n (x�n, y�n, z�n, n) ∈ R.

We want to contract the two quantifiers ∃x∃z into one. Let us consider some
recursive homeomorphism between N and N 2, e.g., for u ∈ N let u+ and u−

be
u+(n) = u(2n), u−(n) = u(2n + 1), (n ∈ N).

There exists a relation R′ recursive in R, such that for all u, y ∈ N ,

(25.3) ∀n (u�n, y�n, n) ∈ R′ if and only if ∀k (u+�k, y�k, u−�k, k) ∈ R.

Namely, if n = 2k (or n = 2k+1), we let (s, t, n) ∈ R′ just in case length(s) =
length(t) = n and

(〈s(0), . . . , s(2k − 2)〉, 〈t(0), . . . , t(k − 1)〉, 〈s(1), . . . , s(2k − 1)〉, k) ∈ R.

Now (25.3) implies that

y ∈ ∃xA ↔ ∃u ∀n (u�n, y�n, n) ∈ R′,

and hence ∃xA is Σ1
1(a).

Now let A and B be Σ1
1(a):

x ∈ A ↔ ∃z ∀n (x�n, z�n, n) ∈ R1,

x ∈ A ↔ ∃z ∀n (x�n, z�n, n) ∈ R2

where both R1 and R2 are recursive in a. Note that

x ∈ A ∧ B ↔ ∃z1 ∃z2 ∀n [(x�n, z1�n, n) ∈ R1 ∧ (x�n, z2�n, n) ∈ R2]

and hence, by contraction of ∃z1 ∃z2, there is some R, recursive in R1 and R2

such that
x ∈ A ∧ B ↔ ∃z ∀n (x�n, z�n, n) ∈ R.

Thus A ∧ B is Σ1
1(a).

The following argument shows that the case A∨B can be reduced to the
case ∃m C. Let us define R as follows (s, t ∈ Seq, m, n ∈ N):

(s, m, t, n) ∈ R ↔ either m = 1 and (s, t, n) ∈ R1

or m = 2 and (s, t, n) ∈ R2.

R is recursive in R1 and R2, and

x ∈ A ∨ B ↔ ∃z ∀n (x�n, z�n, n) ∈ R1 ∨ ∃z ∀n (x�n, z�n, n) ∈ R2

↔ ∃m ∃z ∀n (x�n, m, z�n, n) ∈ R

↔ x ∈ ∃m C

where C is Σ1
1(a).



482 Part II. Advanced Set Theory

The contraction of quantifiers ∃m ∃z is easier than the contraction ∃x∃z
above. We employ the following recursive homomorphism between N and
ω ×N : h(u) = (u(0), u′), where

u′(n) = u(n + 1) (n ∈ N).

If
(x, m) ∈ A ↔ ∃z ∀n (x�n, m, z�n, n) ∈ R,

then we leave it to the reader to find a relation R′, recursive in R, such that
for all u, x ∈ N ,

∀n (x�n, u�n, n) ∈ R′ ↔ ∀k (x�k, u(0), u′�k, k) ∈ R.

Then
x ∈ ∃m A ↔ ∃u ∀n (x�n, u�n, n) ∈ R′.

It remains to show that if A is Σ1
1(a), then ∀m A is Σ1

1(a). Let

(x, m) ∈ A ↔ ∃z ∀n (x�n, m, z�n, n) ∈ R

where R is recursive in a. Thus

(25.4) x ∈ ∀m A ↔ ∀m ∃z ∀n (x�n, m, z�n, n) ∈ R.

We want to replace the quantifiers ∀m ∃z by ∃u ∀m and then contract the two
quantifiers ∀m ∀n into one. Let us consider the pairing function Γ : N×N →
N and the following homeomorphism between N and Nω : For each u ∈ N ,
let um, m ∈ N , be

um(n) = u(Γ(m, n)) (m, n ∈ N).

Now we can replace ∀m ∃z in (25.4) by ∃u ∀m (note that in the forward
implication we use the Countable Axiom of Choice):

(25.5) ∀m ∃z ∀n (x�n, m, z�n, n) ∈ R ↔ ∃u ∀m ∀n (x�n, m, um�n, n) ∈ R.

Let α : N → N and β : N → N be the inverses of the function Γ: If
Γ(m, n) = k, then m = α(k) and n = β(k). From (25.4) and (25.5) we get

(25.6) x ∈ ∀m A ↔ ∃u ∀k (x�β(k), α(k), uα(k)�β(k), β(k)) ∈ R.

Now it suffices to show that there exists a relation R′ ⊂ Seq2 ×N , recursive
in R, such that for all u, x ∈ N ,

(25.7) ∀k (x�k, u�k, k) ∈ R′ ↔ ∀k (x�β(k), α(k), uα(k)�β(k), β(k)) ∈ R.

The relation R′ is found in a way similar to the relation R′ in (25.3), and we
leave the details as an exercise.

Hence ∀m A is Σ1
1(a) because by (25.6) and (25.7),

x ∈ ∀m A ↔ ∃u ∀k (x�k, u�k, k) ∈ R′.

In Lemma 11.8 we proved the existence of a universal Σ1
n set. An analysis

of the proof (and of Lemma 11.2) yields a somewhat finer result: There exists
a Σ1

n set A ⊂ N 2 (lightface) that is a universal Σ1
n set.
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Π1
1 Sets

We formulate a normal form for Π1
1 sets in terms of trees. This is based on

the idea that analytic sets are projections of closed sets, and that closed sets
in N are represented by sets [T ] where T is a sequential tree; cf. (4.6). Let
us consider the product space N r , for an arbitrary integer r ≥ 1. As in the
case r = 1, the closed subsets of N r can be represented by trees: Let Seqr

denote the set of all r-tuples (s1, . . . , sr) ∈ Seqr such that length(s1) = . . . =
length(sr). A set T ⊂ Seqr is an (r-dimensional sequential) tree if for every
(s1, . . . , sr) ∈ T and each n ≤ length(s1), (s1�n, . . . , sr�n) is also in T . Let

(25.8) [T ] = {(a1, . . . , ar) ∈ N r : ∀n (a1�n, . . . , ar�n) ∈ T }.

The set [T ] is closed, and every closed set in N r has the form (25.8), for
some tree T .

We call a sequential tree T ⊂ Seqr well-founded if [T ] = ∅, i.e., if the
reverse inclusion on T is a well-founded relation. T is ill-founded if it is not
well-founded.

For T ⊂ Seqr+1 and for each x ∈ N , let

(25.9) T (x) = {(s1, . . . , sr) ∈ Seqr : (x�n, s1, . . . , sr) ∈ T

where n = length si}.

Now if A ⊂ N is analytic, there exists a tree T ⊂ Seq2 such that A is the
projection of [T ]; consequently, for all x ∈ N we have

(25.10) x ∈ A if and only if T (x) is ill-founded.

More generally, if A is Σ1
1, let R be recursive such that

x ∈ A ↔ ∃y ∈ N ∀n R(x�n, y�n)

and define T = {(t, s) ∈ Seq2 : ∀n ≤ length(s)R(t�n, s�n)}. For all x ∈ N ,
we have T (x) = {s ∈ Seq : ∀n ≤ length(s)R(x�n, s�n)} and x ∈ A if and
only if T (x) is ill-founded.

Theorem 25.3 (Normal Form for Π1
1). A set A ⊂ N is Π1

1 if and only if
there exists a recursive mapping x �→ T (x) such that each T (x) is a sequential
tree, and

x ∈ A if and only if T (x) is well-founded. ��(25.11)

Similarly, a relation A ⊂ N r is Π1
1 if and only if A = {�x : T (�x) is well-

founded} where 〈T (�x) : �x ∈ N r〉 is a recursive system of r-dimensional trees.
One consequence of normal forms is that Π1

1 (and Σ1
1) relations are abso-

lute for transitive models:
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Theorem 25.4 (Mostowski’s Absoluteness). If P is a Σ1
1 property then

P is absolute for every transitive model that is adequate for P .

Proof. “Adequate” here means that the model satisfies enough axioms to
know that well-founded trees have a rank function, and contains the param-
eter in which P is Σ1

1. The proof is similar to Lemma 13.11.
Let M be a transitive model and let T ∈ M be a tree such that P =

{x : T (x) is ill-founded}. Let x ∈ M . If M � (T (x) is ill-founded) then
T (x) is ill-founded. Conversely, if M � (T (x) is well-founded) then M � (∃f :
T (x) → Ord such that f(s) < f(t) whenever s ⊃ t) and therefore T (x) is
well-founded. ��

Trees, Well-Founded Relations and κ-Suslin Sets

Much of modern descriptive set theory depends on a generalization of the
Normal Form for Π1

1 sets. A tree T ⊂ Seqr consists of r-tuples of finite
sequences. We can also identify T with finite sequences of r-tuples, which
enables us to consider a more general concept:

Definition 25.5.

(i) A tree T (on a set X) is a set of finite sequences (in X) closed under
initial segments.

(ii) If s, t ∈ T then s ≤ t means s ⊃ t, i.e., t is an initial segment of s.
(iii) If s ∈ T then T/s = {t : s�t ∈ T }.
(iv) If (T,≤) is well-founded then ‖T ‖ is the height of ≤, and for t ∈ T ,

ρT (t) is the rank of t in ≤.
(v) [T ] = {f ∈ Xω : ∀n f�n ∈ T }.

If S and T are well-founded trees and if f : S → T is order-preserving
then ‖S‖ ≤ ‖T ‖; this is easily verified by induction on rank. But the converse
is also true:

Lemma 25.6. If S and T are well-founded trees and ‖S‖ ≤ ‖T ‖ then there
exists an order-preserving map f : S → T .

Proof. By induction on ‖T ‖. For each 〈a〉 ∈ S, ‖S/〈a〉‖ < ‖S‖ ≤ ‖T ‖ and
there exists a ta �= ∅ such that ‖S/〈a〉‖ ≤ ‖T/〈ta〉‖. Let fa : S/〈a〉 → S/ta be
order-preserving. Now define f : S → T as follows: f(∅) = ∅, and f(a�s) =
t�a fa(s) whenever a�s ∈ S. ��

We remark that the above proof (as well as the existence of rank), uses
the Principle of Dependent Choices. If T is ill-founded, note that for any S
there exists an order-preserving f : S → T (into an infinite branch of T ).
Thus we have
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Corollary 25.7. There exists an order-preserving f : S → T if and only if
either T is ill-founded or ‖S‖ ≤ ‖T ‖. ��

Trees used in descriptive set theory are trees on ω × K (or on ωr × K)
where K is some set, usually well-ordered.

Let Seq(K) be the set of all finite sequences in K. A tree on ω × K is
a set of pairs (s, h) ∈ Seq ×Seq(K) such that length(s) = length(h) and that
for each n ≤ length(s), (s�n, h�n) ∈ T . For every x ∈ N , let

(25.12) T (x) = {h ∈ Seq(K) : (x�n, h) ∈ T where n = length(h)}.
T (x) is a tree on K. Further we let

p[T ] = {x ∈ N : T (x) is ill-founded}
= {x ∈ N : [T (x)] �= ∅}
= {x ∈ N : (∃f ∈ Kω)∀n (x�n, f�n) ∈ T }.

Trees on ωr × K are defined analogously.

Definition 25.8. Let κ be an infinite cardinal. A set A ⊂ N is κ-Suslin if
A = p[T ] for some tree on ω × κ.

By the Normal Form Theorem for Π1
1 sets, every Σ1

1 set is ω-Suslin. In
fact if A is Σ1

1(a) then A = p[T ] where T is a tree on ω × ω recursive in a.
Let us associate with each x ∈ N the following binary relation Ex on N :

(25.13) m Ex n ↔ x(Γ(m, n)) = 0

where Γ is a (recursive) pairing function of N × N onto N ; we say that
x codes the relation Ex. We define

(25.14) WF = {x ∈ N : x codes a well-founded relation},
WO = {x ∈ N : x codes a well-ordering on N}.

Lemma 25.9. The sets WF and WO are Π1
1.

Proof. We prove in some detail that WF is Π1
1. Ex is well-founded if and only

if there is no z : N → N such that z(k + 1) Ex z(k) for all k. Thus

x ∈ WF ↔ ∀z ∃k ¬z(k + 1) Ex z(k).

In other words, WF = ∀z A, where

(x, z) ∈ A ↔ ∃k x(Γ(z(k + 1), z(k))) �= 0

and it suffices to show that A is arithmetical. But

(x, z) ∈ A ↔ ∃n, m, j, k [i = (z�n)(k + 1) ∧ j = (z�n)(k) ∧
m = Γ(i, j) ∧ (x�n)(m) �= 0].

To show that WO is Π1
1 it suffices to verify that the set

LO = {x : Ex is a linear ordering of N}
is arithmetical. Then WO = WF ∧ LO is Π1

1. ��
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We show below that neither WF nor WO is a Σ1
1 set; thus neither is

a Borel set.
For each x ∈ WF, let

(25.15) ‖x‖ = the height of the well-founded relation Ex

(see (2.7)). For each x, ‖x‖ is a countable ordinal (and for each α < ω1 there
is some x ∈ WF such that ‖x‖ = α). If x ∈ WO, then ‖x‖ is the order-type
of the well-ordering Ex.

Lemma 25.10. For each α < ω1, the sets

WFα = {x ∈ WF : ‖x‖ ≤ α}, WOα = {x ∈ WO : ‖x‖ ≤ α}
are Borel sets.

Proof. Note that the set {(x, n) : n ∈ field(Ex)} is arithmetical (and hence
Borel). Let us prove the lemma first for WOα.

For each α < ω1, let

Bα = {(x, n) : Ex restricted to {m : m Ex n}
is a well-ordering of order type ≤ α}.

We prove, by induction on α < ω1, that each Bα is a Borel set. It is easy to
see that B0 is arithmetical. Thus let α < ω1 and assume that all Bβ , β < α,
are Borel. Then

⋃
β<α Bβ is Borel and hence Bα is also Borel because

(x, n) ∈ Bα ↔ ∀m
(
m Ex n → (x, m) ∈

⋃
β<α

Bβ

)
.

It follows that each WOα is Borel because

x ∈ WOα ↔ ∀n
(
n ∈ field(Ex) → (x, n) ∈

⋃
β<α

Bβ

)
.

To handle WFα, note that the rank function ρE can be defined for any
binary relation E; namely:

ρE(u) = α if and only if ∀v (v E u → ρE(v) is defined) and

α = sup{ρE(v) + 1 : v E u}.
For each α < ω1, let

Cα = {(x, n) : ρEx(n) is defined and ≤ α}.
Again, C0 is arithmetical, and if we assume that all Cβ , β < α, are Borel,
then Cα is also Borel:

(x, n) ∈ Cα ↔ ∀m
(
m Ex n → (x, m) ∈

⋃
β<α

Cβ

)
.

Hence each Cα is Borel, and it follows that each WFα is Borel:

x ∈ WFα ↔ ∀n
(
n ∈ field(Ex) → (x, n) ∈

⋃
β<α

Cβ

)
. ��
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Corollary 25.11. The sets {x ∈ WF : ‖x‖ = α} and {x ∈ WF : ‖x‖ < α}
are Borel (similarly for WO).

Proof. {x ∈ WF : ‖x‖ < α} =
⋃

β<α WFβ . ��

Theorem 25.12. If C is a Π1
1 set, then there exists a continuous function

f : N → N such that C = f−1(WF), and there exists a continuous function
g : N → N such that C = g−1(WO).

Proof. We shall give the proof for WF; the proof for WO is similar. Let
T ⊂ Seq2 be such that

x ∈ C ↔ T (x) is well-founded.

Let {t0, t1, . . . , tn, . . .} be an enumeration of the set Seq . For each x ∈ N , let
y = f(x) be the following element of N :

y(Γ(m, n)) =
{

0 if tm, tn ∈ T (x), and tm < tn,

1 otherwise.

It is clear that Ey is isomorphic to (T (x), <), and hence y ∈ WF if and only
if T (x) is well-founded. Thus C = f−1(WF) and it remains to show only that
f is continuous. But it should be obvious from the definitions of T (x) and
of y = f(x) that for any finite sequence s = 〈ε0, . . . , εk−1〉, there is š ∈ Seq
such that if x ⊃ š and y = f(x), then y�k = s. Hence f is continuous. ��
Corollary 25.13. WF is not Σ1

1; WO is not Σ1
1.

Proof. Otherwise every Π1
1 set would be the inverse image by a continuous

function of an analytic set and hence analytic; however, there are Π1
1 sets

that are not analytic. ��
Corollary 25.14 (Boundedness Lemma). If B ⊂ WO is Σ1

1, then there
is an α < ω1 such that ‖x‖ < α for all x ∈ B.

Proof. Otherwise we would have

WO = {x ∈ N : ∃z (z ∈ B ∧ ‖x‖ ≤ ‖z‖)}.

Hence ‖x‖ ≤ ‖z‖ for x, z ∈ N means: Either z /∈ WO or ‖x‖ ≤ ‖z‖; this
relation is Σ1

1; see Exercise 25.3. This would mean that WO is Σ1
1, a contra-

diction. ��
Corollary 25.15. Every Π1

1 set is the union of ℵ1 Borel sets.

Proof. If C is Π1
1, then C = f−1(WF) for some continuous f . But WF =⋃

α<ω1
WFα, and hence

C =
⋃

α<ω1

f−1(WFα).

Each f−1(WFα) is the inverse image of a Borel set by a continuous function,
hence Borel. ��
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Corollary 25.16. Assuming the Axiom of Choice, every Π1
1 set is either at

most countable, or has cardinality ℵ1, or cardinality 2ℵ0 . ��

Theorem 25.19 below improves Corollary 25.15 by showing that every
Σ1

2 set is the union of ℵ1 Borel sets. The following lemma is the first step
toward that theorem.

Lemma 25.17. Every Σ1
1 set is the union of ℵ1 Borel sets.

Proof. Let A be a Σ1
1 set. Let T ⊂ Seq2 be a tree such that A = p[T ]. We

prove by induction on α that for each t ∈ Seq and every α < ω1, the set

(25.16) {x ∈ N : ‖T (x)/t‖ ≤ α}

is Borel. Namely, {x : ‖T (x)/t‖ ≤ 0} = {x : (x�n, t) /∈ T } and if α > 0, then
‖T (x)/t‖ ≤ α if and only if ∀n (∃β < α) ‖T (x)/t�n‖ ≤ β.

Let us define, for each α, the set Bα as follows:

x ∈ Bα ↔ ¬(‖T (x)‖ < α) ∧ ∀t (¬‖T (x)/t‖ = α).

Since the sets in (25.16) are Borel, it follows that each Bα is Borel. We shall
prove that A =

⋃
α<ω1

Bα. First let x ∈ A. Thus T (x) is ill-founded; hence
‖T (x)‖ �< α for any α, and it suffices to show that there is an α such that
‖T (x)/t‖ �= α for all t. If there is no such α, then for every α there is t such
that ‖T (x)/t‖ = α, but there are ℵ1 α’s and only ℵ0 t’s; a contradiction.

Next let x /∈ A, and let us show that x /∈ Bα, for all α. Let α < ω1

be arbitrary. Since T (x) is well-founded, either ‖T (x)‖ < α and x /∈ Ba, or
‖T (x)‖ ≥ α and there exists some t ∈ T (x) such that ‖T (x)/t‖ = α and
again x /∈ Bα. ��

Σ1
2 Sets

The Normal Form Theorem for Π1
1 sets provides a tree representation for

Σ1
2 sets:

Theorem 25.18. Every Σ1
2 set is ω1-Suslin. If A is Σ1

2(a) then A = p[T ]
where T is a tree on ω × ω1 and T ∈ L[a].

Proof. Let A be a Σ1
2(a) subset of N . There is a tree U ⊂ Seq3, recursive

in a such that
x ∈ A ↔ ∃y ∀z ∃n (x�n, y�n, z�n) /∈ U.

In other words,
x ∈ A ↔ ∃y U(x, y) is well-founded.
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A necessary and sufficient condition for a countable relation to be well-
founded is that it admits an order-preserving mapping into ω1. Thus

x ∈ A ↔ ∃y (∃f : U(x, y) → ω1) if u ⊂ v then f(u) > f(v)

↔ ∃y (∃f : Seq → ω1) f�U(x, y) is order-preserving.

Let {un : n ∈ N} be a recursive enumeration of the set Seq such that for
every n, length(un) ≤ n. If f is a function on (a subset of) N , let f∗ be the
function on (a subset of) Seq defined by f∗(un) = f(n). Thus

(25.17) x ∈ A ↔ ∃y (∃f : ω → ω1) f∗�U(x, y) is order-preserving.

Now we define a tree T ′ on ω2 × ω1 as follows: If s, t ∈ Seq and h ∈ Seq(ω1)
are all of length n, we let

(25.18) (s, t, h) ∈ T ′ ↔ h∗�Us,t is order-preserving

where Us,t = {u ∈ Seq : k = lengthu ≤ n and (s�k, t�k, u) ∈ U}. Clearly,
T ′ is a tree on ω2 × ω1.

Let x, y ∈ N . We claim that if (x�n, (y�n, h) ∈ T ′, then h∗�U(x, y) is
order-preserving. This is because if u, v ∈ dom(h∗) ∩ U(x, y), then u = ui,
v = uj for some i, j < n, hence length(u), length(v) < n and hence u, v ∈ Us,t,
where s = x�n, t = y�n. Thus

f ∈ T ′(x, y) ↔ ∀n (f�n)∗�U(x, y) is order-preserving.

But clearly a mapping f : ω → ω1 satisfies the right-hand side if and only if
f∗�U(x, y) is order-preserving. Hence (25.17) and (25.18) give

x ∈ A ↔ ∃y ∃f : ω → ω1 f ∈ T ′(x, y)

↔ ∃y ∃f : ω → ω1 ∀n (x�n, y�n, f�n) ∈ T ′.

Now we transform T ′ (on ω2×ω1) into a tree T ′′ (on ω×K where K = ω×ω1)
such that we replace triples

(〈s(0), . . . , s(n − 1)〉, 〈t(0), . . . , t(n − 1), 〉, 〈h(0), . . . , h(n − 1)〉)

by pairs

(〈s(0), . . . , s(n − 1)〉, 〈(t(0), h(0)), . . . , (t(n − 1), h(n − 1))〉)

and we get
x ∈ A ↔ (∃g : ω → K)∀n (x�n, g�n) ∈ T ′′.

Since K = ω × ω1 is in an obvious one-to-one correspondence with ω1, it is
clear that we can find a tree T on ω × ω1 such that

(25.19) x ∈ A ↔ (∃g : ω → ω1)∀n (x�n, g�n) ∈ T,

that is A = p[T ]. The tree T so obtained is constructible from the tree U ,
which in turn is constructible from a. ��
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One consequence of Theorem 25.18 is the following:

Theorem 25.19 (Sierpiński). Every Σ1
2 set is the union of ℵ1 Borel sets.

It follows that in ZFC, every Σ1
2 set has cardinality either at most ℵ1, or 2ℵ0 .

Proof. Let A be a Σ1
2 set. By Theorem 25.18 there is a tree T on ω×ω1 such

that A = p[T ]. For each γ < ω1 let T γ = {(s, h) ∈ T : h ∈ Seq(γ)}. Since
every f : ω → ω1 has the range included in some γ < ω1, it is clear that

A =
⋃

γ<ω1

p[T γ ].

For each γ < ω1, the set p[T γ ] is analytic (because p[T γ] = p[T̃ ] for some
T̃ ⊂ Seq2) and is the union of ℵ1 Borel sets. In fact, Lemma 25.17 gives
a uniform decomposition into ℵ1 Borel sets for any p[U ] where U is a tree on
ω × S with S countable. If we let

x ∈ Bγ
α ↔ ¬(‖T γ(x)‖ < α) ∧ (∀t ∈ Seq(γ))(¬‖T γ(x)/t‖ = α)

then A =
⋃

α<ω1

⋃
γ<ω1

Bγ
α. ��

The main application of Theorem 25.18 is absoluteness of Σ1
2 (and Π1

2)
relations.

Theorem 25.20 (Shoenfield’s Absoluteness Theorem). Every Σ1
2(a)

relation and every Π1
2(a) relation is absolute for all inner models M of ZF+

DC such that a ∈ M . In particular, Σ1
2 and Π1

2 relations are absolute for L.

It is clear from the proof that every Σ1
2(a) relation is absolute for every

transitive model M of a finite fragment of ZF + DC such that ω1 ∈ M .

Proof. Let a ∈ N and let A be a Σ1
2(a) subset of N ; let A = {x : A(x)}

where A(x) is a Σ1
2(a) property. Let M be an inner model of ZF + DC such

that a ∈ M . We shall prove that M � A if and only if A holds.
Let U ⊂ Seq3 be a tree, arithmetical in a, such that for all x ∈ N ,

x ∈ A ↔ ∃y U(x, y) is well-founded.

Thus for all x ∈ N ∩ M

x ∈ AM ↔ (∃y ∈ M)M � U(x, y) is well-founded.

However, for all x, y ∈ M , U(x, y) is the same tree in M as in V ; and since
well-foundedness is absolute, we have

x ∈ AM ↔ (∃y ∈ M)U(x, y) is well-founded.

Thus, if x ∈ AM , then x ∈ A, and it suffices to prove that if x ∈ A∩M then
x ∈ AM .
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We use the tree representation of Σ1
2 sets. Let T be the tree on ω × ω1

constructed in the proof of Theorem 25.18. Hence T ∈ L[a] and for every
x ∈ N ,

x ∈ A ↔ T (x) is ill-founded.

Now if x ∈ M is such that x ∈ A, then T (x) is ill-founded, and by absoluteness
of well-foundedness,

M � T (x) is ill-founded.

In other words, there exists a function g ∈ M from N into the ordinals such
that ∀n (x�n, g�n) ∈ T . Now following the proof of Theorem 25.18 backward,
from (25.19) to the beginning, and working inside M , one finds a y ∈ M such
that

M � U(x, y) is well-founded.

Hence if x ∈ A ∩ M , then x ∈ AM and we are done. ��

With only notational changes Theorem 25.18 gives a tree representation
of subsets of ω (or ωk) and we have:

Corollary 25.21. If A ⊂ ω is Σ1
2(a) then A ∈ L[a]. In particular, every

Σ1
2 real (and every Π1

2 real) is constructible.

The following lemma is an interesting application of Shoenfield’s Abso-
luteness.

Lemma 25.22. Let S be a set of countable ordinals such that the set A =
{x ∈ WO : ‖x‖ ∈ S} is Σ1

2. Then S is constructible. (And more generally, if
A is Σ1

2(a), then S ∈ L[a].)

Proof. Let A(x) be the Σ1
2 property such that A = {x : A(x)}. For each

countable ordinal α, let Pα be the notion of forcing that collapses α; i.e.,
the elements of Pα are finite sequences of ordinals less than α. Each Pα is
constructible; let us consider, in L, the forcing languages associated with
the Pα, and the corresponding Boolean-valued models LPα .

We shall show that for every α < ω1, α belongs to S if and only if

(25.20) L � every p ∈ Pα forces ∃x (A(x) ∧ ‖x‖ = α).

This will show that S is constructible.
In order to prove that α ∈ S is equivalent to (25.20), let us consider

a generic extension N of V in which ωV
1 is countable. Let us argue in N .

The notion of forcing Pα has only countably many constructible dense
subsets, and hence for every p ∈ Pα there exists a G ⊂ Pα such that G is
L-generic and p ∈ G. It follows that for every α, every ϕ and every p ∈ Pα,

(25.21) L � (p � ϕ) if and only if for every L-generic G � p, L[G] � ϕ.
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Let α < ωV
1 , and let z ∈ V be such that ‖z‖ = α. Clearly, α belongs to S

if and only if V satisfies

(25.22) ∃x (A(x) ∧ ‖x‖ = ‖z‖).

The property (25.22) is Σ1
2 and by absoluteness, it holds in V if and only if

it holds in N .
Let G be an arbitrary L-generic filter on Pα, and let u ∈ L[G] be such that

‖u‖ = α. Since N satisfies (25.22) if and only if it satisfies the Σ1
2 property

(25.23) ∃x (A(x) ∧ ‖x‖ = ‖u‖),

it follows that α ∈ S if and only if L[G] satisfies (25.23). Since an L-generic
filter on Pα exists in N , we conclude (still in N), that α ∈ S is equivalent to:

For every L-generic G ⊂ Pα, L[G] � ∃x (A(x) ∧ ‖x‖ = α).

But in view of (25.21) this last statement is equivalent to (25.20). ��

Another application of the tree representation of Σ1
2 sets is the Perfect

Set Theorem of Mansfield and Solovay:

Theorem 25.23 (Mansfield-Solovay). Let A be a Σ1
2(a) set in N . If

A contains an element that is not in L[a], then A has a perfect subset.

The theorem follows from this more general lemma:

Lemma 25.24. Let T be a tree on ω×K and let A = p[T ]. Either A ⊂ L[T ],
or A contains a perfect subset ; moreover, in the latter case there is a perfect
tree U ∈ L[T ] on ω such that [U ] ⊂ A.

Proof. The proof follows the Cantor-Bendixson argument. If T is a tree on
ω × K, let

(25.24) T ′ = {(s, h) ∈ T : there exist (s0, h0), (s1, h1) ∈ T such that s0 ⊃ s,
s1 ⊃ s, h0 ⊃ h, h1 ⊃ h, and that s0 and s1 are
incompatible

and then, inductively,

T (0) = T, T (α+1) = (T (α))′,

T (α) =
⋂

β<α

T (β) if α is limit.

The definition (25.24) is absolute for all models that contain T , and hence
T (α) ∈ L[T ] for all α. Let α be the least ordinal such that T (α+1) = T (α).

Let us assume first that T (α) = ∅; we shall show that A ⊂ L[T ]. Let
x ∈ A be arbitrary. There exists an f ∈ Kω such that (x, f) ∈ [T ]. Let
γ < α be such that (x, f) ∈ [T (γ)] but (x, f) /∈ [T (γ+1)]. Thus there is some
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(s, h) ∈ T (γ) such that s ⊂ x, h ⊂ f , and (s, h) /∈ T (γ+1); this means that
for any (s′, h′) ∈ T (γ), if s′ ⊃ s and h′ ⊃ h, then s′ ⊂ x. Now it follows that
x ∈ L[T ]; in L[T ], x is the unique x =

⋃
{s′ ⊃ s : (s′, h′) ∈ T (γ) for some

h ⊃ h′}.
Now let us assume that T (α) �= ∅. The tree T (γ) has the property that

for every (s, h) ∈ T (α) there exist two extensions (s0, h0) and (s1, h1) of
(s, h) that are incompatible in the first coordinate. Let us work in L[T ]. Let
(s0, h0) and (s1, h1) be some elements of T (α) such that s0 and s1 are in-
compatible. Then let (s0,0, h0,0), (s0,1, h0,1), (s1,0, h1,0), and (s1,1, h1,1) be
elements of T (α) such that si,j ⊃ si, hi,j ⊃ hi and that the si,j are incom-
patible. In this fashion we construct (st, ht) ∈ T (α) for each 0–1 sequence t.
The st generate a tree U = {s : s ⊂ st for some t}. It is clear that U is
a perfect three, that U ∈ L[T ], and that [U ] ⊂ p[T ] = A. ��

The following observation establishes a close connection between the pro-
jective hierarchy and the Lévy hierarchy of Σn properties of hereditarily
countable sets:

Lemma 25.25. A set A ⊂ N is Σ1
2 if and only if it is Σ1 over (HC ,∈).

Proof. If A is Σ1 over HC , there exists a Σ0 formula ϕ such that

x ∈ A ↔ HC � ∃u ϕ(u, x) ↔ (∃u ∈ HC )HC � ϕ[u, x].

Since ϕ is Σ0, it is absolute for transitive models and we have

x ∈ A ↔ (∃ transitive set M)(∃u ∈ M)M � ϕ[u, x]

(e.g., M = TC({u, x})). By the Principle of Dependent Choices every
TC({u, x}) is countable and we have

x ∈ A ↔ (∃ countable transitive set M)(∃u ∈ M)M � ϕ[u, x]

↔ (∃ well-founded extensional relation E on ω)

∃n ∃m (πE(m) = x and (ω, E) � ϕ[n, m])

where πE is the transitive collapse of (ω, E) onto (M,∈). Recalling the defi-
nition (25.13) of Ex for z ∈ N we have

(25.25) x ∈ A ↔ (∃z ∈ N )(z ∈ WF and (ω, Ex) � Extensionality,

∃n ∃m (πEx(m) = x and (ω, Ex) � ϕ[n, m])).

We shall verify that (25.25) gives a Σ1
2 definition of A. Since WF is Π1

1, it
suffices to show that the relation “(ω, E) � ϕ[n1, . . . , nk]” and “πE(m) =
x” are arithmetical in E. It is easy to see that (ω, E) � ϕ is a property
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arithmetical in E. As for the transitive collapse, we notice first that if k ∈ N ,
then

πE(m) = k ↔ ∃〈r0, . . . , rk〉 such that m = rk and (ω, E) � r0 = ∅
and (∀i < k) (ω, E) � (ri+1 = ri ∪ {ri}).

Then for x ⊂ ω we have

πE(m) = x ↔ ∀n (n E m ↔ πE(n) ∈ x)

and a similar formula, arithmetical in E, defines πE(m) = x for x ∈ N .
Hence A ∈ Σ1

2.
Conversely, if A is a Σ1

2 set then for some Π1
1 property P , A = {x :

∃y P (x, y)}. By Mostowski’s Absoluteness, x ∈ A if and only if for some
countable transitive model M � x adequate for P there exists a y ∈ M such
that M � P (x, y). But this gives a Σ1 definition of A over (HC ,∈). ��

As a consequence, Σ1
n+1 sets are exactly those that are Σn over HC .

Projective Sets and Constructibility

We now compute the complexity of the set of all constructible reals:

Theorem 25.26 (Gödel). The set of all constructible reals is a Σ1
2 set. The

ordering <L is a Σ1
2 relation.

The field of <L is R∩L. If all reals are constructible, then <L is also Π1
2

(because x <L y if and only if y �L x) and hence <L is then a ∆1
2 relation.

The theorem easily generalizes to L[a]: If a ∈ R (or a ⊂ ω or a ∈ N ),
then the set R ∩ L[a] is Σ1

2(a); also, the relation “x is constructible from y”
is a Σ1

2 relation.
We proved in Chapter 13 that “x is constructible” and “x <L y” are

Σ1 relations over the model (HC ,∈). Thus Theorem 25.26 follows from
Lemma 25.25.

The following lemma tells even more than <L is a Σ1
2 relation. For any

z ∈ N , let zm, m ∈ N , be defined by zm(n) = z(Γ(m, n)) (the canonical
homeomorphism between N and Nω).

Lemma 25.27. The following relation R on N is Σ1
2:

(z, x) ∈ R ↔ {zn : n ∈ N} = {y : y <L x}.

Proof. Since the relation {zn : n ∈ N} ⊂ {y : y <L x} is clearly Σ1
2, it

suffices to show that

(25.26) ∀y <L x∃n (y = zn)
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is Σ1
2. There is a sentence Θ (provable in ZF) such that if M is a transitive

model of Θ, then <L is absolute for M ; and if x ∈ M is constructible, then
every y <L x is in M . Thus (25.26) is equivalent to

∃ countable transitive model M that contains x, z, and all zn,
and M � (Θ and ∀y <L x∃n (y = zn)).

This last property is Σ1
2 by a proof similar to Lemma 25.25. ��

Every Σ1
1 set is Lebesgue measurable, has the Baire property and if un-

countable, has a perfect subset. The following results show that this is best
possible.

Corollary 25.28. If V = L then there exists a ∆1
2 set that is not Lebesgue

measurable and does not have the Baire property.

Proof. Let A = {(x, y) : x <L y}. For every y, the set {x : (x, y) ∈ A} is
countable, hence null and meager, and by Lemmas 11.12 and 11.16, if A is
measurable, then it is null; and if it has the Baire property, then it is meager.

Let B be the complement of A in R2, B = {(x, y) : y ≤L x}. Again, for
every x, the set {y : (x, y) ∈ B} is countable, and hence null if measurable,
and meager if has the Baire property.

It clearly follows that A neither is Lebesgue measurable nor has the prop-
erty of Baire ��

Corollary 25.29. If V = L then there exists an uncountable Σ1
2 set without

a perfect subset.

Proof. Let
x ∈ A ↔ x ∈ WO ∧ ∀y <L x (¬‖y‖ = ‖x‖).

The set A is uncountable: A is a subset of WO and for every α < ω1 there is
exactly one x in A such that ‖x‖ = α. Let us show that A is Σ1

2: Let R be
the Σ1

2 relation from Lemma 25.27; thus

x ∈ A ↔ x ∈ WO ∧ ∃z (R(z, x) ∧ ∀n (¬‖zn‖ = ‖x‖)),

and since ¬‖zn‖ = ‖x‖ is Π1
1, A is Σ1

2.
The set A does not have a perfect subset; in fact, it does not have an

uncountable analytic subset. This follows from the Boundedness Lemma: For
every analytic set X ⊂ A, the set {‖x‖ : x ∈ X} is bounded, and hence
countable (because of the definition of A). ��

Below (Corollary 25.37) we improve this by showing that in L there exists
an uncountable Π1

1 set without a perfect subset.
By Shoenfield’s Absoluteness Theorem, every Σ1

2 real is constructible. In
Part III we show that it is consistent that a nonconstructible ∆1

3 real exists.
In the presence of large cardinals, an example of a nonconstructible ∆1

3 real
is 0�:
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Lemma 25.30. If 0� exists then 0� is a ∆1
3 real, and the singleton {0�} is

a Π1
2 set.

Proof. We identify 0� with the set of Gödel numbers of the sentences in 0�.
We claim that the property Σ = 0� is Π1 over (HC ,∈), and therefore Π1

2.
We use the description (18.24) of 0� and note that the quantifiers ∀α can be
replaced by ∀α < ω1, thus making it a Π1 property over HC .

Thus {0�} is a Π1
2 set, and

n ∈ 0� ↔ ∃z (z ∈ {0�} and z(n) = 1) ↔ ∀z (z ∈ {0�} → z(n) = 1)

shows that 0� is a ∆1
3 subset of ω. ��

Scales and Uniformization

The tree analysis of Σ1
2 sets can be refined; an analysis of Kondô’s proof of

the Uniformization Theorem (Theorem 25.36) led Moschovakis to introduce
the concept of scale that pervades the modern descriptive set theory.

We start with the definition of norm and prewellordering. While in the
present chapter these concepts are applied to Π1

1 and Σ1
2 sets, the theory

applies to more general collection of definable sets of reals.

Definition 25.31. A norm on a set A is an ordinal function ϕ on A. A pre-
wellordering of A is a transitive relation � such that a � b or b � a for all
a, b ∈ A, and that ≺ is well-founded.

A prewellordering of a set A induces an equivalence relation (a � b∧b � a)
and a well-ordering of its equivalence classes. Its rank function is a norm, and
conversely, a norm ϕ defines a prewellordering

(25.27) a �ϕ b if and only if ϕ(a) ≤ ϕ(b).

The tree analysis of Π1
1 and Σ1

2 sets produces well behaved prewellorder-
ings of Π1

1 and Σ1
2 sets:

Theorem 25.32. For every Π1
1 set A there exists a norm ϕ on A with the

property that there exist a Π1
1 relation P (x, y) and a Σ1

1 relation Q(x, y) such
that for every y ∈ A and all x,

(25.28) x ∈ A and ϕ(x) ≤ ϕ(y) ↔ P (x, y) ↔ Q(x, y).

A norm ϕ with the above property is called a Π1
1-norm and the statement

“every Π1
1 set has a Π1

1-norm” is called the prewellordering property of Π1
1.

A relativization of Theorem 25.32 shows that every Π1
1(a) set has a Π1

1(a)-
norm. A modification of the proof of Theorem 25.32 yields the prewellordering
property of Σ1

2: every Σ1
2 set has a Σ1

2 norm, i.e., a norm for which exist a Σ1
2 P

and a Π1
2 Q that satisfy (25.28) (cf. Exercises 25.5 and 25.6).
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Proof. Let A be a Π1
1 and let T be a recursive tree on ω × ω such that

A(x) ↔ T (x) is well-founded.

For each x ∈ A let ϕ(x) = ‖T (x)‖ be the height of the well-founded tree.
To define the Σ1

1 relation Q, let

(25.29) Q(x, y) ↔ there exists an order-preserving function

f : T (x) → T (y).

It is not difficult to see that Q is Σ1
1, and the equivalence in (25.28) follows

from Corollary 25.7. For the Π1
1 relation, let

(25.30) P (x, y) ↔ ∀s �= ∅ there exists no order-preserving

f : T (y) → T (x)/s.

This is Π1
1 and says that T (x) is well-founded and it is not the case that

‖T (y)‖ < ‖T (x)‖. ��

The prewellordering property of Π1
1 implies the reduction principle for Π1

1

and the separation principle for Σ1
1—see Exercises. This in turn implies

Suslin’s Theorem that every ∆1
1 set is Borel.

The prewellordering property has an important strengthening, the scale
property which we now introduce.

Let A be a Π1
1 set. Following the proof of Theorem 25.18 we obtain a tree T

on ω × ω1 such that A = p[T ]. In detail, let U be a recursive tree on ω × ω
such that

x ∈ A ↔ U(x) is well-founded ↔ ∃g : U(x) → ω1 order preserving.

Let {un : n ∈ N} be a recursive enumeration of Seq such that length(un) ≤ n,
and let T be the tree on ω × ω1 defined by

(25.31) (s, h) ∈ T ↔ ∀m, n < length(s)(if um ⊃ un and (s�k, s�um) ∈ U
where k = length(um), then h(m) < h(n)).

The relevant observation is that not only that A = p[T ], i.e.,

x ∈ A ↔ ∃ a branch g in T (x)

but that for every x ∈ p[T ] there exists a (pointwise) least branch g in T (x),
i.e., for every f ∈ p[T ], g(n) ≤ f(n) for all n. To see this, let

gx(n) =
{

ρT (x)(un) if un ∈ U(x),

0 otherwise.

That gx is the least branch in T (x) holds because the rank function is the
least order-preserving function.
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Definition 25.33. A scale on a set A is a sequence of norms 〈ϕn : n ∈ ω〉
such that: If 〈xi : i ∈ ω〉 is a sequence of points in A with limi→∞ xi = x and
such that

(25.32) for every n, the sequence 〈ϕn(xi) : i ∈ ω〉 is eventually constant,
with value αn,

then x ∈ A, and for every n, ϕn(x) ≤ αn.

It is easy to see that every Π1
1 set A has a scale: Let A be a Π1

1 set and
let T be the tree in (25.31). We have A = p[T ] and for each x ∈ A, T (x) has
a least branch gx. Let 〈ϕn : n ∈ ω〉 be the sequence of norms on A defined by

(25.33) ϕn(x) = gx(n).

If 〈xi : i ∈ ω〉 is a sequence in A with limi→∞ xi = x that satisfies (25.32)
then 〈αn : n ∈ ω〉 is a branch in T (x) witnessing x ∈ p[T ], and for every n,
gx(n) ≤ αn.

The norms defined in (25.33) are Π1
1-norms; this can be verified as in the

proof of Theorem 25.32. To be precise, the scale 〈ϕn : n ∈ ω〉 is a Π1
1-scale:

Theorem 25.34. For every Π1
1 set A there exists a scale 〈ϕn : n ∈ ω〉 on A

with the property that there exist a Π1
1 relation P (n, x, y) and a Σ1

1 relation
Q(n, x, y) such that for every n, every y ∈ A, and all x,

x ∈ A and ϕn(x) ≤ ϕn(y) ↔ P (n, x, y) ↔ Q(n, x, y). ��(25.34)

The statement “every Π1
1 set has a Π1

1-scale” is called the scale property
of Π1

1. A relativization shows that every Π1
1(a) set has a Π1

1(a)-scale, and
a modification of the above construction yields the scale property for Σ1

2:
every Σ1

2(a) set has a Σ1
2(a)-scale; cf. Exercises 25.12 and 25.13.

A major application of scales is the uniformization property.

Definition 25.35. A set A ⊂ N × N is uniformized by a function F if
dom(F ) = {x : ∃y (x, y) ∈ A}, and (x, F (x)) ∈ A for all x ∈ dom(F ).

[Equivalently, F ⊂ A and dom(F ) = dom(A).]

Theorem 25.36 (Kondô). Every Π1
1 relation A ⊂ N × N is uniformized

by a Π1
1 function.

The statement of Theorem 25.36 (the Uniformization Theorem) is called
the uniformization property of Π1

1. A relativization shows that every Π1
1(a) re-

lation is uniformized by a Π1
1(a) function, and a modification of the proof

yields the uniformization property of Σ1
2; see Exercise 25.15.
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Proof. We give a proof of the following statement that easily generalizes to
a proof of Kondô’s Theorem: If A is a nonempty Π1

1 subset of N then there
exists an a ∈ A such that {a} is Π1

1.
Thus let A be a nonempty Π1

1 subset of N . Given a scale 〈ϕn : n ∈ ω〉
on A, we select an element a ∈ A as follows: We let A0 = A, and for each n
let

A2n+1 = {x ∈ A2n : ϕn(x) is least},
A2n+2 = {x ∈ A2n+1 : x(n) is least}.

Then A0 ⊃ A1 ⊃ . . . ⊃ An ⊃ . . . and the intersection has at most one element.
Definition 25.33 guarantees that the limit a is in A and so

⋂∞
n=0 An = {an}.

If the scale 〈ϕn : n ∈ ω〉 is Π1
1 then using (25.34) one verifies that the

set {a} is Π1
1. ��

Theorem 25.36 can be used to improve the result in Corollary 25.29:

Corollary 25.37. If V = L then there exists an uncountable Π1
1 set without

a perfect subset.

Proof. Let A be a Σ1
2 set without a perfect subset (by 25.29). Now A is the

projection of some Π1
1 set B ⊂ N 2. By the Uniformization Theorem, B has

a Π1
1 subset f that is a function and has the same projection A. The set f

is uncountable; we claim that f does not have a perfect subset. Assume that
P ⊂ f is perfect. The projection of P is an analytic subset of A. Since P ⊂ f ,
P is itself a function and because P is uncountable, the projection dom(P ) is
also uncountable. This is a contradiction since we proved that every analytic
subset of A is countable. ��

Combining this result with Theorem 25.23 we obtain:

Theorem 25.38. The following are equivalent:

(i) For every a ⊂ ω, ℵL[a]
1 is countable.

(ii) Every uncountable Π1
1 set contains a perfect subset.

(iii) Every uncountable Σ1
2 set contains a perfect subset.

Proof. Obviously, (iii) implies (ii). In order to show that (i) implies (iii), let
us assume (i) and let A be an uncountable Σ1

2 set. Let a ∈ N be such that
A ∈ Σ1

2(a). Since ℵL[a]
1 is countable, there are only countably many reals

in L[a], and hence A has an element that is not in L[a]. Thus A contains
a perfect subset, by Theorem 25.23.

The remaining implication uses the same argument as Corollaries 25.29
and 25.37. Assume that there exists an a ⊂ ω such that ℵL[a]

1 = ℵ1. We claim
that there exists an uncountable Π1

1 set without a perfect subset. Let

x ∈ A ↔ x ∈ L[a] ∧ x ∈ WO ∧ ∀y <L[a] x (¬‖y‖ = ‖x‖).

A is a Σ1
2(a) subset of WO and for all α < ω1, A has exactly one element x

such that ‖x‖ = α. The rest of the proof proceeds as before, and we obtain
a Π1

1(a) set of cardinality ℵ1 without a perfect subset. ��
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Σ1
2 Well-Orderings and Σ1

2 Well-Founded Relations

The canonical well-ordering of constructible reals is Σ1
2, and so if V = L

then there exists a Σ1
2 well-ordering of the set R (and of N ). We now prove

the converse: If there exists a Σ1
2 well-ordering of R then all reals are con-

structible.

Theorem 25.39 (Mansfield). If < is a Σ1
2 well-ordering of N then every

real is constructible. More generally, if < is Σ1
2(a) then N ⊂ L[a].

Proof. Let < be a Σ1
2 well-ordering of N and let us assume that there is

a nonconstructible real. Let T0 = Seq({0, 1}), and let C = [T0] = {0, 1}ω be
the Cantor space. Let us consider trees T ⊂ T0 and functions f : T → T0

such that s ⊂ t implies f(s) ⊂ f(t) and for every x ∈ [T ],
⋃∞

n=0 f(x�n) ∈ C.
Every such function induces a continuous function from [T ] into C, which we
denote by f∗.

Lemma 25.40. If T ⊂ T0 is a constructible perfect tree and if f : T → T0

is a constructible function such that f∗ is one-to-one, then there exist a con-
structible perfect tree U ⊂ T and a constructible g : U → T0 such that g∗ is
one-to-one, and g∗(x) < f∗(x) for every x ∈ [U ].

It suffices to prove this lemma because then we can construct a sequence
of trees T0 ⊃ T1 ⊃ . . . ⊃ Tn ⊃ . . . and functions f0, f1, . . . , fn, . . . where f0 is
the identity such that f∗

n+1(x) < f∗
n(x) for all x ∈ Tn+1. Since all [Tn] are

compact sets, their intersection is nonempty and therefore there exists an x
such that f∗

0 (x) > f∗
1 (x) > . . . > f∗

n(x) > . . . contrary to the assumption that
< is a well-ordering.

Proof of Lemma 25.40. Let T ⊂ T0 be a constructible tree and let f : T → T0

be constructible, such that f∗ is one-to-one.
Since T is perfect, there exists a constructible function h : T → T0 such

that h∗ : [T ] → C is one-to-one and onto. For each s ∈ T0, let s be the “mirror
image” of s, namely if s = 〈s(0), . . . , s(k)〉, let s = 〈1 − s(0), . . . , 1 − s(k)〉;
for x ∈ C, x is defined similarly.

We claim that at least one of the sets

A = {x ∈ [T ] : f∗(x) > h∗(x)}, B = {x ∈ [T ] : f∗(x) > h∗(x)}

contains a nonconstructible element. Let z be the least nonconstructible el-
ement of C, and let x, y ∈ [T ] be such that h∗(x) = z and h∗(y) = z. Then
both x and y are nonconstructible and hence f∗(x) ≥ z and f∗(y) ≥ z. Thus
either f∗(x) > z or f∗(y) > z and so either A or B contains a noncon-
structible element. For instance, assume that A does.

Since < is Σ2, and T , f , and h are constructible subsets of HF , the set A
is Σ1

2(a) for some a ∈ L. By Lemma 25.24 there exists a constructible perfect
tree U such that [U ] ⊂ A. If we let g = h�U , then U and g satisfy the lemma.

��
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The set WO is Π1
1 but not Σ1

1. One consequence of this fact, related to
the Boundedness Lemma, is that there is no Σ1

1 well-ordering of the reals,
in fact every Σ1

1 well-ordering of a set of reals is countable. A more general
statement holds:

Lemma 25.41. Every Σ1
1 well-founded relation on N has countable height.

Proof. Assuming that some Σ1
1 well-founded relation on N has height ≥ ω1,

we reach a contradiction by describing the set WO in a Σ1
1 way.

First consider the special case of well-orderings. Let E be a Σ1
1 well-

ordering and let us assume that its order-type is ≥ ω1. Then for every α < ω1

there is an order-preserving mapping of (α, <) into (N , E). Conversely, if
a countable linearly ordered set (Q, <) can be embedded in (N , E), then
(Q, <) is a well-ordering. Hence let Ex be, for each x ∈ N , the relation coded
by x (see (25.13)), and let LO be the arithmetical set of all x that code
a linear ordering of N . Then

(25.35) x ∈ WO ↔ x ∈ LO ∧ (∃f : ω → N )∀n ∀m
(n Ex m → (f(n), f(m)) ∈ E)

↔ x ∈ LO ∧ ∃z ∈ N ∀n ∀m (n Ex m → (zn, zm) ∈ E),

where for each z ∈ N and each n, zn is the element of N defined by zn(k) =
z(Γ(n, k)) for all k ∈ N , where Γ is the pairing function. Now (25.35) gives
a Σ1

1 description of WO, a contradiction.
In the general case when E is a Σ1

1 well-founded relation we observe that if
α is a countable ordinal less than the height of E, then there exist a countable
set S ⊂ N and a function f of S onto α such that for every u ∈ S and every
β < f(u) there exists a v ∈ S such that v E u and β ≤ f(v) (namely
f(x) = ρE(x), and the countable set S is constructed with the help of the
Principle of Dependent Choices). Conversely, if (Q, <) is a linearly ordered
set and if there is a function f from a subset of N onto Q such that for every
u ∈ dom(f) and every q < f(u) there is v ∈ dom(f) such that v E u and
q ≤ f(v), then (Q, <) is a well-ordering. Thus if E has height ≥ ω1, we have

(25.36) x ∈ WO ↔ x ∈ LO ∧ (∃ countable S = {zn : n ∈ N})
(∃f : S

onto→ N)∀n ∀k [if (k, f(zn)) ∈ Ex, then

∃m such that (zm, zn) ∈ E and

either k = f(zm) or (k, f(zm)) ∈ Ex].

Again, (25.36) can be written in a Σ1
1 manner, and we get a contradiction.

��

The next theorem gives an upper bound on heights of Σ1
2 well-founded

relations.
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Theorem 25.42 (Martin). Every Σ1
2 well-founded relation on N has length

< ω2.

Note that since every prewellordering is a well-founded relation, the the-
orem implies that δ1

2 ≤ ω2, where

δ1
2 = sup{α : α is the length of a Σ1

2 prewellordering}.

Proof. Let E ⊂ N × N be a Σ1
2 relation. Let T be a tree on ω2 × ω1 such

that for all x, y ∈ N ,

(25.37) (x, y) ∈ E ↔ (∃f : ω → ω1)∀n (x�n, y�n, f�n) ∈ T.

As usual, for each z ∈ N and each n ∈ N , let zn ∈ N be such that zn(k) =
z(Γ(n, k)) for all k; similarly, for each f : ω → ω1 and each n, let fn : ω → ω1

be such that fn(k) = f(Γ(n, k)) for all k. (Here Γ is the pairing function.)
Each of the following formulas is equivalent to the statement that the

relation E is not well-founded:

∃x∀m (xm+1, xm) ∈ E,

∃x∀m ∃f ∀n (xm+1�n, xm�n, f�n) ∈ T,

∃x∃f ∀m ∀n (xm+1�n, xm�n, fm�n) ∈ T.

It is easy to construct a tree U on ω × ω1 such that for all x ∈ N and all
f : ω → ω1,

(25.38) ∀m ∀n (xm+1�n, xm�n, fm�n) ∈ T if and only if ∀k (x�k, f�k) ∈ U .

It follows from (25.38) that

(25.39) E is well-founded if and only if U is well-founded.

Now let E ⊂ N ×N be a Σ1
2 well-founded relation; we want to show that

its height is < ω2. Let T be a tree on ω2 × ω1 such that (25.37) holds for all
x, y ∈ N and let U be the tree on ω ×ω1 constructed from T as above; since
E is well-founded, U is well-founded.

Let us consider a generic extension V [G] of the universe in which ωV
1 is

countable and ωV
2 = ωV [G]

1 . Let us argue in V [G].
Let E∗ be the relation on N defined by (25.37). First we observe that

E ⊂ E∗: If x, y ∈ V , then

(x, y) ∈ E ↔ V � T (x, y) is ill-founded

↔ V [G] � T (x, y) is ill-founded

↔ (x, y) ∈ E∗.

(because well-foundedness is absolute). We notice further that E∗ is well-
founded: This is because by the construction of U (which is absolute) and
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the definition of E∗, V [G] satisfies (25.39), i.e.,

E∗ is well-founded if and only if U is well-founded.

Hence E∗ is well-founded, and height(E) ≤ height(E∗).
The tree T is a tree on ω × ωV

1 and ωV
1 is a countable ordinal. Since

E∗ = p[T ], it follows that E∗ is a Σ1
1 relation. By Lemma 25.41, the height

of E∗ is countable. It follows that height(E) < ωV [G]
1 = ωV

2 .
Now we can step back into the ground model and look at the result of the

above argument: height(E) < ω2. ��

Both Theorem 25.42 and Lemma 25.41 are special cases of the more gen-
eral Kunen-Martin Theorem:

Theorem 25.43. Let κ be an infinite cardinal. Every κ-Suslin well-founded
relation on N has height < κ+.

Proof. Let < be a κ-Suslin well-founded relation on N . We first associate
with < a tree T on N as follows:

(25.40) T = {〈x0, . . . , xn−1〉 : xn−1 < xn−2 < . . . < x0},

(and 〈x〉 ∈ T for all x ∈ N ). T is well-founded and it suffices to prove that
the height of T is < κ+.

As < is κ-Suslin, there exists a tree T on ω × ω × κ such that

x < y if and only if ∃f (x, y, f) ∈ [T ].

Let W be the set of ill sequences (of nodes at the same level of T )

w = 〈(s1, s0, h0), . . . , (si+1, si, hi), . . . , (sk, sk−1, hk−1)〉

with (si+1, si, hi) ∈ T , and let

(25.41) w′ ≺ w if and only if k = length(w) < length(w′) = k′

length(s0) < length(s′0), and

∀i < k si ⊂ s′i and hi ⊂ h′
i.

We claim that the relation ≺ is well-founded. Otherwise, let wn = 〈(sn
i+1,

sn
i , hn

i ) : i < kn〉 be such that wn+1 ≺ wn for all n. For each i ∈ ω, let
xi =

⋃∞
n=0 sn

i , and fi =
⋃∞

n=0 hn
i (these exist by (25.41)). It follows that

(xi+1, xi, fi) ∈ [T ] for all i, hence xi+1 < xi, and therefore x0 > x1 > . . . >
xi > . . ., a contradiction.

The set W has cardinality κ and it suffices to find an order preserving
mapping from T − {∅} into (W,≺). For every pair (x, y) such that x < y,
the tree T (x, y) on κ is not well-founded and has a branch h; let hx,y be the



504 Part II. Advanced Set Theory

leftmost branch of the tree T (x, y). Now let π : T − {∅} → W be as follows:
π(〈x〉) = ∅ for every x ∈ N , and for k ≥ 2,

π(〈x0, . . . , xk−1〉) = 〈(x1�k, x0�k, hx1,x0�k), . . . , (xk�k, xk−1�k, hxk,xk−1�k)〉.

As π(〈x0, . . . , xk−1, xk〉) ≺ π(〈x0, . . . , xk−1〉), the mapping is order-preserv-
ing, completing the proof. ��

Borel Codes

Every Borel set of reals is obtained, in fewer than ω1 steps, from open inter-
vals by taking complements and countable unions. We shall show how this
procedure can be coded by a function c ∈ ωω. We shall define the set BC of
Borel codes and assign to each c ∈ BC a unique Borel set Ac. The code c not
only describes the Borel set Ac but also describes the procedure by which the
set Ac is constructed from basic open sets.

Let I1, I2, . . . , Ik, . . . be a recursive enumeration of open intervals with
rational endpoints (i.e., the sequence of the pairs of endpoints is rercursive).
For each c ∈ N , let

(25.42) u(c) and vi(c) (i ∈ N)

be elements of N defined as follows: If d = u(c), then d(n) = c(n + 1) for
all n; if d = vi(c), then d(n) = c(Γ(i, n)+1) for all n (where Γ is the canonical
one-to-one correspondence between N × N and N).

For 0 < α < ω1, we define sets Σα and Πα ⊂ N as follows:

(25.43) c ∈ Σ1 if c(0) > 1;

c ∈ Πα if either c ∈ Σβ ∪ Πβ for some β < α

or c(0) = 0 and u(c) ∈ Σα;

c ∈ Σα (α > 1) if either c ∈ Σβ ∪ Πβ for some β < α

or c(0) = 1 and vi(c) ∈
⋃

β<α(Σβ ∪ Πβ) for all i.

If c ∈ Σα (if c ∈ Πα), we call c a Σ0
α-code (a Π0

α-code). Let BC, the set of
all Borel codes, be

BC =
⋃

α<ω1

Σα =
⋃

α<ω1

Πα.

For every c ∈ BC, we define a Borel set Ac as follows (we say that
c codes Ac):

(25.44) if c ∈ Σ1 then Ac =
⋃
{In : c(n) = 1};

if c ∈ Πα and c(0) = 0 then Ac = R − Au(c);

if c ∈ Σα and c(0) = 1 then Ac =
⋃∞

i=0 Avi(c).
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It is clear that for every α > 0, if c ∈ Σα (if c ∈ Πα), then Ac ∈ Σ0
α

(Ac ∈ Π0
α). Conversely, if B is a Σ0

α set (a Π0
α set), then there exists c ∈ Σα

(c ∈ Πα) such that B = Ac. This is proved by induction on α using facts
like: If ci, i ∈ ω are elements of

⋃
β<α Πβ , then there is c ∈ Σα such that

ci = vi(c) for all i ∈ ω.
Thus {Ac : c ∈ BC} is the collection of all Borel sets.

Lemma 25.44. The set BC of all Borel codes is Π1
1.

Proof. Let us consider the following relation E on N :

(25.45) x E y if and only if either y(0) = 0 and x = u(y),

or y(0) = 1 and x = vi(y) for some i ∈ ω.

The relation E is arithmetical. If y ∈ Σ1, then y is E-minimal (i.e., extE(y) =
∅) and vice versa; if y ∈ Πα and x E y, then x ∈ Σα, and if y ∈ Σα (α > 1)
and x E y, then x ∈

⋃
β<α(Σβ ∪ Πβ).

We claim that

(25.46) y ∈ BC ↔ E is well-founded below y

↔ there is no 〈z0, z1, . . . zn, . . .〉 such that z0 = y
and that ∀n (zn+1 E zn).

By the remark following (25.45), if y ∈ BC, then there can be no infinite
descending sequence z0 = y, z1 E z0, z2 E z1, etc. Conversely, if E is well-
founded below y, let ρ denote the rank function for E on extE(y). By induc-
tion on ρ(x), one can see that every x ∈ extE(y) is a Borel code, and finally
that y is itself a Borel code.

Now (25.46) gives a Π1
1 definition of the set BC and the lemma follows.

��

Lemma 25.45. The properties Ac ⊂ Ad, Ac = Ad, and Ac = ∅ are Π1
1 prop-

erties of Borel codes.

Proof. We shall show that there are properties P, Q ⊂ R × N such that
P is Π1

1 and Q is Σ1
1 and such that for every c ∈ BC,

(25.47) a ∈ Ac ↔ (a, c) ∈ P ↔ (a, c) ∈ Q.

Then
Ac ⊂ Ad ↔ c, d ∈ BC ∧ ∀a ((a, c) ∈ Q → (a, d) ∈ P ),

Ac = Ad ↔ c, d ∈ BC ∧ Ac ⊂ Ad ∧ Ad ⊂ Ac,

Ac = ∅ ↔ c ∈ BC ∧ ∀a (a, c) /∈ Q.

To find P and Q, let x ∈ N be fixed. Let T be the smallest set T ⊂ N
such that

(25.48) x ∈ T , and if y ∈ T and z E y, then z ∈ T .
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The set T is countable. Let h : T → {0, 1} be a function with the following
property: For all y ∈ T ,

(25.49) if y(0) > 1, then h(y) = 1 if and only if
for some n, y(n) = 1 and a ∈ In;

if y(0) = 0, then h(y) = 1 if and only if h(u(y)) = 0;

if y(0) = 1, then h(y) = 1 if and only if for some i, h(vi(y)) = 1.

Note that if x is a Borel code then there is a unique smallest countable
set T ⊂ N with the property (25.48), and a unique function h with the
property (25.49); moreover, for every y ∈ T we have h(y) = 1 if and only if
a ∈ Ay. Thus we let

(25.50) (a, x) ∈ P ↔ (∀ countable T ⊂ N )(∀h : T → {0, 1})
if (25.48) and (25.49) then h(x) = 1,

and

(25.51) (a, x) ∈ Q ↔ (∃ countable T ⊂ N )(∃h : T → {0, 1})
(25.48) ∧ (25.49) ∧ h(x) = 1,

and it is clear that if c ∈ BC, then a ∈ Ac if and only if (a, c) ∈ P if and only
if (a, c) ∈ Q.

It is a routine matter to verify that (25.50) can be written in Π1
1 way and

(25.51) in a Σ1
1 way. (The quantifiers ∀T , ∀h, and ∃T , ∃h are the only ones

for which one needs quantifiers over N ; note that for instance, ∀z (z E y →
y ∈ T ) in (25.48) can be written as

(y(0) = 0 → u(y) ∈ T ) ∧ (y(0) = 1 → ∀i (vi(y) ∈ T )).) ��

We shall now show that certain properties of Borel codes are absolute for
transitive models of ZF+DC. (As usual, full ZF+DC is not needed, and the
absoluteness holds for adequate transitive models.) If M is a transitive model
of ZF + DC and c ∈ ωω is in M , then because the set BC is Π1

1, c is a Borel
code if and only if M � c is a Borel code. By Lemma 25.45 the properties
of the codes Ac ⊂ Ad, Ac = Ad, and Ac = ∅ are Π1

1 and therefore absolute:
Ac = Ad holds if and only if AM

c = AM
d , etc., where AM

c denotes the Borel set
in M coded by c. Moreover, since a ∈ Ac is Π1

1, it follows that AM
c = Ac ∩M

for every Borel code c ∈ M .

Lemma 25.46. The following properties (of codes) are absolute for all tran-
sitive models M of ZF + DC:

Ae = Ac ∪ Ad, Ae = Ac ∩ Ad,

Ae = R − Ac, Ae = Ac  Ad, Ae =
∞⋃

n=0
Acn

(we assume that the codes c, d, e are in M , as is the sequence 〈cn : n ∈ ω〉).
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We say that the operations ∪, ∩, −, ,
⋃∞

n=0 on Borel sets with codes
in M are absolute for M .

Proof. If c0, c1, . . . , cn, . . . is a sequence of Borel codes in M , let c ∈ N be
such that c(0) = 1 and that vi(c) = ci for all i ∈ ω. Clearly, c is a Borel code,
c ∈ M , and c codes (both in the universe and in M) the Borel set

⋃∞
n=0 Acn .

Hence for any Borel code e ∈ M , we have

AM
e =

∞⋃
n=0

AM
cn

↔ AM
e = AM

c ↔ Ae = Ac ↔ Ae =
∞⋃

n=0
Acn

because Ae = Ac is absolute for M . Thus Ae =
⋃∞

n=0 Acn is absolute.
An analogous argument shows that R−Ac is absolute, and the rest of the

lemma follows easily because the operations ∩, and  can be defined from ∪
and −. ��

Exercises

25.1. If A ⊂ Seq × ω is arithmetical then {(x, n) : (x�n, n) ∈ A} is ∆1
1.

25.2. (i) Every arithmetical relation is ∆1
1.

(ii) If A ⊂ N ×N is arithmetical then ∃x A is Σ1
1 and ∀x A is Π1

1.

25.3. The set A = {(x, z) : z /∈ WO ∨ ‖x‖ ≤ ‖z‖} is Σ1
1. Hence for each α, WOα

is Σ1
1(z) for each z ∈WO such that ‖z‖ = α.
[(x, z) ∈ A↔ z /∈WO ∨ (∃h : N →N )∀m∀n (m Ex n→ h(m) Ex h(n)).]

25.4. Every Σ1 sentence is absolute for all inner models; in fact for all transitive
models M ⊃ Lϑ where ϑ = ωL

1 .
[Use Shoenfield’s Absoluteness Lemma and Lemma 25.25.]

25.5. Modify the proof of Theorem 25.32 to show that Σ1
2 has the prewellordering

property.

25.6. Prove the prewellordering property of Σ1
2 from the prewellordering property

of Π1
1.

A collection C of subsets of N satisfies the reduction principle if for every pair
A, B ∈ C there are disjoint A′, B′ ∈ C such that A′ ⊂ A, B′ ⊂ B, and A′ ∪ B′ =
A ∪B. C satisfies the separation principle if for every pair of disjoint sets A, B ∈ C
there is a set E such that both E and ¬E are in C, and that A ⊂ E and B ⊂ ¬E.
Lemma 11.11 proves that the collection of all analytic sets satisfies the separation
principle.

25.7. The collection of Π1
1 sets satisfies the reduction principle.

[Let ϕ and ψ be Π1
1 norms on the Π1

1 sets A and B and let A′ = {x ∈ A :
ψ(x) �< ϕ(x)} and B′ = {x ∈ B : ϕ(x) � ψ(x)}.]

25.8. The collection of Σ1
2 sets satisfies the reduction principle.

The two exercises above hold also for Π1
1(a) and Σ1

2(a).
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25.9. If a collection C satisfies the reduction principle then the collection C∗ = {A :
¬A ∈ C} satisfies the separation principle.

[If A,B ∈ C∗ are disjoint, then ¬A ∪ ¬B = N r and so if A′, B′ ∈ C are disjoint
such that A′ ⊂ ¬A, B′ ⊂ ¬B and A′ ∪B′ = ¬A∪¬B, then B′ = ¬A′ and both A′

and B′ are in C∗.]

Hence the separation principle holds for Σ1
1 and for Π1

2 (and Σ1
1(a) and Π1

2(a)).

25.10. There is no universal ∆1
n set, for any n ∈ N , i.e., no D ⊂ N 2 such that

D is ∆1
n and that for every ∆1

n set A ⊂ N there is v ∈ N such that A = {x :
(x, v) ∈ D}.

[Assume there is such a D and let A = {x : (x, x) �∈ D}.]

25.11. The collection of Π1
1 sets (or Σ1

2 sets) does not satisfy the separation prin-
ciple.

[The reason is that Π1
1 satisfies the reduction principle (Σ1

2 is similar). Let h be
a homeomorphism of N ×N onto N , and let U ⊂ N 2 be a universal Π1

1 set. Let
(x, h(u, v)) ∈ A if and only if (x, u) ∈ U , (x, h(u, v)) ∈ B if and only if (x, v) ∈ V ,
and let A′, B′ be disjoint Π1

1 sets such that A′ ⊂ A, B′ ⊂ B, and A′ ∪B′ = A∪B.
If there existed E ∈ ∆1

1 such that A′ ⊂ E and B′ ⊂ ¬E, then E would be
a universal ∆1

1 set.]

25.12. Modify the proof of Theorem 25.34 to show that Σ1
2 has the scale property.

25.13. Prove the scale property of Σ1
2 from the scale property of Π1

1.

25.14. Let 〈ϕn : n ∈ ω〉 be a scale on A and let T be the tree {(s, 〈α0, . . . , αn−1〉) :
(∃x ∈ A)x�n = s and ∀i < n αi = ϕi(x)}. Show that A = p[T ] and that for each
x ∈ A, T (x) has a least branch.

25.15. Using the scale property of Σ1
2 prove the uniformization property of Σ1

2.

Historical Notes

For classical descriptive set theory, see the books of Luzin [1930] and Kuratow-
ski [1966]; the terminology is that of modern descriptive set theory based on the
analogy with Kleene’s hierarchies ([1955]).

The basic facts on Σ1
1 and Π1

1 sets are all in Luzin’s book [1930] and some
are of earlier origin: Lemma 25.10 was in effect proved by Lebesgue in [1905], and
Corollary 25.13 and Lemma 25.17 were proved by Luzin and Sierpiński in [1923].

Theorem 25.19 appeared in Sierpiński [1925]. Theorem 25.36 is due to Kondô
[1939].

Theorem 25.20 is due to Shoenfield [1961]. Previously, Mostowski had es-
tablished absoluteness of Σ1

1 and Π1
1 predicates (Theorem 25.4). Lemma 25.25:

Lévy [1965b].
The tree representation of Σ1

2 sets is implicit in Shoenfield’s proof in [1961].
Lemma 25.22 is due to Kechris and Moschovakis [1972].

Theorem 25.23 is due to Mansfield [1970] and Solovay [1969]. Lemma 25.24 was
formulated and first proved by Mansfield.

Theorem 25.26 and corollaries: In his announcement [1938] Gödel stated that
the Axiom of Constructibility implies that there exists a nonmeasurable ∆1

2 set
and an uncountable Π1

1 set without a perfect subset. Gödel did not publish the
proof but gave an outline in the second printing (in 1951) of his monograph [1940].
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Novikov in [1951] gave a proof of the corollaries (Kuratowski’s paper [1948] contains
somewhat weaker results) and Addison in [1959] worked out the details of Gödel
outline of the proof of the theorem.

Lemma 25.30: Solovay [1967].
For scales and uniformization, see Moschovakis’ book [1980]. Moschovakis in-

troduced scales in [1971].
Theorem 25.38: Solovay [1969].
Theorem 25.39: Mansfield [1975].
Theorem 25.42 (as well as the present proof) is due to Martin; and Theo-

rem 25.43 is due to Kunen and Martin, the present proof is Kunen’s.
Borel codes are as in Solovay [1970].
The reduction and separation principles were introduced by Kuratowski; they

are discussed in detail in Kuratowski’s book [1966] and in Addison [1959].
Exercise 25.7: Kuratowski [1936].



26. The Real Line

This chapter deals with some properties of the real line, primarily with ques-
tions concerning measure and category. Among others we present the theorem
of Solovay establishing the consistency of the statement “every set of reals is
Lebesgue measurable.”

Random and Cohen reals

Let us consider generic extensions using either the algebra of Borel sets mod-
ulo the ideal of null sets or the algebra of Borel sets modulo the ideal of
meager sets.

Let B be the σ-algebra of Borel sets of reals, let Im and Ic (m for measure,
c for category) be the σ-ideals

Im = {B ∈ B : µ(B) = 0}, Ic = {B ∈ B : B is meager}

and let

(26.1) Bm = B/Im = {[B]m : B ∈ B}, Bc = B/Ic = {[B]c : B ∈ B}

where [B]m and [B]c denote equivalence classes mod Im and mod Ic, respec-
tively. Bm and Bc are complete Boolean algebras and if Bn, n ∈ ω, are Borel
sets then (in either Bm or Bc),

∞∑
n=0

[Bn] =
[ ∞⋃

n=0
Bn

]
.

(Also, −[B] = [R − B]).
Forcing with Bc is the same as adjoining a Cohen generic real, see Exer-

cise 26.1.
Let M be a transitive model of ZF+DC. Let us consider Borel sets in M ;

let B denote the collection of all Borel sets in M , and let Bm and Bc denote
the complete Boolean algebras (26.1) in M .

Let B be a Borel set in M . B has a Borel code c ∈ M , B = Ac. Let us
denote B∗ the Borel set in the universe coded by c. This definition does not
depend on the choice of c ∈ BCM because by Lemma 25.45, if Ac = Ad, then
A∗

c = A∗
d. We recall that B = B∗ ∩ M , for every B ∈ B.
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Lemma 26.1. “Ac is null” and “Ac is meager” are properties absolute for
all transitive models of ZF + DC.

Proof. Let M be a transitive model of ZF + DC. Let µ denote the Lebesgue
measure. First we claim that if c ∈ M is a Σ0

1-code, then µM (AM
c ) = µ(Ac).

Let k0, k1, . . . , kn, . . . be all the k ∈ N such that c(k) = 1; thus Ac is
the union

⋃∞
n=0 Ikn of open intervals with rational endpoints. For each n, let

Xn = Ikn −(Ik0∪. . .∪Ikn−1 ); hence Ac =
⋃∞

n=0 Xn and µ(Ac) =
∑∞

n=0 µ(Xn)
is absolute. Hence µM (AM

c ) = µ(Ac).
A similar argument shows that if c ∈ M is a Π0

1-code, then µM (AM
c ) =

µ(Ac).
Next we claim that if c ∈ M is a Π0

1-code, then Ac is nowhere dense if
and only if M � Ac is nowhere dense. This is because d = u(c) ∈ Σ1 and it is
easily verified (using open rational intervals) that “Ad is dense” is absolute.

Now we are ready to prove the lemma. Let us consider first the property
“Ac is null.” We use the following properties of Lebesgue measure: (1) X is
null if and only if for every n ∈ N , there is an open set G ⊃ X of measure ≤
1/n, and (2) µ(X) > 0 if and only if there is a closed set F ⊂ X of positive
measure.

If M � Ac is null, then M satisfies

(26.2) ∀n ∃e (e ∈ Σ1 and Ae ⊃ Ac and µ(Ae) ≤ 1/n).

Since the part (. . .) of (26.2) is absolute, it is clear that (26.2) holds in V ,
and hence Ac is null.

If M � Ac is not null, then M satisfies

(26.3) ∃e (e ∈ Π1 and Ae ⊂ Ac and µ(Ae) > 0).

Again, (. . .) is absolute, thus (26.3) holds in V and hence Ac is not null.
Finally, we consider the property “Ac is meager.” If M � Ac is meager,

then M satisfies:

(26.4) There exist cn ∈ Π1, n = 0, 1, . . . , such that each Acn is nowhere
dense, and Ac ⊂

⋃∞
n=0 Acn .

Then (26.4) holds in V and so Ac is meager.
A Borel set B is not meager if and only if there is a nonempty open set G

such that B  G is meager. Thus if M � Ac is not meager, then M satisfies

(26.5) ∃d ∃e (d ∈ Σ1 and Ad �= ∅ and Ae = Ac  Ad and Ae is meager).

Then (26.5) holds in V and hence Ac is meager. ��

As before, it is not necessary that the transitive models in Lemma 26.1
satisfy all of ZF. The properties are absolute for all adequate transitive mod-
els, in particular for all transitive models of ZF− + DC.
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Lemma 26.2.

(i) If G is an M -generic ultrafilter on Bm, then there is a unique real
number xG such that for all B ∈ B,

(26.6) xG ∈ B∗ ↔ [B]m ∈ G.

The formula (26.6) determines G and hence M [G] = M [xG].
(ii) If G is an M -generic ultrafilter on Bc, then there is a unique real

number xG such that for all B ∈ B,

(26.7) xG ∈ B∗ ↔ [B]c ∈ G.

The formula (26.7) determines G and hence M [G] = M [xG].

Definition 26.3. If x is a real number and if x = xG for some G ⊂ Bm

generic over M , then x is random over M . If x = xG for some G ⊂ Bc generic
over M , then x is Cohen over M .

Proof. The same proof works for both (i) and (ii); let [B] denote [B]m in
case (i) and [B]c in case (ii).

First we claim that there is at most one real number x that satisfies

(26.8) x ∈ B∗ ↔ [B] ∈ G (for all B ∈ B).

If x satisfies (26.8), then x belongs to all B∗ such that [B] ∈ G. If x < y are
two real numbers, let r be a rational number such that x < r < y, and let A
be the interval (r,∞) = {z ∈ R : z > r}. Either [A] or [R − A] belongs to G
but x /∈ A∗ and y /∈ (R − A)∗.

In order to show that there exists a real number x that satisfies (26.8),
let

(26.9) x = sup{r : r is a rational number and [(r,∞)] ∈ G}.

By the genericity of G, there exists r such that [(r,∞)] /∈ G, and hence the
supremum (26.9) exists. Note also that x /∈ M (by the genericity of G). We
shall show that x satisfies (26.8). We shall show, by induction on Borel codes
in M , that for every c ∈ BCM ,

(26.10) x ∈ A∗
c ↔ [Ac] ∈ G.

First we consider Σ0
1-codes (in M), and let us start with those c ∈ Σ1∩M

that code a rational interval, i.e., such that c(n) = 1 for exactly one n; then
c codes the interval In. Let In = (p, q). We have

x ∈ A∗
c if and only if p < x < q

if and only if p < sup{r : [(r,∞)] ∈ G} < q

if and only if [(p,∞)] ∈ G and [(q,∞)] /∈ G

if and only if [(p, q)] ∈ G

if and only if [Ac] ∈ G.
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Now if c ∈ Σ1, then Ac =
⋃∞

n=0 Ikn , where {kn : n = 0, 1, . . .} is the set
{k : c(k) = 1}, and we have

x ∈ A∗
c if and only if x ∈

⋃∞
n=0 I∗kn

if and only if ∃n (x ∈ I∗kn
)

if and only if ∃n ([Ikn ] ∈ G) if and only if
∑∞

n=0[Ikn ] ∈ G

if and only if [
⋃∞

n=0 Ikn ] ∈ G if and only if [Ac] ∈ G.

Next let α < ωM
1 and let c ∈ Πα∩M , and let us assume that (26.10) holds

for all c ∈ Σα ∩ M . We may assume that c(0) = 0; then u(c) ∈ Σα ∩ M and
Au(c) = R − Ac, and we have

x ∈ A∗
c if and only if x /∈ A∗

u(c)

if and only if [Au(c)] /∈ G if and only if [Ac] ∈ G.

Finally, the induction step for Σα is handled in a way similar to the case
for c ∈ Σ1. Thus (26.10) holds for every c ∈ BCM , and thus x is the unique
real number that satisfies (26.6) (in case of Bm) or (26.7) (in case of Bc). ��

The following lemma provides a characterization of random and Cohen
reals.

Lemma 26.4. A real number is random over M if and only if it does not
belong to any null Borel set coded in M , and is Cohen over M if and only if
it does not belong to any meager Borel set coded in M .

Hence if R(M) and C(M) denote the sets of all random and all Cohen
reals over M , we have

(26.11) R(M) = R∗ −
⋃
{A∗

c : c ∈ BCM and A∗
c is null},

C(M) = R∗ −
⋃
{A∗

c : c ∈ BCM and A∗
c is meager}.

Note that by Lemma 26.1, Ac is null (in M) if and only if A∗
c is null (in V ).

Proof. On the one hand, if x is random over M , let G be an M -generic
ultrafilter on Bm such that x = xG. Then if Ac is null then [Ac] /∈ G, and
by (26.6), x /∈ A∗

c . Similarly for x that is Cohen over M .
On the other hand, let x be such that x /∈ A∗

c whenever Ac is null (and
c ∈ M). First we observe that if [Ac] = [Ad] then Ac  Ad is null, hence
A∗

c  A∗
d is null and it follows that x belongs to A∗

c if and only if x belongs
to A∗

d. Let

(26.12) G = {[Ac] : x ∈ A∗
c}.

It is easy to see that G is a filter on Bm: If [Ac] ∈ G and [Ad] ∈ G, then
x ∈ A∗

c ∩ A∗
d and hence [Ac ∩ Ad] ∈ G; similarly, if [Ac] ≤ [Ad] and [Ac] ∈ G,

then [Ad] ∈ G.
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We shall show that G is M -generic. Since Bm satisfies the c.c.c., it suffices
to show that if {Acn : n ∈ ω} ∈ M is such that

∑∞
n=0[Acn ] ∈ G, then

some [Acn ] is in G. But this is true because

∞∑
n=0

[Acn ] =
[ ∞⋃

n=0
Acn

]
and

( ∞⋃
n=0

Acn

)∗
=

∞⋃
n=0

A∗
cn

.

Finally, we claim that x = xG. But this follows from (26.12), by the
genericity of G. Thus a real number x is random over M if and only if x /∈ A∗

c

for any null Borel set Ac ∈ M .
The proof is entirely similar for Cohen reals. ��

Solovay Sets of Reals

Let M be a transitive model of ZFC. Let S be a set of reals. We say that the
set S is Solovay over M if there is a formula ϕ(x), with parameters in M ,
such that for all reals x,

(26.13) x ∈ S ↔ M [x] � ϕ(x).

Lemma 26.5. Let S be a Solovay set of reals over M . There exist Borel sets
A and B such that

S ∩ R(M) = A ∩ R(M) and S ∩ C(M) = B ∩ C(M).

Proof. Let us prove the lemma for random reals. Let us consider the forcing
language in M associated with Bm. Let Ġ be the canonical name for a generic
ultrafilter on Bm, and let ȧ be the canonical name for a random real; i.e., let
ȧ be the Bm-valued name defined in MBm from Ġ, by (26.6): ‖ȧ = xG‖ = 1.

Let ϕ(x) be a formula with parameters in M such that (26.13) holds for
all x. Let Ac ∈ B be such that [Ac] = ‖ϕ(ȧ)‖ and let A = A∗

c . The set A is
a Borel set (in the universe); we claim that for all x ∈ R(M), x belongs to S
if and only if x belongs to A. But if x is random over M , let G be M -generic
on Bm such that x = xG; then ȧ is a name for x and we have

x ∈ S ↔ M [x] � ϕ(x) ↔ M [G] � ϕ(x) ↔ ‖ϕ(ȧ)‖ ∈ G ↔ [Ac] ∈ G ↔ x ∈ A∗
c .
��

Corollary 26.6. Let S be a Solovay set of reals over M .

(i) If the set of all reals that are not random over M is null, then S is
Lebesgue measurable.

(ii) If the set of all reals that are not Cohen over M is meager, then S has
the property of Baire.

Proof. Under the assumptions of the corollary, S  A is null and S  B is
meager. ��
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The Lévy Collapse

We review properties of the forcing that collapses uncountable cardinals to ℵ0,
and establish the homogeneity of the Lévy collapse.

If λ is an infinite cardinal, let Pλ denote the set of all finite sequences

(26.14) p = 〈p(0), . . . , p(n − 1)〉 (n ∈ ω)

of ordinals less than λ and let Col(ℵ0, λ) = B(Pλ).
The following lemma provides a characterization of the collapsing algebra:

Lemma 26.7. Let (Q, <) be a notion of forcing such that |Q| = λ > ℵ0 and
such that Q collapses λ onto ℵ0, i.e.,

‖λ̌ is countable‖B(Q) = 1.

Then B(Q) = Col(ℵ0, λ).

Proof. Without loss of generality we may assume that (Q, <) is a separative
partial ordering. We shall find a dense subset of Q isomorphic to Pλ.

Let B = B(Q), and let Ġ be the canonical name for the generic filter
on Q. Let ḟ ∈ V B be such that

‖ḟ maps ω̌ onto Ġ‖B = 1.

For each p ∈ Pλ, we shall construct q(p) ∈ Q such that D = {q(p) : p ∈ Pλ}
is dense in Q and that p �→ q(p) is an isomorphism of Pλ onto D. We con-
struct q(p) by induction on the length of p.

If p = 〈p(0)〉, we construct q(p) as follows: Since Q collapses λ, there
exists an antichain W ⊂ Q of size λ. Moreover, we may find such W of size λ
with the additional property that each w ∈ W decides ḟ(0), i.e., there is
qw ∈ Q such that w � ḟ(0) = q̌w. Thus let W∅ be a maximal antichain with
these properties, W∅ = {wξ : ξ < λ}, and for each p = 〈p(0)〉 ∈ Pλ we let
q(p) = wξ, where ξ = p(0).

Having constructed q(p), where p = 〈p(0), . . . , p(n − 1)〉, we construct
q(p�ξ), ξ < λ, as follows: We let Wp = {wξ : ξ < λ} be a maximal antichain
below q(p) such that |Wp| = λ and that each w ∈ Wp decides ḟ(n). Then we
let q(p�ξ) = wξ, for all wξ ∈ Wp.

The set D = {q(p) : p ∈ Pλ} is clearly isomorphic to Pλ. Let us show that
D is dense in Q. Let q ∈ Q be arbitrary. Since q � q̌ ∈ Ġ, and q � q̌ ∈ ran(ḟ),
there is r ≤ q and n < ω such that r � q = ḟ(n). Now there is p ∈ Pλ

of length n + 1 such that q(p) is compatible with r; since q(p) decides ḟ(n),
we necessarily have q(p) � ḟ(n) = q̌. Therefore, q(p) � q̌ ∈ Ġ. Since Q is
separative, it follows that q(p) ≤ q. This proves that D is dense in Q. ��

Corollary 26.8 (Kripke). If B is a complete Boolean algebra and |B| ≤ λ
then B embeds as a complete subalgebra of Col(ℵ0, λ).
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Proof. Let B be a complete Boolean algebra, |B| ≤ λ. The notion of forcing
Q = B+ × Pλ has cardinality λ and collapses λ. By Lemma 26.7, B(Q) =
Col(ℵ0, λ). In other words, B⊕Col(ℵ0, λ) is isomorphic to Col(ℵ0, λ), and so
B is isomorphic to a complete subalgebra of Col(ℵ0, λ). ��

Lemma 26.9. Let B be a complete Boolean algebra, |B| = λ. Let C be a com-
plete subalgebra of B such that |C| < λ, and let h0 be an embedding of C
in Col(ℵ0, λ). Then there exists an embedding h of B in Col(ℵ0, λ) such that
h(c) = h0(c) for all c ∈ C.

Proof. Let D be the image of C under the embedding h0. Let Col be an ab-
breviation for Col(ℵ0, λ); let ColC and ColD denote, respectively, the (ℵ0, λ̌)-
collapsing algebra in the Boolean valued models V C and V D.

First, we find an embedding k of B in C ∗ ColC : Working in V C , we
observe that λ̌ is a cardinal and that B : C is a complete Boolean algebra
that collapses λ̌ onto ℵ̌0. Also, since B : C is a quotient of B̌, B : C has
cardinality λ̌. Thus by Corollary 26.8 (in V C), there is an embedding of B :C
in ColC .

It follows that there is an embedding k of C ∗ (B : C) into C ∗ ColC such
that k(c) = c for all c ∈ C (and C is considered a complete subalgebra of
both those algebras). Since C ∗ (B : C) = B, we have k : B → C ∗ ColC such
that k(c) = c for all c ∈ C.

Next we find an isomorphism between Col and D ∗ColD: Working in V D,
we observe that λ̌ is a cardinal, and that Col : D collapses λ̌ onto ℵ̌0. Also,
since the algebra Col∨ has a dense subset P̌λ of size λ̌, its quotient Col : D
has a dense subset Q̇ of size λ̌. Thus by Lemma 26.7 (in V D), there is an
isomorphism between Col : D and ColD.

By the same argument as above, we get an isomorphism π between Col =
D ∗ (Col : D) and D ∗ ColD such that π(d) = d for all d ∈ D.

Since C and D are isomorphic, there exists an isomorphism σ : C∗ColC →
D ∗ ColD such that σ(c) = h0(c) for all c ∈ C. Thus we define h : B → Col
as follows: h(b) = π−1(σ(k(b))), for all b ∈ B:

C ∗ ColC σ−−−−→ D ∗ ColD

k

�⏐⏐ �⏐⏐π

B
h−−−−→ Col

Clearly, h is an embedding of B into Col, and h(c) = h0(c) for all c ∈ C. ��

Corollary 26.10. Let G be a generic filter on Pλ and let X be a set of
ordinals in V [G]. Then either V [X ] = V [G] or there exists a V [X ]-generic
filter H on Pλ such that V [X ][H ] = V [G].

Proof. If λ is uncountable in V [X ], then V [G] is a generic extension of V [X ]
by ColV [X](ℵ0, κ), where κ = |λ|V [X]. However, Pκ is isomorphic in V [X ]
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to Pλ. If λ is countable in V [X ] and V [X ] �= V [G], then V [G] is a generic
extension of V [X ] by a countable atomless notion of forcing Q. There is only
one atomless complete Boolean algebra with a countable dense subset and so
B(Q) is isomorphic (in V [X ]) to B(Pλ). ��

We now consider the Lévy collapse Col(ℵ0, <λ): Let λ be an inaccessible
cardinal. The conditions are functions p on finite subsets of λ × ω such that
p(α, n) < α whenever (α, n) ∈ dom(p); p is stronger than q if p ⊃ q.

Corollary 26.11 (The Factor Lemma). Let G be a generic filter on the
Lévy collapse P , and let X be a countable set of ordinals in V [G]. Then there
exists a V [X ]-generic filter H on P such that V [X ][H ] = V [G].

Proof. For each ν < λ we have a decomposition of P into Pν × P ν where
Pν = {p ∈ P : dom p ⊂ ν × ω} and P ν = {p ∈ P : dom p ⊂ (λ − ν) × ω}.
Note that if ν is an infinite cardinal then |Pν+1| = ν and so by Lemma 26.7
B(Pν+1) = Col(ℵ0, ν).

Let ν < λ be such that X ∈ V [G ∩ Pν+1]. By Corollary 26.10 there exists
a K ⊂ Pν+1 generic over V [X ] such that V [G ∩ Pν+1] = V [X ][K]. Hence
V [G] = V [X ][K][G ∩ P ν+1]; let H = K × (G ∩ P ν+1). ��

Theorem 26.12 (The Homogeneity of the Lévy Collapse). Let B =
Col(ℵ0, <λ). If A and A′ are isomorphic complete subalgebras of B such that
|A| = |A′| < |B| and if π0 is an isomorphism between A and A′, then there
exists an automorphism π of B such that π(a) = π0(a) for all a ∈ A.

Proof. First we construct increasing sequences of complete subalgebras A0 ⊂
A1 ⊂ . . . ⊂ An ⊂ . . ., and A′

0 ⊂ A′
1 ⊂ . . . ⊂ A′

n ⊂ . . ., as follows: We let
A0 = A and A′

0 = A′. There is ν1 such that A′
0 ⊂ Bν1 ; we let A′

1 = Bν1 .
The embedding π−1

0 of A′
0 in B can be extended to an embedding π−1

1 of A′
1

in B, and we let A1 = π−1
1 (A′

1). Then there is ν2 > ν1 such that A1 ⊂ Bν2 ;
we let A2 = Bν2 . Then π1 : A1 → B extends to some π2 : A2 → B, and we
let A′

2 = π2(A2). We proceed in this manner.
Clearly,

⋃∞
n=0 An =

⋃∞
n=0 A′

n =
⋃∞

n=1 Bνn , and
⋃∞

n=0 πn is an automor-
phism of this Boolean algebra. This automorphism extends to a unique au-
tomorphism πω of Bν = B(Pν), where ν = limn→∞ νn.

Now B = Bν ⊕ Bν where Bν = B(P ν), and the automorphism πω of Bν

can be extended to an automorphism π of Bν ⊕Bν by π(u, v) = (πωu, v). ��

Corollary 26.13. If u and v are elements of Col(ℵ0, <λ) such that u �= 0, 1
and v �= 0, 1, then there exists an automorphism π of B such that π(u) = v.

��

It follows that for any formula ϕ and all x1, . . . , xn, ‖ϕ(x̌1, . . . , x̌n)‖B is
either 1 or 0.
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Solovay’s Theorem

Theorem 26.14 (Solovay). Assume that there exits an inaccessible cardi-
nal.

(i) There is a model of ZF + DC in which all sets of real numbers are
Lebesgue measurable and have the property of Baire, and every un-
countable set of reals has a perfect subset.

(ii) There is a model of ZFC in which every projective set of reals is
Lebesgue measurable, has the Baire property, and if uncountable, then
it contains a perfect subset.

Let M be a transitive model of ZFC and let κ be an inaccessible cardinal
in M . Let B be the Lévy collapse for κ, i.e., B = B(P ) where P is the notion
of forcing that collapses each α < κ onto ℵ0: The conditions are functions p
on subsets of κ×ω such that each dom(p) is finite, and p(α, n) < α whenever
(α, n) ∈ dom(p).

Let G be an M -generic ultrafilter on B. We shall show that in M [G] every
projective set of reals is Lebesgue measurable, has the property of Baire, and
if uncountable, then it contains a perfect subset.

In M [G], let S be the class of all infinite sequences of ordinal numbers,
S = Ordω, and let N = HOD(S) be the class of all sets hereditarily ordinal
definable over S. The class N is a model of ZF; in fact, N is a model of
ZF + DC (see Lemma 26.15 below), and we shall show that in N every set
of reals is Lebesgue measurable, has the Baire property, and if uncountable,
then it contains a perfect subset.

Let s be an infinite sequence of ordinals in M [G], let ϕ be a formula, and
let X ∈ M [G] be a set such that

(26.15) X = {x : M [G] � ϕ(x, s)}.

X is (in M [G]) ordinal definable over S = Ordω. Conversely, if X ∈ OD(S),
then for some formula ψ and a finite sequence 〈s1, . . . , sk〉 of elements of S,
X = {x ∈ M [G] : ψ(x, 〈s1, . . . , sk〉)}. Then clearly there exist ϕ and s ∈ S
such that (26.15) holds. Hence the class OD(S) consists of all sets X of the
form (26.15)—sets definable in M [G] from a sequence of ordinals.

Note that every projective set of reals is definable from a sequence of
ordinals: If A is Σ1

n(a) for some a ∈ N , then A is definable in HC from a,
and therefore A ∈ OD(S).

Lemma 26.15.

(i) If f ∈ M [G] is a function on ω with values in N , then f ∈ N .
(ii) The model N satisfies the Principle of Dependent Choices.

Proof. (i) We show that if f is a function from ω into OD(S) then f ∈ OD(S).
By (26.15), OD(S) =

⋃
{OD(s) : s ∈ S}; therefore there is a definable
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function F on Ord×S such that for each s ∈ S, the function Fs(α) = F (α, s)
maps Ord onto OD(s). Let f : ω → OD(S). For each n, we choose αn and sn

such that f(n) = F (αn, sn). Clearly, f is definable from 〈αn : n ∈ ω〉 and
〈sn : n ∈ ω〉. It is easy to find a single sequence u of ordinals such that both
〈αn : n ∈ ω〉 and 〈sn : n ∈ ω〉 are definable from u. Hence f is definable
from u, and so f ∈ OD(S).

(ii) In N , let ρ be a relation over a nonempty set A such that for every
x ∈ A there is a y such that y ρ x. Since M [G] satisfies the Axiom of Choice,
there exists in M [G] a sequence a0, a1, . . . , an, . . . such that an+1 ρ an

for all n. However, by part (i) of this lemma, the sequence 〈an : n ∈ ω〉 is
in N . ��

We shall now prove the part of Theorem 26.14 dealing with Lebesgue
measure and the Baire property, using Lemma 26.5.

Lemma 26.16. Let s ∈ M [G] be an infinite sequence of ordinals. The set of
all reals (in M [G]) that are not random over M [s] is null ; the set of all reals
that are not Cohen over M [s] is meager.

Proof. Since the algebra B is κ-saturated, there exists a subalgebra D ⊂ B
such that |D| < κ and M [s] = M [D ∩ G]. It follows that κ is inaccessible
in M [s]; and since κ = ℵM [G]

1 , M [s] has only countably many subsets of ω.
Thus there are only countably many Borel codes in M [s]; and by (26.11), the
complement of the set R(M [s]) is the union of countably many null sets and
hence null. Similarly, the complement of C(M [s]) is meager. ��

Lemma 26.17. Let X ∈ M [G] be a set of reals that is definable in M [G]
from a sequence s of ordinals. Then X is (in M [G]) Solovay over M [s].

Proof. The proof uses the properties of the Lévy collapse discussed above,
in particular the Factor Lemma. We shall first prove the following: Given
a formula ϕ, there is a formula ϕ̃ such that for every sequence of ordinals
x ∈ M [G],

(26.16) M [G] � ϕ(x) if and only if M [x] � ϕ̃(x).

The forcing conditions are finite and so the definition of the Lévy collapse P is
absolute for all models. We denote MP the Boolean valued model constructed
in M using P and if ψ is a formula and z ∈ MP , we denote ‖ψ(z)‖M the
Boolean value (computed in M using P ) of ψ(z). If a ∈ M , then ǎ ∈ MP is
the canonical name for a.

Let ϕ̃(x) be the following formula

(26.17) ‖ϕ(x̌)‖M [x] = 1.

Let x be a countable sequence of ordinals in M [G]; we shall show that
M [G] � ϕ(x) if and only if M [x] � ϕ̃(x). By the Factor Lemma there exists
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an M [x]-generic filter H on P such that M [G] = M [x][H ]. Arguing in M [x],
we invoke the homogeneity of the Lévy collapse: The Boolean value b =
‖ϕ(x̌)‖M [x] is either 0 or 1. Since H is generic on P over M [x], ϕ(x) is true
in M [x][H ] if b = 1 and false if b = 0. Hence ϕ(x) is true in M [G] if and only
if ϕ̃(x) is true in M [x].

For a formula ϕ with two variables there is a formula ϕ̃ such that for all
x, y ∈ M [G] ∩ Ordω,

M [G] � ϕ(x, y) if and only if M [x, y] � ϕ̃(x, y).

Now let X ∈ M [G] be a set of reals that is definable in M [G] from
a sequence of ordinals s. For some formula ϕ

x ∈ X ↔ M [G] � ϕ(x, s)

for all reals x ∈ M [G]. Thus we have, for all x ∈ RM [G],

x ∈ X ↔ M [s][x] � ϕ̃(s, x)

which shows that X is Solovay over M [s]. ��

Corollary 26.18. In M [G] every set of reals definable from a sequence of
ordinals (and in particular, every projective set of reals) is Lebesgue measur-
able and has the property of Baire.

Proof. This follows from Lemmas 26.5 26.16, and 26.17. ��

Corollary 26.19. In N , every set of reals is Lebesgue measurable and has
the property of Baire.

Proof. Clearly, the model N has the same reals as the model M [G]. In partic-
ular, N and M [G] have the same Borel codes, and since AM

c = AM [G]
c ∩N =

AM [G]
c for every c ∈ BCM [G], the two models have the same Borel sets.

If X ∈ N is a set of reals, then X is definable in M [G] from a sequence
of ordinals and hence M [G] � (X is Lebesgue measurable and has the Baire
property). Thus there are (in M [G]) Borel sets A, B, H , K such that XA ⊂
H , X B ⊂ K, and H is null and K is meager (in M [G]). By Lemma 26.1,
N satisfies that H is null and K is meager, and hence N satisfies that X is
Lebesgue measurable and has the Baire property. ��

We shall now finish the proof of Theorem 26.14 by showing that in M [G]
every uncountable set of reals definable from a countable sequence of ordinals
contains a perfect subset. Then it follows that in N , every uncountable set A
of reals has a perfect subset: If A is uncountable in N , then A is uncountable
in M [G] (by Lemma 26.15); and since A is definable from a sequence of
ordinals, A has a perfect subset F (in M [G]); but then N � F is a perfect
set.
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By Lemma 26.17, every set of reals definable in M [G] from s is Solovay
over M [s]; thus it suffices to prove that in M [G] every uncountable set of
reals, Solovay over M [s], contains a perfect subset. Furthermore, it suffices
to give the proof only for sets of reals Solovay over M since the general
case (Solovay over M [s]) follows from the special case by the Factor Lemma:
M [G] = M [s][H ] is a generic extension of M [s] by the Lévy collapse. And
finally, we can consider subsets of the Cantor space instead of sets of reals.

Thus let A be, in M [G], an uncountable subset of {0, 1}ω, and let ϕ be
a formula (with parameters in M) such that for all x ∈ {0, 1}ω in M [G],

x ∈ A if and only if M [x] � ϕ(x).

Since A is uncountable, there exists an x ∈ A such that x /∈ M . There
exists (in M) a complete subalgebra C ⊂ B such that |C| < κ and that
x ∈ M [G ∩ C]. Let us consider the Boolean-valued model MC and the cor-
responding forcing relation �. There exists a name ẋ ∈ MC and a condition
p ∈ C ∩ G such that

(26.18) p � ẋ ∈ {0, 1}ω and ẋ /∈ M and (M [ẋ] � ϕ(ẋ)).

Since P M (C) is countable in M [G], let D0, D1, . . . , Dn, . . . be an enumera-
tion (in M [G]) of all open dense subsets of C in M .

We shall construct conditions ps ∈ C, for all finite 0–1 sequences s, as
follows:

Let p∅ ≤ p be such that p∅ ∈ D0. Given ps, there exists ns ∈ ω such that
ps does not decide ẋ(ns) (because p � ẋ /∈ M), and we let ps�0 and ps�1 be
such that ps�0 � ẋ(ns) = 0 and ps�1 � ẋ(ns) = 1; moreover, we choose ps�0

and ps�1 so that both are in the open dense set Dk where k is the length
of s.

For every z ∈ {0, 1}ω, let Gz = {p ∈ C : p ≥ ps for some s ⊂ z}. Clearly,
Gz ∩ Dn �= ∅ for every n, and hence Gz is an M -generic ultrafilter on C.
Let f(z) = ẋGz be the interpretation of ẋ by Gz. Since Gz is generic, and
by (26.18), we have f(z) ∈ A. Thus f is a function from {0, 1}ω into A.

It follows from the construction of f that f is one-to-one and continuous.
Thus f({0, 1}ω), the one-to-one continuous image of a perfect compact set,
is a perfect subset of A. ��

Lebesgue Measurability of Σ1
2 Sets

Lemma 26.5 and its Corollary 26.6 provide the following equivalences:

Theorem 26.20 (Solovay). Let a ∈ N .

(i) Every Σ1
2(a) set of reals is Lebesgue measurable if and only if almost

all reals are random over L[a].
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(ii) Every Σ1
2(a) set of reals has the Baire property if and only if the set

{x : x is not a Cohen real over L[a]} is meager.

Proof. We prove only part (i) as part (ii) is similar.
First we note that every Σ1

2(a) set is Solovay over L[a]: Let A be Σ1
2(a),

and let T ∈ L[a] be a tree on ω × ω1 such that for all x ∈ N ,

x ∈ A if and only if T (x) is ill-founded.

By absoluteness of well-foundedness we have

x ∈ A if and only if L[a][x] � T (x) is ill-founded,

and hence A is Solovay over L[a].
If almost all reals are random over L[a] then every Σ1

2(a) set is Lebesgue
measurable by Corollary 26.18.

Thus assume that every Σ1
2[a] set is Lebesgue measurable; we shall prove

that the union

B =
⋃
{Ac : c ∈ BC, c ∈ L[a] and Ac is null}

of all null Borel sets coded in L[a] is null. Let

C(x, c) ↔ c ∈ BC ∧ Ac is null ∧ x ∈ Ac,

D(x, c) ↔ C(x, c) ∧ c ∈ L[a] ∧ ∀d (d <L[a] c → ¬C(x, d)),

and for x, y ∈ B,

x � y ↔ ∃c ∃d (D(x, c) ∧ D(x, d) ∧ c ≤L[a] d).

The set B as well as the relations C, D and � are Σ1
2(a), and � is a prewell-

ordering of B. Under the assumption of Lebesgue measurability of Σ1
2(a) sets,

B is Lebesgue measurable and � is a measurable subset of N ×N .
The order-type of N in <L[a] is ωL[a]

1 ≤ ω1. Hence for every y ∈ B, the
set {x : x � y} is a countable union of null sets and therefore null. Thus
� is a null set, by Fubini’s Theorem. By the same argument, the complement
of � in B × B is null as well, and hence B × B is null. Therefore B is a null
set. ��

Corollary 26.21. If ω
L[a]
1 < ω1, then every Σ1

2(a) set of reals is Lebesgue
measurable and has the Baire property.

Proof. Under the assumption, each L[a] has only countably many reals and
hence only countably many Borel codes, and it follows that almost all reals
are random over L[a]. Similarly for Cohen reals. ��
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Ramsey Sets of Reals and Mathias Forcing

For an infinite set A ⊂ ω, let [A]ω denote the set of all infinite subsets of A.
Let us consider the following partition property for [ω]ω: If S ⊂ [ω]ω, we call
an infinite set H ⊂ ω homogeneous for S if either [H ]ω ⊂ S or [H ]ω ∩ S = ∅.
A set S ⊂ [ω]ω is a Ramsey set if there exists an infinite homogeneous set H
for S.

A consequence of the Axiom of Choice is that not every set S ⊂ [ω]ω is
Ramsey (Exercise 26.3). We prove that the Axiom of Choice is necessary, and
that all analytic sets are Ramsey.

Identifying subsets of ω with their characteristic functions, we con-
sider [ω]ω as a Gδ subspace of the Cantor space. We prove the following
theorems:

Theorem 26.22 (Galvin-Prikry, Silver). Every analytic subset of [ω]ω

is Ramsey.

Theorem 26.23 (Mathias). Let M [G] and N be the models from Theo-
rem 26.14.

(i) In N , every subset of [ω]ω is Ramsey.
(ii) In M [G], every projective subset of [ω]ω is Ramsey.

The method of proof of both theorems uses a notion of forcing introduced
by Mathias, and a topology based on the Mathias forcing.

Definition 26.24 (Mathias Forcing). A forcing condition is a pair (s, A)
where s is a finite subset of ω and A is an infinite subset of ω such that
max s < min A. A condition (s, A) is stronger than a condition (t, B) if

(i) t is an initial segment of s;
(ii) A ⊂ B;
(iii) s − t ⊂ B.

(26.19)

(Compare this with the Prikry forcing (21.15).) For the rest of this section,
(s, A) will denote a Mathias forcing condition.

For s ∈ [ω]<ω and A ∈ [ω]ω, let A�s = A−(max(s)+1) = {n ∈ A : n > k
for all k ∈ s}, and

(26.20) [s, A]ω = {X ∈ [ω]ω : s ⊂ X and X � s ⊂ A}.

Note that [∅, A]ω = [A]ω , and [s, A]ω ⊂ [t, B]ω if and only if (s, A) is
stronger than (t, B).

Definition 26.25. The Ellentuck topology on [ω]ω has as basic open sets the
sets of the form [s, A]ω where s ∈ [ω]<ω and A ∈ [ω]ω.

Note that every open set in the usual topology is open in the Ellentuck
topology.
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Definition 26.26 (Galvin-Prikry).

(i) A set S ⊂ [ω]ω is completely Ramsey if for every (s, A) there exists an
infinite H ⊂ A such that either [s, H]ω ⊂ S or [s, H]ω ∩ S = ∅.

(ii) A set N ⊂ [ω]ω is Ramsey null if for every (s, A) there exists an infinite
H ⊂ A such that [s, H]ω ∩ S = ∅.

We first observe that every Ramsey null set is nowhere dense in the El-
lentuck topology: S is nowhere dense if and only if for every basic open set
there exists a basic open subset disjoint from S, i.e.,

∀(s, A)∃(t, B) < (s, A) [t, B]ω ∩ S = ∅.

Let S be completely Ramsey, let int(S) denote the interior of S (in the
Ellentuck topology), and let N = S − int(S). For every (s, A) there exists
an H ⊂ A such that either [s, H]ω ⊂ S, and since [s, H]ω is open, we have
[s, H]ω ⊂ int(S); or [s, H ]ω ∩S = ∅, and in either case [s, H ]ω ∩N = ∅. Hence
N is Ramsey null, and therefore nowhere dense. It follows that S = int(S)∪N
has the Baire property.

We shall prove the following (for the Ellentuck topology):

Lemma 26.27.

(i) A set S is completely Ramsey if and only if it has the Baire property.
(ii) A set N is Ramsey null if and only if it is nowhere dense if and only

if it is meager.

Toward the proof of Lemma 26.27, let S be a given subset of [ω]ω. Given
(s, A) we say that A accepts s if [s, A]ω ⊂ S; we say that A rejects s if no
X ⊂ A accepts s.

Lemma 26.28. There is an X that accepts or rejects each of its finite subset.

Proof. Let X0 be such that X0 either accepts or rejects ∅ (if no X accepts ∅
then X0 = ω rejects ∅). Let a0 be the least element of X0. Let X1 ⊂ X
be such that X1 either accepts or rejects each subset of {a0}. Let a1 be the
least element of X1 � {a0}, and let X2 ⊂ X1 be such that X2 accepts or
rejects each subset of {a0, a1}. We continue in this fashion and construct
a set X = {a0, a1, a2, . . .}. This X accepts or rejects each of its finite subsets.

��

Lemma 26.29. There is a Y that either accepts ∅ or rejects each of its finite
subsets.

Proof. Let X be as in Lemma 26.28, and assume that it rejects ∅. We
construct Y = {a0, a1, . . .} ⊂ X as follows: Assume we have constructed
a0, . . . , an−1 such that X rejects each subset of {a0, . . . , an−1}. For every
s ⊂ {a0, . . . , an−1} there are only finitely many z ∈ X such that X accepts
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s ∪ {z} (otherwise there is an infinite Z ⊂ X such that X accepts s ∪ {z}
for each z ∈ Z; then Z accepts s and hence X does not reject s). There-
fore we can find an ∈ X � {a0, . . . , an−1} such that X rejects each subset of
{a0, . . . , an}. ��

Lemma 26.30. Every open set is Ramsey.

Proof. Let S be open, and let X be as in Lemma 26.29. If X accepts ∅ then
[X ]ω = [∅, X ]ω ⊂ S.

If X rejects each of its finite subsets, we claim that [X ]ω ∩ S = ∅. Oth-
erwise, there is an infinite Y ⊂ X such that Y ∈ S. Since S is open, there
is an open neighborhood of Y included in S; i.e., there exists a finite s ⊂ Y
such that [s, Y � s]ω ⊂ S. Hence Y accepts s, contrary to the assumption
that X rejects s. ��

Lemma 26.31. Every open set is completely Ramsey.

Proof. Let S be open and let (s, A) be arbitrary. Let f : ω → A be a one-to-
one increasing enumeration of A, and for each X ∈ [ω]ω, let f∗(X) = s∪f“X .
The function f∗ is a continuous function from [ω]ω into [ω]ω. Let T = {X :
f∗(X) ∈ S}; T is open and hence Ramsey. If K is a homogeneous set for T ,
then H = f“K satisfies either [s, H]ω ⊂ S or [s, H]ω ∩ S = ∅. ��

Lemma 26.32. Every nowhere dense set is Ramsey null.

Proof. Let S be nowhere dense; we may also assume that S is closed. Let
(s, A) be arbitrary. By Lemma 26.31 there is an H ⊂ A such that either
[s, H]ω ⊂ S or [s, H ]ω ∩ S = ∅. But [s, H]ω ⊂ S is impossible since S is
nowhere dense. ��

Lemma 26.33. If S =
⋃∞

n=0 Sn and each Sn is Ramsey null then S is Ram-
sey null.

Proof. Let (s, A) be arbitrary. We construct an infinite H = {a0, a1, a2, . . .} ⊂
A as follows: Let X0 ⊂ A be such that [s, X0]ω ∩ S0 = ∅, and let a0 be the
least element of X0. Find an X1 ⊂ X0 � {a0} such that for every t with
s ⊂ t ⊂ s ∪ {a0}, [t, X1]ω ⊂ S1. Having constructed X0 ⊃ X1 ⊃ . . . ⊃ Xn,
let an = min(Xn) and find an Xn+1 ⊂ Xn � {a0, . . . , an} such that for
every t with s ⊂ t ⊂ s ∪ {a0, . . . , an}, [t, Xn+1]ω ⊂ Sn+1. It follows that
[s, H]ω ∩ S = ∅. ��

Proof of Lemma 26.27. By Lemmas 26.32 and 26.33, every meager set is
Ramsey null, proving (ii). To prove (i), let S be a set with the Baire property;
we have S = GM where G is open and M is meager. Let (s, A) be arbitrary.
By (ii) there is some X ⊂ A such that [s, X ]ω ∩ M = ∅. By Lemma 26.31
there is some H ⊂ X such that either [s, H]ω ⊂ G or [s, H]ω ∩ G = ∅. It
follows that either [s, H ]ω ⊂ S or [s, H]ω ∩ S = ∅. ��
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Proof of Theorem 26.22. Every analytic set (in the usual topology) is the
result of the Suslin operation A applied to closed sets. Every closed set is
closed in the Ellentuck topology and therefore has the Baire property (in the
Ellentuck topology). It can be proved (as in Theorem 11.18) that the Baire
property in the Ellentuck topology is preserved under the operation A. Hence
every analytic set is completely Ramsey, by Lemma 26.27(i). ��

The combinatorial content of Lemma 26.27 is this property of Mathias
forcing (compare with Lemma 21.12):

Lemma 26.34. Let σ be a sentence of the forcing language and let (s, A)
be a condition. Then there exists an infinite set B ⊂ A such that (s, B)
decides σ.

Proof. Let Q+ = {p : p � σ}, Q− = {p : p � ¬σ}, S+ =
⋃
{[t, X ]ω : (t, X) ∈

Q+} and S− =
⋃
{[t, X ]ω : (t, X) ∈ Q−}. Since the complement of S+ ∪ S−

is nowhere dense, there exists, by Lemma 26.27, an infinite B ⊂ A such that
[s, B]ω ⊂ S+ or [s, B]ω ⊂ S−. We claim that in the former case (s, B) � σ
and in the latter case (s, B) � ¬σ. This is because for every (t, X) < (s, B)
there exists some (u, Y ) < (t, X) which is in Q+ (or Q−). ��

If G is a generic filter on the Mathias forcing (over a ground model M),
let xG be the infinite set

(26.21) xG =
⋃
{s : (s, A) ∈ G for some A};

xG is called a Mathias real (over M). The filter G is determined by x = xG,
as

(26.22) G = Gx = {(s, A) : s ⊂ x ⊂ s ∪ A}.

Mathias reals admit the following characterization, analogous to Theo-
rem 21.14:

Theorem 26.35 (Mathias). Let M be a transitive model of ZFC. An in-
finite set x ⊂ ω is a Mathias real over M if and only if for every maximal
almost disjoint family A ∈ M of subsets of ω, there exists an X ∈ A such
that x − X is finite.

Proof. The condition is necessary: If A is a maximal almost disjoint family
then D = {(s, A � s) : s ∈ [ω]<ω, A ∈ A} is a predense set of forcing
conditions, and it follows that if x is a Mathias real then Gx ∩ D �= ∅.

For the proof of sufficiency, let D be an open dense set of Mathias forc-
ing conditions (in the ground model). We need a more detailed analysis of
Mathias forcing. If X ⊂ ω is infinite and max s < min X we say that X cap-
tures (s, D) if for every infinite Y ⊂ X there exists an initial segment t of Y
such that (s ∪ t, X) ∈ D.
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Lemma 26.36. For every infinite set A ⊂ ω and for every finite s ⊂ ω there
exists an infinite set X ⊂ A � s such that X captures (s, D).

Proof. We construct a sequence Y0 ⊃ Y1 ⊃ . . . ⊃ Yn ⊃ . . . of infinite sets
and a sequence m0 < m1 < . . . < mn < . . . such that mn = min Yn, as
follows: Let Y0 = A � s. Given Yn, we can find Yn+1 ⊂ Yn � {mn} with the
property that for every t ⊂ {m0, . . . , mn}, if there exists a Y ⊂ Yn such that
(s ∪ t, Y ) ∈ D, then (s ∪ t, Yn+1) ∈ D (we use the fact that D is an open set
of conditions).

Let Y = {m0, m1, . . . , mn, . . .}. As the set U =
⋃
{[t, S]ω : (t, S) ∈ D}

is a dense open subset of [ω]ω (in the Ellentuck topology) it follows from
Lemma 26.27(ii) that there exists an infinite set X ⊂ Y such that [s, X ]ω ⊂ U .
We claim that X captures (s, D).

If Z ⊂ X is infinite then because s∪Z ∈ U , there exist an initial segment t
of Z and an infinite S ⊂ ω such that (s ∪ t, S) ∈ D and s∪Z ∈ [s ∪ t, S]ω. It
follows that (s ∪ t, Z � t) ∈ D, and if max t = mn, we have (s ∪ t, Yn+1) ∈ D.
It follows that (s ∪ t, X � t) ∈ D. ��
Lemma 26.37. For every infinite A ⊂ ω there exists an X ⊂ A such that
for every s, X � s captures (s, D).

Proof. By Lemma 26.36 there exist sets Xs ⊂ A such that for each s,
Xs captures (s, D). We construct X0 ⊃ X1 ⊃ . . . ⊃ Xn ⊃ . . . and
m0 < m1 < . . . < mn < . . . such that mn = min Xn, as follows: Let
X0 = X∅. Given Xn, we find an Xn+1 such that for every s with max s = mn,
Xn+1 captures (s, D) (here we use the fact that if X captures and X ′ ⊂ X ,
then X ′ also captures). Let X = {m0, m1, . . . , mn, . . .}. It follows that X � s
captures (s, D) for every s. ��

We now finish the proof of Theorem 26.35. Let x ⊂ ω be infinite and
assume that for every maximal almost disjoint A ∈ M there exists an X ∈ A
such that x − X is finite. By Lemma 26.37 there exists (in M) a maximal
almost disjoint family A such that for every X ∈ A and every s, X � s
captures (s, D). Let X ∈ A be such that x − X is finite, and let s be an
initial segment of x such that x ⊂ s ∪ X . As X � s captures (s, D), we have
(in M)

(26.23) ∀ infinite Y ⊂ X � s ∃ initial segment t ⊂ Y such that
(s ∪ t, X � t) ∈ D.

Consider the set of finite sets W = {t ⊂ X � s : (s ∪ t, X � t) /∈ D} partially
ordered by the relation t � t′ if and only if t′ is an initial segment of t. Then
(26.23) states that (W,≺) is well-founded in M . By absoluteness, (W,≺) is
well-founded in any larger universe, and so (26.23) holds in any V ⊃ M . In
particular, letting Y = x�s, we obtain an initial segment t of x�s such that
(s ∪ t, X � t) ∈ D, and since s∪ t is an initial segment of x and x ⊂ s∪ t∪X ,
the filter Gx from (26.22) meets D. Since D was an arbitrary open dense set
in M , Gx is generic, and x is a Mathias real over M . ��
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Corollary 26.38. If x is a Mathias real over M and y ⊂ x is infinite, then
y is Mathias over M .

Proof of Theorem 26.23. Let M [G] be a generic extension of M by the Lévy
collapse. We shall prove that every set of reals in M [G] that is definable
from a countable sequence of ordinals is Ramsey. Thus let u be a countable
sequence of ordinals in M [G] and let X ∈ M [G] be a subset of [ω]ω definable
from u. By Lemma 26.17 X is a Solovay set over M [u] and so for some
formula ϕ,

x ∈ X if and only if M [u, x] � ϕ(x)

for all x ∈ [ω]ω ∩ M [G].
Let us consider the Mathias forcing in M [u], and let ẋ be the canonical

name for a Mathias generic real. By Lemma 26.34 there exists an infinite set
A ∈ M [u] such that (∅, A) decides ϕ(ẋ). Assume that (∅, A) � ϕ(ẋ) as the
other case is similar.

Since ℵM [G]
1 is inaccessible in M [u], there exists a Mathias generic filter

in M [G] containing (∅, A); therefore there exists a Mathias real x over M [u]
such that x ⊂ A. We complete the proof by verifying that [x]ω ⊂ X .

If y is an infinite subset of x then by Corollary 26.38, y is a Mathias real
over M [u]. Since y ⊂ A and (∅, A) � ϕ(ẋ), we have M [u][y] � ϕ(y) and so
y ∈ X . ��

Measure and Category

Lebesgue measure and Baire property have been the most thoroughly inves-
tigated properties of sets of reals, both in the classical descriptive set theory,
and in the modern era of independence results. We shall touch briefly on
the subject, with emphasis on the role of Martin’s Axiom and combinato-
rial “cardinal invariants.” We start with the following application of Martin’s
Axiom:

Theorem 26.39 (Martin-Solovay). If Martin’s Axiom holds, then the
union of fewer than 2ℵ0 null sets is null, and the union of fewer than 2ℵ0

meager sets is meager.

Proof. First we prove that the union of fewer than 2ℵ0 null sets is mull. Let
κ < 2ℵ0 and let Aα, α < κ, be null sets of reals. Let A =

⋃
α<κ Aα. In order

to prove that A is null, it suffices to find, for each ε > 0, an open set U ⊃ A
such that µ(U) ≤ ε. Let ε > 0.

We apply Martin’s Axiom as follows. Let P be the set of all open sets of
measure < ε, and let p ∈ P be stronger than q ∈ P if p ⊃ q. We claim that
the notion of forcing (P,⊃) satisfies the countable chain condition.

It suffices to show that if W is an uncountable subset of P , then there
are p, q ∈ W , p �= q, such that µ(p ∪ q) < ε. Let S be the countable set of
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all unions of finitely many open intervals with rational endpoints. If W ⊂ P
is uncountable, then there exist an n ∈ N and an uncountable Z ⊂ W such
that µ(p) < ε − 1/n for all p ∈ Z. For each p ∈ Z, let p∗ ∈ S be such that
p∗ ⊂ p and µ(p− p∗) < 1/n. Since S is countable, there exist p, q ∈ Z, p �= q,
such that p∗ = q∗. Then µ(p ∪ q) < ε.

For each α < κ, let Dα = {p ∈ P : Aα ⊂ p}. Each Dα is a dense subset
of P : If p ∈ P , then since Aα is null, there exists an open set q ⊃ Aα such
that µ(p) + µ(q) < ε, and hence p ∪ q ∈ Dα and p ∪ q ⊃ p.

By Martin’s Axiom, there exists a filter G ⊂ P such that G ∩ Dα �= ∅
for all α < κ. Let U =

⋃
{p : p ∈ G}. It is clear that A ⊂ U and it

remains to show that µ(U) ≤ ε. We use the well-known fact (easy to verify)
that if U =

⋃
{p : p ∈ G}, then there is a countable H ⊂ G such that

U =
⋃
{p : p ∈ H}. Thus if µ(U) > ε, there exist p1, . . . , pn ∈ H such that

µ(p1 ∪ . . . ∪ pn) > ε. But this is impossible: Since G is a filter on P , we have
p ∪ q ∈ G whenever p ∈ G and q ∈ G; thus p1 ∪ . . . ∪ pn ∈ G and hence
µ(p1 ∪ . . . ∪ pn) < ε.

This completes the proof that the union of < 2ℵ0 null sets is null if
MA holds.

In order to show that the union of less than 2ℵ0 meager sets is meager, it
suffices to show that the union of less than 2ℵ0 closed nowhere dense sets is
meager. The following lemma will complete the proof:

Lemma 26.40. Assume Martin’s Axiom. Let κ < 2ℵ0 and let Aα, α < κ,
be closed nowhere dense sets of reals. Let A =

⋃
α<κ Aα. Then there exists

a countable family of dense open sets Hi, i = 0, 1, 2, . . . , such that A is
disjoint from

⋂∞
i=0 Hi.

Proof. We apply Martin’s Axiom as follows. Let P be the set of all finite
sequences of pairs

p = 〈(U0, E0), (U1, E1), . . . , (Un, En)〉

such that

(i) each Ui is the union of finitely many open intervals with ratio-
nal endpoints;

(ii) each Ei is a finite subset of κ; and
(iii) for each i, Ui is disjoint from

⋃
α∈Ei

Aα.

(26.24)

A condition p′ = 〈(U ′
0, E

′
0), . . . , (U

′
m, E′

m)〉 is stronger than a condition p =
〈(U0, E0), . . . , (Un, En)〉 if

(i) m ≥ n; and
(ii) for each i ≤ n, U ′

i ⊃ Ui and E′
i ⊃ Ei.

(26.25)

It is clear that this notion of forcing satisfies the countable chain condition:
If two conditions have the same U0, . . . , Un, then they are compatible, and
there are only countably many sequences 〈U0, . . . , Un〉.
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Let Ik, k = 0, 1, 2, . . . , be an enumeration of all open intervals with
rational endpoints. We let, for each α < κ and all i, k = 0, 1, 2, . . . ,

(26.26) Dα = {p : p = 〈(U0, E0), . . . , (Un, En)〉 and α ∈ Ei for some i ≤ n},
Ei,k = {p : p = 〈(U0, E0), . . . , (Un, En)〉 and Ui ∩ Ik �= ∅}.

Since each Aα, α < κ, is nowhere dense, it is clear that for all i an k, every
condition can be extended to a condition p ∈ Ei,k, and hence each Ei,k is
dense in P . Also, each Dα is dense in P .

By Martin’s Axiom, there exists a filter G ⊂ P such that G ∩Dα �= ∅ for
all α < κ, and G ∩ Ei,k �= ∅ for all i, k ∈ ω. For each i = 0, 1, 2, . . . , we let

Hi =
⋃
{Ui : (∃p ∈ G) p = 〈. . . , (Ui, Ei), . . .〉}.

Since Ei,k is a dense set of conditions, for all k, Hi is a dense open set of
reals.

Now if α < κ, then because Dα is dense, there exists i ∈ ω such that
Hi is disjoint from Aα, and hence Aα is disjoint from

⋂∞
i=0 Hi. Therefore

A is disjoint from
⋂∞

i=0 Hi. ��

Corollary 26.41. If MA holds, then both the algebra of Lebesgue measurable
sets and the algebra of sets with the Baire property are 2ℵ0-complete, and
moreover, Lebesgue measure is 2ℵ0-additive, i.e., if κ < 2ℵ0 and Aα, α < κ,
are pairwise disjoint, then

(26.27) µ
( ⋃

α<κ
Aα

)
=

∑
α<κ

µ(Aα).

Proof. We prove by induction on κ < 2ℵ0 that if Aα, α < κ, are Lebesgue
measurable, then A =

⋃
α<κ Aα is Lebesgue measurable. Given Aα, α < κ, let

Bα = Aα −
⋃

β<α Aβ , for each α < κ. The sets Bα are Lebesgue measurable
(by the induction hypothesis), and being pairwise disjoint, all but countably
many are null. It follows from the theorem that A =

⋃
α<κ Bα is Lebesgue

measurable. The same argument proves (26.27) (see also Lemma 10.6), and
the property of Baire is analogous. ��

Corollary 26.42. If MA holds and if 2ℵ0 > ℵ1, then every Σ1
2 set is

Lebesgue measurable and has the property of Baire.

Proof. If A is Σ1
2(a), then since (2ℵ0)L[a] = ℵL[a]

1 ≤ ℵ1, the set of all reals
that are not random over L[a] is the union of at most ℵ1 null sets, hence
null (by Theorem 26.39). By Theorem 26.20, A is Lebesgue measurable. The
Baire property is analogous. ��

The proof of Theorem 26.39 yields a slightly better result: It shows that
for every κ ≤ 2ℵ0 , MAκ implies the κ-additivity of the ideals of null and
meager sets. The study of additivity of measure and category initiated by
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Theorem 26.39 developed into an extensive theory that established a detailed
relationship between various properties of measure and category. We refer the
reader to Bartoszyński’s article [∞] in the Handbook of Set Theory.

Definition 26.43. (i) Additivity:

add(LM) = the least cardinal κ such that the union of some family of κ null
sets is not null,

add(BP) = the least cardinal κ such that the union of some family of κ mea-
ger sets is not meager.

(ii) Covering:

cov(LM) = the least cardinal κ for which R is the union of κ null sets,

cov(BP) = the least cardinal κ for which R is the union of κ meager sets.

(iii) Uniformity:

unif(LM) = the least cardinal κ such that there exists a set of cardinality κ
that is not null,

unif(BP) = the least cardinal κ such that there exists a set of cardinality κ
that is not meager.

(iv) Cofinality:

cof(LM) = the least cardinality of a family F of null sets such that every
null set is included in a set from F ,

cof(BP) = the least cardinality of a family F of meager sets such that every
meager set is included in a set from F .

The proof of Theorem 26.39 shows that MAκ implies add(LM) ≥ κ and
add(BP) ≥ κ. In a series of results a complete picture of inequalities emerged
between these properties. First, it is obvious that add ≤ cov ≤ cof and
add ≤ unif ≤ cof, both for measure and category (Exercise 26.5). Secondly,
two of the inequalities have been known classically; see Exercise 26.7.

Before we proceed we introduce two cardinal invariants that are not only
relevant in this context but appear frequently in results in set-theoretic topol-
ogy. First some notation:

∀∞ means for all but finitely many n ∈ ω,

∃∞ means for infinitely many n ∈ ω.

A family F ⊂ ωω is a dominating family if

(26.28) ∀g ∈ ωω ∃f ∈ F ∀∞n g(n) < f(n);

F us an unbounded family if

(26.29) ∀g ∈ ωω ∃f ∈ F ∃∞n g(n) ≤ f(n).
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Definition 26.44. The dominating number

d = the least cardinality of a dominating family;

the bounding number

b = the least cardinality of an unbounded family.

It is clear that b ≤ d, and ℵ1 ≤ b ≤ d ≤ c. Martin’s Axiom implies that
b = d = c; see Exercise 26.8.

To see the significance of b and d for Baire category, notice that for each
f ∈ ωω and each k, the set {g ∈ ωω : ∀n ≥ k g(n) < f(n)} is nowhere
dense (in the space N ). Hence if g < f means ∀∞n g(n) < f(n), each set
{g : g < f} is meager, and it follows that b ≤ unif(BP) and cov(BP) ≤ d; see
Exercise 26.10.

The relationship between the invariants defined in 26.43 and 26.44 can be
illustrated by the following diagram:

add(LM) add(BP) cov(BP) unif(LM)

b d

cov(LM) unif(BP) cof(BP) cof(LM)

The cardinals become larger as one moves right and up. Exercises 26.5, 26.7,
and 26.10 give proofs of the easy inequalities. The remaining inequalities are
given by these theorems (that we state without proofs):

Theorem 26.45 ((i) Truss, Miller; (ii) Fremlin).

(i) add(BP) = min{b, cov(BP)}.
(ii) cof(BP) = max{d, unif(BP)}.

Theorem 26.46 (Bartoszyński, Raisonnier-Stern).

(i) add(LM) ≤ add(BP).
(ii) cof(BP) ≤ cof(LM).

It is no accident that each result is accompanied by a dual version: There
is a general theory that explains this duality. (For details, see Bartoszyński’s
Handbook article.) For instance, consider Theorem 26.46. Both (i) and (ii)
can be proved from this general result (see Exercise 26.11):
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Theorem 26.47 (Pawlikowski). Let Ic and Im be the ideal of all meager
sets and the ideal of null sets. There exists a function ϕ : Ic → Im with
the property that for every family F ⊂ Im, if

⋃
F is null then

⋃
ϕ−1(F) is

meager. ��

A significant part of the theory of invariants of measure and category
is the characterization of invariants in terms of functions from ω to ω. The
cardinals cov(BP) and unif(BP) were so described first by Miller, with the
final form due to Bartoszyński:

Theorem 26.48. (i) cov(BP) is the least cardinality of a family F ⊂ ωω

such that

(26.30) ∀g ∈ ωω ∃f ∈ F ∀∞n f(n) �= g(n).

(ii) unif(BP) is the least cardinality of a family F ⊂ ωω such that

∀g ∈ ωω ∃f ∈ F ∃∞n f(n) = g(n). ��(26.31)

For the easy direction of (i) and (ii) see Exercise 26.12.
The key ingredient of Theorem 26.46(i) is the following characterization

of add(LM):

Theorem 26.49. add(LM) is the least cardinality of a family F ⊂ ωω such
that

(26.32) ∀ϕ ∈ S ∃f ∈ F ∃∞n f(n) /∈ ϕ(n),

where S is the set of all functions ϕ : ω → [ω]<ω such that |ϕ(n)| = n for
all n. ��

See Exercise 26.13 for the proof of add(LM) ≤ cov(BP).
The diagram, along with Theorem 26.45, gives a complete relationship

among these invariants. Nothing else can be proved in ZFC, and models have
been constructed verifying all independence results based on the diagram.

We conclude this chapter with two of the earliest independence results
concerning measure and category. We give an example of a model where
2ℵ0 is large and the set R ∩ L is not Lebesgue measurable, and another
example where 2ℵ0 is large and R ∩ L does not have the Baire property.

Lemma 26.50. If there exists a nonconstructible real, then:

(i) R ∩ L is either null or not Lebesgue measurable.
(ii) R ∩ L is either meager or does not have the Baire property.

Proof. (i) Let S be the set of all constructible reals in the unit interval [0, 1].
Let a be a nonconstructible real. For each n > 0, let Sn = {x+(a/n) : x ∈ S}.
The sets Sn are pairwise disjoint, µ(Sn) = µ(S) for all n and

⋃∞
n=0 Sn is

a bounded set. Therefore if S is measurable, then µ(S) > 0 is impossible.
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(ii) Let S be the set of all constructible reals. First we prove that R − S
is not meager. Let a be a nonconstructible real and let Sa = {x + a : x ∈ S};
clearly, S∩Sa = ∅. Thus R = (R−S)∪(R−Sa)∪(S∩Sa) = (R−S)∪(R−Sa),
and if R−S were meager, then R−Sa would also be meager, a contradiction.

It follows that for any nonempty interval I, I −S is not meager: For each
rational r, let Ar = {x + r : x ∈ I − S}; if I − S is meager, then each Ar is
meager, and R − S =

⋃
{Ar : r is rational}.

If S has the Baire property, then because U − S is not meager for any
nonempty open set U , S is meager. ��
Example 26.51 (A model where 2ℵ0 > ℵ1 and the set of all con-
structible reals is not Lebesgue measurable). Let λ be a regular un-
countable cardinal and let B be the following measure algebra: Let (S,F , m)
be the product measure space, where S is the product of λ × ω copies
of {0, 1}, F is the least σ-complete field of subsets of S containing all
{t ∈ S : t(α, n) = 0}, and m is the product measure, and let B be the
measure algebra B = F/sets of measure 0.

Let us consider the generic extension of the constructible universe by the
measure algebra B. The generic extension L[G] satisfies 2ℵ0 = λ. We shall
show that in L[G] the set of all constructible reals is not Lebesgue measurable.

In view of Lemma 26.50, it suffices to show that the set of all constructible
reals is not null. Thus assume that it is null and let Ik, k = 0, 1, 2, . . . , be
an enumeration (in L) of all intervals with rational endpoints. Let µ denote
Lebesgue measure.

Assuming that L[G] � µ(R ∩ L) = 0, there is a B-valued name Ẋ for
a subset of ω, and a rational ε > 0 such that the Boolean value

(26.33) ‖
⋃
{Ik : k ∈ Ẋ} contains all constructible reals, and has Lebesgue

measure ≤ ε‖
is in G. We may assume, without loss of generality, that the Boolean
value (26.33) is 1.

For each k ∈ N , let Ak ∈ F be such that ‖k ∈ Ẋ‖ = [Ak]. Let us consider
(in L) the product measure space (R, µ)×(S,F , m) with the product measure
ν = µ × m. Let E ⊂ R × S be the set

E =
∞⋃

k=0

(Ik × Ak).

We claim that ν(E) ≤ ε. It suffices to show that ν(
⋃

k<k0
(Ik × Ak)) ≤ ε

for every k0. Let k0 ∈ N . By (26.33), for every condition a = [A] there exist
a stronger condition c = [C] and a set Y ⊂ k0 such that

c � Ẋ ∩ ǩ0 = Ẏ

and that µ(
⋃

k∈Y Ik) ≤ ε. Clearly, [C] ≤ [Ak] if k ∈ Y , and [C] · [Ak] = 0 if
k ∈ k0 − Y and hence

(26.34) ν
( ⋃

k<k0

Ik × (Ak ∩ C)
)

= µ
( ⋃

k∈Y

Ik

)
· m(C) ≤ ε · m(C).
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Thus the set of all [C] for which (26.34) holds is dense in the algebra B and
hence

ν
( ⋃

k<k0

Ik × Ak

)
≤ ε.

Since ν(E) ≤ ε, the complement of E has positive measure and hence
there exists, by Fubini’s Theorem, a number x ∈ R such that

m({t ∈ S : (x, t) /∈ E}) > 0.

It follows that there exists A ∈ F of positive measure such that

(26.35) (x, t) /∈ E for all t ∈ A.

We shall show that

(26.36) [A] � x /∈
⋃
{Ik : k ∈ Ẋ},

completing the proof.
If (26.36) were not true, there would exist some k ∈ N and some C ⊂ A

of positive measure such that x ∈ Ik and [C] � k ∈ Ẋ. But then [C] ≤ [Ak]
and hence there is some t ∈ C such that (x, t) ∈ E, contrary to (26.35). ��

Example 26.52 (A model where 2ℵ0 > ℵ1 and the set of all con-
structible reals does not have the property of Baire). Let λ be a reg-
ular uncountable ordinal and let P be the notion of forcing that adjoins
λ Cohen reals: A condition is a finite 0–1 function whose domain is a subset
of λ.

Let us consider the generic extension of the constructible universe by P .
In L[G], 2ℵ0 = λ. We shall show that in L[G] the set of all constructible reals
does not have the Baire property.

In view of Lemma 26.50, it suffices to show that the set of all constructible
reals is not meager. For every S ⊂ λ (in L), let PS = {p ∈ P : dom(p) ⊂ S},
and let GS = G ∩ PS .

Lemma 26.53. If L[G] � R ∩ L is meager, then there exists a countable
S ⊂ λ (in L) such that L[GS ] � R ∩ L is meager.

Proof. Let Ik, k ∈ N , be an enumeration of all open intervals with rational
endpoints. If L[G] � R ∩ L is meager, then there exists a sequence 〈Un :
n ∈ N〉 ∈ L[G] such that for every n ∈ N , L[G] � Un is dense open,
and that R ∩ L ⊂

⋃∞
n=0(R − Un). Let A = {(n, k) : Ik ⊂ Un}, and let

Ȧ be a name for A. Since P satisfies the countable chain condition, there
is a countable S ⊂ λ such that Ȧ is PS-valued. It is easy to verify that if
U ′

n = Un ∩ L[GS ], then for each n ∈ N , L[GS ] � U ′
n is dense open, and that

R ∩ L ⊂
⋃∞

n=0(R − U ′
n). Thus L[GS ] � R ∩ L is meager. ��

Since PS is countable, it suffices to prove the following lemma:
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Lemma 26.54. If P is a countable notion of forcing in L and if G is an
L-generic filter on P , then L[G] � R ∩ L is not meager.

Proof. It suffices to show that if 〈Un : n ∈ N〉 is (in L[G]) a sequence of dense
open sets of reals, then there is a constructible real a such that a ∈

⋂∞
n=0 Un.

Let U̇n be a name for Un and let us assume, without less of generality, that
every condition forces that each U̇n is dense open. It is enough to find (in L)
a real number x such that for each n and each p ∈ P , there is a q ≤ p such
that q � x ∈ U̇n.

Let tk, k = 0, 1, . . . , be an enumeration of all pairs t = (n, p) where
n ∈ N and p ∈ P . Let us construct a sequence I0 ⊃ I1 ⊃ . . . ⊃ Ik ⊃ . . . of
closed bounded intervals as follows: Let tk = (n, p). Since p � U̇n is dense
open, there is an open interval J ⊂ Ik−1 with rational endpoints such that
some q ≤ p forces J ⊂ U̇n. Let Ik ⊂ J . The intersection

⋂∞
k=0 Ik is nonempty;

and if x is in it, then for each n and each p ∈ P there is q ≤ p such that
q � x ∈ U̇n. ��

Exercises

26.1. The algebra Bc is the unique atomless complete Boolean algebra that has
a countable dense subset.

[If B is a meager Borel set, then there is a nonempty open set U such that
U �B is meager; hence there is a rational interval I such that [I ]c ≤ [B]c.]

26.2. Every ∆1
2(a) set of reals is Lebesgue measurable if and only if there exists

a random real over L[a]. Every ∆1
2(a) set of reals has the Baire property if and only

if there exists a Cohen real over L[a].
[If there are no random reals over L[a] then the prewellordering � in the proof

of Theorem 26.20 is ∆1
2(a).

Assume that there is a random real over L, and let A be a ∆1
2 set, A = {x :

P (x)} = {x : ¬Q(x)} with P and Q being Σ1
2. In L, force with Borel sets mod

measure 0, and let ṙ be a name for the random real. Show that the set

D = {p : p � P L[ṙ](ṙ) or p � QL[ṙ](ṙ)}

is dense, and let W ⊂ D be a (countable) maximal antichain. Let

ZP =
S{Ac : c ∈ BC ∩ L, AL

c ∈ W and AL
c � P L[ṙ](ṙ)},

and ZQ similarly. Show that ZP − P and ZQ − Q are null and conclude that
ZP � A is null. (For details, see Judah and Shelah [1989] or Theorem 14.6 in
Kanamori [1994]).]

26.3. For every infinite X ⊂ ω, let X∗ be a chosen representative of the class of
all Y ⊂ ω such that X � Y is finite. Show that the set

S = {X ∈ [ω]ω : |X �X∗| is even}

is not Ramsey.
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26.4. “Every clopen set is Ramsey” implies Ramsey’s Theorem.

26.5. (i) add(LM) ≤ cov(LM) ≤ cof(LM), add(LM) ≤ unif(LM) ≤ cof(LM).
(ii) add(BP) ≤ cov(BP) ≤ cof(BP), add(BP) ≤ unif(BP) ≤ cof(BP).

26.6. There exists a decomposition R = M ∪ N into a meager set M and a null
set N .

26.7. (i) cov(LM) ≤ unif(BP).
(ii) cov(BP) ≤ unif(LM).
[Let R = M ∪ N where M is meager and N is null. To prove (i) it suffices to

show that if X is a nonmeager set then R =
S{N + x : x ∈ X}. By contradiction,

assume that some r is not of the form z + x where z ∈ N , and x ∈ X. It follows
that (X−r)∩{−z : z ∈ N} = ∅, hence X − r ⊂ {−z : z ∈M} and so X is meager.]

26.8. MAκ implies b ≥ κ.
[Let λ < κ and let {fα : α < λ} ⊂ ωω. A forcing condition is a pair (s,E) where

s is a finite sequence in ω and F is a finite subset of λ; (s, E) is stronger than (t, F )
if s ⊃ t and (∀α ∈ F )(∀n ∈ dom(s)− dom(t)) s(n) > fα(n). This forcing is c.c.c.
and every Dξ = {(s, E) : α ∈ E} is dense. MAκ produces a function g such that
∀∞n fα(n) < g(n) for all α < λ.]

26.9. b ≤ cf(d).
[Find a dominating family F = {fα : α < d} such that whenever α < β then

∃∞n fα(n) < fβ(n). If {αν : ν < cf d} is cofinal in d then {fαν : ν < cf d} is an
unbounded family.]

26.10. b ≤ unif(BP) and cov(BP) ≤ d.
[If F ⊂ ωω is not meager then F is an unbounded family. If F is a dominating

family, then ωω =
S

f∈F{g : g < f}.]

26.11. Using Theorem 26.47, show that add(LM) ≤ add(BP) and cof(BP) ≤
cof(LM).

[Let ψ : Im → Ic be as follows: For each X ∈ Im let ψ(X) =
S{Z : ϕ(Z) ⊂ X}.

If F is a family of fewer than add(LM) meager sets, let X be the null set
S{ϕ(Z) :

Z ∈ F}. Then
S

F ⊂ ψ(X) is meager. If F ⊂ Im generates Im then {ψ(X) : X ∈ F}
generates Ic.]

26.12. (i) If F satisfies (26.30) and has size κ then N is the union of κ meager
sets.

(ii) If F is not meager then it satisfies (26.31).
[For every f , the set {g : ∀∞n f(n) �= g(n)} is meager.]

26.13. Use Theorems 26.49 and 26.48(i) to verify add(LM) ≤ cov(BP).
[Let κ < add(LM) and let F ⊂ ωω be such that |F | = κ. Let In be pairwise

disjoint subsets of ω, |In| = n. Apply (26.32) to the family {f ′ : f ∈ F}, where
f ′(n) = f�In, to find a ϕ such that ∀f ∈ F ∀∞n f�In ∈ ϕ(n). Now let g : ω → ω
be as follows: If a is the kth element of In, let g(a) = sk(a) where sk is the kth
element of ϕ(n). For every f ∈ F we have ∃∞n g(n) = f(n), contradicting (26.30);
hence κ < cov(BP).]

A set of reals A has strong measure 0 if for every sequence a0 ≥ a1 ≥ . . . ≥
an ≥ . . . of positive reals, there exists a sequence of open intervals In, n = 0, 1, . . . ,
such that length(In) ≤ an and A ⊂ S∞

n=0 In. It is clear that every set of strong
measure 0 is null, but not every null set has necessarily strong measure 0:
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26.14. The Cantor set does not have strong measure 0.
[C cannot be covered by open intervals of lengths 1

3
, 1

9
, 1

27
, . . . .]

26.15. If A ⊂ R contains a perfect subset, then it does not have strong measure
zero.

[Use the fact that A contains a subset homeomorphic to the Cantor set and that
a uniformly continuous image of a set of strong measure 0 has strong measure 0.]

26.16. Martin’s Axiom implies that every set A ⊂ R of size < 2ℵ0 has strong
measure 0.

[May assume that 2ℵ0 > ℵ1. Consider the forcing notion (P, <) = (Seq ,⊃)
which adjoins a Cohen generic x ∈ ωω. Let a0 ≥ a1 ≥ . . . ≥ an ≥ . . . be positive
reals. Since |A| < 2ℵ0 , MA implies that there exists x ∈ ωω, P -generic over every
L[a, 〈an : n ∈ ω〉], a ∈ A. Let r0, r1, . . . , rn, . . . be an enumeration of all rational
numbers; let for each n, In be the interval with center rx(n) and diameter an. Use
the genericity of x to show that a ∈ S∞

n=0 In, for each a ∈ A.]

26.17. If 2ℵ0 = ℵ1, then there exists an uncountable set E ⊂ R such that for every
nowhere dense set F , E ∩ F is at most countable. (E is called a Luzin set.) More
generally, MA implies that there is a set F of size 2ℵ0 whose intersection with every
nowhere dense set has size < 2ℵ0 .

[Let F0, F1, . . . , Fα, . . . , α < 2ℵ0 , be an enumeration of all closed nowhere
dense sets. Let E = {eα : α < 2ℵ0}, where for each α, eα /∈ S

β<α Fβ. Each eα

exists; the MA case uses Theorem 26.39.]

26.18. Martin’s Axiom (and in particular the Continuum Hypothesis) implies that
there is an uncountable set of reals of strong measure 0.

[Let E be the set from Exercise 26.17. Let a0 ≥ a1 ≥ . . . an ≥ . . . be given
positive reals. For each n, let I2n be the interval of length a2n around the nth
rational. The set U =

S∞
n=1 I2n is open dense and hence E − U has size < 2ℵ0 .

By Exercise 26.16 there are intervals I2n+1 of length a2n+1 such that E − U ⊂
S∞

n=1 I2n+1.]

The smallest cardinality of a set which does not have strong measure zero also
admits a combinatorial characterization:

26.19. Let κ be the least cardinality of a bounded family F ⊂ ωω that satis-
fies (26.30). Show that every set A ⊂ 2ω of size < κ has strong measure 0.

[Given 〈εn : n ∈ ω〉 let h ∈ ωω be such that 1/2h(n) ≤ εn. For each a ∈ A
let fa(n) = a�h(n). The family {fa : a ∈ A} can be coded as a bounded family.
Let g ∈ ωω be such that ∀a ∈ A∃∞n fa(n) = g(n); use g to produce the intervals
covering A.]

The converse is also true, and κ is the least size of a set that fails to have strong
measure zero.

26.20. Martin’s Axiom implies that every dense subset of Bm has size 2ℵ0 .
[Let κ = 2ℵ0 . Let xα, α < κ, be an enumeration of all reals. MA implies that

for every α, {xβ : β ≥ α} has positive measure; let Kα be a compact subset of
{xβ : β ≥ α} such that µ(Kα) > 0. If Bm has a dense subset of size < κ, then since
κ is regular, there exist a W ⊂ κ of size κ and a set X of positive measure such
that X −Kα is null for all α ∈ W . Hence every finite subset of {Kα : α ∈ W} has
nonempty intersection and so

T

α∈W Kα is nonempty; a contradiction.]



540 Part II. Advanced Set Theory

26.21. If d = c then there exists a p-point.
[Use the proof of Theorem 16.27.]

For subsets of ω, let X ⊂∗ Y mean that X −Y is finite. A family {Xα : α < κ}
of infinite subsets of ω is a tower if Xα ⊃∗ Xβ whenever α < β and there is no X
such that Xα ⊃∗ X for all α < κ; let t be the least cardinality of a tower.

26.22. t ≤ b.
[Let κ < t, and let F = {fα : α < κ} ⊂ ωω. For X ∈ [ω]ω let gX be the

increasing enumeration of X. Construct a sequence 〈Xα : α ≤ κ〉 of infinite sets
such that Xα ⊃∗ Xβ for β < α and such that for every α, ∀∞n fα(n) < gXα+1(n).
The function gXκ eventually dominates each f ∈ F .]

Let u be the least cardinality of a family of subsets of ω that generates an
ultrafilter.

26.23. b ≤ u.
[For X ∈ [ω]ω let gX be the increasing enumeration of X. For an increasing

f ∈ ωω let Sf ⊂ ω be the union of the intervals [f2n(0), f2n+1(0)), n < ω. Show
that if an increasing f eventually dominates gX than both S ∩X and S −X are
infinite.]

Historical Notes

The model in which all sets of reals are Lebesgue measurable is due to Solo-
vay [1970], as is the concept of random reals, as well as Lemmas 26.1, 26.2, 26.4, 26.5,
the Factor Lemma (Corollary 26.11), 26.16, and Theorem 26.20. Corollary 26.8 is
due to Kripke [1967], and Theorem 26.12 is due to Jensen.

Galvin and Prikry proved in [1973] that every Borel set is Ramsey; this was
extended by Silver in [1970b] to analytic sets, and Ellentuck [1974] gave the proof
of Theorem 26.22 that we reproduce here. Theorem 26.23 is due to Mathias [1977].

Theorem 26.39 is due to Martin and Solovay [1970]. A systematic study of the
properties of measure and category from Definition 26.43 was started by Miller
in [1981], although the two results in Exercise 26.7 were proved by Rothberger
in [1938]. Similarly, there had been various scattered results on what is now known
as cardinal invariants (such as b, d, etc.) but the first comprehensive account ap-
peared in van Douwen’s [1984]. A most recent survey of the results stated here is
Bartoszyński’s chapter [∞] in the Handbook of Set Theory. Theorem 26.45(i) is
due to Truss [1977] and Miller [1981]. Theorem 26.46 was proved independently by
Bartoszyński [1984] and Raisonnier and Stern [1985]; Pawlikowski’s Theorem 26.47
followed in [1985]. Theorems 26.48 and 26.49 Bartoszyński [1987] and [1984].

Example 26.51 is due to Solovay, and Example 26.52 is due to Vopěnka and
Hrbáček [1967].

Exercise 26.2: Judah and Shelah [1989].
Exercise 26.3: Erdős and Rado [1952].
Exercise 26.10: Rothberger [1941].
Exercise 26.13: Bartoszyński [1984].
Strong measure zero sets were introduced by Borel [1919].
Exercise 26.15: Marczewski [1930b].
Exercise 26.16: Kunen.
Exercise 26.17: Luzin [1914].
Exercise 26.18: Sierpiński [1928].
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Exercise 26.19: Rothberger [1941].
Exercise 26.20: the argument is due to Erdős.
Exercise 26.22: Rothberger.
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27. Combinatorial Principles in L

The Fine Structure Theory

In his paper [1972], Ronald Jensen embarked on a detailed analysis of the
levels of the constructible hierarchy. The resulting theory, the fine structure
theory, describes precisely how new sets arise in the construction of L, and has
significant applications. Historically, the first application of the fine structure
theory was Jensen’s proof of �κ in L, and we shall use that as a motivation
for the introduction of fine-structural concepts. We have already described
another, later, application of Jensen’s theory, the Covering Theorem 18.30.
While Magidor’s proof presented in Chapter 18 does not use the full force of
the fine structure theory, it can serve as a starting point toward the study of
fine structure.

We have seen that the constructible hierarchy is Σ1, in a uniform way,
and we have also seen the role played by the condensation arguments. In
particular we mention Lemma 18.38, the Condensation Lemma, stating that
every Σ1-elementary submodel of Lα is isomorphic to some Lγ , for every
infinite ordinal α.

Every Lα (for α ≥ ω) has a Σ1 Skolem function, with a Σ1 definition
independent of α. Precisely, there is a Σ0 formula Φ such that for every
α ≥ ω, the (partial) function hα : ω × Lα → Lα defined by

(27.1) y = hα(n, x) ↔ (Lα,∈) � ∃z Φ(n, x, y, z)

is a Σ1 Skolem function for Lα in the sense that for every X ⊂ Lα,

(27.2) hα“(ω × X) = Hα
1 (X)

is the Σ1 Skolem hull of X in Lα. This can be deduced by using the
Σ1 well-ordering <L, as in (18.5). (For details, we refer the reader to De-
vlin’s book [1984], in particular Lemma II.6.5.)

In Chapter 18 we introduced Σn Skolem functions for n > 1 as well,
but mentioned (following Definition 18.40) that a Σn Skolem function is not
necessarily a Σn function. In fact, for n > 1 there is no uniform Σ2 Skolem
function (in the sense of (27.1)–(27.2)); for details, see Exercises on pages
106–107 in Devlin’s book [1984], or Proposition 2 in Friedman’s [1997].
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To overcome this obstacle, Jensen introduced an elaborate machinery by
which arguments about Σn predicates on Lα can be reduced to arguments
about Σ1 predicates on a structure (Lρ, A) which in some sense describes the
Σn properties on Lα.

The Principle �κ

We recall (cf. (23.4)) that for an uncountable cardinal κ, a square-sequence is
a sequence 〈Cα : α ∈ Lim(κ+)〉 such that every Cα is closed unbounded in α,
|Cα| < κ whenever cf α < κ, and if ᾱ is a limit point of Cα then Cᾱ = Cα∩ ᾱ.
In [1972], Jensen proved that in L, every uncountable cardinal κ has a square-
sequence.

Theorem 27.1 (Jensen). If V = L then �κ holds for every uncountable
cardinal κ.

To illustrate how the proof of �κ uses condensation principles, and to
introduce the fine structure theory, we shall now outline the construction
of Cα in the most important special case.

First we observe that it suffices to define the sets Cα for a closed un-
bounded set of α < κ+; a square-sequence is then easily produced. Thus we
consider only the α ∈ Lim(κ+) that satisfy

(27.3) α > κ and Lα � ∀γ < α |γ| ≤ κ;

these α’s form a closed unbounded set.
As α is a singular limit ordinal, there is a stage of the constructible hi-

erarchy where that is witnessed. Let β = β(α) ≥ α be the least β such that
there is a cofinal subset of α of smaller order-type that is definable over Lβ.
Let n = n(α) be the least positive integer such that there exists such a subset
that is Σn over Lβ (with parameters in Lβ).

We outline the construction of Cα for the special case when β is a limit
ordinal and n = 1. (In general one has to consider also successor β’s and
n > 1—this is where the fine structure comes in.)

Using our assumption on α one proves that there exists a function g,
Σ1 over Lβ, that maps κ onto Lβ: Firstly, since there exists a Σ1(Lβ) subset
of α that is not in Lβ (by minimality of β(α)), there exists a Σ1(Lβ) function
that maps α onto Lβ (Exercise 27.1). Then, using (27.3), one gets a Σ1 func-
tion on κ.

Moreover, we can find such a function g in a canonical way. Since g exists,
we have Lβ = Hβ

1 (κ ∪ p), the Σ1-Skolem hull of κ∪ p in Lβ , where p is some
finite subset of Lβ, and therefore

(27.4) Lβ = hβ“(ω × (κ ∪ p)),

where hβ is the canonical Σ1 Skolem function from (27.1). Disregarding the
parameter p (which in general is taken to be the <L-least such p), we obtain
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from hβ (uniformly) a Σ1 function gβ mapping κ onto Lβ ; using (27.1) we
find a Σ0 formula Ψ such that

(27.5) gβ(ν) = y ↔ (∃z ∈ Lβ)Ψ(ν, y, z).

Now we construct Cα as an increasing continuous transfinite sequence 〈αξ :
ξ < ϑ〉 of limit ordinals < α with limit α. Simultaneously, we construct
ordinals µξ < β and νξ < κ, with 〈µξ : ξ < ϑ〉 increasing and continuous, as
follows: Given αξ < α and µξ < β, we let

νξ = least ν such that αξ < gβ(ν) < α and Lgβ(ν) � |αξ| = κ,(27.6)
µξ+1 = least µ such that αξ, µξ, gβ(νξ) ∈ Hµ

1 (κ) and (∃z ∈ Lµ)
Ψ(νξ, gβ(νξ), z).

(27.7)

It follows from the assumptions on α that the least ordinal ϑ such that
limξ→ϑ µξ = β(α) is the least ordinal with limξ→ϑ αξ = α, producing the set
Cα = {αξ : ξ < ϑ}, with ϑ ≤ κ. The canonical Σ1 definition (27.5) of gβ

is the key to the coherence property (23.4)(ii) of the Cα’s. Let ᾱ < α be
a limit point of Cα, ᾱ = αλ where λ is limit. Let µ̄ = µλ, and let Lβ̄ be the
transitive collapse of H µ̄

1 (κ). Let e : Lβ̄ → Lβ be the inverse of the transitive
collapse; e is Σ1-elementary. Using condensation arguments, one proves that
ᾱ ⊂ H µ̄

1 (κ) (and therefore e�ᾱ is the identity), β̄ = β(ᾱ), e(ᾱ) = α, and
finally that the definition of Cᾱ = {ᾱξ : ξ < λ} agrees with the definition
of Cα up to λ. In other words, Cᾱ = Cα ∩ ᾱ.

This completes the outline for the special case. When n(α) = 1 and
β(α) is a successor ordinal, it can be shown that cf α = ω and this case is
sufficiently exceptional to allow to choose Cα a sequence of order-type ω,
without limit points. When n(α) > 1, the proof requires the machinery of
the fine structure theory: the model (Lβ(α),∈) is replaced by (Lρ,∈, A) where
ρ is (n − 1)-projectum of β, allowing the use of canonical Σ1-Skolem functions
for models (Lρ,∈, A).

A complete proof of Theorem 27.1 can be found in Jensen’s paper [1972]
or in Devlin’s book [1984]. There have been several attempts at simplifi-
cation of the proof; among the more recent published proofs we mention
Friedman [1997] and Friedman and Koepke [1997]. ��

As Jensen pointed out in [1972], his proof of �κ in L shows that if κ+ is
not Mahlo in L then �κ holds. As a consequence the consistency strength
of the failure of Square is at least that of a Mahlo cardinal. By a result of
Solovay (Exercise 27.2), the consistency strength of ¬�ω1 is that of a Mahlo
cardinal.

We also note a result of Solovay from [1974] that the existence of super-
compact cardinals implies the failure of Square (Exercise 27.3).
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The Jensen Hierarchy

One of the technical obstacles in the analysis how constructible sets arise in
the hierarchy Lα is that the sets Lα are not closed under the formation of
ordered pairs. This can be overcome by modifying the constructible hierarchy
in an inessential way. The resulting hierarchy Jα has become the preferred
tool for studying the fine structure of L and of more general inner models.

Definition 27.2 (Rudimentary Functions).

(i) F (x1, . . . , xn) = xi (i = 1, . . . , n),
F (x1, . . . , xn) = {xi, xj} (i, j = 1, . . . , n),
F (x1, . . . , xn) = xi − xj (i, j = 1, . . . , n)
are rudimentary.

(ii) If G is rudimentary, then so is

F (y, x1, . . . , xn−1) =
⋃

z∈y
g(z, x1, . . . , xn−1).

(iii) A composition of rudimentary functions is rudimentary.

The rudimentary closure of a set X is the smallest Y ⊃ X closed under all
rudimentary functions. If X is transitive then so is its rudimentary closure,
and for every transitive set M , let

(27.8) rud(M) = the rudimentary closure of M ∪ {M}.

It can be shown that for every transitive set M ,

(27.9) rud(M) ∩ P (M) = def(M)

(compare with Corollary 13.8).

Definition 27.3 (The Jensen Hierarchy).

(i) J0 = ∅, Jα+1 = rud(Jα),
(ii) Jα =

⋃
β<α Jβ if α is a limit ordinal.

Each Jα is transitive, the hierarchy is cumulative, and for each α,

Jα ⊂ Vωα and Jα ∩ Ord = ωα.

From (27.9) it follows that

Jα+1 ∩ P (Jα) = def(Jα).

The exact relationship between the Jα’s and the Lα’s is not important, but
we have

(27.10) Jα = Lα for all α such that α = ωα.
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Every Jα is closed under {x, y},
⋃

x, x×y, and if A is a Σ0 subset of Jα then
A ∩ x ∈ Jα for every x ∈ Jα. This has the effect that

〈Jξ : ξ < α〉

is uniformly Σ1 over Jα, and there is a well-ordering <J of L such that
its restriction to Jα is (uniformly) Σ1 over Jα. Also, there is a (uniform)
Σ1 function over Jα that maps ωα onto Jα. Similarly as for the Lα, every Jα

has a canonical Σ1 Skolem function hα (analogous to (27.1) and (27.2)).
The fine structure theory capitalizes on the fact that the existence of

a uniform Σ1 Skolem function relativizes to models (Jα, A) where A is a one-
place predicate as long as

(27.11) A ∩ u ∈ Jα for all u ∈ Jα;

such models (Jα, A) are called amenable. There is a Σ0 formula Φ of the
language (∈, A) such that for every α and every amenable model (Jα, A), the
(partial) function hα,A : ω × Jα → Jα defined by

(27.12) y = hα,A(n, x) ↔ (Jα,∈, A) � ∃z Φ(n, x, y, z)

is a Σ1 Skolem function for (Jα, A).

Projecta, Standard Codes and Standard Parameters

Definition 27.4. For n > 0, the Σn-projectum ρn
α of α is the smallest ordi-

nal ρ ≤ α such that there exists a Σn(Jα) function f such that f“Jρ = Jα;
for n = 0, let ρ0

α = α.

An argument similar to Exercise 27.1 is used to prove that ρn
α is the

smallest ρ such that there exists a Σn(Jα) subset of ωρ not in Jα.
The main feature of the fine structure is that a predicate definable over Jα

can be reduced to a Σ1 predicate over an amenable structure (Jρ, A) where
ρ is a projectum of α. For each α and each n > 0 there exists a set An

α ⊂ Jρn
α

that is Σn over Jα such that (Jρn
α
, An

α) is amenable, and such that

(27.13) Σ1(Jρn
α
, An

α) = P (Jρn
α
) ∩ Σn+1(Jα).

For n = 0, we let A0
α = ∅. The sets An

α are called standard codes.
If P is a Σn+1 predicate over Jα, let f be a Σn(Jα) function that maps Jρn

α

onto Jα. Then f−1(P ) is a Σn+1(Jα) subset of Jρn
α

and therefore, by (27.13),
Σ1 over the amenable model (Jρn

α
, An

α). This reduction is canonical, as both
the standard codes, and the Σn functions f : Jρn

α
→ Jα are canonical. Pre-

cisely, we define standard codes along with standard parameters pn
α, by in-

duction on n: p0
α = ∅ and

pn+1
α is the <J -least p ∈ Jρn

α
such that Jρn

α
is the Σ1-Skolem hull of

Jρn+1
α

∪ p in Jρn
α
;

(27.14)



550 Part III. Selected Topics

An+1
α = {(k, x) : (Jρn

α
, An

α) � ϕk(x, pn+1
α )}(27.15)

where ϕk, k ∈ ω, is a recursive enumeration of the Σ1 formulas.
Then a Σn(Jα) function from Jρn

α
onto Jα can be produced from the

canonical Σ1 Skolem functions and the standard parameters via (27.14).
The fundamental property of standard codes is the following Condensation
Lemma:

Lemma 27.5. Let (Jγ , A) be amenable and let

e : (Jγ , A) → (Jρn
α
, An

α)

be a Σ0-elementary embedding. There exists a unique ᾱ such that γ = ρn
ᾱ and

A = An
ᾱ. The embedding e extends to a unique Σn-elementary embedding

ē : Jᾱ → Jα

such that ē(pi
ᾱ) = pi

α for all i = 1, . . . , n. Moreover, if e is Σm-elementary
then ē is Σn+m-elementary. ��

A detailed account of the fine structure theory can be found in Jensen’s
paper [1972], or in Devlin’s book [1984].

Diamond Principles

Let κ be a regular uncountable cardinal and let E be a stationary subset of κ.
♦(E), or (more precisely) ♦κ(E), is the following principle (23.1):

(27.16) There exists a sequence of sets 〈Sα : α ∈ E〉 with Sα ⊂ α such that
for every X ⊂ κ, the set {α ∈ E : X ∩ α = Sα} is a stationary
subset of κ.

When E = κ, ♦κ(κ) is denoted by ♦κ. ♦κ is a generalization of ♦ from
Theorem 13.21, and can be proved under V = L by a similar argument
(Exercise 27.4).

Gregory’s Theorem 23.2 shows that under GCH, ♦κ+ holds for every suc-
cessor cardinal κ+, in fact proving ♦(Eκ+

λ ) whenever λ < cf κ. This was
extended by Shelah in [1979] by showing, under GCH, that ♦(Eκ+

λ ) holds
whenever λ �= cf κ, and if κ is singular, then GCH and �κ together im-
ply ♦(Eκ+

cf κ). See also Devlin [1984], Lemma IV.2.8. For κ = ℵ1, GCH yields
a weak version of ♦. In [1978], Devlin and Shelah formulate and prove, under
the assumption 2ℵ0 < 2ℵ1 the following statement:

(27.17) For every F : {0, 1}<ω1 → {0, 1} there exists a g ∈ {0, 1}ω1 such
that for every f ∈ {0, 1}ω1, the set {α < ω1 : F (f�α) = g(α)} is
stationary.

(27.17) is a consequence of ♦ and fails under MAℵ1 .
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Trees in L

Let κ be an infinite cardinal. Generalizing Definition 9.12, we have:

Definition 27.6. A κ+-Suslin tree is a tree of height κ+ such that every
branch and every antichain have cardinality at most κ.

The following result generalizes Theorem 15.26:

Theorem 27.7 (Jensen). If V = L then for every infinite cardinal κ there
exists a κ+-Suslin tree.

When κ is regular, the proof is a straightforward generalization of the
construction of a Suslin tree using ♦: instead we use ♦(Eκ+

κ ). We construct
a tree by induction on levels. At limit levels α of cofinality < κ we extend
all branches in Tα; since κ<κ = κ, the αth level has size κ. If cf α = κ then
we use Diamond to destroy potential antichains of size κ+. Note that since
all branches have been extended at lower cofinalities, every x ∈ Tα has an α-
branch in Tα going through x. The proof that the resulting tree is a κ+-Suslin
tree is exactly as in Theorem 15.26.

When κ is singular, this approach does not work as there are κ+-branches
in Tα when cf α = cf κ. By not extending all of them we cannot guarantee
that at a later stage β, Tβ has β-branches at all. Jensen’s proof succeeds by
involving not only ♦, but the �κ principle as well. The proof shows that if
�κ holds and if ♦κ+(E) for all E, then a κ+-Suslin tree exists. For a proof,
see Devlin [1984], Theorem IV.2.4.

Let us recall (Definition 9.24) that a tree of height ω1 is a Kurepa tree if
it has countable levels and at least ℵ2 uncountable branches.

Theorem 27.8 (Solovay). If V = L then there exists a Kurepa tree.

Proof. Assume V = L. We shall construct a family of subsets of ω1 that
satisfy (9.12).

For each α < ω1, there is a smallest elementary submodel M of (Lω1 ,∈)
such that α ∈ M . Moreover (see Exercise 13.17), M = Lγ for some γ < ω1,
and we denote γ by f(α):

(27.18) f(α) = the least γ such that α ∈ Lγ ≺ (Lω1 ,∈).

Let F be the following family of subsets of ω1:

(27.19) F = {X ⊂ ω1 : X ∩ α ∈ Lf(α) for every α < ω1}.

It is immediately clear that {X ∩ α : X ∈ F} is countable for each α < ω1;
and hence if we show that |F| = ℵ2, F will satisfy (9.12).
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Assume that |F| ≤ ℵ1. Then F has an enumeration

(27.20) C = 〈Xξ : ξ < ω1〉

and any such enumeration is in Lω2. If we let C be the <L-least such C
in Lω2, then since the function f is a definable element of Lω2 (by the def-
inition (27.18)) and the Xξ satisfy (27.19) in (Lω2 ,∈), it follows that C is
a definable element of (Lω2 ,∈).

Now, we construct an elementary chain of submodels of (Lω2 ,∈):

N0 ≺ N1 ≺ . . . ≺ Nν ≺ . . . ≺ (Lω2 ,∈) (ν < ω1)

as follows: N0 is the smallest elementary submodel of Lω2 ; Nν+1 is the small-
est N ≺ Lω2 such that Nν ⊂ N and Nν ∈ N ; if η is a limit ordinal, then
Nη =

⋃
ν<η Nν . Note that each Nν is countable, and ω1 ∩Nν = αν , for some

αν < ω1 (see Exercise 13.18). Moreover,

(27.21) 〈αν : ν < ω1〉

is a continuous increasing sequence of countable ordinals.
Now, we let X = {αν : αν /∈ Xν}. Obviously, X �= Xξ for all ξ < ω1, and

we shall show that X satisfies the condition in (27.19), which will contradict
the assumption that (27.20) is an enumeration of all elements of F .

We want to show that X ∩ α ∈ Lf(α) for all α < ω1. By induction on α,
if α is not a limit point of the sequence (27.21), then let αν be the largest
αν < α. Then either X ∩ α = X ∩ αν or X ∩ α = (X ∩ αν) ∪ {αν}; in either
case, since X ∩ αν ∈ Lf(αν) ⊂ Lf(α) (by the induction hypothesis), we have
X ∩ α ∈ Lf(α). Thus it suffices to show that X ∩ αη ∈ Lf(αη) whenever η is
a limit ordinal.

We shall show that

(i) 〈αν : ν < η〉 ∈ Lf(αη);
(ii) 〈Xξ ∩ αη : ξ < αη〉 ∈ Lf(αη).

(27.22)

Since Lf(αη) is a model of ZF−, the set X ∩ αη has the following definition
in Lf(αη):

X ∩ α = {αν : ν < η and αν /∈ Xν ∩ αη}.
For each ν < ω1, let πν be the transitive collapse of Nν . Each Nν is

isomorphic to some Lδ(ν), and since ω1 ∩ Nν = αν , we have πν(ω1) = αν .
Since C is a definable element of Lω2 , we have C ∈ Nν for all ν and one can
see that πν(C) = 〈Xξ ∩ αν : ξ < αν〉.

Note that αη is uncountable in Lδ(η), while it is countable in Lf(αη).
It follows that δ(η) < f(αη), and we have πη(C) ∈ Lδ(η) ⊂ Lf(αη), which
proves (27.22)(ii).

To prove (27.22)(i), let us construct, inside Lf(αη) (which is a model
of ZF−), an elementary chain N ′

ν , ν < η of submodels of (Lδ(η),∈): N ′
0 is the
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smallest elementary submodel of Lδ(η); N ′
ν+1 is the smallest N ≺ Lδ(η) such

that N ′
ν ∪ {N ′

ν} ⊂ N , etc. It is not difficult to show, by induction on ν < η,
that for each ν, N ′

ν is isomorphic to Nν . Then the transitive collapse of N ′
ν

is Lδ(ν), and so 〈Lδ(ν) : ν < η〉 ∈ Lf(αη). It follows that 〈αν : ν < η〉 ∈ Lf(αη),
proving (27.22)(i). ��

One consequence of the foregoing proof is that a Kurepa tree exists unless
ℵ2 is inaccessible in L (Exercise 27.5). This is complemented by the following
consistency result:

Theorem 27.9 (Silver [1971c]). If there exists an inaccessible cardinal
then there is a generic extension in which there are no Kurepa trees.

Proof. Let λ be an inaccessible cardinal. Let (P, <) be the Lévy collapse of λ
to ℵ2: forcing conditions are countable functions p on subsets of λ× ω1 such
that p(α, ξ) < α for every (α, ξ) ∈ dom(p) and p is stronger than q if p ⊃ q.

(P, <) is ℵ0-closed, and so V and V [G] have the same countable sequences
in V . Also, ℵV [G]

1 = ℵ1, and ℵV [G]
2 = λ.

Lemma 27.10. If P is an ℵ0-closed notion of forcing and T is an ω1-tree
in the ground model such that every level of T is countable, then T has no
new branches in V [G].

Proof. Assume that T has a branch b ∈ V [G] that is not in V ; since V [G] has
no new countable sets, b has length ω1. There is a name ḃ for b and a condition
p0 ∈ G such that p0 � ḃ �= ǎ for all a ∈ V . We construct, by induction,
conditions ps < p0 and nodes xs ∈ T for all finite sequences s of 0’s and 1’s.
Having constructed ps, we can find two incomparable nodes xs�0 and xs�1

both > xs, and two conditions ps�0 and ps�1, both stronger than ps such
that ps�0 � xs�0 ∈ ḃ and ps�1 � xs�1 ∈ ḃ. Moreover, we can find such xs�0

and xs�1 at the same level of T . Let α < ω1 be such that all xs lie below
level α in T . For each f : ω → {0, 1}, let pf be a condition stronger than all
pf�n, n ∈ ω. Since p0 � ḃ is uncountable, there exist q < pf and xf at the
αth level of T such that q � xf ∈ ḃ. Now it is clear that xf �= xg whenever f
and g are distinct 0–1 functions on ω. Thus the αth level of T has at least 2ℵ0

elements, contrary to our assumption. ��

It follows immediately from the lemma that in V [G], no tree T ∈ V whose
levels are countable can be a Kurepa tree: Since every branch of T in V [G] is
in V , T has at most (2ℵ1)V branches, but (2ℵ1)V < λ = ℵV [G]

2 , and so T has
(in V [G]) fewer than ℵ2 branches.

A similar argument can be used for any tree in V [G], with a slight modifi-
cation. For each α < λ, let Pα denote the set of all conditions whose domain
is a subset of α × ω1; similarly, let Pα = {p ∈ P : dom(p) ⊂ (κ − α) × ω1}.
Clearly, P is (isomorphic to) the product Pα×P α. Let X ∈ V [G] be a subset
of ω1, and let Ẋ be a name of X ; since P satisfies the λ-chain condition, there
exists for each ξ < ω1 a set of conditions Wξ ⊂ P of size less than λ such
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that ‖ξ ∈ Ẋ‖ =
∑

{p : p ∈ Wξ}. There exists an α < λ such that Wξ ⊂ Pα,
for all ξ < ω1. It follows that X ∈ V [G ∩ Pα].

Now let T ∈ V [G] be an ω1-tree with countable levels. There exists an
α < λ such that T ∈ V [G∩Pα]. By the Product Lemma, G∩Pα is P α-generic
over V [G∩Pα] and V [G] = V [G∩Pα][G∩Pα]. Since V [G∩Pα] and V have the
same countable sequences in V , it follows that Pα is ℵ0-closed not only in V ,
but also V [G ∩ Pα] � P α is ℵ0-closed. Thus Lemma 27.10 applies and every
branch of T in V [G] is in V [G∩Pα]. However, (2ℵ1)V [G∩Pα] < λ = ℵV [G]

2 , and
so T is not a Kurepa tree in V [G]. This completes the proof. ��

Canonical Functions on ω1

For ordinal functions on ω1, let f < g if {ξ < ω1 : f(ξ) < g(ξ)} contains
a closed unbounded set. The rank of f in < is the Galvin-Hajnal norm ‖f‖;
cf. Definition 24.4. By induction on α, the αth canonical function fα is defined
(if it exists) as the <-least ordinal function greater than each fβ , β < α. If fα

exists then it is unique up to the equivalence =INS . Lemma 24.5 shows that
for every α < ω2 the αth canonical function exists; see also Exercise 27.6.

It is possible that the constant function ω1 is the ω2nd canonical function
(see Exercise 27.7) but this is known to have large cardinal consequences;
in particular, in L there is a function f : ω1 → ω1 such that ‖f‖ = ω2

(Exercise 27.8).
If canonical functions fα exist for all α, then the ideal INS is precipitous

(Exercise 27.10) and hence there is an inner model with a measurable cardi-
nal. Conversely, a combination of the method from Jech and Mitchell [1983]
with the proof of Theorem 23.10 yields the consistency, relative to a measur-
able cardinal, of canonical functions for all α.

The following result shows that in L, the ω2nd canonical function does
not exist.

Theorem 27.11 (Hajnal). If V = L then there is no ω2nd canonical func-
tion on ω1.

Proof. Assume V = L, and assume that there is an ω2nd canonical function.
This statement can be expressed in Lω2 :

(∃f : ω1 → ω1)∀η (fη < f) and

(∀ stationary S)(∀g <S f)(∃ stationary T ⊂ S)∃η g�T = fη�T .

Let γ be the least ordinal such that (Lγ ,∈) is elementarily equivalent to
(Lω2 ,∈). Let f be the ω2nd canonical function in (Lγ ,∈) and let δ = ω

Lγ

1 .
We shall find a ξ < δ such that (Lξ,∈) ≡ Lγ , reaching a contradiction.

Consider the generic ultrapower of Lγ by the nonstationary ideal (INS)Lγ

on δ = ω
Lγ

1 (using functions in Lγ). As f is the ω
Lγ

2 nd canonical function, the
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ultraproduct
∏

ξ<δ f(ξ)/G has order-type γ, and moreover, the ultraproduct
UltG =

∏
ξ<δ Lf(ξ)/G is isomorphic to Lγ . Thus if a sentence σ is true in

(Lγ ,∈) then it is forced to be true in UltG by every stationary S ⊂ δ in Lγ ,
and so if we let

Tσ = {ξ < δ : Lf(ξ) � σ},
then (since f ∈ Lγ) Tσ ∈ Lγ and

Lγ � Tσ contains a closed unbounded set.

If {σn : n ∈ ω} enumerates all sentences of ZF, then 〈Tσn : n < ω〉 ∈ Lγ , and

Lγ �
⋂
{Tσn : n ∈ ω and Tσn contains a closed unbounded set} �= ∅.

If ξ is an element of this intersection, then Lf(ξ) ≡ Lγ . ��

The existence of an ω2nd canonical function is not a large cardinal prop-
erty, as this consistency result shows:

Theorem 27.12 (Jech-Shelah). There is a generic extension of L in which
the ω2nd canonical function exists.

The model is obtained by first adding (by forcing with countable condi-
tions) an increasing sequence 〈fα : α ≤ ω2〉 of ordinal functions from ω1

into ω1. Then one uses an iterated forcing, with countable support of
length ω2, that successively destroys all stationary subsets of ω1 that wit-
ness that the sequence 〈fα : α ≤ ω2〉 is not canonical. For details, consult
Jech and Shelah [1989].

Exercises

27.1. Let α ≤ β be limit ordinals and assume that there exists a set Z ⊂ α
that is Σ1 over Lβ but Z /∈ Lβ . Then there exists a Σ1(Lβ) function g such that
g“α = Lβ.

[First show that there is a Σ1 function g : α → β unbounded in β. Let Z =
{ξ < α : (∃y ∈ Lβ)ϕ(ξ, y, p)} where ϕ is Σ0, and let g(ξ) be the least η such that
(∃y ∈ Lη)ϕ.]

27.2. If a Mahlo cardinal λ is Lévy collapsed to ℵ2 (by countable conditions) then
�ω1 fails in the extension.

27.3. If κ is supercompact then �λ fails for all λ ≥ κ.

27.4. If V = L then ♦κ(E) holds for every regular uncountable κ and every sta-
tionary E ⊂ κ.

27.5. If ℵ2 is not inaccessible in L then a Kurepa tree exists.
[There exists an A ⊂ ω1 such that ωL[A]

1 = ω1 and ωL[A]
2 = ω2; modify Theo-

rem 27.8 to construct a Kurepa tree in L[A].]
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27.6. If ω1 ≤ α < ω2, and if g is a one-to-one function of ω1 onto α, let f(ξ) = the
order-type of g“ξ. Show that f is the αth canonical function.

27.7. If INS is ℵ2-saturated then the constant function ω1 is the ℵ2nd canonical
function.

27.8. In L, find a function f : ω1 → ω1 of norm ω2.
[As in the proof of Theorem 27.8.]

27.9. If f : ω1 → Ord and S is stationary then ‖f‖S = α if S forces j(f)(ωV
1 ) = α

in P (ω1)/INS.

27.10. If a canonical fα exists for every α, then INS is precipitous.

Historical Notes

The fine structure theory was introduced by Jensen in [1972]. The paper gives,
among others, proofs of �κ and of the existence of κ+-Suslin trees in L. It also
formulates a combinatorial principle ♦+ that implies the existence of a Kurepa
tree (abstracting Solovay’s proof given here). Silver’s model with no Kurepa trees
appears in [1971c]. Theorem 27.11 is an unpublished result of András Hajnal
from 1976; the model in Theorem 27.11 is from Jech and Shelah [1989].

Exercises 27.2, 27.3: Solovay.
Exercise 27.4: Jensen.



28. More Applications of Forcing

In this chapter we present a selection of forcing constructions related to topics
discussed earlier in the book.

A Nonconstructible ∆1
3 Real

By Shoenfield’s Absoluteness Theorem, every Π1
2 or Σ1

2 real is constructible;
on the other hand 0� is a ∆1

3 real. We now present a model due to Jensen
that produces a nonconstructible ∆1

3 real by forcing over L.

Theorem 28.1 (Jensen). There is a generic extension L[a] of L such that
a is a ∆1

3 real.

The construction is a combination of perfect set forcing and arguments
using the ♦-principle. Let us consider perfect trees p ⊂ Seq({0, 1}), cf. (15.24).
The stem of a perfect tree p is the maximal s ∈ Seq({0, 1}) such that for every
t ∈ p, either t ⊂ s or s ⊂ t. If p is a perfect tree and if s ∈ p, we denote by p�s
the perfect tree {t ∈ p : t ⊂ s or t ⊃ s}.

Assume that P is a set of perfect trees, partially ordered by ⊂, such that
if p ∈ P and s ∈ p, then p�s ∈ P , and let G be an L-generic filter on P .
Then there is a unique f ∈ {0, 1}ω which is a branch in every p ∈ G; and
conversely, G = {p ∈ P : f is a branch in p}. Therefore L[G] = L[f ], and we
call f P -generic over L. Note that f ∈ {0, 1}ω is P -generic over L if and only
if for every constructible predense set X ⊂ P , f is a branch in some p ∈ X .

Similarly, a generic filter G on P × P corresponds to a unique pair (a, b)
such that for each (p, q) ∈ G, a is a branch in p and b is a branch in q. A pair
(a, b) is (P ×P )-generic over L if and only if for every constructible predense
set X ⊂ P × P , there exists a pair (p, q) ∈ X such that a is a branch in p
and b is a branch in q.

In Chapter 15 we used the Fusion Lemma for perfect trees. Let T =
{T (s) : s ∈ Seq({0, 1})} be a collection of perfect trees such that for every s,

(i) T (s) is a perfect tree whose stem has length ≥ length(s).
(ii) T (s�0) ⊂ T (s) and T (s�1) ⊂ T (s).
(iii) T (s�0) and T (s�1) have incompatible stems.

(28.1)
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If T satisfies (28.1), we say that T is fusionable and we let

(28.2) F(T ) =
∞⋂

n=0

⋃
s∈{0,1}n

T (s).

For each fusionable T , p = F(T ) (the fusion of T ) is a perfect tree; and for
each s, if t is the stem of ps = T (s), then p�t is stronger than both p and ps.

We shall not use the set of all perfect trees as the notion of forcing; rather
we shall construct a set P of perfect trees with the property that if p ∈ P and
s ∈ p, then p�s ∈ P . We shall construct P such that if a is P -generic over L,
then a is the only P -generic set in L[a], and such that {n ∈ N : a(n) = 1} is
(in L[a]) a ∆1

3 subset of N .
We shall construct P as the union of countable sets

P0 ⊂ P1 ⊂ . . . ⊂ Pα ⊂ . . . (α < ω1)

of perfect trees. The construction uses the ♦-principle. There is a ♦-sequence
〈Sα : α < ω1〉 that is ∆1 over Lω1 ; let us fix such a sequence. Also, let us fix
a ∆1 over Lω1 function τ that is a one-to-one mapping of Lω1 onto ω1.

We shall now construct the sequence P0 ⊂ P1 ⊂ . . . ⊂ Pα ⊂ . . .:

(28.3) P0 = the set of all p0�s where p0 is the full binary tree, p0 =
Seq({0, 1}), and s ∈ p0;

Pα =
⋃

β<α

Pβ if α is a limit ordinal.

Pα+1 = Pα∪Qα+1 where Qα+1 is a set of perfect trees defined as follows:

Let Pα = {pα
n : n ∈ ω}; and let us consider the <L-least such enumeration.

Let Xα and Yα be the following countable collections of subsets of Pα and
and Pα × Pα respectively:

Xα contains:
(i) all Qβ , β ≤ α,
(ii) all X ⊂ Pα such that τ“X = Sβ for some β ≤ α.

(28.4)

Yα contains:
(i) Qβ × Qβ for all β ≤ α;
(ii) all Y ⊂ Pα × Pα such that τ“Y = Sβ for some β ≤ α.

There exists a family {Tn : n ∈ ω} of fusionable collections of elements of Pα

such that:

(i) Tn(∅) = pα
n for all n;

(ii) for every X ∈ Xα, if X is predense in Pα, then for every n ∈ N
and every h ∈ N there is k ≥ h such that for each s ∈ {0, 1}k,
there exists an x ∈ X such that Tn(s) ≤ x;

(iii) for every Y ∈ Yα, if Y is predense in Pα ×Pα, then for every n,
every m, and every h there is a k ≥ h such that for each s ∈
{0, 1}k and each t ∈ {0, 1}k; if either n �= m or s �= t, then there
exists (x, y) ∈ Y such that (Tn(s), Tm(t)) ≤ (x, y).

(28.5)
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A family {Tn : n ∈ ω} with properties (28.5)(i)–(iii) is easily constructed
because Xα and Yα are countable. We denote {T α

n : n ∈ ω} the <L-least such
family, and let

(28.6) Qα+1 = {p�s : p = F(T α
n ) for some n, and s ∈ p}.

We let P =
⋃

α<ω1
Pα. The following sequence of lemmas will show that

if a ∈ {0, 1}ω is P -generic over L, then in L[a] the set {n : a(n) = 1} is ∆1
3.

Lemma 28.2. For each α, Qα+1 is dense in Pα+1, and Qα+1 × Qα+1 is
dense in Pα+1 × Pα+1.

Proof. It suffices to show that below each p ∈ Pα there is some q ∈ Qα+1. If
p ∈ Pα, the p = pα

n for some n, and F(Tn) ⊂ Tn(∅) = p. ��

Lemma 28.3. For each α, if X ∈ Xα is predense in Pα, then X is predense
in Pα+1; if Y ∈ Yα is predense in Pα×Pα, then Y is predense in Pα+1×Pα+1.
Consequently, if X ∈ Xα is predense in Pα (if Y ∈ Yα is predense in Pα×Pα),
then X is predense in P (Y is predense in P × P ).

Proof. Let X ∈ Xα be predense in Pα; we have to show that for each p�n ∈
Qα+1 there is a stronger q ∈ Qα+1 such that q ≤ x for some x ∈ X . Let
p = F(Tn) and let u ∈ p. Let h = length(u). There is k ≥ h such that n
and k satisfy (28.5)(ii). There is s ∈ {0, 1}k such that u ∈ Tn(s); let v be the
stem of Tn(s). Then p�v ≤ Tn(s) and Tn(s) ≤ x for some x ∈ X .

A similar argument, using (28.5)(iii), shows that if Y ∈ Yα is predense in
Pα × Pα, then Y is predense in Pα+1 × Pα+1.

Since the sequences Xα, α < ω1, and Yα, α < ω1, are increasing, it
follows by induction that X is predense in every Pβ , β < ω1, and hence in P .
Similarly for Y . ��

Lemma 28.4. P × P satisfies the countable chain condition (and hence
P also satisfies the countable chain condition).

Proof. Here we use ♦. Let us assume that Y ⊂ P × P is a maximal in-
compatible set of conditions in P × P and that Y is uncountable. Since
each Pα is countable, it is easy to see that the set of all α < ω1 such that
τ(Y ∩ (Pα ×Pα)) = τ(Y )∩ω1 is closed unbounded (τ is the one-to-one func-
tion of Lω1 onto ω1). Then it is not much more difficult to see that the set of
all α < ω1 such that Y ∩(Pα×Pα) is a maximal antichain in Pα×Pα, is closed
unbounded (compare this argument with the ♦-construction of a Suslin tree
in L).

By ♦, there exists an α such that Y ′ = Y ∩ (Pα × Pα) is predense in
Pα × Pα and that τ(Y ′) = Sα. Therefore Y ′ ∈ Yα and by Lemma 28.3, Y ′ is
predense in P × P . It follows that Y ′ = Y . Thus Y is countable. ��
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Lemma 28.5.

(i) If a ∈ {0, 1}ω, then a is P -generic over L if and only if for every
α < ω1 there is some n ∈ N such that a is a branch in F(T α

n ).
(ii) If a �= b ∈ {0, 1}ω, then (a, b) is (P × P )-generic over L if and only

if for every α < ω1 there exist n, m ∈ N such that a is a branch
in F(T α

n ) and b is a branch in F(T α
m).

Proof. (i) Let a be P -generic and let α < ω1. Since Qα+1 is dense in Pα+1

and because Qα+1 ∈ Xα+1, Qα+1 is predense in P . By the genericity of a,
there exists a q ∈ Qα+1 such that a is a branch in q. But q = p�s where
p = F(T α

n ) for some n and s ∈ p, and clearly a is a branch in p.
Conversely, let us assume that the condition is satisfied. Let X ⊂ P be

a maximal antichain; we wish to show that a is a branch in some x ∈ X . By
Lemma 28.4, X is countable, and there is an α such that X ∈ Xα. Let n ∈ N
be such that a is a branch in F(T α

n ).
By (28.5)(ii), there is k ∈ N such that each Tn(s), s ∈ {0, 1}k, is stronger

than some x ∈ X . Since a is a branch in F(Tn), it is clear that there is
a unique s ∈ {0, 1}k such that a is a branch in Tn(s). But if x ∈ X is such
that Tn(s) ⊂ x, then a is also a branch in x.

(ii) The proof that the condition is necessary is analogous to (i). Thus let
us assume that the condition is satisfied and let Y ⊂ P × P be a maximal
antichain; we want to find (x, y) ∈ Y such that a is a branch in x and b is
a branch in y. Again, there is α such that Y ∈ Yα. Let n and m ∈ N be such
that a is a branch in F(T α

n ) and that b is in F(T α
m).

Let h ∈ N be such that a�h �= b�h; by (28.5)(iii), there is some k ∈ N such
that for each s, t ∈ {0, 1}k, if either n �= m or s �= t, then (Tn(s), Tm(t)) ≤
(x, y) for some (x, y) ∈ Y . There is a unique pair s, t such that a is a branch
in x and b is a branch in y where (x, y) is some element of Y such that
(Tn(s), Tm(t)) ≤ (x, y). ��

Corollary 28.6. If a and b are P -generic over L and a �= b, then (a, b) is
(P × P )-generic over L. ��

Corollary 28.7. If a is P -generic over L, then L[a] � a is the only P -generic
over L.

Proof. If a �= b and if both a and b are P -generic over L, then by the Product
Lemma, b is a P -generic over L[a] and hence b /∈ L[a]. ��

Lemma 28.8. The set H = {a : a is P -generic over L} is Π1 over HC.

Proof. It follows from the construction of P that the function α �→ 〈T α
n :

n ∈ ω〉 is ∆1 over LωL
1
. Since LωL

1
is a Σ1 set over HC , the function is ∆1

over HC . By Lemma 28.5,

a ∈ H ↔ (∀α < ωL
1 )(∃n ∈ ω) a is a branch in F(T α

n )

and hence H is Π1 over HC . ��
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Corollary 28.9. If a is a P -generic over L and A = {n ∈ N : a(n) = 1},
then L[a] � A is a ∆1

3 subset of N .

Proof. We have in L[a]

n ∈ A ↔ (∃a ∈ N )(a ∈ H and a(n) = 1) ↔ (∀a ∈ N )(a ∈ H → a(n) = 1).

Since H is Π1 over HC , it is a Π1
2 subset of N . It follows that A is ∆1

3. ��

Namba Forcing

By Jensen’s Covering Theorem if λ is a regular cardinal in L and V is a generic
extension of L, then either cf λ = |λ| or λ < ℵ2. In other words, the only
nontrivial change of cofinality is to make |λ| = ℵ1 and cf λ = ω. The following
model, due to Namba, does exactly that:

Theorem 28.10 (Namba). Assume CH. There is a generic extension V [G]
such that ℵV [G]

1 = ℵ1 and cfV [G](ωV
2 ) = ω.

Proof. Let S be the set of all finite sequences of ordinals less than ω2, S =
ω<ω

2 . A tree is a set T ⊂ S such that if t ∈ T and s = t�n for some n, then
s ∈ T . A nonempty tree T ⊂ S is perfect if every t ∈ T has ℵ2 extensions
s ⊃ t in T . (Note that then every t ∈ T has ℵ2 incompatible extensions in T .)
In analogy with perfect sets in the Baire space, we have a Cantor-Bendixson
analysis of trees T ⊂ S: Let

T ′ = {t ∈ T : t has ℵ2 extensions in T}

and let T0 = T , Tα+1 = T ′
α, Tα =

⋂
β<α Tβ if α is limit. Let θ < ω3 be the

least θ such that T ′
θ = Tθ. Then Tθ is either empty or perfect.

If T has no perfect T̄ ⊂ T , then the above procedure leads to Tθ = ∅, and
we can associate with each t ∈ T an ordinal number

(28.7) hT (t) = the least α such that t /∈ Tα+1.

If s ⊂ t, then hT (s) ≥ hT (t), and for every t ∈ T ,

(28.8) |{s ∈ T : t ⊂ s and hT (s) = hT (t)}| < ℵ2.

Now let us describe the notion of forcing.
Let P be the set of all perfect trees T ⊂ S, partially ordered by inclusion.

We shall show that in the generic extension, ω2 has cofinality ω and ω1 is
preserved.

If G is a generic set of conditions, we define in V [G] a function f : ω → ωV
2

as follows:

f(n) = α ↔ ∀T ∈ G ∃s ∈ T such that s(n) = α.

An easy argument using genericity of G shows that f(n) is uniquely defined
for each n and that the function f maps ω cofinally into ωV

2 .
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We shall prove now that ω1 is preserved in the extension by showing
that every f : ω → {0, 1} in V [G] is in the ground model. Thus let T be
a condition, and let ḟ be a name such that

T � ḟ is a function from ω into {0, 1}.

We shall find a stronger condition that decides each ḟ(n); that is, we shall
find a function g : ω → {0, 1} such that some condition stronger than T
forces ḟ(n) = g(n), for all n.

We proceed as follows. By induction on length of s, we construct, for each
s ∈ S, conditions Ts and numbers αs ∈ {0, 1} such that:

(i) if s1 ⊂ s2, then Ts1 ⊃ Ts2 ,
(ii) if length(s) = n, then Ts � ḟ(n) = αs,
(iii) for every n, the conditions Ts, s ∈ ωn

2 , are mutually incompat-
ible, and moreover, there are mutually incompatible sequences
ts ∈ S, s ∈ ωn

2 , such that for each s ∈ ωn
2 , ts ∈ Ts and for all

t ∈ Ts, either t ⊂ ts or ts ⊂ t.

(28.9)

The “moreover” clause in (iii) is stronger than incompatibility of the condi-
tions and implies that any condition stronger than

⋃
s∈ωn

2
Ts is compatible

with some Ts, s ∈ ωn
2 .

The construction of conditions satisfying (28.9) is straightforward: We
let t∅ = ∅ and T∅ ⊂ T be any condition that decides ḟ(0): T∅ � ḟ(0) =
α∅. Having defined Ts, ts, and αs for s ∈ ωn

2 we first pick ℵ2 incompatible
extensions ts�i, i < ω2, of ts in Ts, and then find Ts�i ⊂ Ts and αs�i, i < ω2,
such that Ts�i � ḟ(n + 1) = αs�i and that each t ∈ Ts�i is compatible
with ts�i. Note that if s1 ⊂ s2, then ts1 ⊂ ts2 .

For any function g : ω → {0, 1}, we define a tree T (g) ⊂ S (not necessarily
a perfect tree) as follows: If β̄ = 〈β0, . . . , βn〉 is a finite sequence of zeros and
ones, we let

(28.10) T (β̄) =
⋃
{Ts : s ∈ ωn

2 and 〈β0, . . . , βn〉 = 〈α∅, . . . , αs�k, . . . , αs〉}

and

(28.11) T (g) =
∞⋂

n=1
T (g�n).

Each T (β̄) is a condition (a perfect tree) and by the remark following (28.9),
we have

T (β̄) � ḟ(k) = βk (k = 0, . . . , n).

Thus if we show that there is at least one g : ω → {0, 1} such that the
tree T (g) contains a perfect subtree, our proof will be complete.

Lemma 28.11. There exists some g : ω → {0, 1} such that T (g) contains
a perfect subtree.



28. More Applications of Forcing 563

Proof. Let us assume that no T (g) has a perfect subtree. Then by (28.8)
there exists, for each g : ω → {0, 1}, a function hg : T (g) → ω3 such that
hg(s) ≥ hg(t) whenever s ⊂ t, and that for each t ∈ T (g), there are at most ℵ1

elements s ⊃ t in T (g) such that hg(s) = hg(t).
By induction, we construct a sequence s0 ⊂ s1 ⊂ . . . ⊂ sn ⊂ . . . such

that for all n, sn ∈ ωn
2 . At stage n we consider the node tsn of Tsn . Since

there are only ℵ1 functions g : ω → {0, 1}, there exists an i < ω2 such that
hg(ts �

n i) < hg(tsn) for all g for which hg(ts �
n i) is defined. We let sn+1 = s�

n i.
Given the sequence sn, n = 0, 1, . . . , we consider the function g(n) = αsn ,

n < ω. By (28.10) and (28.11), each tsn belongs to T (g), and so hg(tsn) is
defined for all n. However, then the sequence hg(ts0) > hg(ts1) > . . . of
ordinals is descending, a contradiction. ��

A Cohen Real Adds a Suslin Tree

We proved earlier that Suslin trees exist in L, and that adding generically
a subset of ω1 with countable conditions adds a Suslin tree. It turns out that
adding a Cohen real also adds a Suslin tree. This result is due to Shelah; the
following proof is due to Todorčević.

Theorem 28.12 (Shelah). If r is a Cohen real over V then in V [r] there
exists a Suslin tree.

Proof. We start with an alternative construction of an Aronszajn tree, a mod-
ification of the construction in Theorem 9.16.

Lemma 28.13. There exists an ω1-sequence of functions 〈eα : α < ω1〉 such
that

(i) eα is a one-to-one function from α into ω, for each α < ω1;
(ii) for all α < β < ω1, eα(ξ) = eβ(ξ) for all but finitely many

ξ < α.

(28.12)

Proof. Exercise 28.1 (or see Kunen [1980], Theorem II.5.9). ��

The set {eα�β : α, β ∈ ω1} ordered by inclusion is a tree. Since every
node at level α is a finite change of eα, all levels are countable; there are no
uncountable branches and so the tree is an Aronszajn tree (Exercise 28.2).

For any function r : ω → ω, consider the tree

(28.13) Tr = {r ◦ (eα�β) : α, β ∈ ω1};

again, Tr is an ω1-tree whose all levels are countable (but need not be Aron-
szajn in general). We prove Theorem 28.12 by showing that if 〈eα : α < ω1〉
is, in V , a sequence that satisfies (28.12) and if r is a Cohen real over V , then
in V [G], Tr is a Suslin tree.
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We show that Tr has no uncountable antichains; this, and an easy argu-
ment using genericity of r, also shows that Tr has no uncountable branches.
If Tr has an uncountable antichain then, because every uncountable subset
of ω1 in V [r] has an uncountable subset in V (Exercise 28.3), there exist in V ,
an uncountable set W ⊂ ω1 and a function 〈α(β) : β ∈ W 〉 such that

(28.14) {r ◦ (eα(β)�β) : β ∈ W}

is an antichain.
For each β ∈ W , let tβ = eα(β)�β, and let p be a Cohen forcing condition;

we shall find a stronger condition q and β1, β2 ∈ W that forces that ṙ◦tβ1 and
ṙ ◦ tβ2 are compatible functions; therefore no condition forces that (28.14) is
an antichain in Tr.

Let p = 〈p(0), . . . , p(n − 1)〉. For each β ∈ W , let Xβ be the finite set
{ξ < β : tβ(ξ) < n}. By the ∆-Lemma (Theorem 9.18) there exist a finite
set S ⊂ ω1 and an uncountable Z ⊂ W such that when β1, β2 ∈ Z, then
Xβ1 ∩ Xβ2 = S and that tβ1�S = tβ2�S.

Now let β1 < β2 be two elements of Z. We claim that there exists a con-
dition q ⊃ p such that q ◦ (tβ2�β1) = q ◦ tβ1 (q obliterates the disagreement).
Such a condition q forces ṙ ◦ tβ1 ⊂ ṙ ◦ tβ2 .

To construct q, let m be greater than tβi(ξ), i = 1, 2, for each ξ < β1

such that tβ1(ξ) �= tβ2(ξ). Let k be such that n ≤ k < m. If there exist
ξ, η < β1 such that tβ2(η) = k and tβ1(η) = tβ2(ξ), let l = tβ1(ξ) and let
q(k) = p(l). More generally, let f = t−1

β1
◦ tβ2 and let f i, i < ω, denote the

i-th iterate of f . If there exist ξ, η < β1 such that tβ2(η) = k and η = f i(ξ)
for some i, let l = tβ1(ξ) and let q(k) = p(l). Otherwise, let q(k) = 0. Verify
that q obliterates the disagreement. ��

Consistency of Borel’s Conjecture

A set X of real numbers has strong measure zero if for every sequence 〈εn :
n < ω〉 of positive real numbers there is a sequence 〈In : n < ω〉 of intervals
with length(In) ≤ εn such that X ⊂

⋃∞
n=0 In.

Borel’s Conjecture. All strong measure zero sets are countable.

Borel’s Conjecture fails under CH—see Exercise 26.18. The following the-
orem shows that it is consistent with ZFC:

Theorem 28.14 (Laver). Assuming GCH there is a generic extension V [G]
in which 2ℵ0 = ℵ2 and Borel’s Conjecture holds.

Laver’s proof uses the countable support iteration (of length ω2) of a forc-
ing notion that adds a Laver real. We shall now describe this forcing. (Subse-
quently, Laver proved that an iteration of Mathias forcing also yields Borel’s
Conjecture).
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Definition 28.15. A tree p ⊂ Seq is a Laver tree if it has a stem, i.e.,
a maximal node sp ∈ p such that sp ⊂ t or t ⊂ sp for all t ∈ p, and

(28.15) ∀t ∈ p if t ⊃ sp then the set Sp(t) = {a ∈ ω : t�a ∈ p} is infinite.

Laver forcing has as forcing conditions Laver trees, partially ordered by
inclusion. If G is a generic set of Laver trees, let

(28.16) f =
⋃
{sp : p ∈ G};

the function f : ω → ω is a Laver real. Since

G = {p : sp ⊂ f and ∀n ≥ |s| f(n) ∈ Sp(f�n)}

we have V [G] = V [f ].
Consider a canonical enumeration of Seq in which s appears before t if

s ⊂ t and s�a appears before s�(a + 1). If p is a Laver tree, then the part
of p above the stem is isomorphic to Seq and we have an enumeration sp

0 = sp,
sp
1, . . . , sp

n, . . . of {t ∈ p : t ⊃ sp}, for every Laver tree p. Let

(28.17) q ≤n p if q ≤ p and sp
i = sq

i for all i = 0, . . . , n

(in particular q ≤0 p means that q ≤ p and p and q have the same stem).
A fusion sequence is a sequence of Laver trees such that

p0 ≥0 p1 ≥1 p2 ≥2 . . . ≥n . . . .

Lemma 28.16. If {pn}∞n=0 is a fusion sequence then p =
⋂∞

n=0 pn is a Laver
tree (the fusion of {pn}∞n=0), and p ≤n pn for all n.

Proof. Let s0 bet the stem of p0. Then s0 is the stem of p, and the set
Sp(s0) =

⋂
n Spn(s0) is infinite. For every a ∈ Sp(s0), the set Sp(s�

0 a) =⋂
n Spn(s�

0 a) is infinite, and so on. ��

If p is a Laver tree and s ∈ p, then p�s is the Laver tree {t ∈ p : t ⊂ s or
t ⊃ s}. Let p be a Laver tree and let n ≥ 0. For each i ≤ n, let pi be the tree
with stem sp

i that is the union of all p�(sp
i
�a) where a ∈ Sp(sp

i ) and sp
i
�a is

not one of the sp
j , j ≤ n. The trees p0, . . . , pn (the n-components of p) form

a maximal set of incompatible subtrees of p.
Let q0, . . . , qn be the Laver trees such that qi ≤0 pi for all i = 0, . . . , n.

The amalgamation of {q0, . . . , qn} into p is the tree

(28.18) r = q0 ∪ . . . ∪ qn;

we have r ≤n p.

Lemma 28.17. If p � Ẋ : ω → V then there exists a q ≤0 p and a count-
able A such that q � Ẋ ⊂ A.
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Proof. Let {un}n be a sequence of natural numbers such that each number
appears infinitely often. We shall construct a fusion sequence {pn}n with
p0 = p, and finite sets An so that the fusion forces Ẋ ⊂

⋃
n An. At stage n,

let p0, . . . , pn be the n-components of the Laver tree pn. For each i = 0,
. . . , n if there exist a condition qi ≤0 pi and some ai

n such that

(28.19) qi � Ẋ(un) = ai
n

we choose such qi and ai
n (otherwise let qi = pi). Let An be the collection of

the ai
n, and let pn+1 be the amalgamation of {q0, . . . , qn} into pn. We have

pn+1 ≤n pn.
Let p∞ be the fusion of {pn}∞n=0 and let A =

⋃∞
n=0 An. We have p∞ ≤0 p;

to prove that p∞ � Ẋ ⊂ A, let q ≤ p∞ and let u ∈ ω. Let q̄ ≤ q and a be
such such that q̄ � Ẋ(n) = a. Let n be large enough so that u = un and that
the stem of q̄ is in the set {spn

0 , . . . , spn
n }, say s = spn

i .
Let pi be the ith n-component of pn. As q̄ ∩ pi ≤0 pi and decides Ẋ(un),

we have chosen ai
n = a at that stage, and therefore a ∈ A, and q̄ � Ẋ(u) ∈ A.

Hence p∞ � Ẋ ⊂ A. ��

Corollary 28.18. The Laver forcing preserves ℵ1. ��

The following property of the Laver forcing is reminiscent of Prikry and
Mathias forcings:

Lemma 28.19. Let p � ϕ1 ∨ . . . ∨ ϕk. Then there exists some q ≤0 p such
that

(28.20) ∃i ≤ k q � ϕi.

Proof. Assume to the contrary that the lemma fails. Let s be the stem of p;
there are only finitely many a ∈ Sp(s) such that some q ≤0 p�(s�a) satis-
fies (28.20). By removing the part of p above these finitely many nodes we
obtain p1 ≤0 p. For every s�a ∈ p1 there are only finitely many b ∈ Sp(s�a)
such that ∃q ≤0 p1�(s�a�b) with property (28.20). By removing all such b’s
(and the nodes above them) we get p2 ≤1 p1. Continuing in this way we
construct a fusion sequence p ≥0 p1 ≥1 p2 ≥2 . . . and r =

⋂∞
n=0 pn. If t ∈ r,

then there is no q ≤0 r�t with property (28.20). But then no q ≤ r forces
∃i ≤ k ϕi, a contradiction. ��

The main idea of Laver’s proof is the following property of the Laver forc-
ing. It shows that forcing with Laver trees kills uncountable strong measure
zero sets.

Lemma 28.20. Let G be a generic set for the Laver forcing. Every set of
reals in the ground model that has strong measure zero in V [G] is countable
in V [G].

We begin by proving two technical lemmas:
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Lemma 28.21. Let p be a Laver tree with stem s and let ẋ be a name for
a real in [0, 1]. Then there exist a condition q ≤0 p and a real u such that for
every ε > 0,

q�(s�a) � |ẋ − u| < ε

for all but finitely many a ∈ Sq(s).

Proof. Let {tn}n be an enumeration of {s�a : a ∈ Sp(s)}. For each n we
find, by Lemma 28.19, a condition qn ≤0 p�tn and an interval Jn = [m

n , m+1
n ]

such that qn � ẋ ∈ Jn. There is a sequence 〈kn : n < ω〉 so that the Jkn form
a decreasing sequence converging to a unique real u. Let q =

⋃∞
n=0 qkn . ��

Lemma 28.22. Let p be a condition with stem s and let 〈ẋn : n < ω〉 be
a sequence of names for reals. Then there exist a condition q ≤0 p and a set
of reals {ut : t ∈ q, t ⊃ s} such that for every ε > 0 and every t ∈ q, t ⊃ s,
for all but finitely many a ∈ Sq(t),

q�(t�a) � |ẋk − ut| < ε

where k = length(t) − length(s).

Proof. Using Lemma 28.21 we get p1 ≤0 p and us. For every immediate
successor t of s in p1, we get qt ≤0 p1�t and ut, and let p2 =

⋃
t qt. By

repeating this argument, we build a fusion sequence p ≥0 p1 ≥1 p2 ≥2 . . .,
and let q =

⋂∞
n=0 pn. ��

Proof of Lemma 28.20. Let f be the Laver real, and let

(28.21) εn = 1/f(n).

We shall show that if X ∈ V is uncountable, then for some n, the sequence
〈εk : k ≥ n〉 witness that X does not have strong measure zero.

Thus let X ∈ V be a subset of [0, 1] and let p be such that p � X has
strong measure zero. Let s be the stem of p of length n. Let 〈ẋk : k ≥ n〉
be a sequence of names of reals, and for each k ≥ n let İk be the interval of
length ε̇k centered at ẋk. Let us assume that p � X ⊂

⋃
k≥n İk. We shall find

a stronger condition that forces that X is countable.
Let q ≤0 p and {ut : t ∈ q, t ⊃ s} be a condition and a countable set of

reals obtained in Lemma 28.22. We will show that q � X ⊂ {ut}t.
Let v /∈ {ut : t ∈ q, t ⊃ s}; we shall find some r ≤ q such that r � v /∈ İk,

for all k ≥ n. We construct r by induction on the levels of q; at stage k ≥ n
we ensure that r � v /∈ İk.

We describe the construction for k = n; this can be repeated for all k ≥ n.
Let ε = |v−us|/2. For all but finitely many a ∈ Sq(s), q�(s�a) � |ẋn−us| <
ε. Since q�(s�a) � ε̇n = 1/ḟ(n) = 1/a, we have q�(s�a) � |ẋn − v| > ε̇n, or
v /∈ İn, for all but finitely many a. Thus we ensure r � v /∈ İn by removing
finitely many successors of s. ��
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Laver’s model for the consistency of Borel’s Conjecture is obtained by
iteration with countable support of length ω2. At each stage of the itera-
tion, one adds a Laver real by forcing with Laver trees. If the ground model
satisfies GCH, then the iteration preserves cardinals and cofinalities, makes
2ℵ0 = ℵ2, and the resulting model satisfies Borel’s Conjecture.

We state the relevant properties of Laver’s model without proof:

Firstly, for every countable set X of ordinals in V [G] there is a set Y ∈ V ,
countable in V , such that X ⊂ Y . This is the analog of Lemma 28.17 (see
Lemma 6(iii) of Laver [1976]) and implies that ℵ1 is preserved by the iteration.
In Chapter 31 we prove a more general result, showing that this property is
preserved by countable support iteration of proper forcing.

Secondly, the iteration satisfies the ℵ2-chain condition (Lemma 10(ii) of
Laver [1976]). This can be proved as in Exercise 16.20, or Lemma 23.11,
by first showing that for every α < ω2, the Laver iteration of length α has
a dense subset of cardinality ℵ1. Again, this is a general property of countable
support iteration of proper forcing, when at each stage, the βth iterate Q̇β

has cardinality ℵ1.
The key property of Laver’s iteration is that there are no uncountable

strong measure zero sets in V [G]. If X is a set of reals of size ℵ1 in V [G],
then because of the ℵ2-chain condition, X appears at some stage V [Gα],
and by forcing a Laver real, one makes X not to have strong measure zero
in V [Gα+1]. However, one has to show that X fails to have strong mea-
sure zero in V [G], not just in V [Gα+1]. The main technical lemma (Laver’s
Lemma 15) proves that, and is analogous to Lemma 28.20, working with
iteration of Laver forcing rather than with Laver trees only.

In his paper [1983] Baumgartner gives the consistency proof of Borel’s
Conjecture using the countable support iteration of Mathias forcing. His
Theorem 7.1 shows that the iteration of either Laver or Mathias forcing pre-
serves ℵ1, and if CH holds in the ground model then iteration of length ω2

satisfies the ℵ2-chain condition. He also gives a detailed proof of Borel’s Con-
jecture in the iteration of Mathias forcing.

κ+-Aronszajn Trees

Theorem 9.16 states that there exists an Aronszajn tree, i.e., a tree of
length ω1 with countable levels and no branch of length ω1. In Chapter 9 we
also defined what it means for an infinite cardinal κ to have the tree property:
Every tree of height κ and levels of size < κ has a branch of length κ. When
κ is inaccessible then the tree property is equivalent to weak compactness.

Let κ+ be a successor cardinal. A tree of height κ+ is a κ+-Aronszajn
tree if its levels have size at most κ and it has no branch of length κ+. When
κ is singular, the tree property of κ+ is related to large cardinals; we shall
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now address the case when κ is regular. We discuss the case of ℵ2 as it easily
generalizes to any successor of a regular. The construction in Theorem 9.16
generalizes to ℵ2 under the assumption that 2ℵ0 = ℵ1 (see Exercises 28.5
and 28.6). It follows that an ℵ2-Aronszajn tree exists unless there is a weakly
compact cardinal in L:

Theorem 28.23 (Silver). If there exists no ℵ2-Aronszajn tree then ℵ2 is
a weakly compact cardinal in L.

Proof. If ℵ2 is a successor cardinal in L, then there exists some A ⊂ ω1 such
that ℵL[A]

1 = ℵ1 and ℵL[A]
2 = ℵ2. In L[A], 2ℵ0 = ℵ1 holds and therefore there

exists a special ℵ2-Aronszajn tree T . But then T is a special ℵ2-Aronszajn
tree in V . Thus if there are no ℵ2-Aronszajn trees, ℵ2 is inaccessible in L.

To show that λ = ℵ2 is weakly compact in L if λ has the tree property,
let B ∈ L be (in L) a λ-complete algebra of subsets of λ and |B| = λ. We
shall find a λ-complete nonprincipal ultrafilter U on B with U ∈ L. (Then,
by the argument in Lemma 10.18, it follows that λ is weakly compact in L.)

Let α < (λ+)L be a limit ordinal such that B ∈ Lα and Lα � |B| = λ.
Let {Xξ : ξ < λ} be an enumeration, in L, of P (λ)∩Lα, and let T be the set
of all constructible functions f ∈ {0, 1}<λ such that∣∣⋂{Xξ : f(ξ) = 1} ∩

⋂
{λ − Xξ : f(ξ) = 0}

∣∣ = λ.

Since λ is inaccessible in L, T is a λ-tree with levels of size < λ.
Since λ has the tree property, T has a branch of length λ, a function

F : λ → {0, 1} such that F �ν ∈ T for all ν < λ. If we let D = {Xξ : F (ξ) = 1}
then D is (in V ) a λ-complete nonprincipal ultrafilter on P (λ) ∩ Lα. Let
Ult = UltD Lα be the ultrapower of Lα by D (using functions in Lα), let Lβ

be its transitive collapse and let j : Lα → Lβ be the corresponding elementary
embedding.

If e ∈ Lα is an enumeration of B, e : λ → B, then E = j(e) ∈ Lβ and
U = {e(ξ) : λ ∈ E(ξ)} is a constructible λ-complete nonprincipal ultrafilter
on B. ��

The following theorem shows that it is consistent (relative to a weakly
compact cardinal) that there exist no ℵ2-Aronszajn trees.

Theorem 28.24 (Mitchell). If κ is a weakly compact cardinal then there
is a generic extension in which κ = ℵ2, 2ℵ0 = ℵ2, and there exists no ℵ2-
Aronszajn tree.

The model is obtained by a two-stage iteration P ∗ Q̇. The forcing P = Pκ

adds κ Cohen reals to the ground model; let G = Gκ be generic on P ; for each
α < κ, let Pα be the forcing for adding α Cohen reals, and let Gα = G∩Pα.

In V [G], consider the forcing conditions q for adding κ Cohen subsets
of ω1: q is a 0–1 function on a countable subset of κ. Let Q be the set of all
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such q that satisfy, in addition, the requirement that

q�α ∈ V [Gα] (all α < κ).

This amounts to forcing with pairs (p, q) where p ∈ P and q is a countable
function on a subset of κ with values q(α) ∈ B(Pα) (then if G is generic on P ,
we have q̄ ∈ Q where q̄(α) = 1 if q(α) ∈ G and q̄(α) = 0 if q(α) /∈ G).

We list some properties of P ∗ Q̇ which are not difficult to verify. Let G
be generic on P and let H be V [G]-generic on Q.

First, every countable set of ordinals in V [G][H ] is in V [G]. Hence ℵ1 is
preserved.

Second, every cardinal between ℵ1 and κ is collapsed: If ℵ1 ≤ δ < κ, let
t be the following function on ω1:

t(α) = {n ∈ ω : ∃f ∈ H f(δ + ω · α + n) = 1}.

The function maps ω1 onto P (ω)V [Gδ+ω1 ] which has cardinality δ.
Third, P ∗ Q̇ satisfies the κ-chain condition. This is proved similarly to

the κ-chain condition of the Lévy collapse.
Finally, it is clear that 2ℵ0 = κ in V [G][H ]. The main technical lemma

(Lemma 3.8 of Mitchell [1972/73]) asserts the following: For α < κ let Qα =
{q ∈ Q : dom(q) ⊂ α}, and Hα = H ∩ Qα. If γ < κ is a regular uncountable
cardinal and if t ∈ V [G][H ] is an ordinal function on γ such that t�α ∈
V [Gγ ][Hγ ] for all α < γ, then t ∈ V [Gγ ][Hγ ].

Now one shows that κ has the tree property in V [G][H ] as follows: Let
B = B(P ∗ Q̇) and let Ṫ be a B-name for a binary relation on κ that is
in V [G][H ] a tree of height κ with levels of size < κ. There is a closed
unbounded set C ⊂ κ such that if γ ∈ C is an inaccessible cardinal then
Bγ = B(Pγ ∗ Q̇γ) is a complete Boolean subalgebra of B(P ∗ Q̇) and that
Ṫ ∩ (γ × γ) is a Bγ-valued name for Ṫ �γ, the first γ levels of Ṫ .

To show that Ṫ has a branch of length κ, assume that it has none; that this
is so in V B is a Π1

1 sentence true in (κ, B, Ṫ ) and since κ is Π1
1-indescribable,

the same is true in V Bγ : Ṫ �γ has no branch of length γ in V Bγ . But any
node in the γth level of T produces an ordinal function on γ whose initial
segments are in V Bγ ; by the technical lemma alluded to above, the function
itself is in V Bγ , and is a branch in Ṫ �γ. A contradiction. ��

A related result is the following theorem that we state without proof:

Theorem 28.25 (Laver-Shelah). If there exists a weakly compact cardinal
then there exists a generic extension in which 2ℵ0 = ℵ1 and there exists no
ℵ2-Suslin tree. ��

(In the Laver-Shelah model, 2ℵ1 is greater than ℵ2.)



28. More Applications of Forcing 571

Exercises

28.1. Find 〈eα : α < ω1〉 such that each eα : α → ω is one-to-one and if α < β
then eα and eβ�α differ at only finitely many places.

[Construct the eα by induction on α, such that for every α, ω − ran(eα) is
infinite.]

28.2. Given 〈eα : α < ω1〉 as in Exercise 28.1, show that the set 〈eα�β : α, β ∈ ω1〉
is an Aronszajn tree.

28.3. If r is a Cohen real over V , then for every uncountable X ⊂ ω1 in V [r] there
exists an uncountable Y ⊂ X in V .

[The notion of forcing is countable.]

28.4. A Laver real eventually dominates every g : ω → ω in V .

28.5. If 2ℵ0 = ℵ1, then there exists an ℵ2-Aronszajn tree.
[Imitate the proof of Theorem 9.16. Let Q be the lexicographically ordered

set ω<ω
1 ; every α < ω2 embeds in any interval of Q. Construct T using bounded

increasing sequences in Q of length < ω2. At limit steps of cofinality ω extend all
branches that represent bounded sequences in Q; here we use 2ℵ0 = ℵ1.]

28.6. The tree constructed in Exercise 28.5 is special, i.e., the union of ℵ1 an-
tichains.

[Compare with Exercises 9.8 and 9.9.]

Historical Notes

The construction of a nonconstructible ∆1
3 real in Theorem 28.1 is as in Jensen

[1970]. Namba’s forcing appeared in Namba [1971]; in [1976] Bukovský obtains the
same result by a somewhat different forcing construction. The result that adding
a Cohen real adds a Suslin tree is due to Shelah [1984]; the present proof is due to
Todorčević [1987] (for details see Bagaria [1994]).

The consistency of Borel’s Conjecture is due to Laver [1976].
For the construction of a κ+-Aronszajn tree if 2<κ = κ, see Specker [1949]. The

consistency proof of the tree property for ℵ2, as well as the proof of Silver’s Theo-
rem 28.23 appeared in Mitchell [1972/73]. Theorem 28.25 is in Laver-Shelah [1981].



29. More Combinatorial Set Theory

Ramsey Theory

Ramsey’s Theorem 9.1 has been generalized in many ways, giving rise to an
area of combinatorial mathematics known as Ramsey theory. In this section
we present three results involving combinatorics of infinite sets. For a com-
plete account of Ramsey theory we refer the reader to the book [1980] of
Graham, Rothschild and Spencer.

Theorem 29.1 (Hindman). If N is partitioned into finitely many pieces
then one of the pieces A contains an infinite set H such that a1+ . . .+an ∈ A
whenever a1, . . . , an are distinct members of H.

For the proof, we introduce the concept of an idempotent ultrafilter. If U
and V are ultrafilters on N , let

(29.1) U + V = {X ⊂ N : {m ∈ N : X − m ∈ V } ∈ U}

where X−m = {n : m+n ∈ X}. See Exercises 29.1 and 29.2 for an alternative
characterization. In the proof we use the following lemma due to S. Glazer:

Lemma 29.2. There exists a nonprincipal ultrafilter U on N such that U +
U = U .

An ultrafilter U such that U + U = U is idempotent. While Glazer’s
Lemma can be proved directly, it can be deduced from a more general result
on topological semigroups. Let βN be the space of all ultrafilters on N , the
Stone-Čech compactification on N . The operation U +V on βN is a contin-
uous function of U for any fixed V , thus making (βN , +) a left-topological
semigroup. It can be shown that every compact left-topological semigroup
has an idempotent element (Exercises 29.3 and 29.4).

Proof of Theorem 29.1. Given a partition of N into finitely many pieces, let
U be an idempotent ultrafilter, and let A be a piece of the partition such
that A ∈ U . We construct a sequence A = A0 ⊃ A1 ⊃ A2 ⊃ . . . with
Ak ∈ U and a0 < a1 < a2 < . . . as follows: Let a0 ∈ A0. Given Ak ∈ U and
ak−1, we find ak > ak−1 such that ak ∈ Ak and that Ak − ak ∈ U (since
{n : Ak − n ∈ U} ∈ U). Let Ak+1 = Ak ∩ (Ak − ak).
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Now let H = {ak : k < ω}. To verify that all finite sums from H are in A,
one shows, by induction on n, that if k1 > . . . > kn then ak1 +. . .+akn ∈ Akn .

��

A similar technique can be used to give a proof of the following classical
theorem in Ramsey Theory. An arithmetic progression (of length k) is a finite
set of the form

(29.2) {n, n + d, n + 2d, . . . , n + (k − 1)d}

where d is a positive integer.

Theorem 29.3 (van der Waerden). If N is partitioned into finitely many
pieces then one of the pieces contains arbitrarily long arithmetic progressions.

For the proof of Theorem 29.3, we fix an integer k ≥ 1 and consider the
space (βN)k. Let I be the set of all arithmetic progressions of length k, and
let Ī be its closure in (βN)k. Arguments similar to those in Exercise 29.3
can be used to show that if R ⊂ βN is any minimal right ideal and U ∈ R,
then 〈U, . . . , U〉 ∈ Ī. For details, we refer reader to Todorčević’s book [1997].

Now to prove the theorem, let U be a nonprincipal ultrafilter on N that
belongs to some minimal right ideal on βN . Let A be the piece of the given
partition such that A ∈ U , and let A∗ = {V ∈ βN : A ∈ V }. If k ≥ 1 is
any integer, let I and Ī be as above. Since 〈U, . . . , U〉 ∈ Ī, it follows that
(A∗ × . . .× A∗) ∩ Ī is nonempty, and hence I ∩ (A × . . .× A) �= ∅. Therefore
A contains an arithmetic progression of length k.

The third result, which we state without a proof, is the Hales-Jewett
Theorem. Let Σ be a finite set, called alphabet, and let W be the set of
all words on Σ, the set of all finite sequences in Σ. Let v be a variable, an
object not in Σ. The set V of all variable words over Σ is the set of all words
on Σ ∪ {v} in which v occurs. An instance of a variable word x ∈ V is the
result of substituting some a ∈ Σ for v in x.

Theorem 29.4 (Hales-Jewett). If W is partitioned into finitely many
pieces then there is a variable word x ∈ V whose all instances lie in the
same piece of the partition.

We refer the reader to Todorčević’s book for a proof using topological
semigroups.

Gaps in ωω

Consider the partial order on ωω by eventual domination: f < g if and only
if f(n) < g(n) for all but finitely many n.
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Definition 29.5. Let κ and λ be regular cardinals. A (κ, λ)-gap in ωω is
a pair of transfinite sequences 〈fα : α < κ〉 and 〈gβ : β < λ〉 in ωω such that

(i) fα1 < fα2 if α1 < α2,
(ii) gβ1 > gβ2 if β1 < β2,
(iii) fα < gβ for all α < κ and β < λ,
(iv) there is no h between {fα}α and {gβ}β, i.e., no h such that

fα < h < gβ for all α and β.

(29.3)

We shall prove a classical theorem of Hausdorff stating that (ω1, ω1)-gaps
exist.

First we prove that (ω, ω)-gaps do not exist:

Lemma 29.6. If f0 < f1 < . . . < fn < . . . < gm < . . . < g1 < g0, then there
exists an h between {fn}n and {gm}m.

Proof. For each k there exists an nk such that for all n ≥ nk, mk(n) =
max{f0(n), . . . , fk(n)} ≤ min{g0(n), . . . , gk(n)} = Mk(n). Choose such nk’s
so that n0 < n1 < . . . < nk < . . ., and let h be a function such that mk(n) ≤
h(n) ≤ Mk(n) when nk ≤ n < nk+1. ��

Another easily seen fact is that a (κ, λ)-gap exists if and only if a (λ, κ)-gap
exists (Exercise 29.5). That some gaps exists follows from Zorn’s Lemma. In
fact, there exists an (ω, b)-gap, see Exercise 29.6 (and there are no (ω, λ)-gaps
for λ < b, see Exercise 29.7).

Apart from Hausdorff’s Theorem 29.7, the existence of specific (κ, λ)-gaps
is unprovable: For instance, (c, c)-gaps may or may not exist, depending on
the model. A detailed account of known consistency results on gaps can be
found in Scheepers [1993].

Theorem 29.7 (Hausdorff). There exists an (ω1, ω1)-gap in ωω.

Proof. We construct an increasing 〈fα : α < ω1〉 and a decreasing 〈gβ : β <
ω1〉 such that

(i) for all α and β, limn→∞ gβ(n) − fα(n) = ∞,
(ii) for every α < ω1 and every n ∈ ω, there are only finitely many

β < α such that ∀k ≥ n fα(k) < gβ(k).

(29.4)

Let us show first that (29.4) guarantees that {fα}α, {gβ}β is a gap. As-
sume that h ∈ ωω is between {fα}α, {gβ}β . Then there exist an uncountable
Z ⊂ ω1 and some n ∈ ω such that for all k ≥ n and h(k) < gα(k) for
all k ≥ n. Thus fα(k) < gβ(k) for all α, β ∈ Z and all k ≥ n. Now if α is
the ωth element of Z, the set {β < α : ∀k ≥ n fα(k) < gβ(k)} is infinite,
contradicting (29.4)(ii).

We construct fα and gα by induction on α. Let f0(n) = 0 and g0(n) = n
for all n. Let γ < ω1. If fα and gβ satisfy (29.4) for all α, β ≤ γ, then it is
easy to find fγ+1 and gγ+1 such that (29.4) remains true.
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Thus let γ be a limit ordinal and assume that {fα}α<γ {gβ}β<γ sat-
isfy (29.4). Let us use the following terminology: If f < gβ for all β < γ and
if C ⊂ γ, we say that f is near C if for every n the set {β ∈ C : ∀n ≥ k
f(k) < gβ(k)} is finite. Note that if f < f ′ and f is near C then f ′ is near C.

We wish to find f and g such that fα < f < g < gβ for all α, β < γ
(and limn(g(n) − f(n)) = ∞) and that f is near γ. Let h be some function
such that fα < h < gβ for all α, β < γ; such an h exists by Lemma 29.6. As
each fα is near α, it follows that h is near α for all α < γ. It now suffices to
find some f > h such that f < gβ for all β < γ and such that f is near α.
Then g is easily found. For each n let Cn = {β < γ : ∀k ≥ n h(k) < gβ(k)}.
Clearly, C0 ⊂ C1 ⊂ . . . ⊂ Cn ⊂ . . .. As long as all Cn are finite, h is near γ
and we are done. Thus assume that the Cα are eventually infinite.

We construct inductively a sequence h = h0 < h1 < . . . < hn < . . . of
functions below {gβ}β<γ such that for each n, hn+1 is near Cn. Then if f is
any function between {hn}n<ω and {gβ}β<γ and f(n) ≥ h(n) for all n, then
for each n, f is near the set {β < γ : ∀k ≥ n f(k) < gβ(k)} ⊂ Cn and hence
f is near γ.

Let n ≥ 0. If Cn is finite, any hn+1 is near Cn; thus assume that Cn is
infinite. Since for each α < γ, the set Cn ∩ α is finite (because h is near α),
the order-type of Cn is ω, and Cn is cofinal in γ. Let β0 < β1 < . . . < βi < . . .
be the enumeration of Cn. It suffices to find hn+1 > hn such that hn+1 < gβi

for all i, and that for every m,

(29.5) {i < ω : ∀k ≥ m hn+1(k) < gβi(k)} is finite.

Let m0 < m1 < . . . < mi < . . . be such that for every i,

hn(k) < gβi(k) < gβi−1(k) < . . . < gβ0(k) for all k ≥ mi.

Then the function hn+1 defined by

hn+1(k) =
{

hn(k) if k < m0,

gβi(k) if mi ≤ k < mi+1

satisfies (29.5) and hence is near Cn. ��

The Open Coloring Axiom

We shall now discuss the axiom OCA (Open Coloring Axiom) that has a num-
ber of applications in combinatorial set theory. Let X be a set of reals (or
X ⊂ N , or X ⊂ P (ω), etc.) and let K ⊂ [X ]2. We say that K is open if
the set {(x, y) : {x, y} ∈ K} is an open set in the space X × X . The Open
Coloring Axiom (OCA) states:

(29.6) Let X be a subset of R. For any partition [X ]2 = K0 ∪ K1 with
K0 open, either there is an uncountable Y ⊂ X such that [Y ]2 ⊂ K0,
or there exist sets Hn, n ∈ ω, such that X =

⋃∞
n=0 Hn and [Hn]2 ⊂

K1 for all n.
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The axiom OCA is consistent with ZFC; we discuss this in Chapter 31. It
should be noted that its dual version is false; Exercise 29.9. OCA has a num-
ber of consequences; see Todorčević [1989]. (One example is Exercise 29.10.)
The most notable is the following result:

Theorem 29.8 (Todorčević). If OCA holds then b = ℵ2.

First we show that under OCA, b > ω1.

Lemma 29.9. Assume OCA. Then every subset of ωω of size ℵ1 is bounded.

Proof. In order to show that every subset X ⊂ ωω of size ℵ1 is bounded, it is
clearly enough to show this for every increasing X = {fα}α<ω1 (i.e., fα < fβ

if α < β), and assume that each fα is an increasing function from ω to ω. Let
X = {fα}α be such and let [X ]2 = K0 ∪K1 where K0 consists of all {fα, fβ}
with α < β such that fα(k) > fβ(k) for some k.

First assume that X =
⋃∞

n=0 Hn and [Hn]2 ⊂ K1 for all n. Then for
some n, Hn is uncountable, and if α < β are such that fα, fβ ∈ Hn then
fα(k) ≤ fβ(k) for all k, and fα(k) < fβ(k) for some k. Then if we let Sα =
{(m, k) : m ≤ fα(k)}, we have an ω1-chain of subsets of ω×ω, a contradiction.

Thus, assuming OCA, there is an uncountable Y ⊂ X such that [Y 2] ⊂
K0. We claim that Y is bounded (and it follows that X is bounded). To
prove the claim, assume that Y is not bounded and let {gα : α < ω1} be the
increasing enumeration of Y . For each t ∈ ω<ω that is an initial segment of
some g ∈ Y , choose αt such that t ⊂ gαt . Then let γ > supt αt, and let k0 be
such that for uncountably many β, gγ(k) < gβ(k) for all k ≥ k0. Thus there
is an uncountable Z ⊂ ω1 − γ such that gγ(k) < gβ(k) for all β ∈ Z and all
k ≥ k0 and that gβ1�k0 = gβ2�k0 whenever β1, β2 ∈ Z.

Now let m ≥ k0 be the least m such that the set {gβ(m) : β ∈ Z} is
infinite (m exists because {gβ}β∈Z is not bounded). There exist some t ∈ ωm

and some W ⊂ Z such that gβ�m = t for all all β ∈ W and {gβ(m) : β ∈ W}
is infinite.

Let α = αt; since α < γ, there exists a k1 ≥ m such that gα(k) < gγ(k) for
all k ≥ k1. Let β ∈ W be such that gβ(m) ≥ gα(k1). Since gβ�m = t = gα�m,
and since gα and gβ are increasing, we have gα(k) ≤ gβ(k) for all k ≤ k1. But
for k ≥ k1 we have gα(k) ≤ gγ(k) < gβ(k); hence gα(k) ≤ gβ(k) for all k.
This contradicts the assumption that {gα, gβ} ∈ K0. Hence Y is bounded,
and so X is bounded. ��

Toward the proof of b ≤ ℵ2 we prove the following result on gaps:

Lemma 29.10. Assume OCA. There is no (κ, λ)-gap in ωω such that κ
and λ are regular uncountable, and κ > ω1.

Proof. Let κ ≥ λ be regular uncountable with κ > ω1, and assume that
{fα}α<κ, {gβ}β<λ is a gap. In order to define an open partition, we first
modify the gap. For each α < κ there exists an mα such that for λ many β’s,
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fα(k) < gβ(k) for all k ≥ mα; for κ many α’s, this mα is the same. Therefore
there is a gap for which mα = 0 for all α < κ, and we assume that the given
gap is such. For each α < κ, let Sα = {β < λ : ∀k fα(k) < gβ(k)}; |Sα| = λ.

Let X = {(fα, gβ) : α < κ and β ∈ Sα}, a subspace of N ×N . Consider
the partition [X ]2 = K0∪K1 where {(fα, gβ), (fγ , gδ)} ∈ K0 when for some k,
either fα(k) > gδ(k) or fγ(k) > gβ(k). Because of the additional assumption
on the gap, K0 is open.

First assume that X =
⋃∞

n=0 Hn with [Hn]2 ⊂ K1 for each n. Since κ
and λ are uncountable, there exist A ⊂ κ of size κ and for each α < κ some
Tα ⊂ Sα of size λ such that all (fα, gβ) with α ∈ A and β ∈ Tα are in the
same Hn. Since [Hn]2 ⊂ K1, we have ∀k fα(k) < gδ(k) whenever α, γ ∈ A
and δ ∈ Tγ . Thus fix γ ∈ A and let B = Tγ . A is cofinal in κ, B is cofinal
in λ, and if α ∈ A and β ∈ B then ∀k fα(k) < gβ(k). But then the function h
defined by g(k) = minβ∈B gβ(k) is between {fα}α and {gβ}β, a contradiction.

Next assume that there exists an uncountable Y ⊂ X such that [Y ]2 ⊂ K0.
If (fα, gβ) and (fγ , gδ) are distinct elements of Y , then because β ∈ Sα, δ ∈ Sγ

and {(fα, gβ), (fγ , gδ)} ∈ K0, we have α �= γ and δ �= β; thus Y is one-to-one.
Therefore there exist increasing ω1-sequences 〈αν : ν < ω1〉 and 〈βν : ν < ω1〉
such that {(fαν , gβν ) : ν < ω1} ⊂ Y .

Now since κ > ω1, let h = fδ where δ > supν αν . The function h is between
{fαν}ν and {gβν}ν . Now we can find an uncountable Z ⊂ ω1 and some m
such that for all ν, η ∈ Z, fαν (k) < h(k) < gβη(k) for all k ≥ m, and fαν �m =
fαη�m, gβν �m = gβη�m. Since βν ∈ Sαν for each ν, it follows that fαν (k) <
gβη(k) for all k, contrary to the assumption that {(fαν , gβν ), (fαη , gβη)} ∈ K0.

��

Proof of Theorem 29.8. Assuming b > ω2, we shall construct an (ω2, λ)-gap
with λ regular uncountable. Then OCA and Lemma 29.10 complete the proof.

Let 〈fα : α < ω2〉 be an increasing sequence of increasing functions. Since
b > ω2, there exists some g0 such that g0 > fα for all α. Let 〈gβ : β < ϑ〉 be
a maximal decreasing sequence of functions such that gβ > fα for all α. At
successor stages we can let gβ+1(k) = gβ(k) − 1 and so ϑ is a limit ordinal.
We complete the proof by showing that cf ϑ > ω.

Thus assume that ϑ = limn βn. Given α < ω2 let mα(0) < mα(1) <
. . . < mα(n) < . . . be such that for all i = 0, . . . , n, fα(k) < gαi(k) for
all k ≥ mα(n). Since b > ω2, there exists a function h such that h > mα

for all α. Now if we let g(n) = mini≤n gαi(h(n)), then g > fα for all α and
g < gαn for all n, contrary to the maximality of ϑ. ��

Almost Disjoint Subsets of ω1

Let κ be a regular uncountable cardinal, and let X and Y be unbounded
subsets of κ. The sets X and Y are almost disjoint if |X ∩ Y | < κ (cf. Defi-
nition 9.20). Similarly, two functions f and g on κ are almost disjoint if for
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some γ < κ, f(α) �= g(α) for all α > γ (cf. Definition 9.22). Unlike in the
case κ = ω, it is a nontrivial question how large a set of almost disjoint sets
of functions can be; clearly, the maximal size of an almost disjoint family
of subsets of κ is equal to the maximal size of an almost disjoint family of
functions from κ to κ.

For simplicity, we consider the case κ = ω1. This can be generalized to
any regular uncountable κ.

First, there exists an almost disjoint family of size ℵ2 (Lemma 9.23), and
if 2ℵ0 = ℵ1 then there exists one of size 2ℵ1 . We shall prove the following:

Theorem 29.11. If 2ℵ0 < 2ℵ1 and 2ℵ0 < ℵω1 then there exists an almost
disjoint family of 2ℵ1 uncountable subsets of ω1.

Compare this with Theorem 22.16: If I is the ideal of bounded subsets
of ω1, then Theorem 29.11 states that sat(I) = (2ℵ1)+; by Theorem 22.16,
sat(I) ≥ 2ℵ1 . As sat(I) is regular (by Theorem 7.15), the following lemma
implies the theorem:

Lemma 29.12. Assume 2ℵ0 < ℵω1 . If κ is a regular cardinal such that 2ℵ0 <
κ ≤ 2ℵ1 , then there exists a family of κ almost disjoint functions from ω1

into ω1.

Proof. Let F be a family of almost disjoint functions on ω1; we call F
a branching family if whenever f, g ∈ F and α is such that f(α) = g(α),
then f(ξ) = g(ξ) for all ξ ≤ α.

For each X ⊂ ω1, let fX = 〈X ∩ α : α < ω1〉. The family F = {fX :
X ∈ P (ω1)} is a branching family of functions on ω1, |F| = 2ℵ1 ; and for each
α < ω1, the functions in F take values in P (α). Thus there exists a branching
family of 2ℵ1 functions from ω1 into 2ℵ0 .

Let κ be a regular cardinal such that 2ℵ0 < κ ≤ 2ℵ1 . We shall show that
for every ℵγ such that ℵ1 < ℵγ ≤ 2ℵ0 , if there is a branching family of κ
functions from ω1 into ωγ , then there is a branching family of κ functions
from ω1 into some ωδ < ωγ . Then the lemma clearly follows.

First let ℵγ = ℵδ+1 where ℵ1 ≤ ℵδ, and let F be a branching family of κ
functions from ω1 into ωδ+1. Each f ∈ F is bounded below ωδ+1 (because
ωδ+1 > ω1), and because κ is regular and κ > ωδ+1, there exists α < ωδ+1

such that ran(f) ⊂ α for κ functions in F . Thus there exists a branching fam-
ily of κ functions from ω1 into α; and since |α| ≤ ℵδ, there is also a branching
family of κ functions from ω1 into ωδ.

If ℵγ is a limit cardinal, then cf(ωγ) = ω because ℵγ < ℵω1 . Let F be
a branching family of κ functions from ω1 into ωγ . For each f ∈ F there exists
an ordinal ηf < ωγ such that f(α) < ηf for uncountably many α’s. Since κ is
a regular cardinal and κ > ℵγ , there exists ℵδ such that ℵ1 ≤ ℵδ < ℵγ , and
a family G ⊂ F of size κ such that for every f ∈ G, f(α) < ωδ for uncountably
many α’s.
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For each α < ω1, let Sα = {f(α) : f ∈ G}. Since G is a branching family
and G ⊂

∏
α<ω1

Sα, it suffices to show that |Sα| ≤ ℵδ for all α < ω1. Thus let
α < ω1. We define a function t : Sα → ω1 × ωδ as follows: For each x ∈ Sα,
we first pick some f ∈ G such that x = f(α). Then there exists some ξ > α
such f(ξ) < ωδ, and we let

t(x) = (ξ, f(ξ)).

We shall now complete the proof by showing that the function t is one-
to-one, and hence |Sα| ≤ ℵδ. Let x, y ∈ Sα be such t(x) = t(y). Let ξ > α
and f, g ∈ G be such that x = f(α), y = g(α), and t(x) = t(y) = (ξ, f(ξ)) =
(ξ, g(ξ)). Since G is a branching family and f(ξ) = g(ξ), we have f(α) = g(α)
and hence x = y. ��

The assumption 2ℵ0 < 2ℵ1 in Theorem 29.11 is necessary; see Exer-
cise 29.11.

Functions from ω1 into ω

Consider the set ωω1 of all functions from ω1 into ω, partially ordered by
eventual domination:

(29.7) f < g if and only if ∃γ ∀α ≥ γ f(α) < g(α).

Let cof(ωω1) be the smallest size of a cofinal family F ⊂ ωω1 , i.e., for every g
there exists some f ∈ F such that g < f . It is an open problem whether
cof(ωω1) < 2ℵ1 is possible.

Theorem 29.13.

(i) If cof(ωω1) < 2ℵ1 then 2ℵ0 ≥ ℵ3.
(ii) If 2ℵ0 < 2ℵ1 and 2ℵ0 < ℵω1 then cof(ωω1) = 2ℵ1 .

The theorem is a consequence of this lemma:

Lemma 29.14. If there exist 2ℵ1 almost disjoint functions from ω1 into ω2

then cof(ωω1) = 2ℵ1 .

Then Theorem 29.13 follows: If 2ℵ0 ≤ ℵ2 then use Exercise 29.12(ii);
for (ii), use Theorem 29.11.

Toward the proof of Lemma 29.14, let I be an ideal on a set S. We say
that two functions f , g on S are I-disjoint if {x ∈ S : f(x) = g(x)} ∈ I. If I
and J are ideals on S and T , then I × J is the ideal on S × T

(29.8) X ∈ I × J if and only if {x ∈ S : {y ∈ T : (x, y) ∈ X} /∈ J} ∈ I.

Lemma 29.15. There exists a σ-ideal I on ω1 such that there exist ℵ2 I-
disjoint functions from ω1 into ω.
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Proof. We find such an I on ω1 × ω1: Let I = I0 × I0 where I0 is the σ-
ideal of all countable subsets of ω1 (each X ∈ I is included in the union of
ω vertical lines and the set under the graph of a function from ω1 into ω1).
Let {gα : α < ω2} be a family of ℵ2 almost disjoint functions from ω1 into ω1

(cf. Lemma 9.23), and {fβ : β < ω1} a family of ℵ1 almost disjoint functions
from ω1 into ω (Exercise 29.12(i)). For α < ω2, let hα(ξ, η) = fgα(ξ)(η), for all
(ξ, η) ∈ ω1 × ω1. It is easy to verify that hα, α < ω2, are I-disjoint functions
from ω1 into ω. ��

Lemma 29.16. If there exist 2ℵ1 almost disjoint functions from ω1 into ω2

then there exists a σ-ideal J on ω1 such that there are 2ℵ1 J-disjoint functions
from ω1 into ω.

Proof. We find such a J on ω1 × ω1: Let J = I0 × I where I0 is the ideal of
countable sets and I is the ideal given by Lemma 29.15. Let {gα : α < 2ℵ1}
be a family of almost disjoint functions from ω1 into ω2, and {fβ : β < ω2}
a family of I-disjoint functions from ω1 into ω. For α < ω2, let hα(ξ, η) =
fgα(ξ)(η), for all (ξ, η) ∈ ω1 × ω1. The functions hα, α < 2ℵ1 , are J-disjoint.

��

Proof of Lemma 29.14. By Lemma 29.16 there exist a σ-ideal J on ω1 and
a family H = {hα : α < 2ℵ1} of J-disjoint functions from ω1 into ω. Let F
be a cofinal family in ωω1 such that |F| < 2ℵ1 . There exists an f ∈ F that
eventually dominates infinitely many hα; then let A ⊂ 2ℵ1 be a countable
infinite set such that hα < f for all α ∈ A. The set {ξ < ω1 : hα(ξ) = hβ(ξ)
for some distinct α, β ∈ A} is the union of countably many sets in J , hence
belongs to J , and hence its complement is uncountable. Thus for uncountably
many ξ < ω1, the set {hα(ξ) : α ∈ A} is an infinite subset of ω. This
contradicts the fact that there exists a γ < ω1 such that for all ξ ≥ γ,
hα(ξ) < f(ξ) for all α ∈ A. ��

Exercises

29.1. If U is an ultrafilter on N and ϕ a formula, let (Un) ϕ be an abbreviation
for {n : ϕ(n)} ∈ U . Then (U + V )k ϕ(k) if and only if (Un)(V m)ϕ(m + n).

29.2. If {xk}∞k=0 is a sequence of real numbers then limU+V xk = limU ym where
ym = limV xm+n.

29.3. Let S be a minimal closed subsemigroup of a compact left-topological semi-
group and let u ∈ S. Then u + u = u.

[S + u is a continuous image of S, hence closed and S + u = S. Then {v ∈ S :
v + u = u} ⊂ S is closed and hence equals S; u + u = u follows.]

29.4. βN −N contains an idempotent element.
[By Zorn’s Lemma and by compactness, βN − N has a nonempty minimal

closed subsemigroup.]
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29.5. If a (κ, λ)-gap exists then a (λ, κ)-gap exists.
[Given {fα}α and {gβ}β, consider {g0 − gβ}β and {g0 − fα}α.]

29.6. There exists an (ω, b)-gap.
[Take constant functions as the ω-part of the gap. Then the b-part of the gap

can be constructed in the family M of monotone unbounded functions. For f ∈M
let ϕ(f) = g in M be defined by g(n) = min{k : f(k) ≥ n} and let M ′ = ϕ“M .
ϕ : (M, >) → (M ′, <) is an order isomorphism and (M ′, <) is cofinal in ωω while
(M, >) is cofinal in the family of all functions f ∈ ωω which are above the constant
functions ordered by >.]

29.7. There are no (ω,λ)-gaps for λ < b.
[The constant functions in the preceding exercise can be replaced by any <-

increasing ω-sequence of functions which shows that b is the minimal cardinal κ
such that there exists an (ω, κ)-gap.]

29.8. N is the union of an increasing ω1-sequence of Gδ sets.
[Let {fα}α, {gβ}β be an (ω1, ω1)-gap and let Aα be the complement of {h ∈ N :

fα < h < gα}.]

29.9. Let X be the set of all increasing transfinite sequences of rationals (a sub-
space of P (Q)), and let K0 be the set of all {s, t} such that s ⊂ t or t ⊂ s. The
set K0 is closed and has no uncountable homogeneous subset. Show that there are
no Hn with [Hn]2 ⊂ X −K0 such that X =

S∞
n=0 Hn.

[Let Hn be such that [Hn]2 ⊂ X−K0. Construct q0 > q1 > . . . and t0 ⊂ t1 ⊂ . . .
such that sup tn < qn, and if possible, tn ∈ Hn. Then t =

S

n tn is not a member of
any Hn.]

29.10. Assuming OCA, every uncountable subset of P (ω) contains an uncountable
chain or antichain.

[{A, B} ∈ K0 if and only if A and B are incomparable.]

29.11. It is consistent that the ideal of countable subsets of ω1 is ω3-saturated
while 2ℵ1 is large.

[Adjoin κ Cohen reals to a model of GCH. Assume that {Ai : i < ω3} are
almost disjoint. For each pair i, j there is a γi,j such that Ai ∩ Aj ⊂ γi,j is forced
by all conditions. By the Erdős-Rado Theorem (in the ground model), there exists
a subfamily of {Ai}i of size ℵ2 for which γi,j is the same γ. This gives (in V [G])
a family of ℵ2 disjoint subsets of γ, a contradiction.]

29.12. (i) There exist ℵ1 almost disjoint functions from ω1 into ω.
(ii) There exist 2ℵ1 almost disjoint functions from ω1 into 2ℵ0 .
[(i) For ξ ≤ α < ω1, let fξ(α) = ξ; this gives ℵ1 almost disjoint functions

in
Q

α<ω1
α.

(ii) For X ⊂ ω1, let fX(α) = X ∩ α; this gives 2ℵ1 almost disjoint functions
in

Q

α<ω1
P (α).]

29.13. If there is a family F of ℵ2 almost disjoint functions f : ω1 → ω then
Chang’s Conjecture fails.

[Consider a model A with the universe F ∪ω1 and the designated predicate ω1.
If (G ∪B, B) ≺ A with |G| = ℵ1 and |B| = ℵ0, then B ⊂ α for some α < ω1. Show
that f(α) �= g(α) for all f, g ∈ G, a contradiction.]
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29.14. Assume that there exists a cofinal F ⊂ ωω1 such that the set of all initial
segments of all f ∈ F has size ℵ1. Then 2ℵ0 = ℵ1.

[Let 〈tα : α < ω1〉 be an enumeration of all the initial segments, and dom tα ≤ α.
By induction on α < ω1, we construct closed subsets Kn,α of [0, 1] (n ∈ ω) such
that K0,α ⊂ K1,α ⊂ . . . ⊂ Kn,α ⊂ . . ., and the union is [0, 1]. At stage α, consider
the set K =

T

ξ∈dom tα
Ktα(ξ),ξ. If K is countable, let Kn,α = [0, 1] for all n; if K is

uncountable, choose a limit point x of K and let Kn,α = {x} ∪ {y : |x− y| ≥ 1/n}.
Now if f ∈ F then Kf =

T

α Kf(α),α is countable, and there exists some αf < ω1

such that Kf =
T

α<αf
Kf(α),α. It follows that

[0, 1] =
T

α<ω1

∞
S

n=0

Kn,α =
S

f :ω1→ω

T

α<ω1

Kf(α),α

=
S

f∈F

T

α<ω1

Kf(α),α =
S

f∈F

T

α<αf

Kf(α),α =
S

γ<ω1

T

α∈dom tγ

Ktγ(α),α,

which is a union of ℵ1 countable sets.]

Historical Notes

Hindman’s Theorem appeared in [1974]. The present proof is due to Glazer and
can be found e.g. in the book [1980] by Graham et al. The book also contains van
der Waerden’s Theorem and its generalizations. The topological proof presented
here is as in Todorčević’s book [1997]. For the Hales-Jewett Theorem, see Hales
and Jewett [1963].

Hausdorff’s Theorem appeared in Hausdorff [1909]. We follow the construction
presented in Scheepers [1993], which gives a comprehensive account of the subject of
gaps. The Open Coloring Axiom was isolated by Todorčević in [1989]; related par-
tition axioms were previously introduced by Abraham, Rubin and Shelah in [1985].
Theorem 29.8 is due to Todorčević [1989].

Theorem 29.11 as well as Exercise 29.11 are results of Baumgartner [1976]; for
almost disjoint functions see Jech and Prikry [1979]. Part (i) of Theorem 29.13 is
due to Galvin. For part (ii) and Lemma 29.14, see Jech and Prikry [1984].

Exercise 29.3 is attributed to R. Ellis; see Todorčević [1997].
Exercises 29.6 and 29.7: Rothberger [1941].
Exercise 29.8: Hausdorff [1936a].
Exercise 29.9: Todorčević.
Exercise 29.10: Abraham, Rubin and Shelah [1985]; Baumgartner [1980].
Exercise 29.13: Silver.
Exercise 29.14: Gödel.
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Measure Algebras

A complete Boolean algebra B is a measure algebra if it carries a (strictly
positive probabilistic) measure, i.e., a real-valued function m on B that satis-
fies (22.1) (or cf. Definition 30.2 below). In Chapters 26 and 22 we looked at
two examples of measure algebras: The algebra Bm of (26.1), and the more
general product measure algebra defined in (22.3). We present below a the-
orem that states that this measure algebra is essentially the only measure
algebra that exists.

Throughout this section, we consider measure algebras, and for simplic-
ity assume that all the measure algebras under consideration are atomless.
Note that every measure algebra satisfies the countable chain condition, and
consequently, all questions of completeness can be reduced to σ-completeness.

If G is a subset of a measure algebra B, we say that G σ-generates B if
B is the smallest σ-subalgebra containing G. The weight of B is the least size
of G ⊂ B that σ-generates B. B is homogeneous if each B�u (with u �= 0)
has the same weight. Note that every measure algebra is the direct sum of ω
many homogeneous measure algebras.

The result that we shall prove in this section is the following:

Theorem 30.1 (Maharam). Every infinite homogeneous measure algebra
is the unique measure algebra of its weight.

If A and B are infinite homogeneous measure algebras of the same weight
and if µ and ν are strictly positive probabilistic measures on A and B, then
there exists an isomorphism f between A and B such that ν(f(a)) = µ(a) for
all a ∈ A.

We begin by introducing some terminology and presenting two lemmas
that are standard techniques of measure theory.

Definition 30.2. Let B be a complete Boolean algebra. A measure on B is
a real-valued function µ on B that satisfies

(i) µ(0) = 0,
(ii) µ(a) ≥ 0 for all a ∈ A,
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(iii) for all pairwise disjoint an, n = 0, 1, . . . ,

µ(
∞∑

n=0
an) =

∞∑
n=0

(an).

A measure µ is strictly positive if

(iv) µ(a) > 0 for all a �= 0,

and probabilistic, if also

(v) µ(1) = 1.

Finally, a function µ that satisfies (i) and (iii) is called a signed measure.

Lemma 30.3. If ν is a signed measure on B that satisfies c.c.c. then there
exists an a ∈ B such that ν(x) ≥ 0 for all x ≤ a and ν(x) ≤ 0 for all x ≤ −a.

Proof. First we claim that when ν(a) > 0 then there exists some b ≤ a such
that

(30.1) ν(b) > 0, and ν(x) ≥ 0 for all x ≤ b.

If (30.1) fails then for every b ≤ a, b �= 0, there exists an x ≤ a, x �= 0, with
ν(x) ≤ 0. Thus let W be a maximal antichain below a such that ν(x) ≤ 0 for
every x ∈ W . Then

∑
W = a and we have ν(a) ≤ 0, a contradiction.

Now let Z be a maximal antichain such that (30.1) holds for every b ∈ Z.
If ν(a) ≤ 0 for all a ∈ B then the lemma holds trivially. Otherwise, Z is
nonempty, and let a =

∑
Z. This a satisfies the lemma. ��

Lemma 30.4. Let µ and ν be measures on B and let a ∈ B be such that
ν(a) > 0. Then there exist a b ≤ a, b �= 0, and a number ε > 0 such that
ν(x) ≥ ε · µ(x) for all x ≤ b.

Proof. Let ε > 0 be such that ν(a) > ε ·µ(a) and consider the signed measure
ν−εµ on B�a. By Lemma 30.3 there exists a b ≤ a such that (ν−εµ)(x) ≥ 0
for all x ≤ b, and (ν − εµ)(x) ≤ 0 for all x ≤ a − b. Since (ν − εµ)(b) ≥
(ν − εµ)(a) > 0, we have b �= 0. ��

The next lemma is due to Fremlin:

Lemma 30.5 (Fremlin [1989]). Let A be a measure algebra and let µ be
a strictly positive measure on A. Let B be a complete subalgebra of A and let
ν be a measure on B such that ν(b) ≤ µ(b) for all b ∈ B. Assume that

(30.2) A�a �= {a · b : b ∈ B} for every a ∈ A+.

Then there exists some a ∈ A such that

(30.3) ν(b) = µ(a · b) for all b ∈ B.
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Proof. For each a ∈ A, let νa denote the measure on B defined by (30.3):
νa(b) = µ(a · b). We first prove the following consequence of (30.2): For every
a ∈ A+ and every ε > 0 there exists a c ∈ (A�a)+ such that νc(b) ≤ ε · νa(b)
for all b ∈ B.

It is enough to prove this claim for ε = 1
2 , as the general case follows by

a repeated application of the special case.
Thus let a ∈ A+. By (30.2) there exists some d < a such that d �= a · b for

every b ∈ B. Consider the signed measure 1
2νa − νd on B. By Lemma 30.3

there exists some b ∈ B such that νd(x) ≤ 1
2νa(x) for all x ∈ B�b and

νd(x) ≥ 1
2νa(x) for all x ∈ B�(−b).

If b · d > 0, we let c = b · d, and we have νc(x) ≤ 1
2νa(x) for all x ∈ B.

If b · d = 0 then d ≤ a− b, and we let c = (a− b) · (a− d). Since d �= a− b
(by (30.2)), we have c �= 0. For all x ∈ B, νc(x) ≤ νa(x) − νd(x) ≤ 1

2νa(x).
This proves the claim for ε = 1

2 and the general case follows. To prove the
lemma, let a ∈ A be a maximal (in the partial order ≤ on A) element such
that νa(b) ≤ ν(b) for all b ∈ B. We finish the proof by showing that νa = ν.

By contradiction, assume that there exists some b1 ∈ B such that νa(b1) <
ν(b1). By Lemma 30.4 there exist some b2 ≤ b1, b2 �= 0, and ε > 0 such that
(ν − νa)(x) ≥ εµ(x) for all x ∈ B�b2. Note that b2 � a, since otherwise we
would have νa(b2) = µ(b2) ≥ ν(b2).

Now we apply the earlier claim to b2 − a, and get some c ≤ b2 − a, c �= 0,
such that νc(x) ≤ ενb2−a(x) ≤ ν(x) − νa(x) for all x ∈ B. Since c · a = 0, we
have νa+c = νa + νc ≤ ν, contradicting the maximality of a. ��

Lemma 30.5 allows one to extend partial measure-preserving isomor-
phisms between homogeneous measure algebras. If µ and ν are probabilistic
measures on measure algebras A and B, then an isomorphism f of A onto B
is measure-preserving if ν(f(a)) = µ(a) for all a ∈ A.

Lemma 30.6. Let A1 and A2 be homogeneous measure algebras, both of the
same weight κ, and let µ1 and µ2 be probabilistic measures on A1 and A2.
Let B1 and B2 be complete subalgebras of A1 and A2, let f be a measure-
preserving isomorphism of B1 onto B2, and assume that B1 is σ-generated
by fewer than κ generators. Then for every a1 ∈ A1 there exist an a2 ∈ A2

and a measure-preserving isomorphism g ⊃ f of 〈B1 ∪ {a1}〉, the subalgebra
generated by B1 ∪ {a1}, onto 〈B2 ∪ {a2}〉.

Proof. First we note that since every A1�a has weight κ, the subalgebra B1

satisfies (30.2); similarly for A2 and B2. Let a1 ∈ A1; if we let ν(f(b)) =
µ1(a1 · b) for every b ∈ B1, then ν is a measure on B2 with ν ≤ µ2. By
Lemma 30.5 there exists some a2 ∈ A2 such that ν(f(b)) = µ2(a2 · f(b)) for
every b ∈ B1.

The algebra 〈B1∪{a1}〉 consists of all elements of the form b ·a1+c ·(−a1)
where b, c ∈ B1. Thus we let

(30.4) g(b · a1 + (c − a1)) = f(b) · a2 + (f(c) − a2).
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We have to verify that g is well-defined. If b ∈ B1 and b ≤ a1 then µ1(b) =
µ1(a1 ·b), and we have µ2(f(b)) = µ1(b) = µ1(a1 ·b) = ν(f(b)) = µ2(a2 ·f(b)),
and so f(b) ≤ a2. It follows that b · a1 = b′ · a1 implies f(b) · a2 = f(b′) · a2.
Similarly, one proves that if c ∈ B1 and c ≤ −a1 then f(c) ≤ −a2, and
therefore c − a1 = c′ − a1 implies f(c) − a2 = f(c′) − a2. Thus g is well-
defined.

Since µ2(f(b) · a2 + (f(c) − a2)) = µ1(b · a1 + (c − a1)), g is measure-
preserving, and a one-to-one homomorphism of 〈B1∪{a1}〉 onto 〈B2∪{a2}〉.

��
Proof of Theorem 30.1. The construction proceeds by induction. Let A and B
be homogeneous measure algebras of weight κ and let µ and ν be probabilis-
tic measures on A and B. Let {aα : α < κ} and {bα : α < κ} be gener-
ators of A and B. Inductively, we construct A0 ⊂ A1 ⊂ . . . ⊂ Aα ⊂ . . .
and B0 ⊂ B1 ⊂ . . . ⊂ Bα ⊂ . . . and measure-preserving isomorphisms
f0 ⊂ f1 ⊂ . . . ⊂ fα ⊂ . . . such that for every α, Aα is a complete subal-
gebra of A of weight < κ and aα ∈ Aα, similarly for Bα, and fα(Aα) = Bα.

At successor stages we apply Lemma 30.6 to either 〈Aα ∪ {aα+1}〉 or
〈Bα ∪ {bα+1}〉. At a limit stage α, we consider the algebras Ãα =

⋃
β<α Aβ

and B̃α =
⋃

β<α Bβ . These are subalgebras of A and B, not necessarily
complete. However, the completion Aα of Ãα can be described as follows:
The elements of Aα are limits of convergent countable sequences in Aα (see
Exercise 30.1). The measure-preserving isomorphism f̃ =

⋃
β<α fβ between

Ãα and B̃α extends to a unique measure-preserving isomorphism between Aα

and the completion Bα of B̃α (use Exercise 30.2). ��

Cohen Algebras

Let κ be an infinite cardinal. We consider the notion of forcing Pκ that adds
κ Cohen reals: conditions in Pκ are finite 0–1 functions with domain ⊂ κ. Let

(30.5) Cκ = B(Pκ)

denote the complete Boolean algebra corresponding to Pκ. Throughout this
section, B denotes the completion of a Boolean algebra B.

Definition 30.7. A Boolean algebra B is a Cohen algebra if B = Cκ for
some infinite cardinal κ.

In Theorem 30.10 below we give a combinatorial characterization of Cohen
algebras.

Definition 30.8. A subalgebra A of a Boolean algebra B is a regular subal-
gebra,

A ≤reg B,

if for any X ⊂ A, if
∑A

X exists then
∑A

X =
∑B

X .
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The following is easily established:

Lemma 30.9. The following are equivalent :

(i) A ≤reg B.
(ii) Every maximal antichain in A is maximal in B.
(iii) For every b ∈ B+ there exists an a ∈ A+ such that for every x ∈ A+,

if x ≤ a then x · b �= 0. ��

See Exercises 30.3–30.9 for further properties of ≤reg.
If A is a subalgebra of B and b ∈ B, then the projection of b to A, prA(b),

is the smallest element a ∈ A, if it exists, such that b ≤ a. (Similarly, prA(b)
is the greatest a ∈ A such that a ≤ b.)

The density of a Boolean algebra B is the least size of a dense subset
of B. B has uniform density if for every a ∈ B+, B�a has the same density.

If X is a subset of a Boolean algebra B, we denote

(30.6) 〈X〉 = the subalgebra generated by X,

and if A is a subalgebra of B and b1, . . . , bn ∈ B,

(30.7) A(b1, . . . , bn) = 〈A ∪ {b1, . . . , bn}〉.

Theorem 30.10. Let B be an infinite Boolean algebra of uniform density.
B is a Cohen algebra if and only if the set {A ∈ [B]ω : A ≤reg B} contains
a closed unbounded set C with the property

(30.8) if A1, A2 ∈ C then 〈A1 ∪ A2〉 ∈ C.

If B is countable, the condition is trivially satisfied as C = {B} is a closed
unbounded subset of [B]ω .

First we prove the forward direction of the theorem: If B is a dense subal-
gebra of Cκ, then B has the property stated in Theorem 30.10. (In particular,
Cκ itself has the property.) Let B be a dense subalgebra of Cκ. For every
S ⊂ κ, consider the forcing PS consisting of finite 0–1 functions with do-
main ⊂ S, and let CS = B(PS). Note that CS ≤reg Cκ.

Now let C be the set of all countable subalgebras A of B with the property
that there exists a countable S ⊂ κ such that

(30.9) A is dense in B ∩ CS and B ∩ CS is dense in CS .

The following lemma will establish the forward direction.

Lemma 30.11. The set C is closed unbounded in [B]ω, satisfies (30.8), and
every A ∈ C is a regular subalgebra of B.
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Proof. Let A ∈ C and let S be a countable subset of κ such that (30.9) holds.
Since B ∩CS is dense in CS and CS ≤reg Cκ, we have B ∩CS ≤reg Cκ, and
since B is dense in Cκ, we have B ∩ CS ≤reg B. As A is dense in B ∩ CS ,
it follows that A ≤reg B. To see that C is unbounded, note that there are
arbitrarily large countable sets S such that B ∩ CS is dense in CS (because
Cκ has the countable chain condition). Thus for any a ∈ B we can find
a countable S and a countable algebra A ⊂ B such that a ∈ A, that A is
dense in B ∩ CS and B ∩ CS is dense in CS .

To show that C is closed, let {An}∞n=0 be an increasing chain in C and
let A =

⋃∞
n=0 An; let {Sn}∞n=0 be witnesses for An ∈ C. The sets Sn form

a chain, and if we let S =
⋃∞

n=0 Sn, it follows that A is dense in B ∩CS and
B ∩ CS is dense in CS .

Now we verify (30.8); we shall show that if A1 is dense in CS1 and A2 is
dense in CS2 then A = 〈A1 ∪ A2〉 is dense in CS where S = S1 ∪ S2. Let
b ∈ C+

S ; we shall find a1 ∈ A1 and a2 ∈ A2 such that 0 �= a1 · a2 ≤ b.
Let p ∈ PS be such that p ≤ b, and let p1 = p�S1, p2 = p�S2. First we

find some a1 ∈ A+
1 such that a1 ≤ p1 and then some q1 ∈ PS1 such that

q1 ≤ a1. Let q2 = p2�(S2 − S1) ∪ (q1�S2); we have q2 ∈ PS2 . Now we find
some a2 ∈ A+

2 such that a2 ≤ q2. It remains to show that a1 · a2 �= 0: There
exists some r2 ∈ PS2 with r2 ≤ a2, and then r2∪(q1�(S1 − S2)) ∈ PS is below
both a1 and a2. ��

For the opposite direction, let B be an infinite Boolean algebra of uniform
density κ and let C be a closed unbounded set of countable regular subalge-
bras of B that satisfies (30.8). First we note that B satisfies the countable
chain condition: See Exercise 30.10. Let

(30.10) S = {〈
⋃

X〉 : X ⊂ C}.

We claim that every A ∈ S is a regular subalgebra of B. Let A = 〈
⋃

X〉 and
let W be a maximal antichain in A; we verify that W is maximal in B. As
W is countable, we have W ⊂ 〈

⋃
Y 〉 for some countable Y ⊂ X . Since C is

closed unbounded and satisfies (30.8) it follows that A0 = 〈
⋃

Y 〉 ∈ C and
hence A0 ≤reg B. Since W is a maximal antichain in A0 and A0 ≤reg B, W is
maximal in B.

A set G ⊂ B is independent if

±x1 · ±x2 · . . . · ±xn �= 0

for all distinct x1, . . . , xn ∈ G. If G is independent then 〈G〉 = FrG is the
unique free algebra over G; note that the completion of FrG is CG. Our goal
is to find an independent G ⊂ B such that 〈G〉 is dense in B.

Let A be a subalgebra of a Boolean algebra D. An element u ∈ D is
independent over A if a · u �= 0 �= a − u for all a ∈ A+.

Lemma 30.12. Let D be a complete Boolean algebra of uniform density and
let A be a complete subalgebra of D of smaller density. For every v ∈ D there
exists some u ∈ D independent over A such that v ∈ A(u).
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Proof. Exercises 30.11 and 30.12. ��

Let {dα : α < κ} be a dense subset of B. If A1 and A2 are subalgebras
of B we say that A1 and A2 are co-dense if for every a1 ∈ A+

1 there exists
some a2 ∈ A+

2 with a2 ≤ a1, and for every a2 ∈ A+
2 there exists some a1 ∈ A+

1

with a1 ≤ a2.
We construct, by induction on α < κ, two continuous chains G0 ⊂ G1 ⊂

. . . ⊂ Gα ⊂ . . . and B0 ⊂ B1 ⊂ . . . ⊂ Bα ⊂ . . . such that

(i) Bα ∈ S,
(ii) Aα = 〈Gα〉 and Bα are co-dense,
(iii) dα ∈ Bα+1,
(iv) Gα+1 − Gα is countable,
(v) Gα is an independent subset of B.

(30.11)

This will prove that B is a Cohen algebra, because by (iii),
⋃

α Bα is dense
in B, hence

⋃
α Aα is dense in B, and by (v),

⋃
α Aα is the free algebra FrG

(where G =
⋃

α Gα).
At limit stages, we let Bα =

⋃
β<α Bβ and Gα =

⋃
β<α Gβ . To construct

Gα+1 and Bα+1, we proceed as follows: Since Aα is dense in Bα, Aα = Bα is
a complete subalgebra of B. Moreover, if u1, . . . , un ∈ B then Aα(u1, . . . , un)
is a complete subalgebra of B.

Since |Aα| < κ, we find, by Lemma 30.12, for every b ∈ B some u ∈ B
independent over Aα such that b ∈ Aα(u). More generally, if b, u1, . . . , un ∈
B, then there exists some u independent over Aα(u1, . . . , un) such that b ∈
Aα(u1, . . . , un, u).

Given u ∈ B, there exists a countable set {bn}∞n=0 ⊂ B such that∑∞
n=0 bn = u. Then there exists some X ∈ C such that {bn}n ⊂ X and so

〈Bα∪X〉 is dense in Aα(u). Therefore there exist a countable set {un}∞n=0 ⊂ B
and some Bα+1 ∈ S such that dα ∈ Bα+1, that Gα+1 = Gα ∪ {un}∞n=0 is
independent and that Aα+1 = 〈Gα+1〉 and Bα+1 are co-dense. ��

The following property is a natural weakening of the characterization of
Cohen algebras in Theorem 30.10:

Definition 30.13. An infinite Boolean algebra B of uniform density is semi-
Cohen if [B]ω has a closed unbounded set of countable regular subalgebras.

An immediate consequence of the definition is that if B is semi-Cohen
and |B| ≤ ℵ1 then B is a Cohen algebra. This is because [B]ω has a closed
unbounded subset that is a chain, and therefore satisfies (30.8).

The important feature of semi-Cohen algebras is that the property is
hereditary:

Theorem 30.14. If B is a semi-Cohen algebra and if A is a regular subal-
gebra of B of uniform density then A is semi-Cohen.
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Proof. [B]ω has a closed unbounded subset of regular subalgebras of B. Since
A ≤reg B, there exists for every b ∈ B+ some a ∈ A+ such that there is no
x ∈ A+ with x ≤ a− b. Let F : B+ → A+ be a function that to each b ∈ B+

assigns such an a ∈ A+. Let C ⊂ [B]ω be a closed unbounded set of regular
subalgebras closed under F .

If X ∈ C then A∩X ≤reg X because X is closed under F . Every maximal
antichain in A ∩ X is maximal in X , hence in B (because X ≤reg B), hence
in A. Therefore A ∩ X ≤reg A.

There is a closed unbounded set D ⊂ [A]ω such that D ⊂ {X∩A : X ∈ C};
D witnesses that A is semi-Cohen. ��

Corollary 30.15. If B is semi-Cohen and has density ℵ1 then B is a Cohen
algebra.

Proof. B has a dense subalgebra A of size ℵ1. By Theorem 30.14, A is also
semi-Cohen, and hence Cohen. But A = B, and hence B is Cohen. ��

Corollary 30.16. Every complete subalgebra of Cκ of uniform density ℵ1

is isomorphic to Cω1 . ��

The property of being semi-Cohen is also preserved by completion. This
can be proved using the following lemma:

Lemma 30.17. A Boolean algebra B of uniform density is semi-Cohen if
and only if B is Cohen in V P , where P is the collapse of |B| onto ℵ1 with
countable conditions.

Proof. As |B| = ℵ1 in V P , it suffices to show that B is semi-Cohen if and
only if it is semi-Cohen in V P .

As P does not add new countable sets, [B]ω remains the same in V P .
By property (iii) of Lemma 30.9, the relation ≤reg is absolute. Let S be the
set of all regular subalgebras of B. If S contains a closed unbounded set C
then C is closed unbounded in V P . Conversely, if S does not contain a closed
unbounded set, then it does not contain one in V P . ��

Corollary 30.18. B is semi-Cohen if and only if its completion is semi-
Cohen.

Proof. Let B be semi-Cohen and let A = B. Let P be the ω-closed collapse
of |A| to ℵ1. In V P , A has a dense subalgebra B that is a Cohen algebra,
hence A itself is Cohen. Therefore A is semi-Cohen.

The converse follows from Theorem 30.14. ��

Not every semi-Cohen algebra is a Cohen algebra, and Corollary 30.16
does not extend to density ℵ2. Koppelberg and Shelah gave an example of
a complete subalgebra of Cω2 of (uniform density ℵ2) that is not isomorphic
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to Cω2 . Another example, due to Zapletal, is the forcing that adds ℵ2 even-
tually different reals: Let

P = {z : z is a finite function with dom(z) ⊂ ω2 and ran(z) ⊂ ω<ω},

and let z ≤ w if z is a coordinate-wise extension of w and for α �= β in dom(w),
if n ∈ dom(z(α) − w(α)) and n ∈ dom(z(β)), then z(α)(n) �= z(β)(n).

If B = B(P ) then B can be embedded in Cω2 but is not isomorphic
to Cω2 . We omit the proof.

Suslin Algebras

Definition 30.19. A Suslin algebra is a complete atomless Boolean algebra
that is ω-distributive and satisfies the countable chain condition.

If T is a normal Suslin tree, and PT is the forcing with T upside down, then
B(PT ) is a Suslin algebra. Conversely, if B is a Suslin algebra of density ℵ1

then B = B(PT ) for some Suslin tree T ; in general, if B is a Suslin algebra
then B has a complete subalgebra BT such that BT = B(PT ) for some Suslin
tree T .

Theorem 30.20. If B is a Suslin algebra then |B| ≤ 2ℵ1 .

Proof. Let κ = 2ℵ1 . Assume that there is a Suslin algebra B such that
|B| > κ. We shall reach a contradiction.

Without loss of generality we assume that |B�u| > κ for all u ∈ B+. We
shall construct a κ-sequence

(30.12) B0 ⊂ B1 ⊂ . . . ⊂ Bα ⊂ . . . (α < κ)

of complete subalgebras of B, each of size ≤ κ. If D ⊂ B and |D| ≤ κ, then
there are κℵ1 = κ D-valued names for relations on ω1; thus for every such D
let ṘD

γ , γ < κ, be a fixed enumeration of all such names. Let α �→ (βα, γα)
be the canonical mapping of κ onto κ × κ; we recall βα ≤ α for all α.

The sequence (30.12) is constructed as follows: We let B0 = {0, 1}; if
α is a limit ordinal, then Bα is the complete subalgebra of B generated by⋃

ν<α Bν . If |Bν | ≤ κ for each ν < α, then |Bα| < κ. At successor steps, we
construct Bα+1 as follows: Let D = Bβα and let Ṙ = ṘD

γα
. If

(30.13) ‖(ω1, Ṙ) is a Suslin tree‖Bα = 1,

if Ċ ∈ V Bα is the Suslin algebra (in V Bα) corresponding to the Suslin tree
and if Bα ∗ Ċ is (isomorphic to) a complete subalgebra of B, then we let
Bα+1 = Bα ∗ Ċ. Otherwise, we let Bα+1 = Bα. In either case, if |Bα| ≤ κ,
then |Bα+1| ≤ κ.
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Now let Bκ be the complete subalgebra of B generated by
⋃

α<κ Bα.
Clearly, |Bκ| ≤ κ. Let Ȧ ∈ V Bκ be the complete Boolean algebra B : Bκ

(in V Bκ). Since both B and Bκ satisfy the c.c.c., we have

‖Ȧ satisfies the c.c.c.‖Bκ = 1.

Similarly, since both B and Bκ are ω-distributive, we have

‖Ȧ is ω-distributive‖Bκ = 1.

We have assumed that |B�u| > κ for all u �= 0, and we also have |Bκ| ≤ κ.
Thus

‖ |Ȧ| > κ‖Bκ = 1

and consequently

‖Ȧ is not atomic‖Bκ = 1.

Now we work inside V Bκ ; There exists a Ṫ ⊂ Ȧ such that (Ṫ ,≥Ȧ) is
a normal Suslin tree; let ḂT ⊂ Ȧ be the Suslin algebra, subalgebra of Ȧ,
generated by Ṫ . Let Ṙ be a binary relation on ω1 isomorphic to Ṫ .

The name Ṙ is Bκ-valued; and since Bκ satisfies the countable chain
condition, Ṙ involves at most ℵ1 elements of Bκ. Since cf κ > ℵ1, there exists
a β < κ such that Ṙ ∈ V Bβ ; furthermore, let γ < κ be such that Ṙ is the
γth Bβ-valued binary relation on ω1, Ṙ = ṘBβ

γ .
Let α < κ be such that β = βα and γ = γα. Since

‖(ω1, Ṙ) is a Suslin tree‖Bκ = 1,

it follows that

‖(ω1, Ṙ) is a Suslin tree‖Bα = 1.

If Ċ denotes the corresponding Suslin algebra in V Bα , we have

Bα ∗ Ċ ⊂ Bκ ∗ ḂT ⊂ Bκ ∗ Ȧ = B

and it follows that Bα+1 = Bα ∗ Ċ. However, forcing with a Suslin tree
destroys its Suslinity, and we have

‖(ω1, Ṙ) is not a Suslin tree‖Bα+1 = 1,

a contradiction. ��

Suslin algebras of size 2ℵ1 can be constructed by forcing (cf. Jech [1973b]),
or in L (an unpublished result of Laver).
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Simple Algebras

Definition 30.21. A complete Boolean algebra B is simple if it is atomless
and if it has no proper atomless complete subalgebra.

The problem of existence of simple algebras originated in forcing and
was first discussed by McAloon in [1971]. It is clear that a simple algebra is
minimal, i.e., when forcing with it, there is no intermediate model between
the ground model and the generic extension. Minimality, when formulated in
Boolean-algebraic terms, is the following property:

(30.14) If A is a complete atomless subalgebra of B then there exists a par-
tition W such that A�w = B�w for all w ∈ W .

(An example of a minimal algebra is B(P ) where P is the Sacks forcing.)
Simple algebras, in addition to being minimal, are rigid, i.e., have no

nontrivial automorphisms (Exercise 30.13). It turns out that the conjunction
of these two properties also implies that the algebra is simple (Exercise 30.14).
Thus we have:

Theorem 30.22. An atomless complete Boolean algebra is simple if and
only if it is rigid and minimal. ��

An example of a rigid and minimal algebra is BP where P is Jensen’s
forcing from Theorem 28.1 that produces a minimal ∆1

3 real. BP is minimal
because the generic real has minimal degree of constructibility, and rigid
because it is definable. It follows that if V = L then a simple complete
Boolean algebra exists.

In L, one can also construct Suslin algebras that are simple (see Exercises
30.15 and 30.16 for the construction of a rigid Suslin algebra).

Simple complete Boolean algebras have been constructed in ZFC; we refer
the reader to Jech-Shelah’s papers [1996] and [2001]. The former constructs
a countably generated simple algebra and uses a modification of the Sacks
forcing to produce a minimal definable real. The latter construction is some-
what less complicated and yields forcing that produces a minimal definable
uncountable set.

Infinite Games on Boolean Algebras

Infinite games have many applications in set theory, particularly in descrip-
tive set theory, and we shall investigate these methods in some detail in the
chapter on Axiom of Determinacy. In the present section we look into some
properties of complete Boolean algebras, and of forcing, that are formulated
in terms of infinite games.
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Let B be a Boolean algebra, and let G be the following infinite game
between two players I and II: I chooses a nonzero element a0 ∈ B and then
II chooses some b0 ∈ B+ such that b0 ≤ a0. Then I plays (chooses) a1 ≤ b0

and II plays b1 ≤ a1 (both �= 0). The game continues, with I’s moves an ∈ B+,
n < ω, and II’s moves bn ∈ B+, n < ω, such that

(30.15) a0 ≥ b0 ≥ a1 ≥ b1 ≥ . . . ≥ an ≥ bn ≥ . . . .

Player I wins the game if
∏∞

n=0 an = 0; player II wins otherwise: if the
chain (30.15) has a nonzero lower bound. A strategy for player I is a function
σ : B<ω → B; it is a winning strategy if I wins every play (30.15) in which
I follows σ, i.e., for each n, an = σ(〈b0, . . . , bn−1〉). A (winning) strategy for II
is defined similarly. If player I has a winning strategy then II does not, and
vice versa, and in general, neither player need have a winning strategy.

Lemma 30.23. Player I has a winning strategy in G if and only if B is not
ω-distributive.

Proof. Let σ be a winning strategy for I. Let a0 = σ(〈〉); we shall find parti-
tions Wn of a0 without a common refinement. Let W0 = {a0}. Having con-
structed W0, . . . , Wn, consider all finite sequences a0 ≥ b0 ≥ . . . ≥ an ≥ bn

where the an’s are chosen by σ and ak ∈ Wk for all k ≤ n. Let Wn be a max-
imal antichain whose members are elements an+1 = σ(〈b0, . . . , bn〉) where
a0 ≥ b0 ≥ . . . ≥ an ≥ bn is as described. The Wn’s are partitions of a0 and
do not have a common refinement.

Conversely, if B is not ω-distributive, there exist some a0 and open dense
sets Dn below a0 such that

⋂∞
n=0 Dn = ∅. We define σ(〈〉) = a0, and if a0 ≥

b0 ≥ . . . ≥ an ≥ bn is such that the an’s are chosen by σ, let σ(〈b0, . . . , bn〉) be
some element of Dn below bn. The function σ is a winning strategy for I. ��

Let P be a separative notion of forcing, and consider the infinite game G
in which players I and II take turns to play a descending chain a0 ≥ b0 ≥
. . . ≥ an ≥ bn ≥ . . . in P . I wins if and only if the chain does not have a lower
bound. It is easy to see that either player has a winning strategy in this game
if and only if the same player has a winning strategy in G played on B(P )
(Exercise 30.17).

Definition 30.24. A separative notion of forcing P (a Boolean algebra B)
is strategically ω-closed if player II has a winning strategy in the game G.

Being strategically ω-closed is a hereditary property. If B is strategically
ω-closed and if A is a regular subalgebra of B then also A is strategically
ω-closed (Exercise 30.18).

It is obvious that if P is ω-closed then player II has a winning strategy
in G. Hence if B has a dense ω-closed subset, then B is strategically ω-closed.
The converse is true for small algebras:
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Theorem 30.25 (Foreman). If B has density ℵ1 and is strategically ω-
closed, then it has a dense ω-closed subset.

Proof. Let {dα : α < ω1} be a dense set in B. By induction on α, we find
partitions Wα of 1 such that Wβ refines Wα if α < β, and every Wα has some
w ≤ dα; at limit stages, we use ω-distributivity of B. Let T =

⋃
α<ω1

Wα;
T is dense in B and is a tree. Let σ be a winning strategy for II in the game G
on T . We shall find a dense subset P of T that is ω-closed.

If t ∈ T , we call p = 〈a0, b0, . . . , an, bn〉 a partial play above t if the bk’s
are played by σ and bn > t. We claim:

(30.16) (∀t ∈ T ) (∃t∗ < t) if p is a partial play above t∗ and if u > t∗ then
there is a partial play q ⊃ p above t∗ with last move b such that
u > b > t∗.

To prove the claim, we construct t0 > t1 > . . . > tn > . . . such that t0 = t
and that for every n and every partial play p above tn, if u > tn then there
exist some q ⊃ p with last move b and some m such that u > b > tm. This is
possible because there are only countably many such p’s and u’s. Therefore
there exists a play 〈a0, b0, . . . , an, bn, . . .〉 that is played according to σ and
that is cofinal in 〈tn〉∞n=0. As σ is a winning strategy, 〈tn〉∞n=0 has a lower
bound, let t∗ be a maximal lower bound (it exists because T is a tree). This
proves (30.16). Now let

P = {s ∈ T : for some descending chain {tn}∞n=0, s is a maximal lower bound
of {t∗n}∞n=0}.

The set P is ω-closed: Given s0 > s1 > . . . in P , find {tn}∞n=0 such that
t∗0 > s0 > t∗1 > . . .. The chain {t∗n}∞n=0 has a lower bound (because there
exists a cofinal play by σ) and its maximal lower bound is in P .

The set P is dense in T : Given t ∈ T , let {tn}∞n=0 be the chain t, t∗,
t∗∗, . . . . There exists a cofinal σ-play, and so {tn}∞n=0 has a lower bound. The
maximal lower bound is in P . ��

As a corollary, we get the following characterization of strategically ω-
closed forcings:

Corollary 30.26. B is strategically ω-closed if and only if B is a regular
subalgebra of some algebra that has an ω-closed dense subset.

Proof. Sufficiency follows from Exercise 30.18. Thus assume that B is strate-
gically ω-closed and let σ be a winning strategy for II. Let P be the collapse
with countable conditions of |B| to ℵ1. In V P , σ is still a winning strategy, and
by Theorem 30.25, B has an ω-closed dense subset Ė. Let A = B(P × B+);
B is a regular subalgebra of A. Let D = {(p, b) : p � b ∈ Ė}; D is dense
in A. D is ω-closed: Let {(pn, bn)}n be descending and let p =

⋃
n pn. Then

p forces that {bn}n is descending, and there is a b ∈ B+ such that p � (b ∈ Ė
and b ≤ bn for all n). Hence (p, b) is a lower bound of {(pn, bn)}n. ��
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Foreman’s Theorem does not extend to ℵ2: It is consistent that there is
a strategically ω-closed complete Boolean algebra of density ℵ2 that does not
have an ω-closed dense subset (Jech and Shelah [1996]).

There are many other infinite games that can be used to define properties
of forcing and Boolean algebras, see Jech [1984]. We’ll show in Chapter 31
that proper forcing admits such characterization. See also Exercise 30.19.

Exercises

Let B be a σ-complete Boolean algebra. If {an}n<ω is a sequence in B, let
lim supn an =

Q∞
n=0

P

k≥n an and lim infn an =
P∞

n=0

Q

k≥n an. If lim supn an =

lim infn an = a, we say that {an}n<ω converges, and let limn an = a.

30.1. If A is a subalgebra a measure algebra B then the complete subalgebra of B
σ-generated by A consists of all limits of convergent seequences in A.

30.2. If µ is a measure on a measure algebra B and if a = limn an, then µ(a) =
limn µ(an).

30.3. If A is a finite subalgebra of B then A ≤reg B.

30.4. If A ≤reg B and B ≤reg C then A ≤reg C.

30.5. If A is a subalgebra of B, B is a subalgebra of C, and A ≤reg C then
A ≤reg B.

30.6. If A is a dense subalgebra of B then A ≤reg B.

30.7. A ≤reg B if and and only if A ≤reg B.

30.8. If A and B are complete then A ≤reg B if and only if A is a complete
subalgebra of B.

30.9. If prA(b) exists for all b ∈ B, then A ≤reg B.

30.10. If {A ∈ [B]ω : A ≤reg B} is stationary, then B has the countable chain
condition.

[Let W be a maximal antichain and consider the model M = (B,≤, W ). There
exists an elementary submodel A of M such that A ≤reg B. W ∩A is maximal in A,
therefore in B, and hence W = W ∩A.]

30.11 (Vladimirov’s Lemma). Let D be a complete Boolean algebra of uni-
form density and A a complete subalgebra of smaller density. Then there exists an
element u ∈ D independent over A.

[Let X = {x ∈ D+ : there is no a ∈ A+ with no a ∈ A+ with a ≤ x}; X is
dense. Let Y = {prA(x) : x ∈ X}; Y is dense. Let W ⊂ Y be a maximal antichain,
and let Z ⊂ X be such that W = {prA(z) : z ∈ Z}. Let u =

P

Z. If a ∈ A+, let
z ∈ Z be such that a · prA(z) �= 0; we also have a · (prA(z) − z) �= 0. Hence u is
independent over A.]
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30.12. Under same assumptions, for every v ∈ D − A there exists some u ∈ D
independent over A such that v ∈ A(u).

[Let z = prA(v)+−prA(v). If z = 0, let u = v. Otherwise, apply Exercise 30.11
to D�z, to get some w ≤ z independent over A�z. Then let u = w + (v − z). We
have v ∈ A(u) since v = prA(v) + u · prA(v); also, u is independent over A.]

30.13. Every simple complete Boolean algebra is rigid.
[Let π be a nontrivial automorphism. There exist disjoint a and b such that

π(a) = b. Each x has a decomposition x = a · x + b · x + y; let A be the complete
subalgebra {x : b · x = π(a · x)}. A is atomless and a /∈ A.]

30.14. Every rigid minimal complete Boolean algebra is simple.
[Let B be minimal and A a complete atomless subalgebra such that A �= B.

There exists a z /∈ A such that A�z = B�z. Let u1 = z − prA(z), v1 = prA(z)− z.
Let 0 �= v ≤ v1 be such that A�v = B�v, and let u = u1 · prA(v). For all a ∈ A
let π(a · u) = a · v; show that π is an automorphism between B�u and B�v. Then
π extends to a nontrivial automorphism of B.]

30.15. Let T be a normal Suslin tree and let BT be the corresponding Suslin
algebra. If π is an automorphism of BT then there is a closed unbounded set C ⊂ ω1

such that π�T C is an automorphism of T C , where T C = {t ∈ T : o(t) ∈ C}.
30.16. If V = L then there exists a Suslin tree T such that BT is rigid.

[Use ♦ and Exercise 30.15 to destroy all potential automorphisms of BT .]

30.17. Player I (player II) has a winning strategy in G played on P if and only if
the same player has one in G on B(P ).

30.18. If a complete Boolean algebra B is strategically ω-closed and if A is a com-
plete subalgebra of B then A is strategically ω-closed.

[Let σ be a winning strategy on B; then the following σA is a winning strategy
on A: When I plays a0, let b0 = σ(a0) and let σA(a0) = prA(b0). When I plays
a1 ≤ σA(a0), let b1 = σ(〈a0, a1 · b0〉) and σA(〈a0, a1〉) = prA(b1). And so on.]

30.19. Let B be a Boolean algebra of uniform density. Consider the infinite game
on B in which two players select elements a0, b0, . . . , an, bn, . . . and II wins if and
only if the set {an, bn}∞n=0 generates a regular subalgebra of B. Show that II has
a winning strategy if and only if B is semi-Cohen.

[If σ is a winning strategy then the set C of all countable subalgebras closed
under σ is a closed unbounded set of regular subalgebras; the converse is similar.]

Historical Notes

Maharam’s Theorem 30.1 appeared in [1942]; the present proof is based on Fremlin’s
article [1989]. Theorem 30.10 appeared in Balcar, Jech and Zapletal [1997] improv-
ing a similar earlier result of Koppelberg [1993]. The [1997] investigates semi-Cohen
algebra, the concept introduced by Fuchino and Jech. Corollary 30.16: Koppelberg.
Theorem 30.20 is due to Solovay.

Rigid minimal algebras were studied by McAloon in [1971]. Constructions of
a simple complete Boolean algebra in ZFC appeared in Jech and Shelah [1996]
and [2001].

The game G on a Boolean algebra was introduced in Jech [1978]; this and similar
games were studied in Jech [1984]. Foreman’s Theorem 30.25 appeared in [1983].

Exercises 30.11 and 30.12: Vladimirov [1969].
Exercises 30.13 and 30.14: McAloon [1971].
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Definition and Examples

Proper forcing was introduced by S. Shelah who isolated properness as the
property of forcing that is common to many standard examples of forcing
notions and that is preserved under countable support iteration.

Definition 31.1. A notion of forcing (P, <) is proper if for every uncount-
able cardinal λ, every stationary subset of [λ]ω remains stationary in the
generic extension.

Properness is a generalization of both the countable chain condition and
of being ω-closed. The following two lemmas are the analogs of Lemma 22.25
and Lemma 23.7 (for κ = ℵ1):

Lemma 31.2. If P satisfies the countable chain condition then for every
uncountable λ, every closed unbounded set C ⊂ [λ]ω in V [G] has a subset
D ∈ V that is closed unbounded in V . Hence every stationary set S ⊂ [λ]ω

remains stationary in V [G].

Proof. Let p � Ċ is closed unbounded; let Ḟ be a name for a function
from λ<ω into λ such that p � CḞ ⊂ Ċ (where CḞ is the set of all clo-
sure points of Ḟ—see Theorem 8.28). Let f : λ<ω → [λ]ω be the function

f(e) = {α ∈ λ : ‖Ḟ (e) = α‖ �= 0}.

f(e) is countable because P satisfies the countable chain condition. Let
D = Cf .

Since p � Ḟ (e) ∈ f(e), if x is closed under f then p � Ḟ (e) ∈ x, and so
p � D ⊂ Ċ. ��

Lemma 31.3. If P is ω-closed then every stationary set S ⊂ [λ]ω remains
stationary in V [G].

Proof. Let p � Ḟ : λ<ω → λ. We shall find a condition q ≤ p and some x ∈ S
such that q � Ḟ (x<ω) ⊂ x.

Consider the model (Hκ,∈, (P, <), p, Ḟ , �) where κ ≥ λ is sufficiently
large. Let C be the closed unbounded set in [Hλ]ω of all countable elementary
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submodels of the model. By Theorem 8.27 there exists some N ∈ C such that
N ∩ λ ∈ S. Let x = N ∩ λ.

Enumerate x<ω = 〈en : n < ω〉 and construct a sequence of conditions
p = p0 ≥ p1 ≥ . . . ≥ pn ≥ . . . such that for each n there exists an αn ∈ N ∩ λ
such that pn � Ḟ (en) = αn (by elementarity). Let q be a lower bound
for {pn}n. Then q � Ḟ (x<ω) ⊂ x. ��

Proper forcing does not collapse ℵ1. In fact, an easy argument shows that
a stronger property is true:

Lemma 31.4. If P is proper then every countable set of ordinals in V [G] is
included in a set in V that is countable in V .

Proof. Let X be a countable set of ordinals in V [G] and let λ be uncountable
in V such that X ⊂ λ. The set ([λ]ω)V remains stationary in V [G] and
therefore meets the set {A ∈ [λ]ω : A ⊃ X}, which is a closed unbounded set
in V [G]. Thus X ⊂ A for some A ∈ ([λ]ω)V . ��

We shall now formulate a technical condition that is equivalent to proper-
ness of a forcing notion, and that will be used to prove that properness is
preserved under countable support iteration. We refer the reader to the ex-
ercises for other equivalents of properness.

Let (P, <) be a fixed notion of forcing. We say that λ is sufficiently large
if λ is a cardinal and λ > 2|P |. A model M is an elementary submodel of
(Hλ,∈, <, . . .) where Hλ is the collection of all sets hereditarily of cardinality
less than λ, < is some unspecified well-ordering of Hλ (to allow for inductive
constructions), and the structure of Hλ contains all the relevant parameters;
in particular, M contains (P, <).

Definition 31.5. A condition q is (M, P )-generic if for every maximal an-
tichain A ∈ M , the set A ∩ M is predense below q.

The following lemma (the proof is a routine exercise) illuminates the con-
cept of (M, P )-genericity:

Lemma 31.6. Let λ be sufficiently large, let M ≺ Hλ be such that P ∈ M ,
and let q ∈ P . The following are equivalent :

(i) q is (M, P )-generic.
(ii) If α̇ ∈ M is an ordinal name then q � α̇ ∈ M , i.e.,

∀r ≤ q ∃s ≤ r ∃β ∈ M s � α̇ = β.

(iii) q � Ġ ∩ M is a filter on P generic over M . ��

Theorem 31.7. A forcing notion P is proper if and only if for all sufficiently
large λ there is a closed unbounded set C of elementary submodels M ≺
(Hλ, . . .) such that

(31.1) ∀p ∈ M ∃q ≤ p (q is (M, P )-generic).
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Proof. First we show that the condition is necessary. Let P be proper and
let λ be sufficiently large. Toward a contradiction assume that the set of all
models M ≺ Hλ for which (31.1) fails is stationary. By normality there exist
a stationary set S ⊂ [Hλ]ω and a condition p ∈ P such that for every q ≤ p
and every M ∈ S, q is not (M, P )-generic.

Now let V [G] be a generic extension with G � p, and let us argue in V [G].
Every maximal antichain A below p (in V ) meets G in a unique condition qA.
Let

C = {M ≺ (Hλ)V : if A ∈ M then qA ∈ M};
C is closed unbounded. Since S remains stationary in V [G], there exists some
M ∈ S ∩ C.

For each A ∈ M we have
∑

(A ∩ M) ∈ G (because qA ∈ G), and by
genericity,

∏
A∈M

∑
(A ∩ M) ∈ G. Let q ≤

∏
A∈M

∑
(A ∩ M). Then q ≤ p

and q is (M, P )-generic, contradicting M ∈ S.
Now we prove that the condition is sufficient. Let P be a forcing notion

that satisfies the condition of the theorem; we shall prove that P preserves
stationary sets. Let λ be an uncountable cardinal and let S ⊂ [λ]ω be sta-
tionary. Let Ḟ be a name for a function Ḟ : λ<ω → λ and p ∈ P . We shall
find a q ≤ p and x ∈ S such that q � x is closed under Ḟ .

Let µ ≥ λ be sufficiently large. By the assumption there exists a closed
unbounded set C ⊂ [Hµ]ω such that (31.1) holds for every M ∈ C. By
Theorem 8.27, {M ∩λ : N ∈ C} contains a closed unbounded set in [λ]ω and
hence there exists some M ∈ C with M ∩ λ ∈ S.

Let q ≤ p be (M, P )-generic. We finish the proof by showing that q �
M∩λ is closed under Ḟ . Let e ∈ (M∩λ)<ω; we shall show that q � Ḟ (e) ∈ M .
There is A ∈ M such that A is a maximal antichain below p and every w ∈ A
decides Ḟ (e). Now if r ≤ q forces Ḟ (e) = α, then because A ∩ M is predense
below q, r is compatible with some w ∈ A ∩ M and so w � Ḟ (e) = α. Since
α is definable from w, Ḟ , and e, we have α ∈ M . ��

Another characterization of properness is formulated in terms of infinite
games.

Definition 31.8. Let P be a forcing notion and let p ∈ P . The proper game
(for P , below p) is played as follows: I plays P -names α̇n for ordinal numbers,
and II plays ordinal numbers βn. Player II wins if there exists a q ≤ p such
that

(31.2) q � ∀n ∃k α̇n = βk.

Theorem 31.9. A forcing notion P is proper if and only if for every p ∈ P ,
II has a winning strategy for the proper game.

Proof. Exercise 31.3. ��

We shall now present some examples of proper forcing. The following
concept is due to J. Baumgartner:
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Definition 31.10. A notion of forcing (P, <) satisfies Axiom A if there is
a collection {≤n}∞n=0 of partial orderings of P such that p ≤0 q implies p ≤ q
and for every n, p ≤n+1 q implies p ≤n q, and

(i) if 〈pn : n ∈ ω〉 is a sequence such that p0 ≥0 p1 ≥1 . . . ≥n−1 pn ≥n . . .
then there is a q such that q ≤n pn for all n;

(ii) for every p ∈ P , for every n and for every ordinal name α̇ there exist
a q ≤n p and a countable set B such that q � α̇ ∈ B.

Lemma 31.11. If P satisfies Axiom A then P is proper.

Proof. Let P satisfy Axiom A and let p ∈ P . The following is a winning
strategy for II in the game from Exercise 31.2: When I plays α̇n, let II find
a condition pn ≤n−1 pn−1 (with p0 ≤ p) and a countable set Bn such that
pn � α̇n ∈ Bn. If q is a lower bound for {pn}∞n=0 then q witnesses that II wins
the game. ��

Example 31.12. Every ω-closed forcing satisfies Axiom A.
Let p ≤n q if and only if p ≤ q, for all n. ��

Example 31.13. Every c.c.c. forcing satisfies Axiom A.
Let p ≤n q if and only if p = q, for all n > 0. ��

Example 31.14. The notions of forcing that add a Sacks real, a Mathias
real or a Laver real satisfy Axiom A.

For Sacks reals, see (15.26). For Laver forcing, see (28.17); Mathias forcing
is similar. ��

In Exercises 31.5 and 31.6 we give Baumgartner’s example of proper forc-
ing that does not satisfy Axiom A.

Iteration of Proper Forcing

It is obvious that a two-step iteration of proper forcing is proper: If P pre-
serves stationary sets and in V P , Q̇ preserves stationary sets then P ∗ Q̇
preserves stationary sets. What is more important however is that proper-
ness is preserved under countable support iteration. The present section is
devoted to the proof of this.

Theorem 31.15 (Shelah). If Pα is a countable support iteration of {Q̇β :
β < α} such that every Q̇β is a proper forcing notion in V Pα�β , then Pα is
proper.

Toward the proof of Theorem 31.15 we first observe that the properness
condition in Theorem 31.7 can be somewhat simplified:
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Lemma 31.16. P is proper if and only if for every p ∈ P , every sufficiently
large λ and every countable M ≺ (Hλ,∈, <) containing P and p, there exists
a q ≤ p that is (M, P )-generic.

Proof. Let P be proper and p ∈ P . Let µ = 2|P | and λ > µ; we recall that < is
a well-ordering of Hλ. By Theorem 31.7 the set of all countable elementary
submodels of Hµ with property (31.1) contains a closed unbounded set, and
so it contains CF for some function F : H<ω

µ → Hµ. If F is the least such
function in Hλ then every M ≺ (Hλ,∈, <) is closed under F and so M ∩Hµ

satisfies (31.1). Hence every such M with P, p ∈ M satisfies the condition of
the lemma. ��

In order to prove that an iteration Pα is proper, we wish to show that if
λ is sufficiently large and M ≺ Hλ contains Pα then for every p ∈ Pα ∩ M
there is some (M, Pα)-generic q ∈ Pα such that q �α p ∈ Ġ. We prove this
by induction; the main point is that the inductive condition is somewhat
stronger:

Lemma 31.17. Let Pα be a countable support iteration of proper forcing
notions. Let λ be sufficiently large and let M ≺ (Hλ,∈, <) be countable, with
Pα ∈ M . For every γ ∈ α∩M , every q0 ∈ Pγ = Pα�γ that is (M, Pγ)-generic,
and every ṗ ∈ V Pγ such that

(31.3) q0 �γ ṗ ∈ (Pα ∩ M) and ṗ�γ ∈ Ġγ

there exists an (M, Pα)-generic condition q ∈ Pα such that q�γ = q0 and
q �α ṗ ∈ Ġα.

Ġα and Ġγ are the canonical names for generic filters on Pα and Pγ

respectively. Letting γ = 0 (and q0 the trivial condition 1 in P0 = {1}), we
get the desired result.

Lemma 31.17 is proved by induction on α. In order to handle the successor
stages we need first to prove the special case α = 2, γ = 1; then the inductive
step from α to α + 1 is a routine modification of the special case:

Lemma 31.18. Let P be proper, let Q̇ ∈ V P be such that �P Q̇ is proper
and let R = P ∗ Q̇. Let M ≺ Hλ be countable, with R ∈ M . For every
(M, P )-generic q0 ∈ P and every ṗ ∈ V P such that

q0 �P ṗ ∈ (M ∩ R) and ṗ0 ∈ ĠP

(where ṗ is a name for (ṗ0, ṗ1) and ĠP is generic on P ) there is some q̇1 ∈ V P

such that (q0, q̇1) is (M, R)-generic and (q0, q̇1) �R ṗ ∈ ĠR.

Proof. To find the name q̇1, let G be a generic filter on P containing q0. Let
p = ṗG and q = Q̇G; then p ∈ M ∩ R and p = (p0, ṗ1) with p0 ∈ G. Since
ṗ1 ∈ M , we have p1 ∈ M [G]∩Q, and since Q is proper, there exists (in V [G])
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a stronger condition q1 that is (M [G], Q)-generic. (Here we use the fact that
M [G] ≺ H

V [G]
λ which we leave as an exercise.) This describes q̇1.

That (q0, q̇1) is (M, R)-generic follows from q0 being (M, P )-generic and
q0 � q̇1 is (M [ĠP ], Q̇)-generic (this is routine). Also, since q0 � ṗ0 ∈ ĠP and
q0 � q̇1 ≤ ṗ1, we conclude that (q0, q̇1) �R ṗ ∈ ĠR. ��
Proof of Lemma 31.17. We assume that α is a limit ordinal; hence α ∩ M
is a countable set of ordinals without a maximal element. Let 〈γn : n ∈ ω〉
be an increasing set of ordinals in M with γ0 = γ, cofinal in α ∩ M . Let
{Dn : n ∈ ω} be an enumeration of al dense subsets of Pα that are in M . Let
q0 ∈ Pγ0 be (M, Pγ0)-generic and let ṗ be a V Pγ0 -name such that (31.3) holds.
We shall find a (M, Pα)-generic condition q ∈ Pα such that q�γ0 = q0 and
q �α ṗ ∈ Ġα.

We construct q as the limit of conditions qn ∈ Pγn such that qn+1�γn = qn,
and such that each qn is (M, Pγn)-generic.

Along with the qn we construct Pγn -names ṗn such that ṗ0 = ṗ and that
for each n, qn forces

(i) ṗn ∈ (Ṗα ∩ M),
(ii) ṗn ≤ ṗn−1,
(iii) ṗn ∈ Dn−1,
(iv) ṗn�γn ∈ Ġγn .

(31.4)

Assume that qn and ṗn have been constructed. To find ṗn+1, let G be a Pγn -
generic filter such that qn ∈ G, and let pn = ṗG

n . We have pn ∈ Pα ∩ M
and pn�γn ∈ G. Since qn is (M, Pγn)-generic and Dn ∈ M , we can find
a condition pn+1 ≤ pn in Dn ∩M such that pn+1�γn ∈ G. This describes the
Pγn+1-name ṗn+1. Now we apply the inductive condition to γn+1 (in place
of α) and γn (in place of γ), for qn and ṗn+1�γn+1; we obtain a qn+1 ∈ Pγn+1

that forces (31.4) (with n replaced by n + 1).
Now we let q be the limit of the qn. Clearly, q ∈ Pα and q�γ0 = q0. We

complete the proof by showing that for every n, q �α ṗn ∈ Ġα. This implies
not only that q �α ṗ ∈ Ġα, but also that q is (M, Pα)-generic, because
q � ṗn ∈ (Dn−1 ∩ M).

To verify that q �α ṗn ∈ Ġα, let G be a generic filter on Pα and let
pn = ṗG

n . We have pn ∈ M and pn�γk ∈ Gγk
∩M for all k ≥ n. Thus if we let

δ = sup(α ∩ M), we have pn�δ ∈ Gδ. Since pn ∈ M , its support is included
in M and therefore pn�δ = pn. It follows that pn ∈ G. ��

A significant consequence of Theorem 31.15 is that countable support it-
eration of proper forcing preserves ℵ1. As for cardinals above ℵ1, one often
needs additional assumptions on the iterates Q̇β to calculate the chain condi-
tion. The easiest case was already stated in Exercise 16.20: If P is a countable
support iteration of length κ ≥ ℵ2 such that each P �β, β < κ, has a dense
subset of size < κ, then P satisfies the κ-chain condition. In particular, iter-
ation of length ω2 with each P �β having a dense set of size ℵ1, satisfies the
ℵ2-chain condition, and all cardinals are preserved.
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A somewhat better result is the following which we state without a proof.
For a proof, see Abraham’s paper [∞] in the Handbook of Set Theory. [She-
lah’s book [1998] contains more general chain condition theorems.]

Theorem 31.19. Assume CH. If P is a countable support iteration of length
κ ≤ ω2 of proper forcings Q̇β of size ℵ1, then P satisfies the ℵ2-chain condi-
tion. ��

The Proper Forcing Axiom

When we replace the countable chain condition in Martin’s Axiom MAℵ1

by properness we obtain a more powerful statement, the Proper Forcing Ax-
iom (PFA):

Definition 31.20 (Proper Forcing Axiom (PFA)). If (P, <) is a proper
notion of forcing and if D is a collection of ℵ1 dense subsets of P , then there
exists a D-generic filter on P .

It turns out that PFA implies that 2ℵ0 = ℵ2, and therefore PFA is a gen-
eralization of Martin’s Axiom MA. Unlike MA, consistency of PFA requires
large cardinals: It follows from the results stated later in this chapter that at
least a Woodin cardinal is necessary. The consistency proof given below uses
a supercompact cardinal.

Theorem 31.21. If there exists a supercompact cardinal then there is a
generic model that satisfies PFA.

Proof. The proof follows loosely the proof of the consistency of MA. Let κ
be a supercompact cardinal. The model is obtained by countable support
iteration of length κ. Each notion of forcing used in the iteration is proper
and has size < κ, thus both ℵ1 and all cardinals ≥ κ are preserved. Cardinals
between ℵ1 and κ are collapsed and so κ becomes ℵ2, and the model satisfies
2ℵ0 = ℵ2.

In order to show that the resulting model satisfies PFA, we use a Laver
function (see Theorem 20.21); this makes it possible to handle all potential
proper forcing notions in κ steps.

Let f : κ → Vκ be a Laver function. We construct a countable support
iteration Pκ of {Q̇α : α < κ} as follows: At stage α, if f(α) is a pair (Ṗ , Ḋ)
of Pα-names such that Ṗ is a proper forcing notion and D is a γ-sequence
of dense subsets of Ṗ for some γ < κ, we let Q̇α = Ṗ ; otherwise, Q̇α is the
trivial forcing.

Let G be a generic filter on Pκ, the countable support iteration of {Q̇α :
α < κ}. Since each Q̇α is proper, Pκ is proper and therefore ℵ1 is preserved.
Each Pα (the iteration of {Q̇β : β < α}) has size less than κ (because
f(α) ∈ Vα) and so Pκ has the κ-chain condition; hence all cardinals ≥ κ
are preserved.
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Lemma 31.22. In V [G], if P is proper and D = {Dα : α < γ}, with γ < κ,
is a family of dense subsets of P , then there exists a D-generic filter on P .

This lemma will complete the proof of the theorem: For every γ < κ,
let P be the forcing that collapses γ onto ω1 with countable conditions, and
for α < γ let Dα = {p ∈ P : α ∈ ran(p)}. By Lemma 31.22, there exists
a collapsing map of γ onto ω1. Thus κ = ℵ2 in V [G]. Now Lemma 31.22
implies that V [G] satisfies PFA. Moreover, 2ℵ0 = ℵ2 in V [G]: On the one
hand, PFA implies MAℵ1 and so 2ℵ0 > ℵ1, and on the other hand, 2ℵ0 ≤ κ
because |Pκ| = κ.

Proof of Lemma 31.22. Let Ṗ and Ḋ be Pκ-names for P and D. Let λ > 22|P |

be sufficiently large; we may also assume that P ⊂ λ. Since f is a Laver
function, there exists an elementary embedding j : V → M with critical
point κ such that j(κ) > λ, Mλ ⊂ M , and (jf)(κ) = (Ṗ , Ḋ).

P is a proper forcing in V [G]. This is witnessed by some closed unbounded
set C ⊂ [Hη]ω of countable models for some η with 2|P | < η < λ. Since Mλ ⊂
M and Pκ has the κ-chain condition, V [G] satisfies that M [G]λ ⊂ M [G],
and therefore C is closed unbounded in M [G]. Therefore P is proper in the
model M [G].

Now consider the forcing notion j(Pκ) in M . It is a countable support
iteration of length j(κ) using the Laver function j(f). Since j�Vκ is the iden-
tity, we have j(Pκ)�κ = Pκ. As (jf)(κ) = (Ṗ , Ḋ) and P is proper in M [G],
it follows that (jQ̇)κ = Ṗ . Hence

j(Pκ) = Pκ ∗ Ṗ ∗ Ṙ

for some Ṙ.
Let H ∗ K be a V [G]-generic ultrafilter on Ṗ ∗ Ṙ. In V [G ∗ H ∗ K] we

extend the elementary embedding j : V → M to an elementary embedding
j∗ : V [G] → M [G ∗ H ∗ K] as follows: For every Pκ-name ẋ, let

j∗(ẋG) = j(ẋ)G∗H∗K .

The definition of j∗ does not depend on the choice of the name ẋ, since
‖ẋ = ẏ‖ ∈ G implies ‖j(ẋ) = j(ẏ)‖ ∈ G ∗ H ∗ K (because j(p) = p for every
p ∈ Pκ). Similarly, ‖ϕ(ẋ)‖ ∈ G implies ‖ϕ(j(ẋ))‖ ∈ G ∗ H ∗ K, and so j∗ is
elementary. Clearly, j∗ extends j.

The filter H on P is V [G]-generic and thus meets every Dα, α < γ. Let
E = {j(p) : p ∈ H}. Since j�λ ∈ M , the set E is in M [G ∗ H ∗ K], and
generates a filter on j∗(P ) that is j∗(D)-generic. Thus

M [G ∗ H ∗ K] � there exists a j∗(D)-generic filter on j∗(P )

and since j∗ : V [G] → M [G ∗ H ∗ K] is elementary, there exists in V [G] a D-
generic filter on P . ��
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Applications of PFA

Our first goal is to outline the proof of the following theorem:

Theorem 31.23 (Todorčević). PFA implies 2ℵ0 = ℵ2.

As the first step we show that the Open Coloring Axiom (29.6) is a con-
sequence of PFA. If [X ]2 = K0 ∪ K1 with K0 open, let us call Z ⊂ X
0-homogeneous if [Z]2 ⊂ K0 and 1-homogeneous if [Z]2 ⊂ K1. It is clear that
the closure of a 1-homogeneous set is also 1-homogeneous, and so in (29.6)
we can further assume that the sets Hn are closed.

The proof of OCA from PFA uses the following technical lemma that we
state without proof:

Lemma 31.24 (Todorčević). Assume 2ℵ0 = ℵ1. Let X ⊂ R and [X ]2 =
K0 ∪ K1 with K0 open, and assume that X is not the union of countably
many closed 1-homogeneous sets. Then there exists an uncountable Y ⊂ X
such that in any uncountable set W ⊂ {p ∈ [Y ]<ω : p is 0-homogeneous}
there exist p �= q such that p ∪ q is 0-homogeneous.

Proof. See Theorem 4.4 of Todorčević [1989]. (To apply the theorem, let F (x)
be the closure of {y ∈ X : x < y and {x, y} ∈ K1}.) ��

Theorem 31.25. PFA implies OCA.

Proof. Let X ⊂ R and let [X ]2 = K0 ∪ K1 with K0 open, and assume that
X is not the union of countably many closed 1-homogeneous sets. We shall
use PFA to find an uncountable 0-homogeneous set.

Let P be the forcing (15.2) that adds a subset of ω1 with countable con-
ditions. By Exercise 15.14, V P satisfies 2ℵ0 = ℵ1. Since P does not add new
reals, it does not add new closed sets of reals and so in V P , X is not the
union of countably many closed 1-homogeneous sets.

By Lemma 31.24 there exists an uncountable Ẏ ∈ V P such that if we let
Q̇ = {p ∈ [Ẏ ]<ω : p is 0-homogeneous} (and p is stronger than q if p ⊃ q)
then the forcing notion Q̇ satisfies the countable chain condition. Hence P ∗Q̇
is proper.

Let 〈yα : α < ω1〉 be an enumeration of Ẏ in V P . For each α < ω1,
the set Dα = {(p, q) ∈ P × Q̇ : p � yα ∈ q} is a dense set in P ∗ Q̇. Let
D = {Dα : α < ω1}. By PFA there exists a D-generic filter G on P ∗ Q̇, and
then the set Y =

⋃
{q : (p, q) ∈ G} is an uncountable 0-homogeneous set. ��

Theorem 31.25 appears in Todorčević [1989]. Its proof does not require
the full force of PFA. What we used is a weaker statement that is obtained
by replacing “proper notion of forcing” in Definition 31.20 by “Axiom A
forcing of cardinality ≤ 2ℵ0 .” This axiom is weaker than PFA (and stronger
than MAℵ1) and is consistent relative to ZFC+“there exists a weakly compact
cardinal” (see Baumgartner [1984]).
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The consistency of related partition axioms was first established in Abra-
ham, Rubin and Shelah [1985].

By Theorems 31.25 and 29.8, PFA implies OCA which implies b = ℵ2.
Thus to complete the proof of Theorem 31.23 it is enough to show that
PFA implies b = 2ℵ0 . We shall use another technical lemma of Todorčević
that we state without a proof.

Let κ ≤ 2ℵ0 be a regular uncountable cardinal and let F : [κ]2 → ω be
a partition. Let P be the forcing with countable conditions that adds a subset
of ω1. In V P , |κ| = ℵ1 and cf κ = ω1; let Ċ ∈ V P be a closed unbounded
subset of κ of order-type ω1, consisting of limit ordinals. For every n and k let
Ṙk

n be the forcing where conditions are finite k-homogeneous (for F ) subsets
of Ċ + n = {α + n : α ∈ Ċ}. Ṙk

n adds a k-homogeneous subset Ġk
n of Ċ + n.

(In general, Ṙk
n need not satisfy the countable chain condition.) Let Q̇k

n be
the product of ω copies of Ṙk

n, and for every real r ∈ ωω, let Q̇r = Q̇r(Ċ) be
the product of Q̇r(n)

n , n < ω.

Lemma 31.26. There exists a partition F : [b]2 → ω such that in V P , for
every Ċ as above and every r ∈ ωω, Q̇r(Ċ) satisfies the countable chain
condition.

Proof. See Bekkali [1991], page 49. The partition F is obtained by using
oscillating real numbers, cf. Chapter 1 of Todorčević [1989]. ��

Lemma 31.27. PFA implies b = 2ℵ0 .

Proof. Let F : [b]2 → ω be as in Lemma 31.26. Let P be the ω-closed forcing
that adds a subset of ω1, and let Ċ ∈ V P be a closed unbounded subset of b,
of order-type ω1.

Let r ∈ ωω. The forcing P ∗ Q̇r(Ċ) is proper and we apply PFA to obtain
a sufficiently generic filter G×

∏
n

∏
i Gn,i. Let C(r) = C = ĊG; C is a closed

unbounded subset of some δ(r) = δ < b, cf δ = ω1, and for each n, each Gn,i

is an r(n)-homogeneous subset of C + n. Let Cn,i = Gn,i − n; by genericity,
we have C =

⋃
i<ω Cn,i for each n, and

(31.5) r(n) = k if and only if ∀i ∀α, β ∈ Cn,i F (α + n, β + n) = k.

We claim that if r �= s then δ(r) �= δ(s).
Let n be such that r(n) �= s(n). Assuming that δ(r) = δ(s) = δ, the set

C(r) ∩ C(s) is closed unbounded in δ, and we can find i and j such that
Cn,i(r) ∩ Cn,j(s) is unbounded. Let α < β be in this unbounded set; then
by (31.5), F (α + β, β + n) = r(n) = r(s), a contradiction.

Thus we have produced a one-to-one mapping of ωω into b. ��

The next theorem establishes the consistency strength of PFA (see the
discussion following the proof):

Theorem 31.28 (Todorčević). PFA implies that �κ fails for every un-
countable cardinal κ.
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Proof. Let κ be an uncountable cardinal, assume that �κ holds, and let
〈Cα : α ∈ Lim(κ+)〉 be a square-sequence (cf. (23.4)).

Let T be the tree whose nodes are limit ordinals below κ+, and β ≺ α if
β ∈ Lim(Cα). Since 〈Cα〉α is a square-sequence, T has no κ+-branch.

Let λ be sufficiently large, and consider countable elementary submod-
els M of Hλ such that 〈Cα : α < κ+〉 ∈ M ; let δM =

∑
(M ∩κ+). An elemen-

tary chain is a sequence 〈Mα : α < ω1〉 of elementary submodels of Hλ such
that Mα ⊂ Mβ and Mα ∈ Mβ whenever α < β, and Mα =

⋃
β<α Mβ if α is

a limit ordinal. If E is a finite subset of ω1 then an E-chain is 〈Mα : α ∈ E〉
such that each Mα is an elementary submodel of Hλ, and Mα ∪ {Mα} ⊂ Mβ

for α < β in E.
We now define a forcing notion P as follows: A condition p ∈ P is a pair

(〈Nα : α ∈ E〉, f) where

(i) E is a finite subset of ω1 and 〈Nα : α ∈ E〉 is an E-chain such
that there exists an elementary chain 〈Mα : α < ω1〉 such that
Nα = Mα for all α ∈ E,

(ii) f is a function from {δNα : α ∈ E} into ω such that f(γ) �= f(δ)
whenever γ ≺ δ.

(31.6)

A condition q is stronger than p if p = q�E.
Note that (i) resembles the forcing that adds a closed unbounded set with

finite conditions, and (ii) resembles the forcing that specializes an Aronszajn
tree.

Lemma 31.29. P is proper.

Proof. We omit the proof, as it is similar to the proof of properness in Exer-
cise 31.5 (and using the fact that (T,≺) has no κ+-branch). ��

Now we use PFA to reach a contradiction. Let G be a sufficiently generic
filter on P . The filter G yields an elementary chain 〈Nα : α < ω1〉 and a closed
unbounded set {δα : α < ω1} (where δα = δNα) with supremum γ. There is
a closed unbounded set C ⊂ ω1 such that for all α ∈ C, δα is a limit point
of Cγ . Since δα ≺ δβ whenever α < β ∈ C, it follows that {δα : α ∈ C} is an
ω1-chain in T .

On the other hand, the filter G yields a specializing function on {δα :
α < ω1}, that is a function F with values in ω such that F (δα) �= F (δβ)
whenever δα ≺ δβ . A contradiction. ��

The proof of Theorem 31.28 has been modified by Magidor to show that
under PFA, even a weak version of � fails (we shall discuss these versions
of � in Chapter 38). It has been proved by Schimmerling that the failure of
those principles imply an inner model for a Woodin cardinal. Thus we have:

Theorem 31.30 (Schimmerling). If PFA holds then there exists an inner
model of “there exists a Woodin cardinal.” ��
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Martin’s Axiom MAℵ1 implies that there are no Suslin trees, and more-
over, that every Aronszajn tree is special. PFA implies a stronger result. If
T is a normal ω1-tree and C ⊂ ω1 a closed unbounded set, then T �C is the
tree {t ∈ T : o(t) ∈ C}. Two trees T1 and T2 are club-isomorphic if there
exists a closed unbounded C such that T1�C and T2�C are isomorphic.

Theorem 31.31. If PFA holds then any two normal Aronszajn trees are
club-isomorphic.

Proof. Let T1 and T2 be two normal Aronszajn trees. Consider the forcing
with finite conditions (E, f) such that

(i) E is a finite subset of ω1,
(ii) dom(f) is a subtree of T1�E in which every branch has size |E|;

similarly for ran(f) ⊂ T2�E,
(iii) f us an isomorphism.

(31.7)

We omit the proof that P is proper and refer the reader to Todorčević [1984],
Theorem 5.10.

A sufficiently generic filter on P yields an uncountable set A and an
isomorphism between T1�A and T2�A, which easily extends to T1�C where
C is the closure of A. ��

We present one more consequence of PFA, due to J. Baumgartner (com-
pare with Theorem 28.24):

Theorem 31.32. If PFA holds then there are no ℵ2-Aronszajn trees.

Proof. Assume that T is an ℵ2-Aronszajn tree. Let P be the forcing that adds
a subset of ω1 with countable conditions. Since 2ℵ0 = ℵ2, P collapses ω2 and
so there is in V P a closed unbounded subset Ċ of ω2, of order-type ω1. The
tree T has no new branches (this is proved as in Lemma 27.10, because the
levels of T have size ℵ1 < 2ℵ0). Thus U̇ = T �Ċ is in V P an ω1-tree with no
ω1-branches.

Now let Q̇ ∈ V P be the specializing forcing for U̇ , as in Theorem 16.17.
Q̇ satisfies the countable chain condition, and so P ∗ Q̇ is proper.

Let G be a sufficiently generic filter on P ∗Q̇. It yields a closed unbounded
subset C of some γ < ω2, a tree U = T �C, and a specializing function f :
U → ω. This is a contradiction, since a special tree has no ω1-branches, while
every t ∈ T at level γ produces an ω1-branch in U . ��
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Exercises

31.1. If P is strategically ω-closed then P is proper.

The following two exercises present equivalent versions of the proper game:

31.2. Let p ∈ P . Player II has a winning strategy in the proper game if and only if
II has a winning strategy in the game where I plays ordinal names α̇n and II plays
countable sets of ordinals Bn, and II wins if some q ≤ p forces ∀n ∃k α̇n ∈ Bk.

31.3. P is proper if and only if for every p ∈ P , II has a winning strategy in the
following game: At move n, I plays a maximal antichain An and II responds by
playing countable sets Bn

0 ⊂ A0, . . . , Bn
n ⊂ An. II wins if for some q ≤ p, ∀n

S∞
k=n Bk

n is predense below q.
[In the forward direction, let λ be sufficiently large and let C be a closed un-

bounded set of models M ≺ Hλ that satisfy (31.1) and p ∈ M . The following is
a winning strategy for II: When I plays An, let II choose some Mn ∈ C such that
Mn ⊃Mn−1 and An ∈Mn, and let Bn

k = Ak∩Mn, k = 0, . . . , n. Let M =
S∞

n=0 Mn

and let q ≤ p be (M, P )-generic. Since An ∩M =
S∞

k=0 Bk
n, II wins.

Conversely, let σ be a winning strategy for II, and let λ be sufficiently large
with σ ∈ Hλ. Show that for every M ≺ Hλ such that P, p, σ ∈ M there is some
(M, P )-generic q ≤ p (by playing a game in which I plays successively all maximal
antichains A ∈M). Let Cp be the closed unbounded set of all such M ; the diagonal
intersection �p Cp witnesses that P is proper.]

31.4. If P satisfies Axiom A and p ∈ P then II has a winning strategy in the
following game (more difficult for player II than the proper game): I plays ordinal
names α̇n and II plays countable sets of ordinals Bn; II wins if some q ≤ p forces
∀n α̇n ∈ Bn.

Adding a closed unbounded set with finite conditions: A condition p ∈ P
is a finite function with dom(p) ⊂ ω1, ran(p) ⊂ ω1 such that there exists a normal
function f : ω1 → ω1 with f ⊃ p. A condition q is stronger than p if q ⊃ p. If
G is generic then fG =

S{p : p ∈ G} is a normal function. Note that if α = ωβ

(an indecomposable ordinal) and p ⊂ α× ω is a condition then p ∪ {(α, α)} is also
a condition.

31.5. Let P be as above and let p ∈ P . Then II has a winning strategy in the game
from Exercise 31.3. Hence P is proper.

[When I plays An, II finds some indecomposable αn > αn−1 such that for all
k ≤ n

(∀β < α)(∃γ < α)(∀p ⊂ γ × γ)(∃q ⊂ γ × γ) q ∈ Ak

(and q is compatible with p), and plays Bn
k = {p ∈ Ak : p ⊂ αn × αn}.]

31.6. Let P be as above. Then I has a winning strategy in the game from Exer-
cise 31.4. Hence P does not satisfy Axiom A.

[Let ḟ be the name for fG. At move n, player I chooses an indecomposable
ordinal αn greater than Bn−1 and plays ḟ(αn).]

31.7. Let P be the ω-closed forcing for collapsing ω2 to ω1 with countable condi-
tions. There exists a set D of ℵ2 dense sets for which there is no D-generic filter.

[For α < ω2, let Dα = {p ∈ P : α ∈ ran(p)}.]

PFA+ is the following statement: If P is proper, if D = {Dα : α < ω1} are
dense sets and if � Ṡ ⊂ ω1 is stationary, then there exists a D-generic filter G such
that ṠG is stationary (where ṠG = {α : ∃p ∈ G p � α ∈ Ṡ}).
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31.8. PFA+ is consistent relative to a supercompact cardinal.
[Modify the proof of Theorem 31.21.]

31.9. PFA+ implies that for every regular κ ≥ ω2, every stationary set A ⊂ Eκ
ω

reflects at some γ of cofinality ω1.
[Let A ⊂ Eκ

ω be stationary. Let P consist of closed countable subsets of κ,
ordered by end-extension. P is ω-closed and adds a closed unbounded subset Ċ ⊂ κ
of order-type ω1. A remains stationary and so A∩ Ċ is a stationary subset of Ċ; let
Ṡ = f−1(A ∩ Ċ) where f is the isomorphism between ω1 and Ċ. If G is sufficiently
generic such that ṠG is stationary, then A ∩ ĊG is stationary in γ = sup ĊG.]

PFA− is the statement: If P is proper such that |P | ≤ ℵ1 and if D = {Dα :
α < ω1} are dense then there exists a D-generic filter. In [1982] Shelah proves that
PFA− is consistent relative to ZFC only.

31.10. PFA− implies that any two normal Aronszajn trees are club-isomorphic.
[The forcing in (31.7) has size ℵ1.]

Historical Notes

Proper forcing was introduced by Shelah, cf. [1982] and [1998]. The iteration The-
orem 31.15 is due to Shelah; our treatment follows Abraham’s article [∞]. The
proper game was formulated independently by Shelah and C. Gray.

Proper Forcing Axiom was introduced by Baumgartner [1984]; earlier (Baum-
gartner [1983]) he introduced Axiom A. Theorem 31.21 is due to Baumgartner.

Theorem 31.23: Todorčević [1989], see also Bekkali [1991]. (The claim in
Veličković [1992] to this result cannot be substantiated.)

Theorem 31.25: Todorčević [1989]; Abraham, Rubin and Shelah [1985].
Theorem 31.28: Todorčević [1984].
Theorem 31.31: Abraham and Shelah [1985].
Theorem 31.32: Baumgartner [1984].
The forcing for adding a closed unbounded set with finite conditions is due to

Baumgartner [1983].
Exercises 31.8, 31.9: Baumgartner [1984].
Exercise 31.10: Abraham and Shelah [1985].
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Π1
1 Equivalence Relations

Theorem 32.1 (Silver). If E is a Π1
1 equivalence relation on N then either

E has at most ℵ0 equivalence classes or there exits a perfect set of mutually
inequivalent reals.

Thus every Π1
1 (and in particular) Borel equivalence relation has either at

most countably many or 2ℵ0 equivalence classes. This can be viewed as a gen-
eralization of the perfect set property for analytic sets (Theorem 11.18); cf.
Exercise 32.1. The theorem does not extend to Σ1

1, as there exists a Σ1
1 equiv-

alence relation with exactly ℵ1 equivalence classes (Exercise 32.2).
We present a proof of Theorem 32.1 that is due to Leo Harrington. We

start with an easy lemma.

Lemma 32.2. Let E be a meager equivalence relation on N . Then there
exist a perfect set of inequivalent reals.

Proof. Let {Dn}n be dense open sets in N×N such that N 2−E ⊃
⋂∞

n=0 Dn.
We construct a binary tree of finite sequences {us : s ∈ Seq({0, 1})} ⊂ Seq
such that for every n, if |s| = |t| = n and s �= t, then O(us) × O(ut) ⊂ Dn.

This is done by induction on the length of s. If the us have been defined
for all s ∈ {0, 1}n, we consider successively all possible pairs (s�i, t�j), and
using the density of Dn+1, successively extend each us�i until O(us�i) ×
O(ut�j) ⊂ Dn+1 for all s, t ∈ {0, 1}n and i, j = 0, 1.

For each f ∈ {0, 1}ω let af be the unique member of
⋂∞

n=0 O(uf�n). The
set {af : f ∈ {0, 1}ω} is perfect, and if f �= g then (af , ag) /∈ E. ��

We shall use a version of Lemma 32.2 for a different topology on N ×N .
Toward the proof let us recall some basic facts about the property of Baire.
In particular, Lemmas 11.16 and 11.17 as well as the fact that the σ-algebra
of sets with the Baire property is closed under the Suslin operation A, remain
true in every second countable space (i.e., space that has a countable basis).

We shall prove Silver’s Theorem for (lightface) Π1
1 equivalence relations;

the proof relativizes to Π1
1(a) for every real parameter a.

Definition 32.3. The Σ1
1-topology on N is the topology with basic open sets

being all the Σ1 subsets of N .



616 Part III. Selected Topics

The Σ1
1-topology has a countable base and is larger than the standard

topology, as every basic open set O(s) in N is Σ0
1.

Lemma 32.4. The Σ1
1-topology satisfies the Baire Category Theorem.

Proof. Exercise 32.3. ��

Lemma 32.5. If X is comeager in the Σ1
1-topology then for every nonempty

Σ1
1 subset A of N ×N , A ∩ (X × X) �= ∅.

Proof. The lemma states that X ×X is dense in the Σ1
1-topology on N ×N

(which is larger than the product of the Σ1
1-topology). If D is a dense open

set in the Σ1
1-topology then D ×N is dense open in the Σ1

1-topology on N 2:
This is because if A �= ∅ is a Σ1

1 subset of N 2 then its projection is Σ1
1 and

hence meets D.
Let X ⊃

⋂∞
n=0 Dn where each Dn is dense open. Then X × X ⊃⋂∞

n=0(Dn × N ) ∩
⋂∞

n=0(N × Dn), and the latter set is dense, by the Baire
Category Theorem applied to the Σ1

1-topology on N ×N . ��

Given a Π1
1 equivalence relation E on N , consider the set that is the

complement of the union of all Σ1
1 sets contained in some equivalence class:

(32.1) H = {a ∈ N : for every Σ1
1 set U , if a ∈ U then there is a b ∈ U with

(a, b) /∈ E}.

Note that if H is empty then every equivalence class is the union of Σ1
1 sets

and therefore there are at most ℵ0 equivalence classes. We shall prove that if
H �= ∅ then there exists a perfect set of inequivalent reals.

Lemma 32.6. H is a Σ1
1 set.

Proof. First note that if an equivalence class A of E contains a nonempty
Σ1

1 set U then A is Π1
1:

x ∈ A ↔ ∀y (y ∈ U → x E y).

Then by the separation principle there exists a ∆1
1 set V such that U ⊂

V ⊂ A. It follows that

(32.2) H = {a : for every ∆1
1 set U , if a ∈ U then ∃b ∈ U with (a, b) /∈ E}.

The quantification “for every ∆1
1 set” in (32.2) can be replaced by “for every

Borel code for a ∆1
1 set” and since we are dealing only with lightface ∆1

1 sets,
this can be replaced by a number quantifier ∀n. Similarly, “a ∈ U” and
“b ∈ U” are ∆1

1 properties, and it follows that H is Σ1
1. ��

Lemma 32.7. For every a ∈ N , Ea∩H is meager in the Σ1
1-topology, where

Ea = {b : (a, b) ∈ E}.
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Proof. If H = ∅ then there is nothing to prove; thus assume H �= ∅. The
set Ea is Π1

1 and therefore has the Baire property in the Σ1
1-topology. If

Ea ∩ H is not meager then there exists a nonempty Σ1
1 set U such that

Ea ∩ U is comeager in U . As U ⊂ H , U × U is not contained in E and so
U2−E is nonempty; hence we have (by Lemma 32.5) (U2−E)∩(Ea∩U)2 �= ∅.
In other words there exist b, c ∈ U such that a E b, a E c and (b, c) /∈ E,
a contradiction. ��

Lemma 32.8. E ∩ (H × H) is meager (in the product of the Σ1
1-topology).

Proof. By Lemma 32.7 and Lemma 11.16. ��

Proof of Theorem 32.1. If H is empty then E has at most ℵ0 equivalence
classes. If H �= ∅ then H is Σ1

1 and therefore a basic open set in the Σ1
1-

topology. By Lemma 32.8 E ∩ (H × H) is meager in the product of the
Σ1

1-topology. The rest of the proof (which we omit) is a combination of the
construction in the proof of Lemma 32.2 and the construction in Exercise 32.3:
One can produce a perfect set {af : f ∈ {0, 1}ω} ⊂ H2 such that (af , ag) /∈ E
whenever f �= g. ��

Σ1
1 Equivalence Relations

Theorem 32.9. If E is a Σ1
1 equivalence relation on N then either E has

at most ℵ1 equivalence classes or there exists a perfect set of mutually in-
equivalent reals.

This theorem, due to J. Burgess, extends Silver’s Theorem and uses it in
the proof. Note that Exercise 32.2 makes it best possible.

Proof. Let E be a Σ1
1 equivalence relation. There exists a tree T on (ω×ω)×ω

such that for all a, b ∈ N

(32.3) a E b ↔ T (a, b) is ill-founded.

We define, for each α < ω1, a relation Eα on N as follows:

(32.4) a Eα b ↔ not (‖T (a, b)‖ < α).

It is clear that each Eα is a Borel relation, Eα ⊃ Eβ if α < β, Eα =
⋂

β<α Eβ

if α is limit, and E =
⋂

α<ω1
Eα. Moreover, each Eα is reflexive as Eα ⊃ E.

Lemma 32.10. There is a closed unbounded set C ⊂ ω1 such that for each
α ∈ C, Eα is an equivalence relation.
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Proof. If T (x, y) is well-founded then so is T (y, x) (by the symmetry of E) and
so for every α < ω1 the set {T (y, x) : ‖T (x, y)‖ < α} is a set of well-founded
trees. The set is Σ1

1 and so, by the Boundedness Lemma there is a countable
ordinal f(α) such that ‖T (y, x)‖ < f(α) whenever ‖T (x, y)‖ < α. Let γ be
a closure point of f , i.e., if α < γ then f(α) < γ. Let a, b ∈ N . If (b, a) /∈ Eγ ,
or ‖T (b, a)‖ < γ, then ‖T (a, b)‖ < γ, or (a, b) /∈ Eγ and so Eγ is symmetric.

Similarly, there is a function g : ω1 → ω1 such that if γ is a closure
point of g then for all a, b, c ∈ N , if (a, c) /∈ Eγ then either (a, b) /∈ Eγ or
(b, c) /∈ Eγ . Let C be the set of all closure points of both f and g. ��

Now assume that E has more than ℵ1 equivalence classes. We shall prove
that there exists a perfect set of E-inequivalent reals.

Let V [G] be a generic extension of V that collapses ℵ1 and makes ℵV
2 =

ℵV [G]
1 . Let Ẽ denote the relation defined in V [G] by (32.3), and for each

α < ωV [G]
1 let Ẽα be defined by (32.4). Ẽ is Σ1

1, and each Ẽα is Borel. By
absoluteness, Ẽ ∩ V = E and Ẽ is an equivalence relation, Ẽα ∩ V = Eα

for each α < ωV
1 , and if Eα is an equivalence relation then so is Ẽα. Since

ẼωV
1 =

⋂
α<ωV

1
Ẽα, it is a Borel equivalence relation. We assume that E has,

in V , a set X of size ℵ2 of inequivalent reals. If x, y ∈ X and x, y /∈ E then
(x, y) /∈ Eα for some α < ωV

1 . Hence X is a set of ẼωV
1 -inequivalent reals,

and X is uncountable in V [G].
By Silver’s Theorem, ẼωV

1 has a perfect set of inequivalent reals. These
reals are Ẽ-inequivalent and so

(32.5) V [G] � there is a perfect set of Ẽ-inequivalent reals.

However, the statement in (32.5) true in V [G] is clearly Σ1
2 and so by Shoen-

field’s Absoluteness Theorem, it holds in V . Therefore in V , there exists
a perfect set of E-inequivalent reals. ��

Constructible Reals and Perfect Sets

We recall (Lemma 26.50) that if there exists a nonconstructible real then the
set R ∩ L is Lebesgue measurable only if it is null, and has the property of
Baire only if it is meager. The following theorem proves a similar result for
perfect sets.

Theorem 32.11. If there exists a nonconstructible real then the set R ∩ L
does not have a perfect subset.

Proof. As a first step we show that R∩L does not have a superperfect subset.
A tree T ⊂ Seq is superperfect if for every t ∈ T there exists an s ⊃ t in T
such that s�k ∈ T for infinitely many k ∈ ω. (We call s an ω-splitting node
of T .) A nonempty set P ⊂ N is superperfect if P = [T ] for some superperfect
tree T .
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Lemma 32.12. If N ∩ L has a superperfect subset then every real is con-
structible.

Proof. Instead of N , consider the space [ω]ω of increasing sequences of natural
numbers. Let x, y, z be distinct elements of [ω]ω and let

(32.6) O(x, y, z) = {n ∈ ω : z(n − 1) ≤ x(n − 1), z(n − 1) ≤ y(n − 1) and
z(n) > x(n), z(n) > y(n)}.

If O(x, y, z) is infinite, let 〈nk : k ∈ ω〉 be its increasing enumeration and let

(32.7) o(x, y, z) = {k : x(nk) ≤ y(nk)}.

Now assume that P = [T ] is a superperfect subset of [ω]ω such that every
x ∈ P is constructible. We shall prove that every real is constructible as
follows: Let A ⊂ ω be arbitrary; we shall find x, y, z ∈ [T ] such that o(x, y, z)
(is defined and) is equal to A. Then A is constructible, as the definition (32.7)
is absolute for L.

Thus let A ⊂ ω be arbitrary. We find x, y, z ∈ [T ] by constructing in-
ductively their initial segments. We construct sequences x0 ⊂ x1 ⊂ . . . ⊂
xk ⊂ . . ., y0 ⊂ y1 ⊂ . . . ⊂ yk ⊂ . . ., and z0 ⊂ z1 ⊂ . . . ⊂ zk ⊂ . . . of
ω-splitting nodes of T such that for each k, nk = |zk| is the kth element of
O(x, y, z), and k ∈ o(x, y, z) if and only if k ∈ A. Inductively, we arrange
lk = |xk| > nk and mk = |yk| > nk, as well as zk(nk − 1) ≤ xk(nk − 1) and
zk(nk − 1) ≤ yk(nk − 1).

We omit the initial stage of the induction as it is similar to the induc-
tion step: At stage k + 1 we find an integer i greater than xk(lk − 1) and
yk(mk − 1) such that z �

k i ∈ T . Then we let zk+1 ⊃ zk be an ω-splitting node
above such that nk+1 = |zk+1| is greater than lk and mk. Now if k + 1 ∈ A,
let j > zk+1(nk+1 − 1) be such that x�

k j ∈ T , and let xk+1 ⊃ x�
k j be an ω-

splitting node such that lk+1 = |xk+1| > nk+1. Then let h > xk+1(lk+1 − 1)
be such that y �

k h ∈ T and let yk+1 ⊃ y �
k h be an ω-splitting node such that

mk+1 = |yk+1| ≥ lk+1. If k + 1 /∈ A, we reverse the construction of xk+1

and yk+1. Since xk+1, yk+1, and zk+1 are all increasing it follows that nk+1 is
the least n > nk that belongs to O(x, y, z), and the construction guarantees
that x(nk+1) ≤ y(nk+1) if and only if k + 1 ∈ A. ��

Now we complete the proof of the theorem. If R∩L is countable then the
theorem is true trivially, so assume that ℵL

1 = ℵ1. If X is a countable subset
of R∩L, then given a constructible enumeration 〈aα : α < ω1〉 of R∩L, we
have X ⊂ {aα : α < γ} for some γ < ω1, and so there exists a constructible
Y ⊂ R ∩ L such that X ⊂ Y and |Y |L = ℵ0.

Let P be a perfect subset of the Cantor space and assume that P ⊂
{0, 1}ω ∩ L. Applying the preceding argument to a countable dense subset
X ⊂ P , we obtain a constructible countable set D ∈ L that is a dense subset
of C = {0, 1}ω and that D ∩ P is dense in P . Let C − D = X .
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The space X is homeomorphic to the irrationals which in turn is homeo-
morphic to N and N is homeomorphic to [ω]ω. Thus there exists a homeomor-
phism h between X and [ω]ω; moreover h is coded in L because D ∈ L. The
set P −D, a closed subset of X , contains no compact subset with nonempty
interior, and therefore the set h(P −D) has the same property in [ω]ω; it fol-
lows that h(P −D) is superperfect. Hence h(P −D) is a superperfect subset
of [ω]ω ∩ L, contradicting Lemma 32.12. ��

Projective Sets and Large Cardinals

One of the successes of modern set theory has been the discovery of the close
relationship between the hierarchy of definable sets of reals and the hierar-
chy of large cardinals. We shall elaborate on this relationship in subsequent
chapters. In the present section we apply the large cardinal theory to Σ1

3 sets.
By Theorem 25.38, the perfect set property for Σ1

2 sets is equivalent to
the large cardinal assumption

(32.8) ℵ1 is inaccessible in L[a], for every a ∈ R

(see Exercise 32.4). The statement (32.8) also implies that every Σ1
2 set is

Lebesgue measurable and has the Baire property.
By Solovay’s Theorem 26.14, inaccessibility is sufficient for the consis-

tency of Lebesgue measurability and the Baire property of all projective sets.
The following theorem shows that the assumption is necessary for Lebesgue
measurability, while by another result of Shelah, the Baire property for all
projective sets is consistent relative to ZFC only:

Theorem 32.13 (Shelah [1984]). If every Σ1
3 set of reals is Lebesgue mea-

surable then ℵ1 is an inaccessible cardinal in L. ��

We shall outline a result that shows that under a suitable strengthening
of (32.8), every Σ1

3 set is Lebesgue measurable, has the Baire property, and
has the perfect set property. The key is a tree representation of Σ1

3 sets in
the presence of a measurable cardinal.

Theorem 32.14 (Martin and Solovay [1969], Mansfield [1971]). If
there exists a measurable cardinal then for every Σ1

3 set A there exists a tree T
on ω × λ (for some λ) such that A = p[T ].

Proof. Let κ be a measurable cardinal and let U be a normal measure on κ.
For each n, let Un be the ultrafilter {X ⊂ κn : X ⊃ [Z]n for some Z ∈ U}, and
let jn = in,n+1 be the canonical elementary embedding in,n+1 : UltUn(V ) →
UltUn+1(V ).
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Let A ⊂ N be a Σ1
3 set. A can be expressed as

(32.9) x ∈ A ↔ ∃y ∀z R(x, y, z) is ill-founded

where R is a recursive function, R(x, y, z) is, for each x, y, z, a linear order
of ω and R(x, y, z) restricted to n = {0, . . . , n − 1} depends only on x�n,
y�n, z�n. Let π : Seq3 → ω be defined so that π(x�n, y�n, z�n) is the position
of n − 1 in the order R(x, y, z)�n. Let {sk}∞k=0 be an enumeration of Seq. We
let α = i0,ω(κ), and define

(32.10) (x�n, y�n, 〈β0, . . . , βn−1〉) ∈ T ↔ jπ(x�l,y�l,sk)(βk) > βi

for every i = 0, . . . , n − 2, where l = length(si) and sk = si�l.
We leave to the reader to verify that x ∈ A if and only if T (x), a tree

on ω × α, is ill-founded. For details we refer to Kanamori’s book [1994],
Chapter 15. ��

A careful analysis of the tree representation in Theorem 32.14 shows that
the assumption can be weakened to

(32.11) for every a ∈ R, a� exists

and the tree T can be constructed on ω×ω2 (see Kanamori [1994] for details).
Thus one obtains:

Theorem 32.15 (Martin). If for every a ∈ R, a� exists, then every Σ1
3 set

is ω2-Suslin, and hence a union of ℵ2 Borel sets. ��

The following theorem establishes good behavior of Σ1
3 sets under a large

cardinal assumption:

Theorem 32.16 (Magidor [1980]). Let us assume that there exists a mea-
surable cardinal, and that ω1 carries a precipitous ideal. Then every Σ1

3 set
is Lebesgue measurable, has the Baire property, and is either countable or
contains a perfect subset.

Proof. Let A be a Σ1
3 set and let A = p[T ] where T is the tree defined in the

proof of Theorem 32.14. We shall prove that under the given assumptions,

(32.12) R ∩ L[T ] is countable.

Then the statements on Lebesgue measurability and the Baire property can
be derived as the corresponding result (Theorem 26.20 and Corollary 26.21)
for Σ1

2 sets: Using absoluteness, one can show that

A = {x ∈ R : L[T ] � ϕ(x)}

for some formula ϕ, and apply Corollary 26.6. The perfect set property is
derived by using Lemma 25.24.
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Let I be a precipitous ideal on ω1, and let M = UltG(V ) be the generic
ultrapower by I, that is by a generic ultrafilter G obtained by forcing P
consisting of I-positive sets. As I is precipitous, M is well-founded and we
identify it with a transitive class M ⊂ V [G]. Let i : V → M be the corre-
sponding elementary embedding. We shall prove

(32.13) i(T ) = T.

This will suffice, as (32.13) implies (32.12), as follows: Assume that aξ, ξ < ω1,
are uncountably many (distinct) reals in L[T ]. The function 〈aξ : ξ < ω1〉
represents a real a ∈ UltG, and since each aξ ∈ L[T ], we have a ∈ L[i(T )] =
L[T ]; hence a ∈ V . But then i(a) = a, and so a = aξ for G-almost all ξ. This
is a contradiction since G is nonprincipal.

Toward the proof of (32.13), let κ, U , Un, and jn be as in the proof of
Theorem 32.14.

If γ is an inaccessible cardinal then γ is still inaccessible in V [G] and it
follows that i(γ) = γ. In particular i(κ) = κ. Let U be the filter in V [G]
generated by U ; similarly Un.

Lemma 32.17. i(U) = U ∩ M , i(Un) = Un ∩ M .

Proof. It suffices to show that i(U) ⊂ U ∩M ; if X ∈ i(U) we want a W ∈ U
such that X ⊃ W . X is represented by 〈Xξ : ξ < ω1〉, so let Y =

⋂
ξ<ω1

Xξ;
we have Y ∈ U and i(Y ) ⊂ X . Now if W = {γ ∈ Y : γ is inaccessible} we
have W ∈ U and W = i“Y ⊂ i(Y ) ⊂ X . ��
Lemma 32.18. Let h ∈ V [G] be a function h : κ → V . Then there exists
a function H ∈ V such that h(α) = H(α) a.e. mod U . Similarly for h : κn →
V (and Un).

Proof. For each α < κ there is a maximal antichain Wα in P and a set
{xα

p : p ∈ Wα} such that p � ḣ(α) = xα
p . Let W be such that Wα = W for

U -almost all α, and let p be the unique p ∈ G ∩ W . Now let H(α) = xα
p , for

all α < κ. ��
Lemma 32.19. Let f ∈ V be a function f : κ → Ord. Then there exists
a function g ∈ M such that f(α) = g(α) a.e. mod U . Similarly for f : κn →
Ord.

Proof. Every ordinal β is represented in M by some hβ : ω1 → Ord , hβ ∈ V .
For each α < κ, pick (in V [G]) some hf(α) : ω1 → Ord that represents f(α)
and let h(α) = hf(α). By Lemma 32.18 there is some H ∈ V such that
H(α) = hf(α) a.e.; let A ∈ U be a set of inaccessibles such that H(α) = hf(α)

for all α ∈ A.
For each ξ < ω1, let gξ (a function on κ, in V ) be defined by gξ(α) =

(H(α))(ξ), and let G(ξ) = gξ. G is in V and represents in M some function g.
For each α ∈ A, i(α) = α, and g(α) is represented by the function that

sends ξ to (H(α))(ξ), but since (H(α))(ξ) = hf(α)(ξ) for all ξ, g(α) is repre-
sented by hf(α). It follows that g(α) = f(α). ��
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As a consequence of Lemmas 32.17, 32.18, and 32.19, if a function f ∈ V
represents an ordinal in UltUn(V ) then there is an Un-equivalent function
g ∈ M that represents the same ordinal in Ulti(Un)(M). Consequently,

(32.14) (i(jn))(α) = jn(α) for all α

(where i(jn) =
⋃

γ∈Ord i(j�Vγ)). Using (32.14) and the definition of T , one
can now verify that i(T ) = T . ��

The existence of a measurable cardinal alone is not sufficient in Theo-
rem 32.16. If V = L[U ] then there exists an uncountable Σ1

3 set that is not
Lebesgue measurable, does not have the Baire property, and does not contain
a perfect subset:

Theorem 32.20 (Silver [1971a]). R∩L[U ] is a Σ1
3 set. The ordering <L[U ]

of R is a Σ1
3 relation. ��

Also, the analog of Lemma 25.27 holds for <L[U ], and the arguments for
Σ1

2 sets and L can be adopted for Σ1
3 and L[U ].

Universally Baire sets

Definition 32.21. A set A ⊂ R is universally Baire if for any compact
Hausdorff space X and any continuous function f : X → R, the set
f−1(A) has the property of Baire in X .

The set of all universally Baire sets is a σ-algebra and is closed under
operation A. Thus every Σ1

1 set is universally Baire. We show below that
every universally Baire set is Lebesgue measurable and that the statement
that every ∆1

2 set is universally Baire has consistency strength between inac-
cessible and Mahlo cardinals. The assumption that every projective (or even
every Σ1

2 set) is universally Baire is considerably stronger; we refer to Feng,
Magidor and Woodin [1992] for details.

Theorem 32.22. A set A ⊂ R is universally Baire if and only if for every
notion of forcing P there exist trees T and S on ω ×λ (where λ = 2|P |) such
that

(32.15) A = p[T ], R − A = p[S]

and for every generic filter G on P ,

V [G] � p[T ] ∪ p[S] = R and p[T ] ∩ p[S] = ∅. ��(32.16)

We omit the proof of this equivalence. We remark that in the definition the
space X can be replaced by the generalized Cantor space λω (for all λ), and
in the theorem, the forcing notion P can be replaced by Col(λ) = Col(ω, λ),
the collapse of λ with finite conditions.
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Corollary 32.23. Every universally Baire set is Lebesgue measurable.

Proof. Let A ⊂ R be universally Baire. Let B be the measure algebra, and
let T and S be trees on ω × λ such that A = p[T ], R − A = p[S], and
(32.16) holds for every generic ultrafilter G on B.

Let ȧ be the canonical name for a random real and let B be a Borel set
such that ‖ȧ ∈ p[T ]‖ = [B]. We will show that A  B has measure 0, and
thus A is measurable.

Let M be a countable elementary submodel of Hκ where Hκ is sufficiently
large. We claim that for every random real x over M ,

(32.17) x ∈ p[T ] ↔ x ∈ B.

If x ∈ B then B � ȧ ∈ p[T ] and hence M � (B � ȧ ∈ p[T ]). Thus
M [x] � x ∈ p[T ], and so x ∈ p[T ]. If x /∈ B then −B � ȧ ∈ p[S] and
M [x] � x ∈ p[S], and hence x /∈ p[T ], proving (32.17).

Since M is countable, almost all reals are random over M , and therefore
A  B is null. ��

Theorem 32.24. The following are equivalent :

(i) Every ∆1
2 set is universally Baire.

(ii) V is Σ1
3-absolute with respect to every generic extension.

The statement (ii) states precisely: If P is a forcing notion and ϕ(x1, . . . ,
xn) a Π1

3 formula then for all reals a1, . . . , an,

ϕ(a1, . . . , an) if and only if �P ϕ(a1, . . . , an).

Its consistency strength is between inaccessible and Mahlo: It is the exis-
tence of an inaccessible cardinal κ such that Vκ ≺Σ2 V ; see Exercises 32.6,
32.7, 32.8.

Proof. First assume Σ1
3-absoluteness for generic extensions and let A be

a ∆1
2 set. We have

(32.18) x ∈ A ↔ ∃y ϕ(x, y) ↔ x ∈ p[T ]

and

(32.19) x ∈ A ↔ ∃y ψ(x, y) ↔ x ∈ p[S]

where ϕ and ψ are Π1
1 and T and S are trees on ω × ω1.

If V [G] is a generic extension then the second equivalences in (32.18)
and (32.19) hold in V [G], by Σ1

2-absoluteness. Since p[T ] ∪ p[S] = R is
a Π1

3 statement (namely ∀x (∃y ϕ ∨ ∃y ψ)), and p[T ] ∩ p[S] = ∅ is Π1
2, Σ1

3-
absoluteness gives (32.16).
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Now assume that every ∆1
2 set is universally Baire and prove the generic

Σ1
3-absoluteness. It is enough to prove it for P = Col(λ), as every V P embeds

in V Col(λ) for sufficiently large λ.
Let ϕ be a Σ1

1 formula (with a parameter in RV ) and assume that V [G] �
∃x∀y ϕ(x, y). Let ẋ ∈ V Col(λ) be such that � ∀y ϕ(ẋ, y). There is a function
f : λω → ωω such that f is continuous on a comeager Gδ set such that for
every generic collapse G ∈ λω , f(G) = ẋG.

Toward a contradiction, assume that V � ∀x∃y ¬ϕ(x, y). By Kondô’s Uni-
formization Theorem, there exists a Π1

1 function g such that ∀x¬ϕ(x, g(x)).
We claim that the function g ◦ f is continuous on a comeager set in λω. For
each s ∈ Seq, g−1(O(s)) is a ∆1

2 set, therefore universally Baire, and so there
exists an open set Ds such that Bs = Ds  f−1(g−1(O(s))) is meager. Let
A = λω −

⋃
{Bs : s ∈ Seq}; A is comeager and g ◦ f is continuous on A.

We may assume that A =
⋂∞

n=0 Dn, with each Dn dense open. For x ∈ A,
let F (x) = (f(x), g(f(x))); F is continuous on A.

Let T be a tree on ω×ω×ω such that p[T ] is the Σ1
1 set {(x, y) : ϕ(x, y)}.

Since V [G] � ϕ(f(G), g(f(G))) and G ∈
⋂∞

n=0 Dn, we have that T (F (G)) is
ill-founded. In other words, V [G] satisfies

(32.20) ∃xT (F (x)) is ill-founded.

The statement (32.20) can be expressed as “T ∗ is ill-founded” where T ∗ is
the tree

(σ, s, t, u) ∈ T ∗ ↔ (s, t, u) ∈ T , length(σ) = length(s) = n

and ∃τ O(σ�τ) ⊂
⋂

i≤n Di and

F“(O(σ�τ) −
⋃∞

n=0(λ
ω − Dn)) ⊂ O(s, t)

(where O(σ�τ) and O(s, t) are basic open sets in λω and ωω × ωω).
By absoluteness, T ∗ is ill-founded in V , and so (32.20) holds in V . In

other words, for some x ∈ A we have ϕ(f(x), g(f(x))), a contradiction. ��

Exercises

32.1. Let A ⊂ N be Σ1
1. The equivalence relation on N whose equivalence classes

are the singletons {a} where a ∈ A, and the complement of A, is Π1
1. If A is

uncountable then it has a perfect subset.

32.2. The relation “‖a‖ = ‖b‖ or a, b /∈WO” is Σ1
1 and has ℵ1 equivalence classes.

32.3. Let {Dn}∞n=1 be dense open sets in the Σ1
1-topology and let B be a nonempty

Σ1
1 set. Then B ∩T∞

n=1 Dn �= ∅.
[Let B = p[T0] for some recursive tree T on ω × ω. By induction on n, con-

struct recursive trees Tn, a finite sequence sn of length n, finite sequences ti
n

(0 ≤ i ≤ n) of length n such that ∅ = s0 ⊂ . . . ⊂ sn and ti
0 ⊂ . . . ⊂ ti

n,
and

Tn
i=0{x : x ⊃ sn and (∃y ⊃ ti

n) (x, y) ∈ [Ti]} �= ∅, and for all 1 ≤ i ≤ n,
{x : x ⊃ sn and (∃y ⊃ ti

n) (x, y) ∈ [Ti]} ⊂ Di.]



626 Part III. Selected Topics

32.4. If a ∈ R and ℵ1 is a successor cardinal in L[a], then for some b ∈ R,
ℵL[a,b]

1 = ℵ1.
[If ℵ1 = (κ+)L[a], let b ⊂ ω code the countable ordinal κ.]

32.5. Every universally Baire set is Ramsey.
[Use Mathias forcing.]

32.6. Σ1
3-absoluteness for generic extensions implies that ℵ1 is inaccessible in

each L[a], a ∈ R.
[“ωL[a]

1 is countable” is Σ1
3(a).]

32.7. Generic Σ1
3-absoluteness implies that Lκ ≺Σ2 L where κ = ℵ1.

32.8. If Vκ ≺Σ2 V and κ is inaccessible, let P be the Lévy collapse bellow κ. Show
that V P satisfies the generic Σ1

3-absoluteness.
[If Q̇ ∈ V P , and ϕ is Σ1

3, then V P � ϕ if and only if V P∗Q̇ � ϕ.]

Historical Notes

Theorem 32.1 on Π1
1 equivalence relations is due to Silver [1980]. The present proof

is Harrington’s as presented in Kechris and Martin [1980]. Lemma 32.5 is due to
Louveau. Silver’s Theorem was extended to Theorem 32.9 by J. Burgess in [1978].

Theorem 32.11 is due to Groszek and Slaman [1998]. The proof presented here
is from Veličković and Woodin [1998].

Theorem 32.13: Shelah [1984]. The tree representation of Σ1
3 sets is implicit in

Martin and Solovay [1969] and described in Mansfield [1971]. Theorem 32.16 is due
to Magidor [1980].

Universally Baire sets are investigated in Feng, Magidor, and Woodin [1992].



33. Determinacy

With each subset A of ωω we associate the following game GA, played by
two players I and II. First I chooses a natural number a0, then II chooses
a natural number b0, then I chooses a1, then II chooses b1, and so on. The
game ends after ω steps; if the resulting sequence 〈a0, b0, a1, b1, . . .〉 is in A,
then I wins, otherwise II wins.

A strategy (for I or II) is a rule that tells the player what move to make
depending on the previous moves of both players. A strategy is a winning
strategy if the player who follows it always wins. The game GA is determined
if one of the players has a winning strategy.

The Axiom of Determinacy (AD) states that for every A ⊂ ωω, the
game GA is determined.

Determinacy and Choice

First some definitions: Let A ⊂ ωω be given and let GA denote the corre-
sponding game. A play is a sequence 〈a0, b0, a1, b1, . . .〉 ∈ ωω; for each n, an is
the nth move of player I and bn is the nth move of player II. A strategy for I
is a function σ with values in ω whose domain consists of finite sequences
s ∈ Seq of even length. Player I plays 〈a0, b0, a1, b1, . . .〉 by the strategy σ
if a0 = σ(∅), a1 = σ(〈a0, b0〉), a2 = σ(〈a0, b0, a1, b1〉), and so on; it is clear
that if I plays by σ, then the play is determined by σ and the sequence
b = 〈bn : n ∈ ω〉. We denote the play by σ ∗ b. A strategy σ is a winning
strategy for I if

{σ ∗ b : b ∈ N} ⊂ A,

in other words, if all plays that I plays by σ are in A. Similarly, a strategy
for II is a function τ with values in ω, defined on finite sequences s ∈ Seq of
odd length. If a ∈ N and if τ is a strategy for II, then a ∗ τ denotes the play
in which I plays a and II plays by τ . A strategy τ for II is a winning strategy
if

{a ∗ τ : a ∈ N} ⊂ N − A.

We sometimes consider games GA whose moves are not natural numbers
but elements of an arbitrary set S. A play is then a sequence p ∈ Sω, and the
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result of the game depends on whether p ∈ A or p /∈ A (here A is a subset
of Sω). The other relevant notions are defined accordingly.

Since the number of strategies is 2ℵ0 , an easy diagonal argument shows
that the Axiom of Choice is incompatible with the Axiom of Determinacy:

Lemma 33.1. Assuming the Axiom of Choice, there exists A ⊂ ωω such
that the game GA is not determined.

Proof. Let {σα : α < 2ℵ0} and {τα : α < 2ℵ0} enumerate all strategies
for I and all strategies for II. We construct sets X = {xα : α < 2ℵ0} and
Y = {yα : α < 2ℵ0}, subsets of N , as follows: Given {xξ : ξ < α} and
{yξ : ξ < α}, let us choose some yα such that yα = σα ∗ b for some b and
yα /∈ {xξ : ξ < α} (such yα exist because the set {σα ∗ b : b ∈ N} has
size 2ℵ0); similarly, let us choose xα such that xα = a ∗ τα for some a and
xα /∈ {yξ : ξ ≤ α}. It is clear that the sets X and Y are disjoint, that for
each α there is b such that σα ∗ b /∈ X , and there is a such that a ∗ τα ∈ X .
Thus neither I nor II has a winning strategy in the game GX , and hence
GX is not determined. ��

In contrast with this lemma, the Axiom of Determinacy implies a weak
form of the Axiom of Choice:

Lemma 33.2. The Axiom of Determinacy implies that every countable fam-
ily of nonempty sets of real numbers has a choice function.

Proof. We prove that if X = {Xn : n ∈ ω} is a family of nonempty sub-
sets of N , then there exists f on X such that f(Xn) ∈ Xn for all n. Let
us consider the following game: If I plays 〈a0, a1, a2, . . .〉 and and II plays
〈b0, b1, b2, . . .〉, then II wins if and only if b ∈ Xa0 . It is clear that I does not
have a winning strategy: Once I plays a0, the player II finds some b ∈ Xa0 ,
plays b = 〈b0, b1, b2, . . .〉 and wins. Hence II has a winning strategy τ , and we
can define f on X as follows: f(Xn) = τ ∗ 〈n, 0, 0, 0, . . .〉. ��

As we show below, Determinacy has desirable consequences for sets of
reals: AD implies that every set of reals is Lebesgue measurable, has the
Baire property and the perfect set property. Thus it is natural to postulate
that Determinacy holds to the extent it does not contradict the Axiom of
Choice. The appropriate postulate turns out to be that AD holds in the
model L(R), and therefore all sets of reals definable from a real parameter are
determined. This implies, in particular, that the game GA is determined for
every projective set—Projective Determinacy (PD). It has been established
that both ADL(R) and PD are large cardinal axioms; we shall elaborate on
this later in this chapter.

Throughout the rest of the present chapter we work in ZF+the Principle
of Dependent Choices.
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Some Consequences of AD

We shall now prove that under the assumption of Determinacy, sets of real
numbers are well behaved.

Theorem 33.3. Assume the Axiom of Determinacy. Then:

(i) Every set of reals is Lebesgue measurable.
(ii) Every set of reals has the property of Baire.
(iii) Every uncountable set of reals contains a perfect subset.

Proof. (i) It suffices to prove the following lemma:

Lemma 33.4. Assuming AD, let S be a set of reals such that every measur-
able Z ⊂ S is null. Then S is null.

It is easy to see that Lemma 33.4 implies that every set X is Lebesgue
measurable: Let A ⊃ X be a measurable set with the property that every
measurable Z ⊂ A−X is null. Then A−X is null and hence X is measurable.

Proof. Thus let S be a set of reals with the property

(33.1) if Z ⊂ S is Lebesgue measurable, then Z is null;

we shall use AD to show that S is null. It is clear that we can restrict ourselves
to subsets of the unit interval; thus assume that S ⊂ [0, 1]. In order to show
that S is null, it suffices to show that the outer measure µ∗(S) is less than
any ε > 0. Thus let ε be a fixed positive real number.

33.5. The Covering Game. Given S and ε, let us set up a game as follows:
If 〈a0, a1, a2, . . .〉 is a sequence of 0’s and 1’s, let a be the real number

(33.2) a =
∞∑

n=0

an

2n+1
.

For each n ∈ ω, let Gn
k , k = 0, 1, 2, . . . , be an enumeration of the set Kn of

all sets G such that

(i) G is a union of finitely many intervals with rational endpoints;
(ii) µ(G) ≤ ε/22(n+1).

(33.3)

The rules of the game are that player I tries to play a real number a ∈ S,
and player II tries to cover the real a by the union

⋃∞
n=0 Hn such that Hn ∈

Kn for all n. More precisely, a play 〈a0, b0, a1, b1, . . .〉 is won by player I if

(i) an = 0 or 1, for all n;
(ii) a ∈ S; and
(iii) a /∈

⋃∞
n=0 Gn

bn
.
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We claim that player I does not have a winning strategy in the game. To
show this, notice that if σ is a winning strategy for I, then the function f
that to each b = 〈b0, b1, b2, . . .〉 ∈ N assigns the real number a = f(b) such
that 〈a0, b0, a1, b1, . . .〉 = σ ∗ b is continuous and hence the set Z = f(N ) is
analytic and hence measurable. Moreover Z ⊂ S, and therefore Z is null. Now
a null set can be covered by a countable union

⋃∞
n=0 Hn such that Hn ∈ Kn

for all n, and therefore, if II plays 〈b0, b1, b2, . . .〉 where Gn
bn

= Hn and I plays
by σ, then II wins. Thus σ cannot be a winning strategy for I.

Assuming AD, the covering game is determined, and therefore player II
has a winning strategy. Let τ be such a strategy. For each finite sequence
s = 〈a0, . . . , an〉 of 0’s and 1’s, let Gs ∈ Kn be the set Gn

bn
, where 〈b0, . . . , bn〉

are the moves that II plays by τ in response to a0, . . . , an. Since τ is a winning
strategy, every a ∈ S is in the set

⋃
{Gs : s ⊂ a} and hence

(33.4) S ⊂
⋃
{Gs : s ∈ Seq({0, 1})} =

∞⋃
n=1

⋃
s∈{0,1}n

Gs.

Now for every n ≥ 1, if s ∈ {0, 1}n, then µ(Gs) ≤ ε/22n and hence

µ
(⋃

s∈{0,1}n

)
≤ ε

22n
· 2n =

ε

2n
.

It follows that µ(
⋃∞

n=1

⋃
s∈{0,1}n Gs) ≤

∑∞
n=1 ε/2n = ε and thus µ∗(S) ≤ ε.

Since ε > 0 was arbitrary, S is null. This completes the proof. ��

(ii) Next we consider the property of Baire:

33.6. The Banach-Mazur Game. Let X be a subset of the Baire space N ,
and let us consider the following game: Player I plays a finite sequence s0 ∈
Seq ; then II plays a proper extension t0 ⊃ s0; then I plays s1 ⊃ t0, etc.:

(33.5) s0 ⊂ t0 ⊂ s1 ⊂ t1 ⊂ . . . .

The sequence (33.5) converges to some x ∈ N . If x ∈ A, then I wins, and
otherwise II wins.

First we verify that this game can be reformulated as a game GA of
the kind introduced at the beginning of the section (i.e., when the moves
are natural numbers). Let uk, k ∈ N , be an enumeration of the set Seq. If
〈a0, b0, a1, b1, . . .〉 is a sequence of numbers, then consider the sequence

(33.6) ua0 , ub0 , ua1 , ub1 , . . .

and let A be the set of all 〈a0, b0, a1, b1, . . .〉 ∈ N such that: Either there is n
such that

ua0 ⊂ ub0 ⊂ . . . uan �⊂ ubn

or the sequence (33.6) is increasing and converges to some x ∈ X . It is clear
I wins the Banach-Mazur game if and only if I wins the game GA.

Thus if AD holds, the game is determined, for every X ⊂ N . We will use
this to show that every X ⊂ N has the Baire property.
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Lemma 33.7. Player II has a winning strategy in the Banach-Mazur game
if and only if X is meager.

Proof. Let Y be the complement of X in N . For each s ∈ Seq, O(s) denotes
the basic open set {x ∈ N : s ⊂ x}.

(a) If X is a meager set, then there exist open dense sets Gn, n ∈ N ,
such that Y ⊃

⋂∞
n=0 Gn. It is easy to find a winning strategy τ for II: If

I plays s0, let t0 = τ(〈s0〉) be some t0 ⊃ s0 such that Ut0 ⊂ G0; such t0
exists because G0 is dense. Then if I plays s1 ⊃ t0, let t1 = τ(〈s0, t0, s1〉)
be some t1 ⊃ s1 such that Ut1 ⊂ G1, and so on. It is clear that every such
play s0 ⊂ t0 ⊂ s1 ⊂ . . . converges to x ∈

⋂∞
n=0 Gn, and hence τ is a winning

strategy for II.
(b) Conversely, assume that II has a winning strategy τ . A correct position

is a finite sequence 〈s0, t0, . . . , sn, tn〉 such that s0 ⊂ t0 ⊂ . . . ⊂ tn and
t0 = τ(〈s0〉), t1 = τ(〈s0, t0, s1〉), etc. We shall first prove the following claim:
Let x ∈ N and assume that for every correct position p = 〈s0, . . . , tn〉 with
tn ⊂ x there exists s ⊃ tn such that τ(p�s) ⊂ x. Then x ∈ Y .

To prove the claim, let x satisfy the condition. To begin, there exists s0

such that τ(〈s0〉) ⊂ x; let t0 = τ(〈s0〉). Then there exists s1 ⊃ t0 such that
t1 = τ(〈s0, t0, s1〉) ⊂ x; then there is s2 ⊃ t1 such that τ(〈s0, t0, s1, t1, s2〉) ⊂
x; and so on. The sequence s0 ⊂ t0 ⊂ s1 ⊂ t1 ⊂ . . . converges to x and is
a play in which II plays by τ . Hence x ∈ Y .

For every correct position p = 〈s0, . . . , tn〉, let

Fp = {x ∈ N : tn ⊂ x and (∀s ⊃ tn) τ(p�s) �⊂ x}.

By the claim, for every x ∈ X there is a correct position p such that x ∈ Fp;
in other words,

X ⊂
⋃
{Fp : p is a correct position}.

It is easy to see that for each p, O(tn) − Fp is on open dense set in O(tn);
hence Fp is a closed nowhere dense set. The number of correct positions is
countable and hence X is meager. ��

Corollary 33.8. Let X ⊂ N . Player I has a winning strategy in the Banach-
Mazur game if and only if for some s ∈ Seq, O(s) − X is meager.

Proof. Note that I has a winning strategy if and only if there exists s ∈ Seq
(the first move of I) such that player II has a winning strategy in the following
game: I plays t0 ⊃ s, II plays s0 ⊃ t0, I plays t1 ⊃ s0, etc.; and I wins if
t0 ⊂ s0 ⊂ t1 ⊂ . . . converges to x ∈ Us−X . By Lemma 33.7, II has a winning
strategy in this game if and only if O(s) − X is meager. ��

Now part (ii) of Theorem 33.3 follows. If X ⊂ N , then since the Banach-
Mazur game is determined, either X is meager or for some s ∈ Seq, O(s)−X
is meager. Thus let X ⊂ N be arbitrary. If X is meager, then X has the
Baire property. If X is nonmeager, then let G =

⋃
{O(s) : O(s) − X is
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meager}. Clearly, G− X is meager, and X −G must be meager too because
otherwise there would exist some s such that O(s)−(X−G) is meager, which
contradicts the definition of G. It follows that X has the Baire property.

(iii) We will use AD to prove that every uncountable set in the Cantor
space C = {0, 1}ω has a perfect subset. We consider the following game:

33.9. The Perfect Set Game. Let X be a subset of {0, 1}ω. The game is
defined as follows: Player I plays a sequence s0 ∈ Seq({0, 1}) of 0’s and 1’s
(possibly the empty sequence), then player II plays n0 ∈ {0, 1}, then I plays
s1 ∈ Seq({0, 1}), and so on. Let x = s�

0 n�
0 s�

1 n�
1 . . .. Player I wins if x ∈ X ,

and II wins if x /∈ X .

The game can be reformulated as a game GA, for some A ⊂ ωω.

Lemma 33.10. Let X ⊂ C. If II has a winning strategy in the perfect set
game, then X is countable.

Proof. Let τ be a winning strategy for II. A correct position is a finite se-
quence 〈s0, n0, . . . , sk, nk〉 such that n0 = τ(〈s0〉), n1 = τ(〈s0, n0, s1〉), etc.
By the same argument as in Lemma 33.7, we get the following claim: Let
x ∈ {0, 1}ω and assume that for every correct position p = 〈s0, . . . , nk〉
if s�

0 n�
0 . . . �nk ⊂ x, then there exists an s ∈ Seq({0, 1}) such that

s�
0 n�

0 . . . �n�
k s�τ(p�s) ⊂ x. Then x /∈ X .

It follows that X ⊂
⋃
{Fp : p is a correct position}, where

Fp = {x ∈ C : s�
0 . . . �nk ⊂ x and ∀s (s� . . . �n�

k s�τ(p�s) �⊂ x)}.

The lemma will follow if we show that each Fp has exactly one element x ∈ C.
This element x is uniquely determined as follows (because each x(m) is either
0 or 1); first, for some l ∈ N , 〈x(0), . . . , x(l − 1)〉 = s�

0 n�
0 . . . �nk; then

x(l) = 1 − τ(p�∅), x(l + 1) = 1 − τ(p�〈x(l)〉), x(l + 2) = 1 − τ(p�〈x(l),
x(l + 1)〉), and so on. ��

Now part (iii) of Theorem 33.3 follows. If X ⊂ C is uncountable, then
II does not have a winning strategy; and since the game is determined, I has
a winning strategy σ. For each x = 〈n0, n1, . . .〉 ∈ C, let F (x) ∈ C denote
the 0–1 sequence

s�
0 n�

0 s�
1 n�

1 . . .

where s0 = σ(∅), s1 = σ(〈s�
0 n0〉), s2 = σ(〈s�

0 n�
0 s�

1 n1〉), etc. The func-
tion f is continuous and one-to-one, and hence f(C) is a perfect set. But
X ⊃ f(C) and hence X has a perfect subset. ��

We proved earlier that if ℵ1 = ℵL[a]
1 for some a ⊂ ω, then there is an

uncountable set without a perfect subset. Thus we have:

Corollary 33.11. If AD holds, then ℵ1 is inaccessible in L[a], for every
a ⊂ ω. ��
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AD and Large Cardinals

To illustrate the relationship between the Axiom of Determinacy and the
theory of large cardinals, we show that AD implies that ℵ1 and ℵ2 are mea-
surable cardinals.

Theorem 33.12 (Solovay). The Axiom of Determinacy implies that :

(i) ℵ1 is a measurable cardinal, and moreover, the closed unbounded filter
on ℵ1 is an ultrafilter.

(ii) ℵ2 is a measurable cardinal.

Proof. (i) We first show that AD implies that ω1 is measurable. We already
know that ω1 is inaccessible in every L[a], a ⊂ ω.

Let us consider the following partial ordering of the Baire space:

(33.7) x � y if and only if x ∈ L[y]

and the corresponding equivalence relation

(33.8) x ≡ y if and only if x � y and y � x.

We say that A ⊂ N is ≡-closed if (x ∈ A and y ≡ x) implies y ∈ A. Note
that the collection B of all ≡-closed sets in N is a complete Boolean algebra.

If x0 ∈ N , then we let

(33.9) cone(x0) = {x ∈ N : x0 � x} = {x : x0 ∈ L[x]}

and call cone(x0) a cone. Clearly, every cone is ≡-closed. Let

F = {A ∈ B : A contains a cone}.

We claim that F is a σ-complete filter on B. Let A0, A1, . . . , An, . . . be
elements of F . For each n, we choose xn ∈ N such that An ⊃ cone(xn). Let
x ∈ N be defined as follows: x(〈n, m〉) = xn(m) for all n, m ∈ N (where
〈 〉 is a pairing function). It is clear that for each n, xn ∈ L[x] and hence
cone(x) ⊂ cone(xn) ⊂ An. Thus

⋂∞
n=0 An is in F .

Lemma 33.13. AD implies that for every ≡-closed A ⊂ N , either A or its
complement contains a cone. Hence F is a σ-complete ultrafilter on B.

Proof. We show that if I has a winning strategy in the game GA, then A con-
tains a cone (and similarly, if II has a winning strategy, then N − A ∈ F).
Let σ be a winning strategy for I. It suffices to show that A contains the cone
{x ∈ N : σ ∈ L[x]}.

Let x ∈ N be such that σ ∈ L[x]. Then a = σ ∗ x is in A because σ is
a winning strategy. Clearly, x ∈ L[a], and because σ ∈ L[x], we also have
a ∈ L[x] and hence x ≡ a. Since A is ≡-closed, we have x ∈ A. ��
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Now we can use AD to find a nonprincipal σ-complete ultrafilter U on ω1.
For each x ∈ N , let f(x) = ℵL[x]

1 ; f(x) is a countable ordinal. Note that if
x ≡ y, then f(x) = f(y), and hence for every X ⊂ ω1, the set f−1(X) ⊂ N
is ≡-closed. Let

U = {X ⊂ ω1 : f−1(X) ∈ F}.

Since F is a σ-complete ultrafilter on B, U is a σ-complete ultrafilter on ω1.
It remains to show that U is nonprincipal. But for every α < ω1, if x ∈ N
is such that ℵL[x]

1 = α, then there is y � x such that ℵL[y]
1 > α; and hence

f−1({α}) /∈ F .
Thus AD implies that ω1 is a measurable cardinal.

Lemma 33.14. Assume AD. Then for every S ⊂ ω1, the set {x ∈ WO :
‖x‖ ∈ S} is Π1

1. Consequently, there is some a ⊂ ω such that S ∈ L[a].

Proof. If x ∈ N , then for each n ∈ N we let xn ∈ N be such that xn(m) =
x(〈n, m〉) for all m ∈ N . We consider the following game:

33.15. The Solovay Game. Let S ⊂ ω1. Player I plays a = 〈a(0), a(1), . . .〉,
and II plays b = 〈b(0), b(1), . . .〉. If a /∈ WO, then II wins; if a ∈ WO, then
II wins if

{α ∈ S : α ≤ ‖a‖} ⊂ {‖bn‖ : n ∈ ω} ⊂ S.

We claim that I does not have a winning strategy in the Solovay game.
Let σ be a winning strategy for I; for each b ∈ N , let f(b) be the a ∈ N such
that 〈a(0), b(0), a(1), b(1), . . .〉 = σ ∗ b. The set f(N ) is a Σ1

1 subset of WO,
and by the Boundedness Lemma, there is an α < ω1 such that ‖f(b)‖ < α
for all b ∈ N . Hence let b ∈ N be such that {‖bn‖ : n ∈ ω} = S ∩ α. Then
σ ∗ b is a play won by player II, and hence σ cannot be a winning strategy
for I.

Now the lemma follows: Let S ⊂ ω1. By AD, player II has a winning
strategy τ in the Solovay game. For each a, let g(a) be the b ∈ N such that
〈a(0), b(0), . . .〉 = a ∗ τ . It follows that for each a ∈ WO,

‖a‖ ∈ S if and only if ∃n ‖a‖ = ‖(g(a))n‖

and consequently the set {x ∈ WO : ‖x‖ ∈ S} is Π1
1. By Lemma 25.22,

S ∈ L[a] for some a ⊂ ω. ��

We can now complete the proof of (i). If X ⊂ ω1, then X ∈ L[a] for some
a ⊂ ω. Since ℵ1 is a measurable cardinal, a� exists, and it follows that either
X or ω1−X contains a closed unbounded subset. Thus the closed unbounded
filter on ω1 is an ultrafilter.

By the Countable Axiom of Choice, the closed unbounded filter is σ-
complete, and we therefore conclude (as we work in ZF + the Principle of
Dependent Choices) that AD implies that the closed unbounded filter on ω1

is the unique σ-complete normal ultrafilter on ω1.
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(ii) We shall now show that, assuming AD, ℵ2 is a measurable cardinal.
For each x ∈ N , let f(x) denote the successor cardinal of the (real) cardinal ℵ1

in L[x]:
f(x) = ((ℵ1)+)L[x].

If x ⊂ ω, then because x� exists, f(x) is an ordinal less than ℵ2. Moreover,
if x ≡ y, then f(x) = f(y), and hence f−1(X) is ≡-closed for each X ⊂ ω2.
Thus let us define an ultrafilter U on ω2 as follows:

U = {X ⊂ ω2 : f−1(X) ∈ F}.

We wish to show that U is an ℵ2-complete nonprincipal ultrafilter on ω2.
Since F is σ-complete, U is σ-complete. It is also easy to see that U is
nonprincipal: If α < ω2 and f(x) = α, then there exists an S ⊂ ω1 such that
α is not a cardinal in L[S]; then by Lemma 33.14 there is a y ∈ N such that
x ∈ L[y] and f(y) > α. Hence f−1({α}) does not contain a cone.

It remains to show that U is ℵ2-complete. Since U is σ-complete, it suffices
to show that if

(33.10) X0 ⊃ X1 ⊃ . . . ⊃ Xα ⊃ . . . (α < ω1)

is a descending sequence of subsets of ω2 such that each f−1(X) contains
a cone then f−1(

⋂
α<ω1

Xα) contains a cone.
Let us consider such a sequence (33.10), and let X =

⋂
α<ω1

Xα. We
shall use the following game: Player I plays a = 〈a(0), a(1), . . .〉, and II plays
b = 〈b(0), b(1), . . .〉. If a /∈ WO, then I loses; if a ∈ WO and ‖a‖ = α, then
II wins if cone(b) ⊂ f−1(Xα).

We claim that I does not have a winning strategy in this game: If σ is
a winning strategy for I, then the set of all a ∈ N that I plays by σ against
all possible b ∈ N , is a Σ1

1 subset of WO and hence there is α such that
‖a‖ < α for all these a’s. Now II can beat I simply by playing some b ∈ N
such that cone(b) ⊂ f−1(Xα).

Thus II has a winning strategy τ , and we intend to show that f−1(X) con-
tains the cone {x ∈ N : τ ∈ L[x]}. Let α < ω1 and let x ∈ N be such that
τ ∈ L[x]; we want to show that f(x) ∈ Xα.

Let Pα be the notion of forcing that collapses α onto ω: The conditions
are finite sequences of ordinals less than α. Since ℵ1 is inaccessible in L[x],
L[x] has only countably many subsets of Pα, and therefore there exists an
L[x]-generic filter G on Pα. Let a ∈ WO be such that ‖a‖ = α and let
L[a] = L[G] and let y ∈ N be such that L[y] = L[x][G] = L[x][a].

Since G is generic on Pα over L[x], all cardinals in L[x] greater than α
are preserved in L[x][G]. In particular, (ℵ+

1 )L[x] is preserved and hence
f(y) = f(x).

Now if I plays a = 〈a(0), a(1), . . .〉 and if II plays against a by his winning
strategy τ , II produces b = 〈b(0), b(1), . . .〉 such that cone(b) ⊂ f−1(Xα). But
since b ∈ L[τ, a] and τ ∈ L[x], we have b ∈ L[x, a] = L[y] and therefore
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y ∈ cone(b). It follows that f(y) ∈ Xα; and because f(x) = f(y), we have
f(x) ∈ Xα, as we wanted to prove.

This completes the proof of Theorem 33.12. ��

It turns out that under Determinacy there exist many measurable cardi-
nals. Of particular interest have been the projective ordinals δ1

n. By definition

δ1
n = sup{ξ : ξ is the length of a ∆1

n prewellordering of N}.

By the results in Chapter 25, δ1
1 = ω1 and δ1

2 ≤ ω2. It has been estab-
lished (under AD) that all the δ1

n are measurable cardinals, along with other
properties, such as δ1

2n+2 = (δ1
2n+1)

+. The size of each δ1
2n+1 has now been

calculated exactly; in particular, δ1
3 = ℵω+1 and δ1

5 = ℵωωω +1. The analy-
sis of the δ1

n’s depends heavily on calculations of length of ultrapowers by
measures on projective ordinals.

An important ordinal (isolated by Moschovakis) is

Θ = sup{ξ : ξ is the length of a prewellordering of N}.

AD implies that Θ = ℵΘ, and if in addition V = L(R) then Θ is a regular car-
dinal (Solovay). Θ is the limit of measurable cardinals (Kechris and Woodin),
and for every λ < Θ, there exists a normal ultrafilter on [λ]ω (Solovay). As
for the consistency strength of AD, we have:

Theorem 33.16 (Woodin). Assume AD and V = L(R). Then there exists
an inner model with infinitely many Woodin cardinals. ��

Theorem 33.16 is optimal, as the existence of infinitely many Woodin
cardinals is equiconsistent with AD; see Theorem 33.26. (We remark that
the proof of Theorem 33.16 uses the following result: If AD and V = L(R),
then Θ is a Woodin cardinal in the model HOD .)

Projective Determinacy

In this section we address the question how strong is the determinacy as-
sumption when restricted to games that have a simple enough definition. In
particular, we turn our attention to the game GA where A ⊂ N is a projective
set.

When A is open (or closed) then GA is determined:

Lemma 33.17. If A ⊂ N is an open set, then GA is determined.

Proof. Player I plays 〈a0, a1, . . .〉, player II plays 〈b0, b1, . . .〉, and I wins if
〈a0, b0, a1, b1, . . .〉 ∈ A. Let us assume that player I does not have a winning
strategy, and let us show that II has a winning strategy. The strategy for II is
as follows: When I plays a0, then because I does not have a winning strategy,
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there exists b0 such the position 〈a0, b0〉 is not yet lost for II. That is, I does
not have a winning strategy in the game G

〈a0,b0〉
A that starts at 〈a0, b0〉, in

which I plays 〈a1, a2, . . .〉 and II plays 〈b1, b2, . . .〉, and in which I wins when
〈a0, b0, a1, b1, . . .〉 ∈ A.

Let II plays such b0. When I plays a1, then again, because II is not yet
lost at 〈a0, b0〉, there exists b1 such that II is not yet lost at 〈a0, b0, a1, b1〉.
Let II play such b1. And so on. We claim that this strategy for II is a winning
strategy.

Let x = 〈a0, b0, a1, b1, . . .〉 be a play which II plays by the above strategy;
We want to show that x /∈ A. If x ∈ A, then because A is open, there is
s = 〈a0, b0, . . . , an, bn〉 ⊂ x such that O(s) ⊂ A. But then it is clear that II is
lost at s; a contradiction. ��

The same argument (interchanging the players) would show that every
closed game is determined. Or, we can show that every closed game is deter-
mined as follows: If A is closed, then I has a winning strategy in GA if and
only if there is a0 ∈ N such that II does not have a winning strategy in the
open game Ga0

A in which II make a first move b0, then I plays a1, etc., and
II wins if 〈a0, b0, a1, b1, . . .〉 is in the open set N −A. Since Ga0

A is determined
for all a0 ∈ N , GA is determined.

One of the major results in descriptive set theory is Martin’s proof that
for every Borel set A the game GA is determined:

Theorem 33.18 (Martin [1975]). All Borel games are determined. ��

We shall not give a proof. It can be found either in Martin’s paper [1975],
or in the survey article [1980] by Kechris and Martin; furthermore, Martin
gives a simplification of his proof in [1985].

Analytic Determinacy, i.e., determinacy of all analytic games, is already
a large cardinal assumption:

Theorem 33.19. Let a ∈ N . Every Σ1
1(a) game is determined if and only

if a� exists.

Thus Analytic Determinacy is equivalent to the statement

(33.11) a� exists for all a ∈ N .

The proof of Analytic Determinacy from (33.11) is due to Martin [1969/70].
The necessity of (33.11) is a result of Harrington [1978]. We omit Harrington’s
proof and prove a corollary of Martin’s result. We note however that the proof
of the corollary can be converted into a proof of the “if” part of Theorem 33.19
without much difficulty.

Corollary 33.20. If there exists a measurable cardinal, then all analytic
games are determined.
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Proof. Let κ be a measurable cardinal and let A ⊂ N be an analytic set. We
want to show that the game GA is determined.

Let us use the tree representation of analytic sets. There is a tree T ⊂ Seq2

such that for all x ∈ N ,

x ∈ A ↔ T (x) is ill-founded.

Let � be the linear ordering of the set Seq that extends the partial ordering⊃:
If s, t ∈ Seq, then s � t either if s ⊃ t, or if s and t are incompatible, and
s(n) < t(n) where n is the least n such that s(n) �= t(n). Thus

x ∈ A ↔ T (x) is not well-ordered by �.

We also recall that T (x) = {t : (x�n, t) ∈ T for some n} and that the first
n levels of T (x) depend only on x�n. For s ∈ Seq, we let Ts = {t : (u, t) ∈ T
for some u ⊂ s}; then Tx�n is exactly the first n levels of the tree T (x).
We need some further notation. Let t0, t1, . . . , tn, . . . be an enumeration of
the set Seq. If s ∈ Seq is a sequence of length 2n, let Ks be the finite set
{t0, . . . , tn−1} ∩ Ts and let ks = |Ks|.

We shall now define an auxiliary game G∗: Player I plays natural numbers
a0, a1, a2, . . . , and player II plays pairs (b0, h0), (b1, h1), (b2, h2), . . . where
b0, b1, b2, . . . are natural numbers, and for each n, hn is an order-preserving
mapping from (Ks, �) into κ where s = 〈a0, b0, . . . , an, bn〉 such that h0 ⊂
h1 ⊂ h2 ⊂ . . . ⊂ hn ⊂ . . .. If player II is able to follow these rules throughout
the game, then he wins. Otherwise, I wins.

It is clear that the game G∗ is determined: If I does not have a winning
strategy, then he cannot prevent II from following the rules and thus II has
a winning strategy, namely his each move is to reach a position in which
I does not have a winning strategy. (The argument is the same as in the
proof of determinacy of open games; in fact, G∗ is an open game in a suitable
topology.)

If II wins a play in the game G∗, then he has constructed an order-
preserving mapping h =

⋃∞
n=0 hn of (T (x), �) into κ, where x = 〈a0, b0,

a1, b1, . . .〉; hence � well-orders T (x) and so x /∈ A. Thus we can view the
game G∗ as a variant of GA, but more difficult for player II: II tries to make
sure that x /∈ A, and in addition, he tries to construct an embedding of
(T (x), �) in κ. Hence it is fairly obvious that if II has a winning strategy
in the game G∗, then II has a winning strategy in GA: If τ∗ is a winning
strategy for II in G∗, let τ be as follows. When I plays a0, let τ(〈a0〉) = b0

where (b0, h0) = τ∗(〈a0〉); then when I plays a1, let τ(〈a0, b0, a1〉) = b1 where
(b1, h1) = τ∗(〈a0, (b0, h0), a1〉); etc.

Since G∗ is determined, it suffices to prove the following lemma in order
to show that GA is determined:

Lemma 33.21. If I has a winning strategy in G∗, then I has a winning
strategy in GA.
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Proof. Let σ∗ be a winning strategy for I in G∗. After 2n+2 moves, the players
have produced a sequence s = 〈a0, b0, . . . , an, bn〉, and II has constructed
order-preserving functions h0 ⊂ . . . ⊂ hn; the strategy σ∗ then tells player I
what to play next. Let E be the range of hn; E is a finite subset of κ, and
in fact its size is ks. We observe that there is one and only one way II could
have constructed h0, . . . , hn so that ran(hn) = E; the reason is that hn is
the unique order-preserving one-to-one function between (Ks, �) and E. Thus
σ∗ depends (as long as II plays correctly) only on s ∈ Seq and the finite set
E ⊂ κ.

For each s ∈ Seq of even length, let Fs be the following function from [κ]ks

into ω:

(33.12) Fs(E) = σ∗(s, E).

Each Fs is a partition of [κ]ks into ω pieces; and because κ is measurable,
there exists a set H ⊂ κ of size κ homogeneous for each Fs. Let us denote
by σ(s) the unique value of Fs(E) for E ∈ [H ]ks .

We shall complete the proof by showing that σ is a winning strategy for I
in the game GA. Let x = 〈a0, b0, a1, b1, . . .〉 be a play in which I plays by σ.
We shall show that x ∈ A.

Assume that on the contrary, x /∈ A. Then (T (x), �) is well-ordered and
has order-type < ω1. Since H is uncountable, there exists an embedding h of
(T (x), �) into H . Let us consider the following play of the game G∗: I plays a0.
Then II plays (b0, h0) where h0 is the restriction of h to K〈a0,b0〉. Then
I plays a1 and II plays (b1, h1) where h1 is the restriction of h to K〈a0,b0,a1,b1〉.
And so on.

We show that in this play, player I plays by the strategy σ∗. Clearly,
a0 = σ(∅) = σ∗(∅, ∅). Then a1 = σ(〈a0, b0〉), and by the definition of σ it
is clear that σ(〈a0, b0〉) = σ∗(〈a0, b0〉, h(K〈a0,b0〉)) and therefore a1 is a move
according to σ∗. And so on: All the moves a0, a1, . . . , an, . . . are by σ∗.

This is a contradiction because σ∗ is a winning strategy for I in G∗, but
the play we described is won by player II. It follows that x ∈ A and hence
σ is a winning strategy for I in the game GA. ��

This completes the proof of Σ1
1 Determinacy assuming a measurable car-

dinal. This assumption can be weakened to the assumption that a� exists for
all a ⊂ ω. The above proof is then modified as follows: We play the auxiliary
game as before; κ is an uncountable cardinal. The definition of the auxiliary
game is absolute for the model L[T ], and it follows that either I or II has
a winning strategy for G∗, which si in L[T ]. In particular, in Lemma 33.21, we
may take σ∗ ∈ L[T ]. Then the collection {Fs : s ∈ Seq}, where Fs is defined
by (33.12), is in L[T ], and an indiscernibility argument shows that there is
an uncountable set H ⊂ κ of indiscernibles for L[T ] such that each Fs has
the same value for all E ∈ [H ]ks . The rest of the proof is the same.

Determinacy of all projective games is considerably stronger than Ana-
lytic Determinacy: ∆1

2 Determinacy yields an inner model with a Woodin
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cardinal, and for every n, ∆1
n+1 Determinacy yields an inner model with

n Woodin cardinals.
The proof of Theorem 33.3 shows that Projective Determinacy implies

that every projective set of reals is Lebesgue measurable, has the Baire prop-
erty, and if uncountable, contains a perfect subset. The most important con-
sequence of PD for the structure of projective sets of reals is the existence of
scales. The following is a generalization of (25.28) and (25.34):

Definition 33.22. A Π1
n-norm on a Π1

n set A is a norm ϕ on A with the
property that there exist a Π1

n relation P (x, y) and a Σ1
n relation Q(x, y) such

that for every y ∈ A and all x,

x ∈ A and ϕ(x) ≤ ϕ(y) ↔ P (x, y) ↔ Q(x, y).

A Σ1
n-norm on a Σ1

n set A is defined similarly, as is a Π1
n-scale on a Π1

n set
(or a Σ1

n-scale on a Σ1
n set).

We say that the class Π1
n has the prewellordering property (the scale prop-

erty) if every Π1
n set has a Π1

n-norm (a Π1
n-scale). Π1

n has the uniformization
property if every Π1

n relation on N × N is uniformized by a Π1
n function.

Similarly for Σ1
n.

Theorem 33.23 (Moschovakis [1971]). Assume Projective Determinacy.
Then the following classes have the scale property (for every a ∈ N ):

Π1
1(a), Σ1

2(a), Π1
3(a), Σ1

4(a), . . . , Π1
2n+1(a), Σ1

2n+2(a), . . . .

Corollary 33.24. Assume PD. The classes Π1
2n+1(a) and Σ1

2n+2(a) have
the prewellordering property and the uniformization property and satisfy the
reduction principle; the classes Σ1

2n+1(a) and Π1
2n+2(a) satisfy the separation

principle.

The scale property generalizes the prewellordering property, and implies
uniformization (using the proof of Kondô’s Theorem 25.26; cf. Exercise 33.4).
The prewellordering property implies the reduction principle (as in Exer-
cise 25.7; see Exercise 33.5), which in turn implies the separation principle
for the dual class (cf. Exercise 25.9).

Moreover, since reduction holds for Π1
2n+1 and Σ1

2n+2, separation fails
for these classes (see Exercise 25.11 and Exercise 33.6). Hence reduction,
prewellordering and scale properties fail for the dual classes Σ1

1, Π1
2, Σ1

3, . . . .
Instead of proving Theorem 33.23 we shall prove the weaker statement:

Assuming PD, every Π1
2n+1 and every Σ1

2n+2 have the prewellordering prop-
erty. The full result is proved by a similar, somewhat more complicated,
method.

In Chapter 25 we proved that every Π1
1 set has a Π1

1-norm and that every
Σ1

2 set has a Σ1
2-norm. The latter statement is easily derived from the former

(Exercise 25.6). The same proof shows that if Π1
2n+1 has the prewellordering

property then so does Σ1
2n+2 (Exercise 33.7). Thus it suffices to prove the

following:
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Lemma 33.25. Assume that every ∆1
2n game is determined, and that every

Σ1
2n set has a Σ1

2n-norm. Then every Π1
2n+1 set has a Π1

2n+1-norm.

Proof. Assume that the hypotheses hold and let B be a Π1
2n+1 set

x ∈ B ↔ ∀u (x, u) ∈ A

where A is Σ1
2n. Let ψ be a Σ1

2n-norm on A. For x, y ∈ N consider the game
G(x, y) where I plays a(0), a(1), . . . , a(k), . . . and II plays b(0), b(1), . . . ,
b(k), . . . and II wins if (y, b) /∈ A, or (x, a) ∈ A and ψ(x, a) ≤ ψ(y, b). The
game G(x, y) is determined: If y /∈ B then II can win by playing b such that
(y, b) /∈ A; if y ∈ B then

II wins G(x, y) ↔ P (x, a, y, b) ↔ Q(x, a, y, b)

and so the payoff set is ∆1
2n and hence determined.

For x, y ∈ B, define

x � y ↔ II has a winning strategy in G(x, y).

We will show that � is a prewellordering of B and the corresponding norm
is a Π1

2n+1-norm.
Clearly, x � x for every x ∈ B (II wins by copying I’s moves).
To check that � is transitive, let x � y and y � z. Thus II has winning

strategies both in G(x, y) and G(y, z). We describe a winning strategy for II
in G(x, z): Let k ≥ 0. When I plays a(k) in G(x, z), consider this the kth move
in G(x, y) and apply the strategy in G(x, y) to respond b(k). Consider b(k)
to be the kth move of I in G(y, z) and apply the strategy in G(y, z) to
respond c(k). This c(k) is then the kth move of II in G(x, z). It is clear that
II wins.

Now assume that x, y ∈ B and x �� y. Then I has a winning strat-
egy in G(x, y) (because II does not); we describe a winning strategy for II
in G(y, x) so that y � x: Let k ≥ 0. When I plays a(k) in G(y, x), let b(k)
be the move by I’s winning strategy in G(x, y) (responding to II’s a(k − 1)).
Let II play b(k) in G(y, x). As I wins in G(x, y), we have ψ(x, a) > ψ(y, b),
and so II wins.

To verify that � is well-founded, we assume to the contrary that x0 $ x1 $
. . . $ xn $ . . . is a descending chain, that I has a winning strategy in each of
the games G(xi, xi+1). Let a0(0), a1(0), . . . , ai(0), . . . be the first moves of I
by the winning strategies in the games G(xi, xi+1), and for each k ≥ 1, let
a0(k), a1(k), . . . , ai(k), . . . be I’s moves responding to a1(k − 1), a2(k − 1),
. . . , ai+1(k − 1), . . . II’s moves in these games. Since I wins all these games,
we have ψ(x0, a0) > ψ(x1, a1) > . . . > ψ(xi, ai) > . . ., a contradiction.

Finally, for every y ∈ B,

x ∈ B and x � y ↔ ∃τ ∀a (x, a) ≤ψ (y, a ∗ τ) ↔ ∀σ ∃b (x, σ ∗ b) ≤ψ (y, b)

(where σ and τ denote strategies for I and II) and since ψ is a Σ1
2n-norm

on A, it follows that the norm associated with � is a Π1
2n+1-norm on B. ��
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Consistency of AD

The following theorem confirms what has been expected since the early
1970’s: Determinacy is a large cardinal axiom:

Theorem 33.26 (Martin-Steel-Woodin). If there exist infinitely many
Woodin cardinals and a measurable cardinal above them, then the Axiom of
Determinacy holds in L(R). ��

In the rest of this chapter we shall outline some ideas on which this result
is based. But first we state two related results:

Theorem 33.27 (Woodin). The following are equiconsistent :

(i) ZFC + “There exist infinitely many Woodin cardinals.”
(ii) ZF + AD. ��

Theorem 33.28 (Martin-Steel). Let n ∈ N . If there exist n Woodin car-
dinals with a measurable cardinal above them then every Π1

n+1 game is de-
termined. ��

The crucial concept in these proofs is that of a homogeneous tree.
Following the terminology and notation of Chapter 25, and specifically

Definition 25.8, let K be a set and let T be a tree on ω × K (or more
generally, on ωr × K). For s ∈ Seq let

(33.13) Ts = {t : (s, t) ∈ T }.

In the present context, a measure is a σ-complete ultrafilter, not necessarily
nonprincipal.

Definition 33.29. A tree T on ω ×K is homogeneous if there are measures
µs, s ∈ Seq, such that µs is a measure on Ts and:

(i) If t extends s then πs,t(µt) = µs where πs,t is the natural projection
map from Tt to Ts.

(ii) If x ∈ p[T ] then the direct limit of the ultrapowers by {µx�n : n ∈ ω}
is well-founded.

(See Exercise 33.8 for an explicit formulation of (ii).)
A tree T is κ-homogeneous (where κ is a regular uncountable cardinal) if

the measures µs are all κ-complete. A set A ⊂ N is (κ-)homogeneously Suslin
if A = p[T ] for some (κ-)homogeneous tree T .

Homogeneous trees are an abstraction of Martin’s proof of Π1
1 Determi-

nacy from a measurable cardinal. First, an analysis of Martin’s proof shows
the following:

Lemma 33.30. If A ⊂ N is Π1
1 and κ is a measurable cardinal then A is

κ-homogeneously Suslin.
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Proof. Exercise 33.10. ��

Martin’s proof essentially uses this (Exercise 33.11):

Lemma 33.31. If A ⊂ N is homogeneously Suslin then A is determined.
��

A related concept is a weakly homogeneous tree:

Definition 33.32. A tree T on ω × K is weakly homogeneous if there are
measures µs,t, where s, t ∈ Seq and length(s) = length(t), such that µs,t is
a measure on Ts and

(i) If s̄ ⊃ s and t̄ ⊃ t then πs,s̄(µs̄,t̄) = µs,t.
(ii) If x ∈ p[T ] then there exists a y ∈ N such that the direct limit of the

ultrapowers by {µx�n,y�n : n ∈ ω} is well-founded.

A tree T is κ-weakly homogeneous if the µs,t are κ-complete. A set A is
(κ-)weakly homogeneously Suslin if A = p[T ] for some (κ-)weakly homoge-
neous tree T .

It is not difficult to show that a set A ⊂ N is κ-weakly homogeneously
Suslin if and only if it is a projection of a homogeneously Suslin set B ⊂ N×N
(Exercises 33.12 and 33.13).

Theorem 33.26 follows, via Lemma 33.31, from the following two deep
results:

Theorem 33.33 (Woodin [1988]). If there exist infinitely many Woodin
cardinals with a measurable cardinal above, then every subset of N in L(R)
is δ+-weakly homogeneously Suslin, for some Woodin cardinal δ. ��

Theorem 33.34 (Martin and Steel [1988]). If A ⊂ N is δ+-weakly ho-
mogeneously Suslin, where δ is a Woodin cardinal, then N − A is homoge-
neously Suslin. ��

We shall return to Theorem 33.33 in a later chapter. As for Theorem 33.34,
assume that A = p[T ] where T is weakly homogeneous. Then one constructs
a tree T̃ such that N−A = p[T̃ ] in a manner similar to the tree representation
for Π1

2 sets in Theorem 32.14. The heart of the argument in Martin-Steel’s
proof is to show that T̃ is a homogeneous tree.

Exercises

33.1. (i) The function f(b) = σ ∗ b is a one-to-one continuous function.
(ii) The set {σ ∗ b : b ∈ N} contains a perfect subset.

33.2. I has a winning strategy in the perfect set game if and only if X has a perfect
subset. II has a winning strategy if and only X is at most countable.
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33.3. Let n > 0. If GA is determined for every Σ1
n set A, then GA is determined

for every Π1
n set, and vice versa.

33.4. If every Π1
2n+1 set has a Π1

2n+1-scale then every Π1
2n+1 relation is uniformized

by a Π1
2n+1 function.

33.5. If every Π1
2n+1 set has a Π1

2n+1-norm then Π1
2n+1 satisfies the reduction

principle.

33.6. If Π1
2n+1 satisfies the reduction principle then it does not satisfy the separa-

tion principle.

33.7. If every Π1
2n+1 set has a Π1

2n+1-norm (has a Π1
2n+1-scale) then every Σ1

2n+2 set
has a Σ1

2n+2-norm (has a Σ1
2n+2-scale).

33.8. Property (ii) in Definition 33.29 is equivalent to this: If x ∈ p[T ] and A1,
A2, . . . are such that µx�n(An) = 1, then there exists an f ∈ Kω such that (x, f) ∈
[T ] and f�n ∈ An for all n.

33.9. Every closed set is homogeneously Suslin.
[T is on ω × ω and each µs is principal.]

33.10. Let κ be a measurable cardinal. If A is Π1
1 then there is a κ-homogeneous

tree T on ω × κ such that A = p[T ].
[As A is Π1

1 there are linear orders <s, s ∈ Seq , such that <s orders {0, . . . , n−1}
where n = length(s), <t extends <s if s ⊂ t, and such that A = {x : <x is a well-
ordering} where <x is the limit of the <x�n. Let T be the tree on ω × κ such that
[T ] = {(x, f) : f is order-preserving from (ω,<x) into (κ, <)}. Let U be a normal
measure on κ and let for s of length n, let µs on Ts be induced by Un (on [κ]n).]

33.11. If A = p[T ] and T is a homogeneous tree then the game GA is determined.
[Use an auxiliary game G∗ as in the proof of Corollary 33.20.]

33.12. If B ⊂ N 2 is weakly homogeneously Suslin then so is the projection of B.

33.13. If T is a weakly homogeneous tree on ω×K then there exists a homogeneous
tree U on (ω × ω)×K such that p[T ] is the projection of p[U ].

33.14. Let T be a homogeneous tree on (ω × ω) × K, and let T ′ = {(s, (t, u)) :
((s, t), u) ∈ T}. Then T ′ is a weakly homogeneous tree on ω × (ω ×K).

Historical Notes

Infinite games were first considered in the 1930. Mazur described an infinite game
and conjectured its connection to Baire category, which was then proved by Banach.

In [1953] Gale and Stewart investigated infinite games in general and proved
that the Axiom of Choice implies that there exist undetermined games and that
open games are determined.

In [1962] Mycielski and Steinhaus proposed an axiom and called it the Axiom of
Determinateness (AD). In [1963/64, 1966] Mycielski gave a comprehensive account
of consequences of AD and related open problems.

Theorem 33.3(i) is due to Mycielski and Świerczkowski [1964]; the present proof
(and the covering game) is due to Harrington. Theorem 33.3(iii) is due to Morton
Davis [1964].
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Following Solovay’s discovery that AD implies that ℵ1 is a measurable cardinal,
attention has been turned to the relation between Determinacy and large cardinals.
There have been numerous results in this direction, and a vast of literature exists
on the subject. The reader can find an excellent account of current research on AD
in Kanamori’s book [1994]; a comprehensive treatment of the subject is expected
to appear in the near future (Woodin et al. [∞]).

Theorem 33.12 is due to Solovay; the present proof of measurability of ℵ1

(Lemma 33.13) is due to Martin [1968].
Projective ordinals δ1

n as well as the cardinal Θ were introduced by Moschovakis
[1970] and studied extensively by Kechris [1974, 1978]. The calculation of the size
of the δ1

5 was accomplished by Steve Jackson, cf. [1988, 1999]. For the results on Θ,
see e.g. Kechris [1985].

Theorem 33.18 (Borel Determinacy) is due to Martin [1975]; see also Mar-
tin [1985] and Kechris and Martin [1980].

Theorem 33.19: In [1969/70], Martin proved that analytic games are determined
if a� exists for all a ∈ N ; the converse was proved by Harrington in [1978].

Moschovakis’ Theorem 33.23, cf. [1971], is the culmination of applications of
Projective Determinacy to classical descriptive set theory: among others, see Black-
well [1967], Addison and Moschovakis [1968] and Martin [1968]. For a comprehensive
survey, see Kechris and Moschovakis [1978].

Consistency of AD follows from the results of Martin, Steel and Woodin, cf. Mar-
tin and Steel [1988, 1989] and Woodin [1988].

Homogeneous trees are implicit in Martin and Solovay [1969] and in Mar-
tin [1969/70]. They were explicitly isolated by Kechris [1981]. Weakly homogeneous
trees figured prominently in Woodin [1988].



34. Supercompact Cardinals and the Real Line

In this chapter we present results showing the effect of very large cardinals
(such as supercompact) on the structure of sets of real numbers. In earlier
chapters we showed that if ℵ1 is inaccessible in every L[x] (where x ∈ R)
then all Σ1

2 sets of reals are Lebesgue measurable, have the Baire property,
and the perfect set property. If x� exists for all x ∈ R then every Π1

1 game is
determined. Thus already the existence of moderately large cardinals (such as
measurable) has an effect on regularity of projective sets (but recall that—by
Silver’s Theorem 32.20—measurability is still weak to influence Σ1

3 sets, as
measurable cardinals are consistent with a Σ1

3 well-ordering of R). It follows
from the results presented below that if a supercompact cardinal exists, then
all sets of reals in L(R) have the regularity properties mentioned above.

Woodin Cardinals

As we mentioned in the last chapter (Theorem 33.27), the consistency
strength of Determinacy is below a supercompact cardinal; the appropri-
ate large cardinal concept (a Woodin cardinal) was isolated in the course of
investigations leading to the proof of AD. Let us elaborate on the definition
(Definition 20.31) of Woodin cardinals: Let κ and λ ≥ κ be cardinals, and
let A be an arbitrary set. We say that κ is λ-strong for A if there exists an
elementary embedding j : V → M with critical point κ such that

(i) j(κ) > λ,
(ii) Vλ ⊂ M ,
(iii) A ∩ Vλ = j(A) ∩ Vλ.

(34.1)

Hence κ is λ-strong if it is λ-strong for ∅, and by definition, δ is a Woodin
cardinal if for every A ⊂ Vδ there are arbitrarily large κ < δ that are λ-strong
for A for all λ < δ. We now present a different definition of Woodin cardinals
and show that it is equivalent to Definition 20.31.

Definition 34.1. A cardinal δ is a Woodin cardinal if for every function
f : δ → δ there exists a κ < δ with f“κ ⊂ κ, and an elementary embedding
j : V → M with critical point κ such that Vj(f)(α) ⊂ M .
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Every supercompact cardinal is Woodin, and is a limit of Woodin car-
dinals (Exercise 34.1). An immediate consequence of Definition 34.1 is that
every Woodin cardinal is a Mahlo cardinal, and in fact has a stationary set
of measurable cardinals. The following lemma proves the equivalence of Def-
initions 20.31 and 34.1:

Lemma 34.2. The following are equivalent :

(i) For every A ⊂ Vδ there exists a κ < δ that is λ-strong for A for all
λ < δ.

(ii) For every A ⊂ Vδ the set of all κ < δ that are λ-strong for A for all
λ < δ is stationary.

(iii) For every f : δ → δ there exists a κ < δ with f“κ ⊂ κ, and an
elementary embedding j : V → M with critical point κ such that
Vj(f)(α) ⊂ M .

(iv) For every f : δ → δ there exists a κ < δ with f“κ ⊂ κ, and an
extender E ∈ Vκ with critical point κ such that jE(f)(κ) = f(κ) and
Vf(κ) ⊂ UltE.

Proof. It suffices to show that (i) implies (iv) and that (iii) implies (ii).
Assume that (i) holds, and let f : δ → δ. By (i) there exists a κ < δ that

is λ-strong for A for all λ < δ. Let λ < δ be sufficiently large, and let E be an
extender with critical point κ such that Vf(κ) ⊂ UltE and f∩Vλ = jE(f)∩Vλ;
such an extender exists in Vδ. Clearly, f“κ ⊂ κ, and since λ is sufficiently
large, we have jE(f)(κ) = f(κ). Therefore (iv) holds.

Now assume that (iii) holds; let A ⊂ Vδ and let C ⊂ δ be a closed
unbounded set. To prove (ii) we need a κ ∈ C that is λ-strong for A for all
λ < δ. For each α < δ let f(α) be a limit ordinal β ∈ C such that if there
exists a λ < δ such that α is not λ-strong for A, then such a λ exists below β.
By (iii) there exists some κ < δ with f“κ ⊂ κ, and an elementary j : V → M
with critical point κ such that Vj(f)(κ) ⊂ M . Since f“κ ⊂ κ, C ∩ κ is closed
unbounded in κ and hence κ ∈ j(C). By elementarity it suffices to show that

(34.2) M � κ is λ-strong for j(A) for all λ < j(δ).

Assume that (34.2) fails, and let λ be the least λ such that in M , κ is not
λ-strong for j(A). By definition of f we have λ < j(f)(κ). Let E be the
(κ, λ)-extender derived from j. It is routine to verify that Vλ ⊂ UltE and
since UltE = {(jf)(a) : f ∈ V , a ∈ Vλ} ⊂ M , it follows that E ∈ M . In M ,
E is a (κ, λ)-extender, and V M

λ = Vλ ⊂ UltE(M).
We complete the proof by showing that

(34.3) j(A) ∩ V M
λ = jM

E (j(A)) ∩ V M
λ .

Each of the following equalities is easily verified: j(A) ∩ V M
j(κ) = j(A ∩ Vκ) =

jE(A ∩ Vκ) = jM
E (A ∩ Vκ) = jM

E (j(A) ∩ Vκ) = jM
E (j(A)) ∩ jM

E (Vκ), and
(34.3) holds because λ < jM

E (κ) and V M
λ = Vλ ⊂ UltM

E . Therefore (ii) holds.
��
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Property (iv) in Lemma 34.2 is Π1
1 over Vδ and so the least Woodin

cardinal is Π1
1-describable and therefore not weakly compact.

Semiproper Forcing

A property of forcing somewhat weaker than properness, called semiproper-
ness, have been of considerable use in the theory of large cardinals. We shall
investigate it in some detail in Chapter 37; at this point we introduce semi-
proper forcing, prove basic properties and use it in an application involv-
ing L(R) and supercompact cardinals.

Modifying condition (ii) in Lemma 31.6 and the characterization of
properness in Theorem 31.7 we obtain the following: Let P be a notion of
forcing and let λ be sufficiently large. Let M be a countable elementary sub-
model of (Hλ,∈, <). A condition q is (M, P )-semigeneric if for every name
α̇ ∈ M such that � α̇ is a countable ordinal,

(34.4) q � ∃β ∈ M α̇ = β.

Definition 34.3. A notion of forcing P is semiproper if for every sufficiently
large λ there is a closed unbounded set in [Hλ]ω of countable elementary
submodels such that

∀p ∈ M ∃q ≤ p q is (M, P )-semigeneric.

Thus semiproperness is a weaker property than properness: Definition 34.3
is obtained by replacing arbitrary ordinal names in Lemma 31.6 by names
for countable ordinals. While the condition in Theorem 31.7 is equivalent to
preservation of stationary sets in [λ]ω , only the second part of the proof of
Theorem 31.7 remains valid for semiproper forcing, and we get:

Theorem 34.4. If P is semiproper then every stationary set S ⊂ ω1 remains
stationary in V P . ��

If P is semiproper and Q̇ is semiproper in V P , then P ∗ Q̇ is semiproper.
Semiproperness is generally not preserved under countable support iteration;
the proof of Theorem 31.15 does not generalize to iterations of semiproper
forcing. (The reason is that a semiproper forcing may change the cofinality
of a regular uncountable cardinal to ω: It is not necessarily the case that
a countable set of ordinals in V [G] is included in a set that is countable
in V .) When the iteration adds no new countable sets, however, the proof of
Theorem 31.15 does go through for semiproper forcing, and we have:

Lemma 34.5. If P is a countable support iteration of semiproper forcing
notions and if P is ω-distributive, then P is semiproper. ��

In Chapter 37 we shall deal with iterations of semiproper forcings.
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The Model L(R)

We shall now show that if there exists a supercompact cardinal then every
set of reals in L(R) is Lebesgue measurable, has the Baire property and
the perfect set property. In fact, the reals in L(R) behave exactly as the
reals in Solovay’s model in Theorem 26.14(i). The regularity of sets of reals
in L(R) follows of course from Theorem 33.26, and we shall outline later in
this chapter the methods that lead to the proof of that theorem. We shall
prove the following:

Theorem 34.6 (Woodin). Let κ be a superstrong cardinal and let V [G]
be the generic extension of V by the Lévy collapse Col(ℵ0, <κ). Then there
exists an elementary embedding

j : L(R) → (L(R))V [G].

(For superstrong cardinals, see Exercise 34.2.)

Corollary 34.7. If there exists a superstrong cardinal then every set of reals
in L(R) is Lebesgue measurable, has the Baire property, and has the perfect
set property. In particular, there is no projective well-ordering of R. ��

The main result used in the proof of Theorem 34.6 is the following result
on saturated ideals:

Theorem 34.8. If κ is a superstrong cardinal then there exists an ω-dis-
tributive κ-c.c. notion of forcing P such that in V P , κ = ℵ2 and there exists
a normal ℵ2-saturated ideal on ω1.

Let us show how Theorem 34.8 implies Theorem 34.6:

Proof of Theorem 34.6. Let P be the notion of forcing from Theorem 34.8,
and let M be the generic extension of V by P . In M , let I be a normal ℵ2-
saturated ideal on ω1, and let Q be the notion of forcing P (ω1)/I. Q yields an
M -generic M -ultrafilter G on ω1; let N = UltG(M) be the generic ultrapower.
If j : M → N is the generic elementary embedding then (by the results proved
in Chapter 22), ω1 is the critical point, j(ω1) = ωM

2 = κ, and (P (ω1))N =
(P (ω1))M [G]. Hence RN = RM [G], and since RM = R, j yields an elementary
embedding

(34.5) j : L(R) → (L(R))V P∗Q

.

Let B = B(P ∗ Q). Since P satisfies the κ-chain condition and I is κ-
saturated in V P , B satisfies the κ-chain condition. Since P collapses all car-
dinals below κ to ω1, and Q collapses ω1 (because ℵN

1 = j(ℵ1) = ℵM
2 ),
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B makes κ = ℵ1. Every complete subalgebra of B generated by fewer than κ
elements has size less than κ (by weak compactness of κ), and hence we have

(i) B is κ-c.c.,
(ii) B =

⋃
α<κ Bα where |Bα| < κ, and Bα <reg Bβ for all α <

β < κ,
(iii) every γ < κ is countable in V Bα for some α < κ.

(34.6)

It follows from (34.6) that B is isomorphic to the Lévy collapse Col(ω, <κ)
(see Exercise 34.5), and Theorem 34.6 now follows from (34.5). ��

Proof of Theorem 34.8. The notion of forcing P is a countable support it-
eration of length κ, where κ is a superstrong cardinal. The goal is to build
a model V P in which for some stationary set A ⊂ ω1, the nonstationary ideal
estricted to A, i.e., INS�A, is ℵ2-saturated. We shall first describe the iterates.

Let us fix a set A ⊂ ω1 such that both A and ω1 − A are stationary. Let
{Ai : i ∈ W} be a maximal almost disjoint collection of stationary subsets
of A (in this context, almost disjoint means that Ai ∩ Ak is nonstationary).
If |W | > ℵ1, consider the following notion of forcing QW : First let Q be
the forcing that collapses |W | to ℵ1 with countable conditions. In V Q, let
Ṡ =

∑
i∈W Ai, and let PṠ be the forcing (from Theorem 23.8) that shoots

a closed unbounded set through (ω1−A)∪ Ṡ. Let QW = Q∗PṠ. Equivalently,
let QW be the set of all pairs (q, p) such that

(i) q : γ + 1 → W for some γ < ω1, and
(ii) p ⊂ ω1 is a closed countable set such that α ∈ p ∩ A implies

α ∈
⋃

ξ<α Aq(ξ).

(34.7)

A condition (q′, p′) is stronger than (q, p) if q′ ⊃ q and p′ is an end-extension
of p.

The forcing QW preserves stationary subsets of ω1 (Exercise 34.6) but is
not necessarily semiproper. If W is not maximal then QW makes it maximal,
and preserves all stationary subsets of ω1 − A and of all Ai (Exercise 34.7).
Note also that if A is a nonstationary set then the forcing QW as defined
in (34.7) has a dense subset that is countably closed.

The effect of QW is that in the generic extension,
∑

i∈W Ai = A (mod INS)
and |W | = ℵ1. (In the intermediate extension by Q there could exist a new
stationary subset of A almost disjoint from each Ai, but it is destroyed by PṠ ,
and in V QW ,

∑
i∈W Ai ∪ (ω1 − A) contains a closed unbounded set.)

Now we define a countable support iteration Pα; and then we let P = Pκ.
Using some book-keeping device (standard in forcing iterations), at stage α
we consider (in V Pα) a maximal almost disjoint collection {Ai : i ∈ W} of
stationary subsets of A such that |W | > ℵ1. If QW is semiproper, we let
Q̇α = QW ; otherwise we let Q̇α be the collapse with countable conditions
of 2ℵ2 to ℵ1.

Thus Pα is a countable support iteration of semiproper forcing notions.
The role of the set A is to guarantee that Pα is ω-distributive. To show that,
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consider the generic extension V [G] obtained by shooting a closed unbounded
set through κ−A. In V [G], each Q̇α has a countably close dense subset, and
so Pα is a countable support iteration of countably closed forcing notions.
Hence Pα is ω-distributive in V [G], and therefore in V .

Thus by Lemma 34.5, each Pα is semiproper. Since κ is inaccessible and
Pκ is the direct limit of small forcing notions, Pκ satisfies the κ-chain condi-
tion. Since at cofinally many stages Q̇α collapses 2ℵ2 (of V Pα) to ℵ1, κ be-
comes ℵ2 in the model V P . The model V P has no new countable sets of
ordinals, and every stationary subset of ω1 remains stationary. Moreover, if
S ∈ V P is a subset of ω1 and is stationary in some V Pα , then it remains sta-
tionary: This is because V P is a semiproper forcing extension of V Pα—the
iteration from α to κ is a countable support iteration of semiproper forcings
in V Pα , and is ω-distributive (in V Pα).

We shall now prove that in V P , the ideal INS�A is ℵ2-saturated. Let G
be a generic filter on Pκ and assume that in V [G] there exists a maximal
almost disjoint family of stationary subsets of A, such that |W | > ℵ1 (hence
|W | = ℵV [G]

2 = κ). Let W be such a family, and assume further that W is
chosen by our book-keeping to be the family considered at stage κ of the
iteration.

Let j : V → M be an elementary embedding with critical point κ such
that Vj(κ) ⊂ M . For all α < j(κ), (Pα)M = Pα; (Pj(κ))M = j(Pκ) is the
direct limit of the Pα while Pj(κ) is the direct or inverse limit, depending
on cf j(κ) in V . Let H be such that G ∗ H is a generic filter on Pj(κ). Let
H̃ =

⋃
κ≤α<j(κ) H�α; G ∗ H̃ is an M -generic filter on j(Pκ), and j : V → M

extends (in V [G ∗ H ]) to an elementary embedding j : V [G] → M [G ∗ H̃ ].
One more remark before we proceed. If X ⊂ ω1 is a stationary set in

M [G][H̃ ] then it is stationary in V [G][H ]. This is because X ∈ M [G][H�α]
for some α < j(κ), hence X is stationary in V [G][H�α], and V [G][H ] is
a semiproper forcing extension of V [G][H�α].

Lemma 34.9. The forcing notion QW is semiproper in V [G].

This will complete the proof: If QW is semiproper then Qκ = QW . It
follows that A =

∑
W , after forcing with Qκ, hence in M [G][H̃ ]. This is

a contradiction, since j(W ) is an almost disjoint family of stationary subsets
of A, and W ⊂ j(W ) and W �= j(W ), since |W | = κ in V [G].

Proof. Assume that QW is not semiproper. Let N = (Hκ+)V [G]; there is
a p ∈ QW such that the set

(34.8) S = {M ∈ [N ]ω : p ∈ M and no q ≤ p is (M, QW )-semigeneric}

is stationary. Since QW is not semiproper, the forcing Q̇κ is the collapse
(with countable conditions) of 2κ to ℵ1. Let Gκ be a generic filter on Q̇κ;
since Q̇κ is ω-closed, S remains stationary in V [G][Gκ]. Since S ∈ M [G], S is
in M [G][Gκ] a stationary subset of [N ]ω and N has cardinality ℵ1. Let π
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be (in M [G][Gκ]) a one-to-one correspondence between N and ω1, and let
S̃ = ω1 ∩ π“S. S̃ is, in M [G][Gκ], a stationary subset of ω1.

Now work in V [G][H ] and consider the forcing notion Qj(W ) = j(QW )
and the condition p ∈ QW from (34.8). By Exercise 34.8, j(p) = p forces
that j(S) is nonstationary. In the generic extension, j(S) is a nonstationary
subset of [j(N)]ω, and hence j“S is a nonstationary subset of [j“N ]ω and
therefore S is a nonstationary subset of [N ]ω. It follows that (in V[G][H])

(34.9) p �Qj(W ) S̃ is a nonstationary subset of ω1.

The set S̃ is stationary in M [G][Gκ] and therefore in M [G][H̃] (which
is a semiproper forcing extension of M [G][Gκ]). The family j(W ) is, in
M [G][H̃ ], a maximal almost disjoint family of stationary subsets of A and
therefore intersects either ω1 − A or some E ∈ W in a stationary set; for
instance let E ∈ j(W ) be such that S̃ ∩ E is stationary. Thus S̃ ∩ E is sta-
tionary in V [G][H ], and (by Exercise 34.7), remains stationary after forcing
(over V [G][H ]) with Qj(W ). This contradicts (34.9). ��

Stationary Tower Forcing

We shall describe a forcing notion, due to Hugh Woodin, that is used, among
other applications, to generalize Theorem 34.6 and prove Theorem 33.33.

Definition 34.10 (Stationary Tower Forcing). Let κ be an inaccessible
cardinal. The forcing notion Q = Q<κ consists of conditions (Vα, S) where
α < κ and S is a stationary subset of [Vα]ω. A condition (Vβ , T ) is stronger
than (Vα, S) if α ≤ β and T �Vα ⊂ S.

Equivalently, (Vβ , T ) ≤ (Vα, S) if α ≤ β and T ⊂ SVβ where SVβ is the
lifting of S to [Vβ ]ω; see Theorem 8.27. The forcing Q<κ is not separative:
Two conditions (Vα, S) and (Vβ , T ) are equivalent if and only if for some (all)
γ ≥ α, β, SVγ � T Vγ mod the nonstationary ideal on [Vγ ]ω.

If (Vα, S) is a condition, Vα is determined by S (Vα =
⋃

S), so we can
abuse the notation by calling S a condition in Q<κ; we say that Vα is the
support of S.

If G is a generic filter then for each α < κ, G∩ [Vα]ω is a normal ultrafilter
extending the closed unbounded filter. In V [G], we define a generic ultrapower
UltG(V ) as follows: Consider formulas f ∈ V defined on some Vα, α < κ, and
let, for f on Vα and g on Vβ ,

(34.10) f =G g if for some S ∈ G with support ≥ α, β, f(x∩Vα) = g(x∩Vβ)
for all x ∈ S;

f ∈G g is defined similarly. Below we prove that if κ is a Woodin cardinal
then UltG(V ) is well-founded.
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The following definition was inspired by the earlier sections of this chapter,
in particular Exercise 34.9: Let M ⊂ N be countable models; we say that
N end-extends M if for all u ∈ M , u ∩ N = u ∩ M .

Definition 34.11. Let A be a dense set of conditions in Q<κ. A is semiproper
if for all sufficiently large λ there is a closed unbounded set in [Hλ]ω of
countable elementary submodels M such that for some countable N ≺ Hλ,

(i) M ⊂ N and N end-extends M ∩ Vκ,
(ii) ∃S ∈ A ∩ N with support Vα such that N ∩ Vα ∈ S.

(34.11)

The definition has equivalent variants:

Lemma 34.12. Each of the following two properties is equivalent to semi-
properness of A:

(i) There is a closed unbounded set of countable M ≺ Vκ+1 such that
some countable N ≺ Vκ+1 satisfies (34.11).

(ii) For all sufficiently large λ, for every countable M ≺ Hλ such that
A ∈ M there is a countable N ≺ Hλ that satisfies (34.11).

Proof. For the nontrivial implication (i) ⇒ (ii) see Exercise 34.10. ��

The following is the key lemma. If δ is a Woodin cardinal and A is a dense
subset of Q<δ then for a closed unbounded set of κ < δ, A ∩ Q<κ is dense
in Q<κ, and for a stationary set of κ, κ is λ-strong for A for all λ < δ.

Lemma 34.13. Let κ < δ be such that A ∩ Q<κ is dense in Q<κ and that
κ is λ-strong for A for all λ < δ. Then A ∩ Q<κ is semiproper in Q<κ.

Proof. Toward a contradiction, assume that the set

S = {M ≺ Vκ+1 : there is no N ≺ Vκ+1 such that (34.11) holds}

is stationary. Let λ > κ + 1 (λ < δ) be such that (Vλ,∈) ≺ (Vδ,∈). Let
j : V → M be an elementary embedding with critical point κ such that
j(κ) > λ, Vλ ∈ M and j(A) ∩ Vλ = A ∩ Vλ. We have S ∈ M , S ∈ j(Q<κ),
and M � j(A) is dense in j(Q<κ), and so there exists a T < S such that
T ∈ j(A) ∩ Vλ = A ∩ Vλ. Note that T < S means that for every z ∈ T ,
z ∩ Vκ+1 ∈ S.

Let Vα be the support of T . We shall find a countable x ≺ Vκ+1, a count-
able y ≺ j(Vα), and a countable z ≺ Vα such that y∩Vα = z ∈ T , z∩Vκ+1 = x,
and T ∈ y. Then y end-extends j(x∩Vκ) = x∩Vκ, T ∈ j(A)∩y, and y∩Vα ∈ T .
This implies (by (34.11)) that j(x) /∈ j(S), but z ∈ T < S implies that x ∈ S,
a contradiction.

To find x, y, and z, let F : V <ω
α → Vα be the function F (e ∪ {f}) =

j(f)(T, e) (if defined and ∈ Vα; e is a finite subset of Vα and f ∈ Vα is
a function), and let z ∈ T be closed under F . Let y = {(jf)(T, e) : f ∈ z and
e ∈ z<ω} and x = z ∩ Vκ+1. We have y ≺ j(Vα), y ∩ Vα = z and T ∈ y, as
desired. ��
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Lemma 34.13 is used to prove the following theorem on the stationary
tower forcing:

Theorem 34.14 (Woodin, [1988]). Let δ be a Woodin cardinal and let
Q<δ be the stationary tower forcing. Let G be a generic filter on Q<δ, and
let j : V → UltG be the canonical elementary embedding into the generic
ultrapower. Then

(i) UltG is well-founded.
(ii) j(ω1) = δ.
(iii) In V [G], the model UltG is closed under <δ-sequences.

We sketch the proof of (i) and refer the reader to Woodin [1988] for the
details of the complete proof. (Woodin’s paper states the theorem for a super-
compact cardinal but the proof can be easily adapted. See also Woodin [1999],
Theorem 2.36.)

Proof. (i) If A is a dense set and N is a countable model, we say that N cap-
tures A if (34.11)(ii) holds. First we claim that if A ⊂ Q<κ is semiproper
then for every condition p ∈ Q<κ there is a stronger condition q such that
every N ∈ q captures A. This is proved by showing that the set

q = {N ≺ Vκ+1 : N ∩ Vα ∈ p and N captures A}

(where Vα is the support of p) is stationary. To show this, let F : V <ω
κ+1 → Vκ+1

and let M ≺ Hλ for some λ be such that A ∈ M , F ∈ M , and M ∩ Vα ∈ p.
Let N ⊃ M be such that N end-extends M ∩ Vκ and captures A. Then
N ∩ Vκ+1 ∈ q and is closed under F .

One proves similarly that if An, n < ω, are semiproper then for every p
there exists a q < p such that every N ∈ q captures every An.

Now let 〈ḟn : n < ω〉 be a sequence of names of functions in the generic
ultrapower, names for a descending sequence of ordinals. For each n there is
a dense set An such that for each S ∈ An there is an ordinal function fS

n on S
such that S � ḟn = fS

n . Let κ < δ be such that each An ∩Q<κ is semiproper,
and let p ∈ G be such that every N ∈ p captures each An.

Now we define, for each n < ω, a function fn on p as follows: If N ∈ p, let
fn(N) = fS

n (N) where S ∈ An (with support Vα) is such that N ∩ Vα ∈ S.
The functions fn are defined for almost all (mod INS) N ∈ p, and fn+1(N) <
fn(N) for all n, producing a descending sequence of ordinals.

(iii) is proved similarly; one can show that if Aα, α < γ, with γ < δ
are semiproper then for every p there exists a q < p such that every N ∈ q
captures Aα for all α ∈ N .

(ii) follows by showing that δ remains a regular cardinal in V [G] and that
every α < δ is collapsed to ω. While the proof of regularity of δ is similar to
the proof of (iii), the proof that α becomes countable is a consequence of the
following fact that is easy to verify: If S ∈ Q<δ has support Vα then

S � j“Vα ∈ j(S). ��



656 Part III. Selected Topics

Weakly Homogeneous Trees

Let δ be a Woodin cardinal. By Theorem 34.14 there exists a generic ele-
mentary embedding j : V → M such that RM = RV [G] and j(ω1) = δ; G is
a generic filter on Q = Q<δ. Consider the following forcing notion P in V [G]:
A forcing condition p is a V -generic filter on the Lévy collapse Col(ω, <λ)
for some λ < δ; p is stronger than q if p ⊃ q. The forcing P does not add
reals and if H ⊂ P is V [G]-generic then H is a V -generic filter on Col(ω, <δ).
Under additional assumptions on δ, such as that δ is also a limit of Woodin
cardinals, every countably generated subalgebra of Q<δ has cardinality less
than δ, and RV [G] = RV [H]. Hence there exists an elementary embedding
j : L(R) → L(R)Col(ω,<δ) and consequently, the sets of reals in L(R) have
the regularity properties stated in Corollary 34.7.

The above argument yields a stronger result:

Corollary 34.15. If δ is a Woodin cardinal and a limit of Woodin cardinals,
if P is a forcing notion such that |P | < δ, and if G is a generic filter on P ,
then the model L(R)V [G] is elementarily equivalent to L(R).

Proof. As δ remains a Woodin cardinal in V [G], we can find a V -generic
filter H on Col(ω, <δ) such that V [G] ⊂ V [H ] and V [H ] is a Col(ω, <δ)-
generic extension of V [G], and elementary embeddings j : L(R) → L(R)V [H]

and k : L(R)V [G] → L(R)V [H]. ��

This property of Woodin cardinals (that the theory of L(R) is unchanged
by small forcing) has been exploited by Woodin to prove the following theo-
rem. In [1988] these results are stated under the assumption that a supercom-
pact cardinal exists, but Woodin subsequently proved the theorem under the
assumption stated below. The assumption is close to optimal as ω Woodin
cardinals do not suffice; compare also with Theorem 35.20. The proof of (ii)
uses the result in (i), and is a restatement of Theorem 33.33, establishing
Determinacy in L(R).

Theorem 34.16 (Woodin, [1988]). Assume that there exist infinitely many
Woodin cardinals with a measurable cardinal above them. Let λ be the supre-
mum of the first ω Woodin cardinals.

(i) For every set A ⊂ R in L(R) there exist trees T and S such that

A = p[T ], R − A = p[S]

and for every forcing P such that |P | < λ, if G ⊂ P is generic then

V [G] � p[T ] ∪ p[S] = R and p[T ] ∩ p[S] = ∅.

(ii) Every set A ⊂ R in L(R) is κ-weakly homogeneously Suslin, for all
κ < λ. ��
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Exercises

34.1. Let κ be a supercompact cardinal. Then

(i) κ is a Woodin cardinal, and
(ii) there is a normal measure on κ such that almost all δ < κ are Woodin.

A cardinal κ is superstrong if there exists an elementary embedding j : V →M
with critical point κ such that Vj(κ) ⊂M .

34.2. If κ is supercompact then there exists a normal measure on κ such that
almost all α < κ are superstrong cardinals.

34.3. If κ is superstrong then κ is a Woodin cardinal, and there exists a normal
measure on κ such that almost all δ < κ are Woodin cardinals.

34.4. P is semiproper if and only if for every p ∈ P , player II has a winning strategy
in the following game: I plays names α̇n for countable ordinals, II plays βn, and
II wins if ∃q ≤ p q � ∀n∃k (α̇n = βk).

34.5. Let B be an atomless complete Boolean algebra that satisfies (34.6). Then
B = Col(ω,<κ).

[Similar to Theorem 26.12.]

34.6. QW preserves stationary subsets of ω1.
[If T ⊂ A is stationary then T ∩ Ai is stationary for some i, and remains

stationary in V Q. Hence T ∩Ai∩ Ṡ is stationary in V Q, and then use Exercise 23.6.]

34.7. Let W be a family of stationary subsets of A ⊂ ω1, and let QW be defined
as in (34.7). If S is a stationary subset of some Ai ∈ W or a stationary subset of
ω1 −A, then S remains stationary. Also, A =

P

W in V QW .
[As in Exercises 23.6 and 34.6.]

34.8. Let N be a transitive model, N ⊃ ω1, let P ∈ N and p ∈ P . Then p forces
that the set

{M ∈ [N ]ω : M ≺ N and ∃q ≤ p q is (M, P )-semigeneric}

contains a closed unbounded set.
[Let C = {M : if α̇ ∈M and α̇G < ω1 then α̇G ∈M}.]

Let W be a family of stationary subsets of ω1 and let QW be defined as in (34.7)
(i.e., A = ω1).

34.9. QW is semiproper if and only if for all sufficiently large λ there is a closed
unbounded set of M ≺ Hλ such that exists an N ≺ Hλ with M ⊂ N and ω1∩M =
ω1 ∩N , and for some S ∈ W ∩N , ω1 ∩N ∈ S.

34.10. Show that (i) implies (ii) in Lemma 34.12.
[By (i) let F ∈ Hλ be such that F : (Vκ+1)

<ω → Vκ+1 and that for every
M ≺ Vκ+1 closed under F there is some N ≺ Vκ+1 such that (34.11) holds. Now
if M ≺ Hλ and A ∈ M , there exists such an F in M , and so M̃ = M ∩ Vκ+1

is closed under F . Let M̃ ⊂ Ñ ≺ Vκ+1 be so that (34.11) holds for Ñ . Then
let N = {f(e) : f ∈ M and e ∈ (Ñ ∩ Vκ)<ω}. Verify that M ⊂ N ≺ Hλ and
(34.11) holds for N .]
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Historical Notes

Woodin cardinals were introduced by Woodin (both Definitions 20.31 and 34.1).
Strong and superstrong cardinals were considered by Mitchell [1979a], Dodd and
Jensen (Dodd [1982]) and Baldwin [1986], in their study of inner models.

Semiproper forcing was introduced by Shelah and was investigated extensively
by Foreman, Magidor, and Shelah in [1988]. For Theorem 34.6, see Shelah and
Woodin [1990]. The proof of Theorem 34.8 was inspired by the work of Foreman,
Magidor, and Shelah on Martin’s Maximum.

Stationary tower forcing and its applications (Theorem 34.14, Corollary 34.15,
and Theorem 34.16) are due to Woodin.



35. Inner Models for Large Cardinals

This chapter is an introduction to the highly technical theory of inner models
for large cardinals. We present the fundamental concepts and ideas of the
theory and state, mostly without a proof (or giving an outline of a proof)
some significant results.

There are two major themes in the theory of inner models. One is that
with a given large cardinal property one can associate a minimal inner model
of ZFC for that property. An example is the model L[U ] for a measurable
cardinal. The other is the construction of core models for large cardinals.
These generalize the Dodd-Jensen core model K that we describe in some
detail. K is an inner model of ZFC that satisfies GCH and either the Covering
Theorem holds for K (see below) or L[U ] exists.

Definition 35.1. Let M be an inner model of ZFC. We say that the Cov-
ering Theorem holds for M if for every uncountable set X of ordinals there
exists some Y ∈ M such that |Y | = |X |.

If the Covering Theorem holds for some inner model M that satisfies GCH
then (exactly as in Corollaries 18.31–18.33) the Singular Cardinal Hypothesis
holds, every singular cardinal is singular in M , and (κ+)M = κ+ for every
singular cardinal κ.

A theory of core models has been developed for large cardinals up to
a Woodin cardinal. While the Covering Theorem does not hold beyond K,
a generalized core model possesses the following feature: If there exists no
inner model for a large cardinal with a given property then the core model M
for such a property is “close to” the universe V ; typically, (κ+)M = κ+ for
every singular strong limit cardinal. This feature makes core models a tool
for gauging the consistency strength of set-theoretical conjectures.

As an example, Dodd-Jensen’s Covering Theorem for K gives a lower
bound for the consistency of the failure of SCH: If SCH fails then the Cover-
ing Theorem for K fails and therefore there exists an inner model for a mea-
surable cardinal.
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The Core Model

The origin of the core model theory was the construction, by Dodd and
Jensen, of the core model K. The Dodd-Jensen core model (“the core model
up to a measurable cardinal”) is an inner model K that contains much of
the large cardinal structure without the existence of measurable cardinals.
Its main features are:

(1) K has a definable well-ordering, satisfies GCH and combinatorial prin-
ciples such as �.

(2) There exists a nontrivial elementary embedding j : K → K if and
only if L[U ] exists.

(3) If L[U ] does not exist then the Covering Theorem holds for K.

If L[U ] exists then K has a simple definition:

Definition 35.2. Assume that L[U ] exists. The core model is the inner
model

K =
⋂

α∈Ord

Ult(α)
U (L[U ]).

It is easy to verify that K is an inner model. Only the lower parts of the
iterated ultrapowers matter; see Exercise 35.1.

Central to the theory of inner models is the “internal” definition of K.
The main idea underlying the theory, including the generalizations of K, is
that the core model is approximated by transitive models (sets), so called
mice. Mice are the building blocks of K, as much as the models Lα are for L.

The preferred hierarchy for the fine structure of L is the Jensen hierar-
chy Jα. For K, we use its relativization JA

α for the language {∈, A} where
A is a unary predicate: We modify Definition 27.2 (of rudimentary functions)
by adding the function F (x) = x ∩ A to obtain functions rudimentary in A,
and let, for any set A,

(35.1) rudA(M) = the closure of M ∪ {M} under functions rudimentary
in A.

Definition 35.3. JA
0 = ∅, JA

α+1 = rudA(JA
α ), JA

α =
⋃

β<α Jβ if α is a limit
ordinal.

It follows that L[A] =
⋃

α∈Ord JA
α . See Exercise 35.2 for some properties

of the relativized Jensen hierarchy. Each JA
α is a transitive set and we abuse

the notation by using JA
α to denote also the model (JA

α ,∈, A ∩ JA
α ).

Definition 35.4. A mouse is a transitive model M = JU
α such that

(i) U is a normal κ-complete iterable M -ultrafilter on some κ < α,
(ii) all iterated ultrapowers of JU

α by U are well-founded,
(iii) M = HM

1 (γ ∪ p) (the Σ1 Skolem hull) for some γ < κ and some finite
p ⊂ α.
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More specifically, M is a mouse at κ.

Some remarks about the definition: Iterability is the condition (19.17) that
makes possible iterating the ultrapower. In Chapter 19 we assumed that M is
a model of ZF− which is not the case for mice (the requirement (iii) precludes
it; see Exercise 35.3). �Loś’s Theorem is not true in general in ultrapowers of
mice, only for Σ0 formulas (actually for Σ1 formulas as we discuss below).
One uses the fine structure to overcome this difficulty. Finally, for (ii) it is
sufficient that the ω1st iterate is well-founded.

Definition 35.5. K = L{M : M is a mouse}.

Below we outline a proof of the following theorem:

Theorem 35.6 (Dodd-Jensen).

(i) K is an inner model of ZFC and has a Σ2 well-ordering.
(ii) K satisfies GCH.
(iii) RK has a Σ1

3 well-ordering.
(iv) KK = K, and KV [G] = K for every generic extension.
(v) If L[U ] exists then K =

⋂
α∈Ord Ult(α)

U L[U ].
(vi) In K, L[U ] does not exist.
(vii) If 0� does not exist then K = L. If 0� exists then 0� ∈ K. More

generally, for every x ∈ K, if x� exists then x� ∈ K. ��

We now outline the basic theory of mice and techniques used in the core
model theory. First we state a special case of (vii):

Lemma 35.7. A mouse exists if and only if 0� exists.

Proof. If a mouse exists at κ, then the iterates κ(α) are indiscernibles for L.
Conversely, let 0� exist and let iα be the Silver indiscernibles. For each α,

let jα : L → L be the unique elementary embedding with critical point iα
such that jα(iα) = iα+1; Let Uα be the corresponding L-ultrafilter. Using
indiscernibility, one shows that jUα = jα. Each Uα is iterable and all iterates
Ult(β)

Uα
(L) are well-founded.

Now consider κ = i0 and U = U0, and let M = JU
κ+1. One proves that

U ⊂ JU
κ+1 ⊂ L, and Ult(α)

U (JU
κ+1) = JUα

iα+1. Finally, one verifies that JU
κ+1 =

HM
1 (∅), and hence M is a mouse. ��

Instrumental in the core model theory is the comparison of mice, a Σ2 well-
ordering of the class of all mice obtained by comparing the transfinite iterates
of mice.

For every regular uncountable cardinal λ, let Cλ denote the closed un-
bounded filter on λ. Let M = JU

α be a mouse at κ, and let λ be a regular
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cardinal greater than κ+. Then (as in Chapter 19), the λth iterate of M has
the form

(35.2) Ultλ
U (M) = JCλ

β .

Clearly, JCλ

β is constructible from M , but M is also constructible from JCλ

β :
M is isomorphic to the Σ1 Skolem hull of γ ∪ i0,λ(p) in JCλ

β .
For a given mouse M , γ and p are fixed to be least possible such that

M = HM
1 (γ ∪ p), in the following sense: γ is the least such γ, and then p is

the least p in the lexicographic ordering of finite descending sequences of
ordinals.

Definition 35.8. Let M = JU
α = HM

1 (γ ∪ p) and M ′ = JU ′
α′ = HM ′

1 (γ′ ∪ p′)
be mice, and let λ be (any) sufficiently large regular cardinal. Let i0,λ : M →
JCλ

β and i′0,λ : M ′ → JCλ

β′ be the iterated ultrapowers, with q = i0,λ(p) and
q′ = i′0,λ(p′). We define M < M ′ as follows:

(i) either β < β′,
(ii) or β = β′ and γ < γ′,
(iii) or β = β′ and γ = γ′, and q < q′ (in the descending lexicographic

ordering).

Lemma 35.9. < is a well-ordering of mice, and if M ≤ M ′ then M ∈ L[M ′].

Proof. If β < β′ then JCλ

β ∈ JCλ

β′ , and M ∈ L[JCλ

β ]. ��

An analysis of the complexity of < reveals that it is a Σ2 relation (and that
< on RK is Σ1

3). We recall that the constructible hierarchy is Σ1; the added
complexity in K is caused by the condition that every iterated ultrapower of
a mouse is well-founded.

Being a mouse is absolute for transitive models of ZF, and so is the well-
ordering of mice. Thus if M is an inner model then KM = L{N : N is
a mouse and N ∈ M}, and KK = K. Since the well-ordering of mice is
definable in K, K is a model of ZFC.

If V [G] is a generic extension of V (by a set forcing) then for all sufficiently
large regular cardinals λ, the closed unbounded filter Cλ on λ in V [G] is
generated by the closed unbounded filter in V . Hence JCλ

β is the same in V [G]
as in V , and so every mouse in V [G] is in V . Hence KV [G] = K.

If L[U ] exists then every mouse is in L[Cλ] for some λ; but L[Cλ] =
Ult(λ)

U L[U ]. Hence K ⊂
⋂

α∈Ord Ult(α)L[U ]. If x is a set of ordinals in⋂
α Ult(α) then for some λ > sup x, x ∈ L[U (λ)]. Hence there exists a mouse

M ≺Σ1 JU(λ)

λ+ such that x ∈ M . Therefore K =
⋂

α∈Ord Ult(α)L[U ]. The
latter model has no submodel with a measurable cardinal and so neither
does K.

One important feature of K is the following, which we state without
a proof:

Lemma 35.10. If mice exist then K =
⋃
{M : M is a mouse}. ��
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Proofs in the core model theory such as the proof of Lemma 35.10 involve
iterations of mice. One of the difficulties is that since mice do not satisfy ZF−,
the resulting embeddings are not fully elementary. It is easy to verify that
i0,1 : M → UltU M is Σ0-elementary, and an additional argument shows that
i0,1 is Σ1-elementary; similarly for iα,β. While the finite iterates of a mouse
are mice, arbitrary iterates are not. See Exercises 35.5–35.7.

The proof of GCH in K resembles somewhat Silver’s proof of GCH
in L[U ]. Instrumental in the proof (and proofs of combinatorial principles
in K) are condensation arguments, similar to Lemmas 18.38 and 27.5. These
proofs use heavily the fine structure of K (including projecta, standard codes
and parameters), reducing arguments about Σn to Σ1.

The fine structure of K makes it possible to generalize combinatorial
properties such as ♦ and � from L to K.

There is an alternative way of developing the theory of K and proving
the main theorems. This method, due to Magidor, uses the closed unbounded
filter directly. Instead of using mice, K can be defined using Definition 35.12
below (this definition is equivalent to the Dodd-Jensen definition).

Definition 35.11. The closed unbounded filter Cκ on κ survives at β if for
every n and f : [κ]n → {0, 1} with f ∈ Lβ+1[Cκ] there is a set C ∈ Cκ

homogeneous for f .

Definition 35.12. A set x belongs to K if and only if for some κ > rank(x)
and some β, x ∈ Lβ[Cκ] and Cκ survives at β.

If Cκ survives at β then it survives at all β′ < β. If it survives at all β then
L[Cκ] is the inner model for one measurable cardinal. Cκ survives vacuously
at every β < κ, and survives at κ if and only if 0� exists (Exercise 35.8).

If L[U ] exists then for every sufficiently large regular κ, L[Cκ] = L[U (κ)],
and so

⋃
{Lβ[Cκ] ∩ Vκ : Cκ survives at β} =

⋃
{L[U (κ)] ∩ Vκ : κ > ω regu-

lar} = K.

The Covering Theorem for K

The two main results on the core model are that unless L[U ] exists, K is
rigid and the Covering Theorem holds for K:

Theorem 35.13 (Dodd-Jensen). The following are equivalent :

(i) L[U ] exists.
(ii) There exists a nontrivial elementary embedding j : K → K. ��

Theorem 35.14 (Dodd-Jensen’s Covering Theorem for K). If L[U ]
does not exist, then for every uncountable set X of ordinals there exists a set
Y ⊃ X in K such that |Y | = |X |. ��
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If L[U ] exists then the ultrapower by U yields an elementary embedding
j : K → K. The proof of the converse shows somewhat more: If j : K → M
is elementary, then necessarily M = K (and L[U ] exists). The proofs of both
theorems use the fine structure of K, but a great deal of the fine structure
can be eliminated when using Magidor’s approach.

Since K is a model of ZFC, Corollaries 18.31, 18.32 and 18.33 all remain
true when L is replaced by K:

Corollary 35.15. If L[U ] does not exist then every singular cardinal is sin-
gular in K, (κ+)K = κ+ for every singular κ, and the Singular Cardinal
Hypothesis holds. ��

The Covering Theorem for L[U ]

By Prikry’s Theorem 21.10 there is a generic extension of L[U ] in which the
measurable cardinal κ of L[U ] remains a cardinal while cf κ = ω. It follows
that the Covering Theorem for L[U ] fails. However, it turns out that the
existence of a Prikry sequence is the only obstacle to the Covering Theorem:

Theorem 35.16 (Dodd-Jensen’s Covering Theorem for L[U ]). As-
sume that there is an inner model with a measurable cardinal, let κ be the
least such cardinal and let U be a measure on κ in L[U ]. Then

(i) either 0† exists, or
(ii) the Covering Theorem holds for L[U ], or
(iii) there exists an ω-sequence S ⊂ κ Prikry generic over L[U ], such that

the Covering Theorem holds for L[U ][S]. ��

Note that by Theorem 21.14, L[U ][S] = L[S].

The Core Model for Sequences of Measures

The theory of K has been generalized by W. Mitchell who constructed a core
model Km for sequences of measures (the “core model up to o(κ) = κ++”).
In analogy with K,

(i) Km has a definable well-ordering, satisfies GCH and �.
(ii) There exists a nontrivial j : Km → Km if and only if there is an inner

model for a measurable cardinal κ with o(κ) = κ++.
(iii) If there is no model for o(κ) = κ++ then a “weak” covering theorem

holds for Km.

Mitchell’s core model is the union of mice where a mouse is an appropri-
ate generalization of the Dodd-Jensen mouse. The main result on Km is as
follows:
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Theorem 35.17 (Mitchell).

(i) Km is a model of ZFC + GCH.
(ii) Km has a Σ2 well-ordering and � holds ; R ∩ Km has a Σ1

3 well-
ordering.

If there exists no inner model for o(κ) = κ++, then:

(iii) If U is a normal iterable Km-ultrafilter with UltU (Km) well-founded
then U ∈ Km.

(iv) If j : Km → M is a nontrivial elementary embedding then j is an iter-
ated ultrapower using measures in Km. (Hence there is no nontrivial
j : Km → Km.)

(v) If κ is a singular strong limit cardinal then (κ+)Km

= κ+. ��

Clause (v) is often called “the Weak Covering Theorem.”
Theorem 35.17 is a useful tool for obtaining lower bounds for the consis-

tency strength. As an example, we present the following application:

Corollary 35.18 (Mitchell). Assume that κ is a measurable cardinal and
2κ > κ+. Then there is an inner model with a measurable λ of order λ++.

Proof. If there is no such model then (iii) and (iv) hold. Let D be a normal
measure on κ and jD : V → M = UltD(V ); let j = jD�Km : Km → N .
By (iv), j is an iterated ultrapower, j = i0,ϑ : Km → Ult(ϑ) = N , by
measures in Km. Let Nν , ν ≤ ϑ, be the iterates; N0 = Km and Nϑ = N .
If ν < ϑ is a limit ordinal then there exist ξν < ν and Uν ∈ Nξν such that
Nν+1 = Ultiξν ,ν(Uν)(Nν). Since o(κ) < κ++ ≤ 2κ ≤ ϑ, there is a stationary
set S ⊂ κ++ of ordinals of cofinality ω such that ξν = ξ and Uν = U are
constant for ν ∈ S. Let ν ∈ S be a limit point of S, let 〈νn : n < ω〉 be
cofinal in S ∩ ν, and let κn be the critical point of iνn,ν , for each n. The
sequence 〈κn : n < ω〉 generates the measure iξ,ν(U) and belongs to M ,
hence iξ,ν(U) ∈ M . By (iii), iξ,ν(U) ∈ (Km)M = Nϑ but this is impossible
since iξ,ν(U) /∈ Nν+1. ��

This, combined with a theorem of Gitik [1989] shows that the existence
of a measurable cardinal κ such that 2κ > κ+ is equiconsistent with the
existence of a measurable cardinal κ of Mitchell order κ++.

Another result of Gitik (cf. [1989] and [1991]) shows that the consis-
tency strength of the failure of SCH is exactly a measurable cardinal κ with
o(κ) = κ++.

Up to a Strong Cardinal

The current core model theory employs sequences of extenders rather than
sequences of measures. This not only enables one to generalize the theory to
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large cardinals beyond measurable but also has some technical advantages
even in the case of Km.

Strong cardinals (see Chapter 20) were introduced by Dodd and Jensen
who also provided their characterization in terms of extenders. They also con-
structed an inner model of the form L[E ] where E is a (transfinite) sequence
of extenders such that

(i) L[E ] is a model of ZFC,
(ii) in L[E ], E witnesses that there exists a strong cardinal,
(iii) L[E ] satisfies GCH, �, and has a Σ1

3 well-ordering of the reals.

They also introduced a real, the sharp for a strong cardinal, that exists if and
only if there exists a nontrivial elementary embedding j : L[E ] → L[E ].

The theory of core models up to a strong cardinal uses mice of the form JE
α

where E is a sequence of JE
α -extenders. The crucial fact that makes the gen-

eralization of the Dodd-Jensen theory possible is that one uses sequences of
non-overlapping extenders. (Two extenders overlap if one is a (κ, λ)-extender,
the other a (κ′, λ′)-extender and κ ≤ κ′ < λ.) This fact allows the compari-
son of mice by iteration, and while the generalization is far from routine, one
obtains a result similar to those for K and Km.

Theorem 35.19. There exists an inner model Kstrong such that :

(i) Kstrong is a model of ZFC + GCH.
(ii) Kstrong has a Σ2 well-ordering and � holds ; R∩Kstrong has a Σ1

3 well-
ordering.

If there exists no inner model for a strong cardinal then:

(iii) If j : Kstrong → M is a nontrivial elementary embedding then j is an
iterated ultrapower by extenders in Kstrong. (Hence there is no non-
trivial j : Kstrong → Kstrong.)

(iv) If κ is a singular strong limit cardinal then (κ+)Kstrong
= κ+. ��

Inner Models for Woodin Cardinals

Inner models for very large cardinals employ a new method of comparison
of mice. Due to the presence of overlapping extenders, a “linear” iteration
of mice does not work and a new technique has been developed—the theory
of iteration trees. Iteration trees were introduced by Martin and Steel, who
used the technique to construct inner models for Woodin cardinals

Theorem 35.20 (Martin-Steel). If there are n Woodin cardinals then
there is an inner model that has n Woodin cardinals, and its reals have
a Σ1

n+2 well-ordering. ��
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The Σ1
n+2 result is best possible: If there are n Woodin cardinals with

a measurable cardinal above them then Π1
n+1 determinacy holds (Theo-

rem 33.26) and so R does not have a Σ1
n+2 well-ordering.

The fine structure for iteration trees was developed further by Mitchell
and Steel who constructed an inner model for a Woodin cardinal that sat-
isfies GCH. Then Steel constructed a core model up to a Woodin cardinal,
under an additional assumption of a measurable cardinal above.

Let Ω be a measurable cardinal. Steel’s core model Ksteel is an inner model
of VΩ and if VΩ has no inner model with a Woodin cardinal then Ksteel is
both rigid and satisfies the Weak Covering Theorem:

Theorem 35.21. Let Ω be a measurable cardinal.

(i) (Ksteel)VΩ[G] = Ksteel, for every generic extension of V Ω (by forcing
in VΩ).

If VΩ has no inner model with a Woodin cardinal then :

(ii) There is no nontrivial elementary embedding j : Ksteel → Ksteel.
(iii) For every singular cardinal λ < Ω, (λ+)Ksteel

= λ+. ��

The following is an application of Steel’s core model:

Theorem 35.22 (Steel). If ℵ1 carries an ℵ2-saturated ideal, and if there
exists a measurable cardinal, then there exists an inner model with a Woodin
cardinal. ��

This is (almost) best possible, as Shelah proved that if κ is a Woodin
cardinal then there is a generic extension in which κ = ω2 and NSω1 is ω2-
saturated.

Exercises

35.1. Assume that L[U ] exists; then K =
S

α∈Ord(Ult
(α)
U (L[U ]) ∩ Vκ(α)).

35.2. (i) There is a Σ1(J
A
α ) map of ωα onto JA

α .
(ii) 〈JA

ξ : ξ < α〉 is Σ1(J
A
α ).

(iii) JA
α has a Σ1(J

A
α ) well-ordering.

(iv) The relation JA
α � ϕ is Σ1(J

A
α ).

35.3. If M is a mouse then ρ1
M < κ, where ρ1

M , the Σ1-projectum of M , is the
smallest ρ ≤ α such that there exists a Σ1(M) function with f“ωρ = JU

ρ .

35.4. Assume that 0� exists, let a ∈ L[0�] be a real Cohen generic over L and let
M = L[a]. Then M ⊂ K and so K ∩M = M , while KM = L.

Let M = JM
α = H1(γ ∪ p) be a mouse. Let i0,ξ : M →Mξ = Ult

(ξ)
U (M).

35.5. �Loś’s Theorem holds in UltU (M) for Σ0 formulas.
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35.6. i0,1 is a cofinal embedding of M into M1 and therefore Σ1-elementary. iξ,η :
Mξ →Mη is Σ1-elementary.

35.7. M1 = H1(γ ∪ i0,1(p) ∪ {κ}), Mn = H1(γ ∪ i0,n(p) ∪ {κ(0), . . . , κ(n−1)}),
Mξ = H1(γ ∪ i0,ξ(p) ∪ {κ(ν) : ν < ξ}).

35.8. For every regular κ > ω, Cκ survives at κ if and only if 0� exists.

Historical Notes

The core model K was introduced by Dodd and Jensen in [1981, 1982a, 1982b];
see also Dodd [1982]. Theorem 35.6 is proved in [1981], Theorem 35.13 and 35.14
in [1982a], and the proof of ♦ and � in K is due to Welch. An overview of K, with
some proofs, can be found in Mitchell [1979b] and Dodd [1983]. Magidor’s approach
is described in Magidor [1990] and in Kanamori’s forthcoming book [∞].

The core model Km for sequences of measures was introduced by Mitchell.
Theorem 35.17 was stated in Mitchell [1984]. Its proof has never been published
but a detailed sketch will appear in Mitchell [∞b] (in the forthcoming Handbook
of Set Theory). Mitchell’s article [∞b] and its companion [∞a] give an excellent
introduction to the inner model theory, as does the more expository Mitchell [1994].

The inner model L[E ] for a strong cardinal appeared in Dodd [1982]. The defi-
nition of Kstrong is given explicitly in Koepke [1989] where Theorem 35.19 is stated
(a proof has not been published).

Iteration trees are introduced in Martin and Steel [1994] where Theorem 35.20 is
proved. Fine structure for iteration trees is developed in Mitchell and Steel [1994]
obtaining an inner model with a Woodin cardinal and GCH. Steel’s core model
is constructed in Steel [1996], proving Theorem 35.21(i), (ii) and Theorem 35.22.
Theorem 35.21(iii) is proved in Mitchell et al. [1997].

An overview of these (and of more recent results) is given in Löwe and
Steel [1999].



36. Forcing and Large Cardinals

In this chapter we continue to develop the techniques introduced in Chap-
ter 21. We shall describe several applications of forcing that use various large
cardinal assumptions.

Violating GCH at a Measurable Cardinal

By Silver’s Theorem 21.4 it is consistent, relative to a supercompact cardinal,
that GCH can fail at a measurable cardinal. This, combined with Prikry
forcing, shows further that the Singular Cardinal Hypothesis is unprovable.
The consistency strength of both statements has been proved to be exactly
o(κ) = κ++:

Theorem 36.1 (Gitik). The following are equiconsistent :

(i) There exists a measurable cardinal κ such that 2κ > κ+.
(ii) There exists a strong limit singular cardinal κ such that 2κ > κ+.
(iii) There exists a measurable cardinal κ of Mitchell order κ++.

As proved in Chapter 21 (Corollary 21.13), the consistency of (ii) follows
from the consistency of (i) by Prikry forcing. The necessity of (iii) for the
consistency of “not SCH” was proved by Gitik, by a combination of the pcf
theory and Mitchell’s inner model for sequences of measures. We omit the
proof.

As for the consistency of (i) using o(κ) = κ++, this improvement of Silver’s
Theorem 21.4 is a combination of an intermediate forcing result of Woodin
which we outline below, and an additional forcing argument of Gitik that we
also omit. ��

Theorem 36.2 (Woodin). Assume GCH and assume that there exists an
elementary embedding j : V → M with critical point κ such that Mκ ⊂ M
and that there exists a function f : κ → κ with j(f)(κ) = κ++. Then there is
a generic extension in which κ is a measurable cardinal and 2κ > κ+.

The assumption of Theorem 36.2 is easily seen to follow from κ being
(κ + 2)-strong (Exercise 36.1). By Gitik, the statement holds in some generic
extension of the canonical inner model for o(κ) = κ++.
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Proof. We outline the proof, which follows loosely the proof of Silver’s Theo-
rem 21.4. However, since the assumption is considerably weaker than super-
compactness, more delicate arguments are needed.

We may assume that j = jE and M = UltE , where E is a (κ, κ++)-
extender (Exercise 36.2). Let U be the ultrafilter U = {X ⊂ κ : κ ∈ j(X)}
and consider the commutative diagram

(36.1)

N

V M
j

ki

�
�

�
�� �

�
�
��

�

where N = UltU (V ) and i : V → N is the corresponding elementary embed-
ding. Let

(36.2) λ = i(f)(κ) and µ = crit(k).

We have the following inequalities:

(36.3) κ+ = (κ+)N = (κ+)M < µ ≤ λ < i(κ) < κ++ < j(κ) < κ+++.

Moreover,

(36.4) M = {k(t)(a) : a ⊂ κ++ finite, t ∈ N and t : [λ]|a| → N}

(see Exercise 36.3).
For cardinals α and β, let Add(α, β) denote the notion of forcing that

adds β subsets of α, cf. (15.3). The model for 2κ > κ+ is constructed in two
stages: The first stage is (as in Silver’s proof) an iteration of length κ + 1,
with Easton support. The final model is then obtained by a forcing extension
of this model.

Let P = Pκ+1 be the Easton support iteration of Q̇α, where for each
α < κ, Q̇α = {1} unless α is inaccessible and a closure point of the function f ,
in which case Q̇α = Add(α, f(α)) (in V Pα where Pα is the αth iterate). For
α = κ, Q̇κ = (Add(κ, κ++))V Pκ . Let G be a generic filter on P ; we have
V [G] = V [Gκ][Hκ] where Gκ is V -generic on Pκ and Hκ is V [Gκ]-generic on
Qκ = Add(κ, κ++)V [Gκ].

We recall some of the facts established in the proof of Theorem 21.4:
Pκ is κ-c.c. forcing notion of cardinality κ, κ remains inaccessible in V [G], and
V [G] satisfies 2κ = κ++. Since κ is in M a closure point of j(f), Q̇κ = (Q̇κ)M ,
and so P = (j(P ))κ+1.

As for i : V → N , we use the fact that Nκ ⊂ N and that Pκ is κ-c.c.
to conclude (as in Lemma 21.9) that in V [Gκ], (N [Gκ])κ ⊂ N [Gκ]. Also,
(Qκ)N [Gκ] = Add(κ, λ)V [Gκ].
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Using k(Pκ) = Pκ and the fact that k(p) = p for every p ∈ Pκ, we
extend k : N → M to an embedding k : N [Gκ] → M [Gκ]. Now consider the
forcing Qκ in N [Gκ], and let

(36.5) hκ = k−1(Hκ) = {p ∈ Add(κ, λ)V [Gκ] : k(p) ∈ Hκ}.

As QN [Gκ]
κ has, in N [Gκ], the κ+-chain condition, and crit(k) > κ+, hκ is

QN [Gκ]
κ -generic over N [Gκ] (see Exercise 36.4). Moreover, Gκ∗hκ is V -generic

on (i(P ))κ+1 and in V [Gκ][hκ], (N [Gκ][hκ])κ ⊂ N [Gκ][hκ] (Exercise 36.5).
Note also that (because λ < κ++), V [Gκ][hκ] satisfies 2κ = κ+. It follows
that, in V [Gκ][hκ], k can be extended to an embedding k : N [Gκ][hκ] →
M [Gκ][Hκ].

Let Ṙ ∈ N be the name for the iteration after stage κ + 1:

(36.6) Pκ ∗ Q̇N
κ ∗ Ṙ = i(Pκ)

and let R ∈ N [Gκ][hκ] be the interpretation of Ṙ by Gκ ∗ hκ. In N [Gκ][hκ],
R is an i(κ)-c.c. forcing of cardinality i(κ), and because the least α for which
the αth iterate is nontrivial is above λ, R is λ-closed.

Using the fact that R is λ-closed and that the number of antichains of R
in N [Gκ][hκ] is small in V [Gκ][hκ] we conclude that there exists in V [Gκ][hκ]
an R-generic filter H over N [Gκ][hκ] (Exercise 36.6).

Now define k(H) as follows (in V [Gκ][hκ]):

(36.7) k(H) = {q ∈ k(R) : ∃p ∈ H k(p) ≤ q}.

We claim that k(H) is an M [Gκ][hκ]-generic filter on k(R). We omit the proof
(but see Exercise 36.7).

As p ∈ H implies k(p) ∈ k(H) for every p ∈ R, k can be extended,
in V [Gκ][hκ], to an embedding k : N [Gκ][hκ][H ] → M [Gκ][hκ][k(H)]. It
follows that i and j can be extended (in V [G]), so that we have the following
commutative diagram:

(36.8)

N [Gκ][hκ][H ]

V [Gκ] M [Gκ][hκ][k(H)]
j

ki

�
�

�
�� �

�
�
��

�

Now we describe the second stage of the construction, namely a generic
extension of V [G] = V [Gκ ∗Hκ], and in this extension, an elementary embed-
ding that extends j. We force over V [G] with the partial order Q = i(Qκ).
Since i(Qκ) is <i(κ)-closed in N [Gκ][hκ][H ], it follows from Exercise 36.5
that Q is κ-closed in V [Gκ][hκ]. However, as the model V [G] = V [Gκ][Hκ]
is a generic extension of V [Gκ][hκ] by a κ+-c.c. forcing Add(κ, λ), Q is κ-
distributive in V [G] (Exercise 36.8).
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We also claim that in V [G], Q is κ++-c.c. To prove the claim, let Q̃ be,
in V [Gκ], the full support product of κ copies of Qκ. Note that Q̃ is κ++-
c.c. in V [Gκ], and since Q̃ � Qκ × Q̃, Q̃ is κ++-c.c. in V [Gκ][Hκ] = V [G].
Since conditions in Q = i(Qκ) have the form i(g)(κ) where g : κ → Qκ, an
antichain in Q yields an antichain in Q̃, proving the claim.

Hence forcing with Q preserves κ+ and κ++, and so 2κ = κ++ holds in
the extension. Let K be a Q-generic filter over V [G]. The final step is to
find in V [G][K] a generic j(K) over M [G][k(H)] such that the embedding j
from (36.8) extends to an embedding j : V [G][K] → M [G][k(H)][j(K)]. This
step, which we omit, first applies k to K and produces a generic X such that
j extends to j : V [G] → M [G][k(H)][X ], and then applies j to K and pro-
duces a generic Y such that j extends to j : V [G][K] → M [G][k(H)][X ][Y ].
Details can be found in Gitik’s paper [1989].

As this final step is performed inside V [G][K], it follows that in V [G][K],
κ is measurable. ��

The Singular Cardinal Problem

By Corollary 21.13, the negation of the Singular Cardinal Hypothesis is con-
sistent relative to large cardinals, and its consistency strength is determined
by Theorem 36.1. These results belong to a wide area of theorems and con-
jectures known collectively as the Singular Cardinal Problem. Unlike the be-
haviour of the continuum function on regular cardinals, which by Easton’s
Theorem can be quite arbitrary, the values of the continuum function at
singular cardinals are subject to three kinds of constraint:

(1) By Silver’s Theorems 8.12 and 8.13, the value of 2κ for a singular car-
dinal κ of uncountable cofinality depends on the continuum function
below κ.

(2) The Galvin-Hajnal Theorem 24.1 and Shelah’s results in the pcf theory
give upper bounds for the value of 2κ when κ is a strong limit singular
cardinal such that κ < ℵκ.

(3) Jensen’s Covering Theorem 18.30 and the subsequent theory of core
models shows that the consistency of the failure of SCH requires large
cardinal assumptions.

There is a large body of forcing constructions that, using large cardinals,
yield models with various behaviour of the continuum function subject to the
above mentioned constraints. There is, however, no comprehensive solution
of the Singular Cardinal Problem analogous to Easton’s Theorem.

Below we list some of the advances in this area:

Theorem 36.3 (Magidor [1977a], [1977b]).

(i) If there exists a supercompact cardinal then there is a generic extension
in which 2ℵn < ℵω for all n < ω and 2ℵω = ℵω+2.
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(ii) If there exist κ < λ with κ supercompact and λ huge then there exists
a generic extension in which 2ℵn = ℵn+1 for all n < ω and 2ℵω =
ℵω+2. ��

Theorem 36.4 (Woodin, Gitik [1989]). If there exists a measurable car-
dinal κ of Mitchell order κ++, then there exists a generic extension in which
GCH holds below ℵω and 2ℵω = ℵω+2. ��

Theorem 36.5 (Magidor [1977a], Shelah [1983], Gitik [∞]). Assume
that there exists a supercompact cardinal.

(i) There is a generic extension in which GCH holds below ℵω, and 2ℵω =
ℵω+α+1, where α is any prescribed countable ordinal.

(ii) There is a generic extension in which ℵω1 is strong limit and 2ℵω1 =
ℵω1+α+1 for any prescribed ordinal α < ω2.

(iii) There is a generic extension in which GCH holds below the least fixed
point of the aleph function κ = ℵκ while 2κ is any arbitrarily large
prescribed successor cardinal. ��

Theorem 36.6 (Woodin, Cummings [1992]).

(i) If there exists a supercompact cardinal, then there is a generic exten-
sion in which 2κ = κ++ for each cardinal κ.

(ii) If there exists a strong cardinal, then there is a generic extension in
which 2κ = κ+ for each successor cardinal and 2κ = κ++ for each
limit cardinal. ��

There are additional results on the failure of SCH by Gitik, Shelah and
others. The main open problem in this area is the following:

Problem 36.7. Is it consistent that ℵω is strong limit and 2ℵω > ℵω1?

Compare this with Shelah’s Theorem 24.33.

Violating SCH at ℵω

We shall now outline the Woodin-Gitik modification of Magidor’s technique
for getting a model in which ℵω is strong limit and 2ℵω = ℵω+2. First we
describe the preparation forcing (which replaces Magidor’s use of a super-
compact cardinal):

Lemma 36.8. Assume that there exists a measurable cardinal κ with o(κ) =
κ++.

(i) There is a model V that satisfies GCH and

(36.9) ∃j : V → M , crit(j) = κ, Mκ ⊂ M and (κ++)M = κ++.
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(ii) There exists a model V with a measurable cardinal κ such that 2κ =
κ++ and a normal measure U on κ with N = UltU (V ), and there exists
a set G ∈ V which is an N -generic filter on ColN ((κ+++)N , <jU (κ))
(a Lévy collapse in N).

Proof. (i) We outline how to get a model that satisfies (36.9). First one
uses Gitik’s forcing from [1989] to get a model of GCH that has a (κ, κ++)-
extender E and a function f : κ → κ such that j(f)(κ) = κ++ (the as-
sumption of Theorem 36.2). Note that in M (where j : V → M), κ++ is
an inaccessible cardinal. To obtain (36.9), one uses the iteration of length κ,
with Easton support, of Lévy collapses Col(α+, <f(α)), followed by the Lévy
collapse Col(κ+, <κ++). In this generic extension, the embedding j : V → M
can be extended to an embedding that satisfies (36.9). (For details, see Gi-
tik [1989].)

(ii) Starting with j : V → M that satisfies (36.9), we do Woodin’s con-
struction described in the proof of Theorem 36.2, except that by (36.9), we
may assume that f(α) = α++ for all α. In the resulting model, κ is mea-
surable, 2κ = κ++, and if U is the measure {X : κ ∈ j(X)} given by the
extended embedding j, then U has the required property. (Again, details are
in Gitik’s [1989].) ��

For the rest of this section we assume that κ is a measurable cardinal with
2κ = κ++, U is a normal measure on κ, N = UltU (V ) and j = jU : V → N ,
and G ∈ V is an N -generic filter on ColN ((κ+++)N , <j(κ)), the Lévy collapse
in N . Magidor’s forcing conditions are as follows:

A forcing condition has the form p = (κ0, f0, κ1, f1, . . . , κn−1, fn−1,
A, F ) where
(i) κ0 < κ1 < . . . < κn−1 are inaccessible cardinals < κ,
(ii) fi ∈ Col(κ+++

i , <κi), for i < n−1 and fn−1 ∈ Col(κ+++
n−1 , <κ),

(iii) A ∈ U ,
(iv) F is a function on A and F (α) ∈ Col(α+++, <κ) for all α ∈ A,
(v) [F ]U , the element of Col((κ+++)N , <j(κ)) represented by F ,

belongs to G.

(36.10)

A condition p′ = (κ′
0, f

′
0, . . . , κ

′
m−1, f

′
m−1, A

′, F ′) is stronger than p
if
(i) m ≥ n,
(ii) κ′

i = κi for all i < n and κ′
i ∈ A for all i, n ≤ i < m,

(iii) f ′
i ⊃ fi for all i < n and f ′

i ⊃ F (κ′
i) for all i, n ≤ i < m,

(iv) A′ ⊂ A,
(v) F ′(α) ⊃ F (α) for all α ∈ A′.

(36.11)

This forcing produces a Prikry sequence 〈κn : n < ω〉 cofinal in κ. A con-
sequence of (36.10)(v) is that the forcing satisfies the κ+-chain condition
(Exercise 36.9) and so (if κ is preserved) 2κ = κ++ in the generic extension.
The crucial property of this forcing is that the cardinals κn are preserved,
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and 2κn < κn+1. Since all but finitely many cardinals between κn and κn+1

are collapsed, there remain exactly ω cardinals between κ0 and κ. Thus we
can follow this generic extension by a Lévy collapse Col(ℵ0, <κ0) and in the
resulting model we have κ = ℵω and 2ℵω = ℵω+2 with ℵω strong limit.

The key to preservation of the cardinals κn is an analog of Prikry’s
Lemma 21.12:

Lemma 36.9. Let σ be a sentence of the forcing language and let p = (κ0, f0,
. . . , κn−1, fn−1, A, F ) be a condition. Then there exists a stronger condition
p′ = (κ0, f

′
0, . . . , κn−1, f

′
n−1, A

′, F ′) (with the same n) that satisfies σ. ��

We omit the proof of Lemma 36.9 as well as its application and refer the
reader to Magidor [1977a] and Gitik [1989] for the details.

Radin Forcing

As a consequence of Jensen’s Covering Theorem, and more generally of the
inner model theory, large cardinals are necessary for any nontrivial change
of cofinality (with the exception of Namba forcing, Theorem 28.10). Prikry
forcing is the prime example of forcing that changes cofinality. In this section
we describe its generalizations.

The first example, due to Magidor, generalizes Prikry forcing to change
the cofinality of a large cardinal κ to a given regular cardinal λ < κ while
preserving κ as a cardinal:

Let λ be a regular cardinal and let κ > λ be a measurable cardinal such
that o(κ) = λ. Using an inner model for o(κ) = λ, we may assume that there
exists a sequence

(36.12) U0 < U1 < . . . < Uα < . . . (α < λ)

of normal measures on κ, ordered by the Mitchell order. For every α < β < λ,
let fβ

α : κ → Vκ be the function that represents Uα in UltUβ
, i.e., [fβ

α ]Uβ
= Uα.

A forcing condition is a pair (g, G) such that
(i) g is an increasing function from a finite subset of λ into κ,
(ii) G is a function on λ such that G(α) ⊂ κ for all α < λ,
(iii) if α > max(dom g) then G(α) ∈ Uα,
(iv) if α < max(dom g) and β is the least β ∈ dom(g) above α,

then G(α) ∈ fβ
α (g(β)).

(36.13)

The finite function g plays the role of the finite sequence in the Prikry
forcing. The function G plays the role of the measure one set: Clause (iii) is
an obvious generalization while (iv) states that G(α) has measure one with
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respect to the measure fβ
α (g(β)) on g(β), which reflects the properties of the

measure Uα in the ultrapower by Uβ.

A condition (h, H) is stronger than (g, G) if
(i) h ⊃ g,
(ii) for every α, H(α) ⊂ G(α),
(iii) for every α ∈ dom(h) − dom(g), h(α) ∈ G(α).

(36.14)

Magidor’s forcing (36.13) is a generalization of Prikry forcing. A generic
filter yields a cofinal λ-sequence in κ (Exercise 36.10). Similarly to the Prikry
forcing, (36.13) has a κ+-chain condition (Exercise 36.11). The crucial prop-
erty of Magidor’s forcing is that it preserves cardinals. The proof is a gen-
eralization of the proof for the Prikry forcing and the following is the key
lemma:

Lemma 36.10. Let σ be a sentence of the forcing language and let (g, G) be
a condition. Then there exists a stronger condition (g, H) (with the same g)
that decides σ. ��

Magidor’s forcing changes the cofinality of κ to cf κ = λ, under the as-
sumption that o(κ) = λ. If λ is uncountable then by Mitchell [1984] this
assumption is necessary.

Radin forcing generalizes Prikry forcing further and uses objects called
measure sequences. Let j : V → M be an elementary embedding with critical
point κ. Let us define a sequence 〈u(α) : α < ϑ〉 as follows:

(36.15) u(0) = κ,

u(α) = {X ⊂ Vκ : u�α ∈ j(X)} (α > 0).

The sequence 〈u(α)〉α is defined for all α for which u�α ∈ M . Thus the
length ϑ depends on the strength of the embedding j. For example, if j = jU

is the ultrapower embedding by a normal measure U on κ then λ = 2,

u(1) = {X ∈ Vκ : {α : 〈α〉 ∈ X} ∈ U}

is a measure on Vκ concentrating on 1-sequences 〈α〉, α < κ, and 〈u(0), u(1)〉 /∈
M = UltU . As long as u(α) is defined, u(α) is a measure on Vκ concentrating
on α-sequences.

We define measure sequences as sequences obtained by (36.15) from ele-
mentary embeddings, but since we want the measures in measure sequences
to concentrate on measure sequences, the definition is as follows.

Definition 36.11 (Measure Sequences). Let

MS0 = the class of all u�α where u is as in (36.15) for some
elementary j : V → M ,

MSn+1 = {u ∈ MSn : (∀α > 0)MSn ∩ Vu(0) ∈ u(α)},
MS =

⋂∞
n=0 MSn = the class of all measure sequences.
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Since all the measures are σ-complete it follows that for every measure
sequence u and every 0 < α < length(u), u�α ∈ MS and MS ∩ Vu(0) ∈
u(α). Clearly, some large cardinal assumption is necessary for the existence
of nontrivial measure sequences. Under the assumption of a strong cardinal,
there exist long measure sequences (Exercise 36.12).

Let U be a measure sequence of length at least 2, and let κ = U(0). We
associate with U the Radin forcing for U , RU :

A forcing condition p ∈ RU is a finite sequence

〈(u0, A0), . . . , (un, An)〉

such that un = U , and that, letting κi = ui(0) for i = 0, . . . , n,
(i) for each i = 0, . . . , n, ui ∈ MS, Ai ⊂ MS and Ai ∈ ui(α) for

every 0 < α < length(ui),
(ii) for each i = 0, . . . , n − 1, (ui, Ai) ∈ Vκi+1 .

(36.16)

(Thus κ0 < κ1 < . . . < κn−1 < κn = κ. These ordinals will produce a cofinal
sequence in κ, a generalization of a Prikry sequence.)

A forcing condition p = 〈(u0, A0), . . . , (un, An)〉 is stronger than
q = 〈(v0, B0), . . . , (vm, Bm)〉 if
(i) n ≥ m,
(ii) {u0, . . . , un} ⊃ {v0, . . . , vm},
(iii) for each j = 0, . . . , m, if ui = vj then Ai ⊂ Bj ,
(iv) for each i such that ui /∈ {v0, . . . , vn} if vj is the first vj such

that ui(0) < vj(0), then ui ∈ Bj and Ai ⊂ Bj .

(36.17)

If U is a measure sequence of length 2, then RU is more or less the Prikry
forcing (Exercise 36.13); if U has length 3, RU produces a cofinal sequence
of order type ω2 (Exercise 36.14).

A generic filter G on RU produces a set

(36.18) DG = {u : ∃p ∈ G p = 〈(ui, Ai) : i ≤ n〉 and u = ui for some i < n}.

As in Prikry forcing, one proves that V [DG] = V [G]. Let

(36.19) CG = {u(0) : u ∈ DG}.

It is not difficult to show:

Lemma 36.12. CG is a closed unbounded subset of κ.

Proof. Exercise 36.15. ��

When length(U) < κ, Radin forcing is similar to Magidor’s forcing (36.13),
see Exercise 36.16.

The analog of Prikry’s Lemma 21.12 holds for Radin’s forcing as well:
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Lemma 36.13. Let σ be a sentence of the forcing language and let p =
〈(ui, Ai) : i ≤ n〉 be a condition. Then there exists a stronger condition
q = 〈(ui, Bi) : i ≤ n〉 (with the same {ui : i ≤ n}) that decides σ. ��

As a consequence, all cardinals are preserved in the generic extension.
Radin’s forcing is more flexible than Magidor’s forcing, and under suitable

large cardinal assumptions, κ retains its regularity, or even its large cardinal
properties:

Lemma 36.14. If cf(length(U)) > κ then κ remains regular in the forcing
extension by RU . ��

Lemma 36.15. Let j : V → M and let U ∈ MS be defined from j as
in (36.15).

(i) If j witnesses that κ is (κ + 2)-strong then κ remains measurable
in V RU .

(ii) If j witnesses that κ is λ-supercompact then κ remains λ-supercompact.
��

Among applications of Radin forcing is the following theorem:

Theorem 36.16 (Mitchell). If ∃κ o(κ) = κ++ is consistent then so is
ZF + DC + “the closed unbounded forcing on ℵ1 is an ultrafilter.” ��

Stationary Tower Forcing

We now describe the general version of the stationary tower forcing (Defini-
tion 34.10) which can be used, among others, to change cofinalities in a way
that is not possible without very large cardinals.

Let A be an uncountable set. A set S ⊂ P (A) is stationary in P (A) if for
every F : [A]<ω → A, S contains a closure point of F , i.e., a set X ⊂ A such
that F (e) ∈ X for all e ∈ [X ]<ω. As in Theorem 8.27, projections and liftings
of stationary sets are stationary. Also, the analog of Theorem 8.24 holds. For
the relation to stationary sets in Pκ(λ) see Exercise 36.17.

Definition 36.17 (Stationary Tower Forcing). Let δ be a Woodin car-
dinal. The forcing notion P = P<δ consists of conditions (A, S) where A ∈ Vδ

is uncountable and S is stationary in P (A). (B, T ) is stronger than (A, S) if
B ⊃ A and T �A ⊂ S.

If G is a generic filter on P<δ then we form the generic ultrapower UltG(V )
as in (34.10). The general form of Theorem 34.14 is as follows:

Theorem 36.18 (Woodin [1988]). Let δ be a Woodin cardinal. If G is
generic on P<δ then the generic ultrapower UltG(V ) is well-founded and the
model UltG(V ) is closed under < δ-sequences. ��
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Forcing with P<δ gives more flexibility than forcing with Q<δ (from Def-
inition 34.10). In a typical application, one can collapse a successor of a sin-
gular cardinal and give it any prescribed cofinality, see Example 36.19 below.
In fact, the consistency strength of this is exactly that of a Woodin cardinal.

Example 36.19 (Woodin). Assume that ℵω be strong limit, and let S be
the following stationary set in P (Vℵω+1 ):

S = {X ∈ [Vℵω+1 ]
ℵω : X ∩ ℵω+1 ∈ ℵω+1 and cf(X ∩ ℵω+1) = ℵ3}.

Let G be a generic filter on P<δ such that (Vℵω+1 , S) ∈ G, let M = UltG(V )
and let j : V → M be the generic ultrapower embedding. Then crit(j) = ℵω+1

and cfM ℵω+1 = ℵ3 (Exercise 36.20). As PV [G](ωn) = PM (ωn) = P (ωn) for
all n, the forcing P<δ below (Vℵω+1 , S) changes the cofinality of ℵω+1 to ℵ3

while preserving ℵω. ��

Exercises

36.1. Assume that κ is (κ + 2)-strong, and j : V →M with critical point κ be such
that Vκ+2 ⊂M . Then the function f(α) = α++ (α < κ) satisfies j(f)(κ) = κ++.

36.2. Let j : V → M and f : κ → κ be as in Theorem 36.2, and let E be the
(κ, κ++)-extender derived from j. Then jE(f)(κ) = κ++ and (UltE)κ ⊂ UltE.

36.3. Prove (36.4).
[Use the fact that j = jE .]

36.4. The filter hκ is Q
N[Gκ]
κ -generic over N [Gκ].

[Use the crit(k)-chain condition.]

36.5. The filter Gκ ∗ hκ is (i(P ))κ+1-generic over V , and in V [Gκ ∗ hκ],

(N [Gκ ∗ hκ])κ ⊂ N [Gκ ∗ hκ].

[Use that (i(P ))κ+1 is κ+-c.c.]

36.6. In V [Gκ ∗ hκ] there exists an N [Gκ ∗ hκ]-generic filter on R.
[Use the fact that the number of antichains to meet is small, to build R.]

36.7. k(H) is generic over M [Gκ][hκ].
[Use (36.4), or rather the corresponding description of M [Gκ][hκ]. If D is an

open dense set in k(R), let D = k(t)(a), where for each x ∈ [λ]|a|, t(x) is an
open dense subset of R. Then use the fact that

T

x t(x) is open dense to show that
k(H) meets D.]

36.8. If Q is κ-closed then it remains κ-distributive in every κ+-c.c. forcing exten-
sion.

[Let P be κ+-c.c. Show that �Q P is κ+-c.c., that the generics for P and Q are
mutually generic, and that V P and V P∗Q = V Q∗P have the same κ-sequences of
ordinals.]
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36.9. The forcing (36.10) satisfies the κ+-chain condition.
[Use (iii) and (v).]

36.10. If G is generic for the Magidor forcing (36.13) then in V [G], κ has a cofinal
subset of order-type λ.

36.11. The forcing (36.13) has the κ+-chain condition.

36.12. Let κ be a (κ + 2)-strong cardinal. Then there exists a measure sequence u
of length ϑ ≥ κ++.

36.13. Let U ∈ MS have length 2, U = 〈κ, u(1)〉. A condition p ∈ RU has the form
〈(α0, ∅), . . . , (αn−1, ∅), (u(1), A)〉. Compare with the Prikry forcing.

36.14. Analyze RU when length(U) = 3.

36.15. Prove that CG is a closed unbounded subset of κ.

36.16. Assume that length(U) = λ is a regular uncountable cardinal, λ < κ. Show
that the order-type of CG is λ.

36.17. Stationary sets in Pκ(λ) are exactly the sets of the form S�{X ∈ Pκ(λ) :
X ∩ κ ∈ κ} where S is stationary in P (λ).

36.18. Let M = UltG(V ) where G is generic on P<δ, and let j : V → M be the
generic ultrapower embedding. For each (A,S) ∈ P<δ, (A, S) � j“A ∈ j(S).

36.19. Each α ≤ δ is represented in UltG(V ) by the function fα(x) = x ∩ α.

36.20. In Example 36.19, crit(j) = ℵω+1 and cfM ℵω+1 = ℵ3.

Historical Notes

Following the (unpublished) Theorem 36.2 of Woodin, Gitik proved in [1989] that
o(κ) = κ++ suffices for the consistency of a measurable cardinal κ with 2κ = κ++,
as well as for a model of “ℵω is strong limit and 2ℵω = ℵω+2.” In [1991], Gitik
showed that the assumption o(κ) = κ++ is necessary for the negation of SCH.

Methods for violating GCH at ℵω were originated by Magidor in [1977a, 1977b].
Woodin (unpublished) improved the method by using a (κ+2)-strong cardinal, and
Gitik [1989] obtained the result from o(κ) = κ++.

In [1983], Shelah improved Magidor’s method in the direction of getting an ar-
bitrary countable gap between ℵω and 2ℵω . In [1992], Gitik and Magidor introduced
a novel method for blowing up the power of 2κ for singular cardinals, leading to re-
sults that give the precise consistency strength (e.g., the large cardinal assumptions
for Theorem 36.5 are considerably weaker than supercompactness).

In [1991], Foreman and Woodin constructed a model in which GCH fails ev-
erywhere; this was then improved by Woodin to Theorem 36.6(i), and Cummings
followed with 36.6(ii).

Magidor’s forcing for changing cofinality appeared in [1978]. For Radin’s forcing,
see Radin [1982]. Our presentation is based on improvements by Mitchell [1982],
Woodin (unpublished) and Cummings [1992]. Theorem 36.16 is due to Mitchell
[1982].

Stationary tower forcing is due to Woodin.



37. Martin’s Maximum

This chapter is devoted to a generalization of the Proper Forcing Axiom.
The stronger axiom is obtained by replacing “proper notion of forcing” in
Definition 31.20 by “stationary set preserving notion of forcing.” A notion of
forcing P is stationary set preserving if every stationary set S ⊂ ω1 remains
stationary in V P .

Definition 37.1 (Martin’s Maximum (MM)). If (P, <) is a stationary
set preserving notion of forcing and if D is a collection of ℵ1 dense subsets
of P , then there exists a D-generic filter on P .

As every proper notion of forcing is stationary set preserving, MM is
a strengthening of PFA which in turn is a strengthening of MA. The ax-
iom MM has been dubbed “Martin’s Maximum” as it is ostensibly the
strongest possible generalization of Martin’s Axiom: If P is not stationary
set preserving then the corresponding axiom for P is false (Exercise 37.1).

Below we establish the consistency of Martin’s Maximum, and present
some applications.

RCS iteration of semiproper forcing

The proof of the consistency of MM is modeled after the consistency proof
of either MA or PFA: By iterated forcing one obtains a generic extension in
which every stationary set preserving P satisfies the statement of MM.

The straightforward approach, iterating stationary set preserving forc-
ings, does not work: If g : ω1 → ω1 dominates the canonical functions fη,
η < ω2, (mod INS) then there is a stationary preserving forcing notion Pg that
produces a function f < g mod INS (and still above the fη) (Exercise 37.2).
An ω-iteration of such forcing collapses ω1.

It turns out that semiproper forcing can be iterated, yielding the consis-
tency of the following principle:

Definition 37.2 (Semiproper Forcing Axiom (SPFA)). If (P, <) is
a semiproper notion of forcing and if D is a collection of ℵ1 dense subsets
of P then there exists a D-generic filter on P .
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Clearly, MM implies SPFA and SPFA implies PFA. In the next section
we show that SPFA is in fact equivalent to MM and so for the consistency
of MM it is enough to construct a model of SPFA.

While under special circumstances semiproperness may by preserved un-
der countable support iteration (see Lemma 34.5), in general this is not the
case. The reason is that a semiproper forcing notion may change the cofinal-
ity of ordinals from uncountable to countable. (An example of such forcing
is the Prikry forcing, see Exercise 37.7.)

The iteration applicable to semiproper forcings is the revised countable
support (RCS) iteration. Informally, a support of a condition is not just
a countable set, but even a name for a countable set.

Definition 37.3. Let α ≥ 1. A forcing notion Pα is an RCS (revised count-
able support) iteration of {Q̇β : β < α} if it is an iteration (cf. Defini-
tion 16.29) consisting of all α-sequences p that satisfy

(37.1) for every q ≤ p there exist a γ < α and an r ≤γ q�γ such that
r �γ cf α = ω or ∀β ≥ γ p�[γ, β) �Pγ,β

p(β) = 1.

In (37.1), q ranges over elements of the inverse limit of the Q̇β , cf. (16.12),
and Pγ,β is the restriction of the inverse limit to the interval [γ, β) = {ξ : γ ≤
ξ < β}.

The main result on RCS iterations is that they preserve semiproperness:

Theorem 37.4 (Shelah). If Pα is an RCS iteration of {Q̇β : β < α} such
that every Q̇β is a semiproper forcing notion in V Pα�β then Pα is semiproper.

Theorem 37.4 can be proved along the lines of the proof of Theorem 31.15.
We shall outline the proof of a special case of Theorem 37.4 (Proposition 37.8
below) which suffices for the consistency proof of SPFA. (To be precise, Shelah
proved Theorem 37.4 for a more complicated definition of RCS iteration;
the current Definition 37.3 is based on simplifications by Schlindwein and
Donder).

A two-step iteration of semiproper forcings is semiproper, cf. Exer-
cise 37.8. The proof of Theorem 37.4 proceeds by induction, showing

(37.2) for all γ < β ≤ α, �γ Bβ : Bγ is semiproper;

here Bβ = B(Pβ), and Bβ : Bγ is the complete Boolean algebra in V Pγ such
that Bγ ∗ (Bβ : Bγ) = Bβ (see Exercise 16.4). One property of RCS that is
used in the proof is that Bβ :Bγ is (in V Pγ ) an RCS iteration (Exercise 37.9).

The following three lemmas, special cases of Theorem 37.4, can be proved
in a similar way as Theorem 31.15:

Lemma 37.5. Let Pω be the inverse limit iteration of semiproper forcings
{Q̇n : n < ω}. Then Pω is semiproper. ��
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Lemma 37.6. Let Pω1 be a countable support iteration such that for all γ <
β < α, �γ Bβ : Bγ is semiproper. Then Pω1 is semiproper. ��

Lemma 37.7. Let λ be a regular uncountable cardinal. Assume that

(i) Pλ is a direct limit,
(ii) for every α < λ of cofinality ω, Pα is the inverse limit,
(iii) for all γ < β < λ, �γ Bβ : Bγ is semiproper,
(iv) Pλ satisfies the λ-chain condition.

Then Pλ is semiproper. ��

We shall now prove a version of Theorem 37.4 that will be used in the
consistency proof of MM:

Proposition 37.8. If Pα is an RCS iteration of semiproper forcings {Q̇β :
β < α} such that for every β < α, �β+1 |Pβ | ≤ ℵ1, then Pα is semiproper.

Proof. We proceed by induction, proving (37.2). As successor stages present
no problem, let α be a limit ordinal. By the induction hypothesis, for every
γ < β < α, �γ Bβ : Bγ is semiproper; we shall prove that Pα is semiproper,
and (37.2) for α then follows by Exercise 37.8.

Case I. Let p ∈ P and γ < α be such that p�γ � cf α = ω. We will show
that P �p is semiproper. In this case, p�γ forces that Bα : Bγ is the inverse
limit, and in fact, an inverse limit iteration of length ω of semiproper forcings,
hence semiproper by Lemma 37.5. It follows that P �p is semiproper.

Case II. Let p ∈ P be such that ∀γ < α p�γ � cf α > ω, and let γ < α be
such that p�γ � cf α = ω1. Again, we will show that P �p is semiproper. In
this case, p�γ forces that Bα : Bγ is a direct limit iteration of length ω1 of
semiproper forcings, and hence semiproper by Lemma 37.6. Therefore P �p is
semiproper.

Case III. Let p ∈ P be such that ∀γ < α p�γ � cf α > ℵ1; we will show that
in this case too, P �p is semiproper. This will complete the proof that P is
semiproper.

Without loss of generality, assume that p = 1, and since Pα is in this case
a direct limit of the Pβ , it is a direct limit of the Pβi , i < cf α (where α =
limi<cf α βi), so we can assume that α is a regular cardinal. For every γ < α,
since �γ+1 |Pγ | ≤ ℵ1 < cf α, we have |Pγ | < α. Also since �γ+1 cf α > ℵ1,
there is a stationary set of β < α (those for which ∀γ �γ cf β ≥ ℵ1) at which
Pβ is a direct limit. By Theorem 16.30, Pα satisfies the α-chain condition.
Therefore P is semiproper by Lemma 37.7. ��
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Consistency of MM

Theorem 37.9 (Foreman, Magidor and Shelah). If there exists a su-
percompact cardinal then there is a generic model that satisfies MM.

Following the proof of Theorem 31.21, we construct a model that satis-
fies SPFA. Instead of proper forcings, we iterated semiproper forcings, and
use the RCS iteration. At each stage α of the iteration, in addition to us-
ing the notion of forcing presented by the Laver function, we also collapse
(with countable conditions) the cardinal |Pα| to ℵ1. By Proposition 37.8,
such iteration is semiproper. An argument similar to the one in the proof of
Theorem 31.21 shows that the iteration up to a supercompact cardinal yields
a model in which SPFA holds.

The consistency of MM then follows from this result:

Theorem 37.10 (Shelah). SPFA implies that every stationary set preserv-
ing notion of forcing is semiproper. Therefore SPFA implies MM.

Proof. Let X be a set of countable elementary submodels of Hλ = (Hλ,∈, <).
We denote X⊥ the set

(37.3) X⊥ = {M ∈ [Hλ]ω : M ≺ Hλ and N /∈ X for every countable N that
satisfies M ≺ N ≺ Hλ and N ∩ ω1 = M ∩ ω1}.

As in Chapter 31, we call an elementary chain (of length ϑ ≤ ω1) a sequence
〈Mα : α < ϑ〉 of countable elementary submodels of (Hλ,∈, <) such that
Mα ⊂ Mβ and Mα ∈ Mβ if α < β, and Mα =

⋃
β<α Mβ if α is a limit

ordinal. (Note that α ⊂ Mα for every α.)

Lemma 37.11. Assume SPFA, and let ω1 ≤ κ < λ with λ regular and
sufficiently large. Let Y ⊂ [Hκ]ω be stationary, and let X = {M ∈ [Hλ]ω :
M ∩ Hκ ∈ Y } be the lifting of Y to Hλ. There exists an elementary chain
〈Mα : α < ω1〉 of submodels of (Hλ,∈, <) such that Mα ∈ X ∪ X⊥ for
every α.

Proof. Let P be the notion of forcing that shoots an elementary chain through
X ∪ X⊥: Conditions are elementary chains 〈Mα : α ≤ γ〉 in X ∪ X⊥ where
γ is a countable ordinal; a stronger condition is an extension. We shall prove
that P is semiproper; then, using SPFA applied to the dense sets Dξ =
{〈Mα : α ≤ γ〉 : γ ≥ ξ} (cf. Exercise 37.10), we obtain an elementary chain
of length ω1 in X ∪ X⊥.

To show that P is semiproper, let µ > λ be sufficiently large, let M ≺
(Hµ,∈, <) be countable, with P ∈ M , and let p ∈ P ∩ M . It suffices (cf.
Exercise 37.6) to find a q ≤ p that is (M, P )-semigeneric.

Claim 37.12. There exists a countable N , M ≺ N ≺ Hµ such that N∩ω1 =
M ∩ ω1 and N ∩ Hλ ∈ X ∪ X⊥.
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Proof. If M ∩ Hλ ∈ X⊥ let N = M . Otherwise, there exists a countable
N ′ ≺ Hλ such that M∩Hλ ⊂ N ′, N ′∩ω1 = M∩ω1 and N ′ ∈ X . Let N be the
Skolem hull of M∪(N ′∩Hκ) in (Hµ,∈, <). We claim that N ∩Hκ = N ′∩Hκ;
hence N ∩ ω1 = M ∩ ω1 and N ∩ Hκ ∈ Y , hence N ∩ Hλ ∈ X .

The equality N ∩Hκ = N ′ ∩Hκ holds because N ∩Hκ ⊂ N ′: notice that
for every Skolem function h for Hµ, h ∩ Hκ ∈ M ∩ Hλ ⊂ N ′. ��

Continuing the proof of Lemma 37.11, let N be as in Claim 37.12. We
can find a decreasing sequence of conditions pn ∈ N with p0 = p such that
pn = 〈Mα : α ≤ γn〉, such that every name for a countable ordinal in N is
decided by some pn (as an ordinal in N) and

⋃∞
n=0

⋃
α≤γn

Mα = N ∩Hλ. Let
γ =

⋃∞
n=0 γn and Mγ = N ∩Hλ. Since N ∩Hλ ∈ X ∪X⊥, q = 〈Mα : α ≤ γ〉

is a condition, and is (N, P )-semigeneric. Since M ⊂ N and M∩ω1 = N∩ω1,
q is (M, P )-semigeneric. ��

Now we finish the proof of Theorem 37.10. Assuming SPFA, let Q be
a stationary set preserving notion of forcing that is not semiproper. Let κ
be sufficiently large (so that all Q-names for countable ordinals are in Hκ).
Since Q is not semiproper, there exists some p ∈ Q such that the set Y =
{M ≺ Hκ : there exists no (M, Q)-semigeneric q ≤ p} is stationary. Let λ > κ
be regular and let X be the lifting of Y to Hλ; since κ is sufficiently large,
X = {M ≺ Hλ : there is no (M, Q)-semigeneric q ≤ p}. We may assume that
p = 1 is the trivial condition.

By Lemma 37.11 there exists an elementary chain 〈Mα : α < ω1〉 in
X ∪ X⊥. We claim that the set S = {α < ω1 : Mα ∈ X} is nonstationary.
Assume that S is stationary and let G be a generic filter on Q. Since Q is
stationary set preserving, S is stationary in V [G]. Let δ̇ξ, ξ < ω1, enumerate
all the names in

⋃
α<ω1

Mα for countable ordinals. In V [G], let

C = {α < ω1 : Mα ∩ ω1 = α and (∀ξ < α)[δ̇ξ ∈ Mα and δ̇G
ξ < α]}.

The set C is closed unbounded, and if α ∈ C then there exists some q ∈ G
such that for every δ̇ξ ∈ Mα, q � (∃β ∈ Mα) δ̇ξ = β; therefore q is (Mα, Q)-
semigeneric. Therefore S is nonstationary in V [G], and hence in V .

Thus there exists an elementary chain 〈Mα : α < ω1〉 in X⊥. Let µ > λ be
sufficiently large; we shall finish the proof by showing that for every countable
M ≺ (Hµ,∈, <, Q, 〈Mα : α < ω1〉), for every p ∈ M there exists an (M, Q)-
semigeneric q ≤ p.

Let M be such; if δ = M ∩ ω1, then M ∩Hλ ⊃ Mδ and δ = Mδ ∩ ω1, and
since Mδ ∈ X⊥ we have M ∩ Hλ /∈ X and we are done. ��

Applications of MM

The first application deals with cardinal arithmetic. Since MM implies PFA,
it follows (by Theorem 31.23) that 2ℵ0 = 2ℵ1 = ℵ2. It turns out that from MM
one can prove much more, including the Singular Cardinal Hypothesis:
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Theorem 37.13 (Foreman, Magidor and Shelah). MM implies that for
every regular κ ≥ ℵ2, κℵ1 = κ.

Corollary 37.14. MM implies 2ℵ0 = ℵ2. ��

Corollary 37.15. MM implies SCH.

Proof. For every cardinal λ of cofinality ω, if 2ℵ0 < λ then λℵ0 ≤ (λ+)ℵ1 =
λ+, and SCH follows by Silver’s Theorem 8.13. ��

Proof of Theorem 37.13. Let Aα, α < κ, be disjoint stationary subsets of
Eκ

ω = {ξ < κ : cf ξ = ω}. We shall prove the following claim that implies the
theorem: For every increasing f : ω1 → κ there exists an ordinal γf < κ of
cofinality ω1 such that

(37.4) ∀α < κ α ∈ ran(f) if and only if Aα ∩ γf is stationary.

(It follows that f �= g implies γf �= γg.)
Thus let f : ω1 → κ be an increasing function, and let Sα, α < ω1,

be disjoint stationary subsets of ω1 such that
⋃

α Sα = ω1 and that for
every stationary S there exists an α such that S ∩ Sα is stationary. We shall
use MM to find a continuous increasing function F : ω1 → κ such that for
every δ < ω1, if δ ∈ Sα then F (δ) ∈ Af(α).

Then if we let γf = supδ<ω1
F (δ), γf ∩

⋃
α<ω1

Af(α) contains a closed
unbounded set {F (δ) : δ < ω1}, and (37.4) holds.

Let P be the following notion of forcing: A condition is a continuous
increasing function p = 〈p(δ) : δ ≤ γ〉 where γ < ω1 such that for every
δ ≤ γ, if δ ∈ Sα then p(δ) ∈ Af(α). A stronger condition is an extension. We
will show that P is stationary set preserving and that for every α < ω1 the
set Dα = {p ∈ P : α ∈ dom(p)} is dense. Then MM applied to the sets Dα

produces the desired function F .
We prove the second claim first, by induction on α. Let α be a limit

ordinal, and assume that all Dβ, β < α, are dense; let p ∈ P . Let γ be such
that α ∈ Sγ . Let λ be sufficiently large, and let M ≺ Hλ be a countable
model with P, p, α ∈ M such that η = sup(M ∩ κ) ∈ Aγ (M exists because
Aγ is stationary). Let 〈αn〉n be an increasing sequence with limit α, and
let 〈ηn〉n be an increasing sequence with limit η. We construct a sequence
of conditions p = p0 ⊂ p1 ⊂ . . . ⊂ pn ⊂ . . ., each pn ∈ M , as follows:
Given pn ∈ M , Dαn ∈ M is dense and so there exists a pn+1 ∈ M such
that pn+1 ⊃ pn, αn ∈ dom(pn+1) and pn+1(αn + 1) ≥ ηn. The function
q =

⋃∞
n=0 pn ∪ {(α, η)} is a condition, proving that Dα is dense.

Now we complete the proof by showing that P is stationary set preserving.
Let S be a stationary subset of ω1, let p ∈ P and let Ċ be a name for a closed
unbounded set. We shall find a q ≤ p and some δ ∈ S such that q � δ ∈ Ċ.

Let α be such that S ∩Sα is stationary. Let λ be sufficiently large and let
M ≺ Hλ be a countable model with P, p, Ċ ∈ M such that η = sup(M ∩κ) ∈
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Aα and δ = M ∩ω1 ∈ S∩Sα (see Exercise 37.11). Let 〈αn〉n be an increasing
sequence with limit δ and let 〈ηn〉n be an increasing sequence with limit η. As
before, we find a sequence of conditions p = p0 ⊂ . . . ⊂ pn ⊂ . . . in M such
that αn ∈ dom(pn+1), pn+1(αn + 1) ≥ ηn, and such that for some βn ≥ αn

in M , pn+1 � βn ∈ Ċ. The function q =
⋃∞

n=0 pn ∪{(δ, η)} is a condition and
since δ = limn βn, we have q � δ ∈ Ċ. ��

Another important application of MM is the saturation of the nonstation-
ary ideal on ℵ1:

Theorem 37.16 (Foreman, Magidor and Shelah). MM implies that the
nonstationary ideal on ℵ1 is ℵ2-saturated.

Proof. Assume MM and let {Ai : i ∈ W} be a maximal almost disjoint
collection of stationary subsets of ω1. We shall find a set Z ⊂ W of size ≤ ℵ1

such that
∑

i∈Z Ai contains a closed unbounded set. That will prove that
INS is ℵ2-saturated.

Let P be the set of all pairs (q, p) such that

(i) q : γ + 1 → W for some γ < ω1, and
(ii) p ⊂ ω1 is a closed countable set such that α ∈ p implies α ∈⋃

ξ<α Aq(ξ).

(37.5)

A condition (q′, p′) is stronger than (q, p) if q′ ⊃ q and p′ is an end-extension
of p. (See also (34.7).)

P can be viewed as a two-step iteration Q∗PṠ where Q collapses |W | to ℵ1

with countable conditions and PṠ shoots a closed unbounded set through
Ṡ =

∑
i∈W Ai. P is stationary set preserving: If A ⊂ ω1 is stationary then

for some i ∈ W , A ∩ Ai is stationary and remains stationary in V Q. Hence
A∩Ai ∩ Ṡ is stationary and remains stationary in V P . Hence A is stationary
in V P . See Exercises 34.6 and 23.6.

For each α < ω1, let Dα = {(q, p) ∈ P : α ≤ max(p)}. Each Dα is dense
and so by MM there is a filter G on P that meets all the Dα. Let

F =
⋃
{q : (q, p) ∈ G for some p}, C =

⋃
{p : (q, p) ∈ G for some q}.

The set C is closed unbounded, and is equal to the set {α : (∃ξ < α) α ∈
AF (ξ)} =

∑
i∈ran(F ) Ai. ��

Reflection Principles

An important consequence of MM are reflection principles. These combina-
torial principles imply some major consequences of MM.
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Definition 37.17 (Reflection Principle (RP)). For every regular λ ≥ ℵ2

the following holds:

RP(λ) If S is a stationary set in [λ]ω then for every X ⊂ λ of cardinality ℵ1

there exists a Y ⊂ λ of cardinality ℵ1 such that X ⊂ Y and that
S ∩ [Y ]ω is stationary in [Y ]ω.

RP follows from Martin’s Maximum, see Theorems 37.21 and 37.23 below.
One consequence of RP is that every stationary set preserving notion of
forcing is semiproper (Exercise 37.13). This in turn implies that INS on ω1

is precipitous (Foreman, Magidor and Shelah [1988], Theorem 26) and is
therefore a large cardinal property.

Theorem 37.18 (Todorčević). RP(ω2) implies that 2ℵ0 ≤ ℵ2.

Proof. One can show that RP(λ) implies a stronger version of RP(λ), namely
that S ∩ [Y ]ω is stationary for stationary many Y ∈ [λ]ℵ1 (Exercise 37.14).
If ω1 ≤ α < ω2, let Cα be a closed unbounded subset of [α]ω of order-
type ω1, and let D =

⋃
ω1≤α<ω2

Cα. Since |Cα| = ℵ1 for each α, we have
|D| = ℵ2. By RP(ω2), D contains a closed unbounded set: Otherwise, if
S = [ω2]ω − D is stationary, there exists an α ≥ ω1 such that S ∩ [α]ω is
stationary, a contradiction.

By a theorem of Baumgartner and Taylor ([1982], Theorem 3.2(a)), every
closed unbounded subset of [ω2]ω has size at least 2ℵ0 . Therefore 2ℵ0 ≤ ℵ2.

��

RP(ω2) is not very strong; its consistency follows from a weakly compact
cardinal (a modification of Theorem 23.23).

Definition 37.19. A set S ⊂ [λ]ω is projective stationary if for every sta-
tionary set T ⊂ ω1, the set {X ∈ S : X ∩ ω1 ∈ T } is stationary.

(Equivalently, for every closed unbounded C ⊂ [λ]ω , the projection
(S ∩ C)�ω1 contains a closed unbounded set.)

Definition 37.20 (Strong Reflection Principle SRP). For every regular
λ ≥ ℵ2, the following holds:

SRP(λ) If S is projective stationary in [Hλ]ω then there exists an elementary
chain 〈Mα : α < ω1〉 of countable models such that Mα ∈ S for all α.

Theorem 37.21. MM implies SRP.

Proof. Let S ⊂ [Hκ]ω be projective stationary. Let P be the forcing notion
that shoots an elementary chain through S: Conditions are elementary chains
〈Mα : α ≤ γ〉 where γ < ω1 and Mα ∈ S for all α ≤ γ. We will show
that P is stationary set preserving; then if G is a filter on P that meets
{p ∈ P : α ∈ dom(p)} for each α < ω1,

⋃
G is an elementary chain in S.
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Let T ⊂ ω1 be stationary, let Ċ be a P -name for a closed unbounded set,
and let p ∈ P . We shall find a q ≤ p and a δ ∈ T such that q � δ ∈ Ċ. Let λ be
sufficiently large and let M ≺ (Hλ,∈, <, P, Ċ, S, T, p) be a countable model
such that M ∩ Hκ ∈ S and δ = M ∩ ω1 ∈ T . Let p = p0 ≥ . . . ≥ pn ≥ . . .
be conditions in M such that for every open dense set D ∈ M , pn ∈ D for
some n. If pn = 〈Mα : α ≤ γn〉 then δ = limn γn and M ∩Hκ =

⋃
n<ω Mγn . If

we let q =
⋃

n<ω pn ∪{(δ, M ∩Hκ)}, then q is a condition and q � δ ∈ Ċ. ��

Theorem 37.22. SRP implies that the nonstationary ideal on ω1 is ℵ2-
saturated.

Proof. Assume SRP and let W be a maximal antichain of stationary subsets
of ω1. We will show that |W | ≤ ℵ1. Consider the set

S = {M ∈ [Hω2 ]
ω : M ≺ Hω2 , W ∈ M and ∃A ∈ W ∩ M (M ∩ ω1 ∈ A)}.

We claim that S is projective stationary. Let T ⊂ ω1 be stationary and let
A ∈ W be such that T ∩ A is stationary. Let C be a closed unbounded set
in [Hω2 ]ω. Then there exists a model M ∈ C such that M ∩ ω1 ∈ A ∩ T ;
hence S is projective stationary. By SRP there exists an elementary chain
〈Mα : α < ω1〉 such that Mα ∈ S for all α. Let M =

⋃
α<ω1

Mα; we shall
finish the proof by showing that W ⊂ M .

Let A ∈ W and assume that A /∈ M . Let N be the Skolem hull of
M ∪ {A} and for each α, let Nα be the Skolem hull of Mα ∪ {A}. Let C be
the closed unbounded set of all α < ω1 such that Mα ∩ ω1 = Nα ∩ ω1 = α,
and let α ∈ C ∩ A. Since Mα ∈ S, there exists some B ∈ W ∩ Mα such
that α ∈ B. As A ∩ B is nonstationary and A, B ∈ Nα, there exists a closed
unbounded set D ∈ Nα such that A ∩ B ∩ D = ∅. This is a contradiction,
since α = Nα ∩ ω1 ∈ D, and also α ∈ A and α ∈ B. ��

Theorem 37.23. For every regular λ ≥ ω2, SRP(λ) implies RP(λ).

Proof. Assuming SRP(λ) we prove a stronger version of RP(λ):

(37.6) If S is a stationary set in [Hλ]ω then there exists an elementary chain
〈Mα : α < ω1〉 such that {α : Mα ∈ S} is stationary.

Let S ⊂ [Hλ]ω be stationary. By Exercise 37.19 (since INS is ℵ2-saturated
by SRP(ω2)), there exists a stationary A ⊂ ω1 such that for every stationary
B ⊂ A, the set {M ∈ S : M ∩ ω1 ∈ B} is stationary. Therefore the set
{M : M ∈ S or M ∩ ω1 /∈ A} is projective stationary, and by SRP(λ)
contains an elementary chain 〈Mα : α < ω1〉. It follows that Mα ∈ S for
every α ∈ A. ��

We mention two other consequences of SRP: the Singular Cardinal Hy-
pothesis (Todorčević, Exercise 37.20) and 2ℵ0 = ℵ2 (Woodin [1999], Theo-
rem 9.82, proves that SRP(ω2) implies δ1

2 = ℵ2).
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Forcing Axioms

Martin’s Maximum (as well as MA and PFA) are principles that postulate
the existence of sufficiently generic filter on every forcing notion of a given
kind. In general, let P be a class of forcing notions.

Definition 37.24 (MA(P)). If P is a forcing notion in P and if {Dα :
α < ω1} are dense (or predense) subsets of P , then there exists a filter G
on P that meets all the Dα.

Thus MA(c.c.c.) is MAℵ1 , MA(proper) is PFA and MA(semiproper) =
MA(stationary set preserving) is SPFA = MM. A useful strengthening of
a given forcing axiom is the following:

Definition 37.25 (MA+(P)). If P is a forcing notion in P , if {Dα : α < ω1}
are dense (or predense) subsets of P and if Ṡ is a name of a subset of ω1 such
that � Ṡ is stationary, then there exists a filter G on P that meets all the Dα,
and ṠG = {α : ∃p ∈ G p � α ∈ Ṡ} is stationary.

MM+ is stronger than MM; its consistency follows by a modification
of the proof of Theorem 37.9. While MA+

ℵ1
is equivalent to MAℵ1 (Exer-

cise 37.22), MA+(P) is generally stronger than MA(P). A useful special case
is MA+(ω-closed). Among others, it implies the Reflection Principle RP and is
therefore a large cardinal axiom. Moreover, it implies (37.6) (Exercise 37.23)
and hence SCH. The following theorem shows that MA+(ω-closed) follows
from MM:

Theorem 37.26 (Shelah). MM implies MA+(ω-closed).

Proof. Assume MM and let P be ω-closed, D a family of ℵ1 dense subsets
of P and Ṡ a P -name for a stationary set. Let {Ai : i ∈ W} be a maximal
antichain of those stationary sets for which �P Ai ∩ Ṡ is nonstationary.
By MM, |W | ≤ ℵ1. Let A =

∑
i∈W Ai be the diagonal union and let T =

ω1 − A. We have �P Ṡ − T is nonstationary (hence T is stationary) and for
every stationary X ⊂ T there exists some p ∈ P such that p � Ṡ ∩ X is
stationary.

Let Q be the countable support product of ω1 copies of P ; let Qα = P
and Ṡα = Ṡ. For every stationary X ⊂ T and every q ∈ Q there exist some
q′ ≤ q and α < ω1 such that q′ � Ṡα ∩ X is stationary. It follows that for
every stationary X ⊂ T , �Q X∩

∑
α<ω1

Ṡα is stationary. In V Q, let Ṙ be the
forcing notion that shoots a closed unbounded set Ċ through A ∪

∑
α<ω1

Ṡα

(with countable conditions). It follows that Q ∗ Ṙ preserves stationary sets.
By MM there exists a filter G×H on Q∗ Ṙ such that each Gα = G�Qα is

D-generic, that for all α and β, G meets {q ∈ Q : q decides α ∈ Ṡβ}, and that
for each α, G × H meets {(q, r) : max(r) ≥ α}. Then C = ĊG×H is a closed
unbounded set and A ∪

∑
α<ω1

ṠG
α ⊃ C. Therefore there exists some α such

that ṠGα
α is stationary, and MA+(ω-closed) follows. ��
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While PFA is a large cardinal axiom and implies that 2ℵ0 = ℵ2 there
are weaker versions that do not need large cardinals, and are consistent with
c > ℵ2: For instance, there is a class P of proper forcings that includes,
among others, the forcings for adding Cohen reals, Sacks reals, Mathias reals
and Laver reals and MA(P) is consistent (relative to ZFC) with 2ℵ0 > ℵ2

(Groszek and Jech [1991]).
Finally, forcing axioms can be further modified by restricting the size of

predense sets that the filter should meet. If only Dα of size ≤ ℵ1 are involved,
these are known as bounded forcing axioms:

Definition 37.27 (Bounded MA(P)). If P is a forcing notion in P and if
{Dα : α < ω1} are predense subsets of P such that |Dα| ≤ ℵ1 for all α, then
there exists a filter G on P that meets all the Dα.

The consistency strength of Bounded PFA is below a Mahlo cardinal
(Goldstern and Shelah [1995]). An interesting equivalence for Bounded MM
was proved by Bagaria:

Theorem 37.28 (Bagaria [2000]). Bounded MM holds if and only if for
every stationary set preserving forcing notion P ,

(Hω2 ,∈) ≺Σ1 (Hω2 ,∈)V P

. ��

Exercises

37.1. Let P be a notion of forcing such that for some stationary S ⊂ ω1, �P S is
nonstationary. Then there exist ℵ1 dense sets such that no filter G on P meets
them all.

[Let Ċ be a closed unbounded set in V P such that �P S ∩ Ċ = ∅. For each
α < ω1, let Dα = {p : (∃β ≥ α) p � β ∈ Ċ} and Eα = {p : either p � α ∈ Ċ or

∃γ < α such that p � ξ /∈ Ċ for all ξ between γ and α}. If G meets all the Dα

and Eα, let C = {α : ∃p ∈ G p � α ∈ Ċ}. Show that C is closed unbounded and so
S ∩ C �= ∅; a contradiction.]

37.2. Let fη : ω1 → ω1, η < ω2, be the canonical ordinal functions, and let
g : ω1 → ω1 be such that g > fη mod INS for all η. A forcing condition in Pg is
(h, c, {cη : η ∈ A}) where h : α + 1 → ω1 for some α < ω1, c and cη are closed
subsets of α + 1, A ⊂ ω2 is countable, and h < g on c, h > fη on cη. The c’s in
a stronger condition are end-extensions. Show that Pg is stationary preserving.

[Shelah [1982], p. 255.]

Let |A| ≥ ℵ2. A set C ⊂ [A]ω is locally closed unbounded if for closed unbounded
many X ∈ [A]ℵ1 , C ∩ [X]ω contains a closed unbounded set in [X]ω .

37.3. The filter of locally closed unbounded sets is a normal filter and extends the
closed unbounded filter on [A]ω.
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37.4. A notion of forcing P is stationary set preserving if and only if for every
sufficiently large λ there is a locally closed unbounded set in [Hλ]ω of countable
elementary submodels such that ∀p ∈M ∃q ≤ p q is (M, P )-semigeneric. (Compare
with Definition 34.3).

[Feng and Jech [1989], Theorem 2.1.]

37.5. P is stationary set preserving if and only if for every p ∈ P and every set X
of names for countable ordinals such that |X| = ℵ1, player II has a winning strategy
in the following game: I plays α̇n ∈ X, II plays βn, and II wins if ∃q ≤ p q � ∀n ∃k
(α̇n = βk). (Compare with Theorem 31.9 and Exercise 34.4.)

[Feng and Jech [1989], Theorem 2.1.]

37.6. P is semiproper if and only if for every p ∈ P , every sufficiently large λ and
every countable M ≺ (Hλ,∈, <) containing P and p, there exists a q ≤ p that is
(M, P )-semigeneric.

[As in Lemma 31.16.]

37.7. Show that the Prikry forcing is semiproper.
[Use Exercise 34.4.]

37.8. If P is semiproper and �P Q̇ is semiproper then P ∗ Q̇ is semiproper.
[As in Lemma 31.18, or use the semiproper game from Exercise 34.4.]

37.9. Let Pα be an RCS iteration, let γ < α, and let Ṗ
(γ)
α be an RCS iteration,

in V Pγ , of {Q̇β : γ ≤ β < α}. Then V Pα = V Pγ∗Ṗ (γ)
α .

37.10. For every stationary S ⊂ [Hλ]ω and every γ < ω1 there exists an elementary
chain 〈Mα : α ≤ γ〉 such that Mα ∈ S for all α ≤ γ.

[It suffices to show that such a chain exists in some V P where P collapses Hλ

with countable conditions. In V P , consider an elementary chain with limit Hλ and
apply Exercise 8.5.]

37.11. Let S ⊂ ω1 and T ⊂ Eκ
ω be stationary and let λ be sufficiently large. Then

there exists a countable M ≺ Hλ such that M ∩ ω1 ∈ S and sup(M ∩ κ) ∈ T .
[There exists N ≺ Hλ of size ℵ1 such that ω1 ⊂ N and η = sup(N ∩ κ) ∈ T

(because T is stationary). Then (because S is stationary) there exists a countable
M ≺ N with sup(M ∩ κ) = η and M ∩ ω1 ∈ S.]

37.12. MM implies that for every regular κ ≥ ω2, every stationary A ⊂ Eκ
ω contains

a closed set of order-type ω1. (Compare with Exercise 8.5.)
[Let P be the set of all continuous increasing 〈p(α) : α ≤ γ〉, γ < ω1, in A.]

37.13. RP implies that every stationary set preserving P is semiproper.
[Foreman, Magidor and Shelah [1988], Proposition 14.]

37.14. RP(λ) implies that for every stationary S ⊂ [λ]ω, the set {Y ⊂ λ : |Y | = ℵ1

and S ∩ [Y ]ω is stationary} is stationary in [λ]ℵ1 .
[Feng and Jech [1989], Theorem 3.1, (3) implies (2).]

37.15. RP(κ) implies that every stationary A ⊂ Eκ
ω reflects at some γ of cofinal-

ity ω1. (Compare with Exercise 31.9.)

37.16. Let ℵ1 < κ < λ.

(i) If S ⊂ [λ]ω is projective stationary then S�κ is projective stationary.
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(ii) If S ⊂ [κ]ω is projective stationary then the lifting of S to λ is projective
stationary.

37.17. Let κ < λ, Y ⊂ [Hκ]ω, let X be the lifting of Y to Hλ. Show that X ∪X⊥

is projective stationary.
[Feng and Jech [1998], Claim 1.2. (Or, modify the proof of Claim 37.12.)]

37.18. SRP implies that for every regular κ ≥ ω2, every stationary A ⊂ Eκ
ω con-

tains a closed set of order-type ω1.
[Apply SRP(κ) to the set {M : A ∈M and sup(M ∩ κ) ∈M}.]

37.19. If INS is ℵ2-saturated then for every stationary S ⊂ [λ]ω there exists a sta-
tionary A ⊂ ω1 such that for every stationary B ⊂ A, the set {X ∈ S : X∩ω1 ∈ B}
is stationary.

[For every stationary A ⊂ ω1, let SA = {X ∈ S : X ∩ ω1 ∈ A}, and let
W = {Aξ : ξ < ϑ}, ϑ ≤ ω1, be a maximal antichain of stationary sets A such
that SA is not stationary. For each ξ let Cξ be closed unbounded in [λ]ω such that
SAξ ∩Cξ = ∅. Let A = �ξ(ω1 −Aξ) and C = �ξ Cξ = {X : (∀α ∈ X∩ϑ) X ∈ Cα}.
Since C ∩ S is stationary, A is stationary. A is as desired.]

37.20. SRP(κ) implies that κℵ1 = κ.
[Let Aα (α < κ), f : ω1 → κ and Sα (α < ω1) be as in the proof of Theo-

rem 37.13, and prove (37.4). The set {M : (∀α ∈ M ∩ ω1) if M ∩ ω1 ∈ Sα then
sup(M ∩ κ) ∈ Af(α)} is projective stationary.]

37.21. SRP holds if and only if for all κ < λ regular uncountable, if S ⊂ [κ]ω is
stationary then there exists an elementary chain 〈Mα : α < ω1〉 such that Mα ∩ κ ∈
S for every α for which there exists a countable M such that Mα ⊂ M ≺ Hλ,
M ∩ ω1 = Mα ∩ ω1, and M ∩ κ ∈ S. (In other words, if T is the lifting of S
to Hλ then T ∪ T⊥ contains an elementary chain. This reflection principle is due
to Todorčević, see Bekkali [1991], p. 57.)

[Feng and Jech [1998], Theorem 1.2.]

37.22. MAℵ1 implies MA+
ℵ1

.

[Let P be c.c.c., |D| = ℵ1 (dense sets), and Ṡ a P -name for a stationary set. Let
Q be the (finite support) product of ω copies of P ; let Qn = P and Ṡn = Ṡ. Let
T = {α : ∃p ∈ P p � α ∈ Ṡ} and show that �Q T =

S

n<ω Ṡn. Apply MAℵ1 to Q
which is c.c.c. Let G be a filter on Q such that each Gn = G�Qn is D-generic, and
that for every α and every n, G meets {q : q decides α ∈ Ṡn}. Then T =

S

n<ω ṠG
n

and therefore there exist some n such that ṠGn
n is stationary.]

37.23. MA+(ω-closed) implies that for every stationary S ⊂ [Hλ]ω there exists an
elementary chain 〈Mα : α < ω1〉 such that {α : Mα ∈ S} is stationary.

[Apply MA+(ω-closed) to the ω-closed forcing that produces a generic chain
〈MG

α : α < ω1〉 such that
S

α<ω1
MG

α = (Hλ)V (the conditions being countable
chains) and the canonical name for the stationary set SG = {α : MG

α ∈ S}.]

Historical Notes

Martin’s Maximum was formulated by Foreman, Magidor and Shelah [1988]. The
consistency proof (Theorem 37.9) as well as the major applications (Theorem 37.13,
Theorem 37.16 and Definition 37.17) are in that paper. The method of RCS iteration
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and Theorem 37.4 are due to Shelah and appear in [1982]. The (simplified) definition
presented here follows Fuchs [1992] and Schlindwein [1993].

Theorem 37.10 was proved by Shelah in [1987].
Todorčević proved (in unpublished notes) that RP implies 2ℵ0 ≤ ℵ2; he also

formulated a strong reflection principle (see Exercise 37.21) and used it to prove
Theorems 37.21, 37.22 and 37.23, as well as SCH. The present version of SRP (Def-
inition 37.20) is due to Feng and Jech [1998]; so is the equivalence in Exercise 37.21.

MA+(ω-closed) and MM+ are discussed in Foreman, Magidor and Shelah [1988].
Theorem 37.26 was proved by Shelah in [1987].

Exercises 37.1, 37.12 and 37.23: Foreman, Magidor and Shelah [1988].
Exercise 37.3: Feng and Jech [1989].
Exercises 37.10 and 37.19: Feng and Jech [1998].
Exercises 37.18 and 37.20: Todorčević.
Exercises 37.22: Baumgartner.



38. More on Stationary Sets

Stationary sets play a central role in several areas of set theory. In this final
chapter we address some of the issues dealing with stationary sets.

The Nonstationary Ideal on ℵ1

The question of considerable interest is whether the ideal INS on ℵ1 can be
ℵ2-saturated. By Theorem 37.16, the saturation of INS follows from MM, and
thus is consistent relative to a supercompact cardinal. This can be improved:

Theorem 38.1 (Shelah). If there exists a Woodin cardinal then there is
a generic model in which the nonstationary ideal on ℵ1 is ℵ2-saturated.

Proof (sketch). The model is constructed by an RCS iteration (up to a
Woodin cardinal), as in the proof of Theorem 37.9, iterating the forcings
described in (37.5), for those maximal antichains for which the forcing (37.5)
is semiproper. An argument similar to the one used in the proof of Theo-
rem 34.8 shows that in the resulting model, INS is saturated. ��

Combining this result with Steel’s Theorem 35.21, it follows that the
consistency strength of the saturation of INS is approximately that of the
existence of a Woodin cardinal.

In contrast to that, the consistency strength of the precipitousness of INS

is only that of the existence of a measurable cardinal (Theorems 22.33
and 23.10).

A σ-complete ideal I on ω1 is ω1-dense if the Boolean algebra P (ω1)/I
has a dense subset of size ℵ1. Clearly, every (nontrivial) ω1-dense ideal is ℵ2-
saturated. The following result (that we state without proof) shows that the
consistency strength of “INS is ω1-dense” is exactly the existence of infinitely
many Woodin cardinals.

Theorem 38.2 (Woodin). The following are equiconsistent :

(i) INS is ω1-dense.
(ii) AD holds in L(R). ��
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The saturation of the nonstationary ideal implies (almost) that the Con-
tinuum Hypothesis fails:

Theorem 38.3 (Woodin). If INS is ℵ2-saturated and if there exists a mea-
surable cardinal, then δ1

2 = ℵ2 (and hence 2ℵ0 ≥ ℵ2). ��
Note that the construction in the proof of Theorem 34.8 yields a model

in which for some stationary set A, the ideal INS�A is ℵ2-saturated and the
Continuum Hypothesis holds.

Saturation and Precipitousness

By Theorem 23.17, the nonstationary ideal on κ is not κ+-saturated, for
any κ ≥ ℵ2. The proof of Theorem 23.17 yields a somewhat stronger result:
If κ and λ are regular cardinals such that λ+ < κ, then INS�Eκ

λ is not
κ+-saturated. Theorem 38.4 below shows that the saturation of INS�Reg is
consistent (and not particularly strong). It remains open whether for a regular
uncountable cardinal κ, INS�Eκ+

κ can be κ++-saturated.
Let κ be a regular cardinal and let α < κ+. The cardinal κ is α-Mahlo

if the order of κ (as defined in Chapter 8) is at least κ + α. (Thus 0-Mahlo
means weakly inaccessible, 1-Mahlo means weakly Mahlo, etc.)

Theorem 38.4.

(i) Let κ be an α-Mahlo cardinal, with 0 < α < κ+. If INS�Reg is κ+-
saturated then κ is a measurable cardinal of Mitchell order at least α
in the model Km.

(ii) Let κ be a measurable cardinal of Mitchell order α, with 0 < α < κ+.
There is a generic model in which κ is α-Mahlo and INS�Reg is κ+-
saturated.

Proof. Cf. Jech and Woodin [1985]. For (i), see Exercise 38.1. ��
By Theorem 23.10, the existence of a measurable cardinal is sufficient for

the construction of a generic model in which the ideal INS on ω1 is precipitous.
The construction generalizes to obtain the precipitousness of INS�Eκ+

κ , for
every regular cardinal κ. For the precipitousness of the entire ideal INS on
κ ≥ ℵ2, more than measurability is needed. For instance:

Theorem 38.5. The following are equiconsistent :

(i) INS on ℵ2 is precipitous.
(ii) There exists a measurable cardinal of Mitchell order 2.

Proof. Cf. Gitik [1984]. For the lower bound, see Exercise 38.2. ��
The consistency strength of the precipitousness of INS on κ ≥ ℵ3 is more

than o(κ) = κ+. In [1997], Gitik calculated the exact strength for successors
or regulars, and nearly optimal lower and upper bounds for inaccessible κ (in
both cases, it is the Mitchell order between κ+ and κ++). For successors of
singulars the consistency strength is in the region of Woodin cardinals.



38. More on Stationary Sets 697

Reflection

Let κ ≥ ℵ2 be a regular cardinal. A stationary set S ⊂ κ reflects at α < κ if
S ∩α is stationary in α (see Definition 23.5). We shall now discuss briefly to
what extent can stationary sets reflect.

First we consider the property “every stationary set S ⊂ κ reflects (at
some α < κ).” This implies that κ is either (weakly) inaccessible or the
successor of a singular cardinal, because if κ = λ+ with λ regular, the set Eλ+

λ

does not reflect (see Exercise 23.4). Let κ be an inaccessible cardinal. If κ is
weakly compact then every stationary S ⊂ κ reflects (Corollary 17.20). If
V = L then the converse is true as well: If every stationary set reflects then
κ is weakly compact (Jensen [1972], Theorem 6.1).

Following Mekler and Shelah [1989], let us call κ a reflecting cardinal if
there exists a normal ideal I on κ such that for every X ∈ I+, {α ∈ κ :
X reflects at α} ∈ I+. Every weakly compact cardinal is reflecting, and since
being a reflecting cardinal is a Π1

1 property (see Exercise 38.3), every weakly
compact cardinal is a limit of reflecting cardinals.

Theorem 38.6. The following are equiconsistent :

(i) There exists a cardinal κ such that every stationary S ⊂ κ reflects.
(ii) There exists a reflecting cardinal.

Proof. Mekler and Shelah [1989]. ��

A cardinal κ is greatly Mahlo if κ is α-Mahlo for every α < κ+. If V = L
then every reflecting cardinal is greatly Mahlo and a limit of greatly Mahlo
cardinals (Mekler and Shelah [1989]). Thus the consistency strength of “every
stationary set reflects” is strictly between “greatly Mahlo” and “weakly com-
pact.”

Now let κ be a successor of a singular cardinal λ. The property “every
stationary set S ⊂ λ+ reflects” is a very large cardinal property. On the one
hand there is this consistency result:

Theorem 38.7. If there exist infinitely many supercompact cardinals, then
there is a generic model in which every stationary set S ⊂ ℵω+1 reflects.

Proof. Magidor [1982]. ��

On the other hand, �λ implies that there exists a stationary subset of λ+

that does not reflect (Exercise 38.5). As �λ holds in the core model Kstrong

then if (λ+)Kstrong
= λ+, �λ holds in V as well (with the same square se-

quence) and one concludes (by Theorem 35.19) that if λ is a strong limit
singular cardinal and every S ⊂ λ reflects then there exists an inner model
for a strong cardinal. This has been extended by Schimmerling and others to
show that the consistency strength of this reflection property is more than
the existence of a Woodin cardinal.
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Now consider the question of what is the largest possible extent of re-
flection. Let us recall (Definition 8.18) that S < T means that S reflects at
almost all α ∈ T . If S < T then o(S) < o(T ) and one may ask whether it is
possible that S < T holds whenever o(S) < o(T ). This is possible for κ = ℵ2:
By Magidor’s Theorem 23.23 it is consistent that every stationary S ⊂ Eω2

ω

reflects at almost all α of cofinality ω1.
For κ > ℵ2 it is impossible that S < T whenever o(S) < o(T ). If µ < λ are

regular cardinals such that λ+ < κ then there exist stationary sets S ⊂ Eκ
µ

and A ⊂ Eκ
λ such that S does not reflect at any α ∈ A (Exercise 38.7). Thus

let us restrict ourselves to reflection at regular cardinals.

Definition 38.8. A weakly inaccessible cardinal κ satisfies full reflection if
for every stationary set S ⊂ κ and every stationary set T ⊂ κ of regular
cardinals, o(S) < o(T ) implies S < T .

Obviously, the property is meaningful only if κ is at least a (weakly)
Mahlo cardinal. The consistency strength of full reflection for cardinals in
the Mahlo hierarchy has been established by Jech and Shelah. For instance:

Theorem 38.9. The following are equiconsistent, for every n ≥ 1:

(i) There exists an n-Mahlo cardinal that satisfies full reflection.
(ii) There exists a Π1

n-indescribable cardinal.

Proof. Jech and Shelah [1993]. See also Exercises 38.8 and 38.9. ��

If κ is a large cardinal such as measurable, strong, or supercompact then
there is a generic extension in which κ remains measurable (strong, super-
compact) and in addition satisfies full reflection (Gitik and Witzany [1996]).

Stationary Sets in Pκ(λ)

By Theorem 8.28, the closed unbounded filter on [λ]ω is generated by the
sets CF = {x ∈ [λ]ω : x is closed under F} where F : [λ]<ω → λ. Thus
in many applications one considers the space [Hλ]ω and stationary sets are
those S ⊂ [Hλ]ω such that for every model (Hλ,∈, . . .) there exists an M ∈ S
with M ≺ (Hλ,∈, . . .).

When κ > ℵ1, the sets CF do not generate the closed unbounded filter
on Pκ(λ) as the set {x ∈ Pκ(λ) : |x| ≥ ℵ1} is closed unbounded and does
not include any CF (which contains a countable set). A generalization of
Theorem 8.28 yields the following description of the closed unbounded filter:
it is the filter generated by the sets CF and the set {x ∈ Pκ(λ) : x ∩ κ ∈ κ}
(Exercise 38.10; see also Exercises 8.18, 8.19 and 36.17). For more on this
subject, see Exercises 38.11 and 38.12.

By Lemma 31.3, ω-closed forcing preserves stationary sets in [λ]ω . This
does not generalize to Pκ(λ) for κ > ℵ1, as <κ-closed forcing may destroy
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stationary sets in Pκ(λ). The following concept is relevant to this problem
and has other applications:

A model M ≺ Hλ is internally approachable if there exists an elemen-
tary chain 〈Mα : α < γ〉 with M =

⋃
α<γ Mα such that for every β < γ,

〈Mα : α < β〉 ∈ M . In Pκ(Hλ), let IA denote the set of all internally ap-
proachable M . The set IA is stationary, and if κ = ℵ1 then IA contains
a closed unbounded set (since every countable M is internally approachable).
A stationary set S is preserved by <κ-closed forcing if and only if S ∩ IA is
stationary (Exercises 38.13 and 38.14).

By Theorem 8.10, every stationary subset of κ can be partitioned into
κ disjoint stationary sets. The situation is more complicated for Pκ(λ). Since
|Pκ(λ)| = λ<κ we may ask whether stationary sets in Pκ(λ) can be parti-
tioned into λ<κ disjoint stationary sets. This is generally not provable, for
two reasons. One is cardinal arithmetic and the other are large cardinals.

The cardinal arithmetic reason is that there may exist stationary, or even
closed unbounded, sets of size λ while λ<κ > λ. For instance, there exists
a stationary set S ⊂ [ω2]ω of size ℵ2 (Exercise 38.15), or a closed unbounded
set C ⊂ [ω4]ω2 of cardinality ℵℵ1

4 (Exercise 38.16).
A generalization of Solovay’s proof of Theorem 8.10 gives that every sta-

tionary set in Pκ(λ) can be partitioned into κ disjoint stationary sets (Ex-
ercise 38.18). This is best possible as Gitik [1985] constructs a model, using
a supercompact cardinal, in which there is a stationary set S ⊂ Pκ(κ+) that
cannot be partitioned into κ+ disjoint stationary sets.

In view of this discussion, the following is best possible:

Theorem 38.10. Let κ be regular uncountable and λ ≥ κ.

(i) Pκ(λ) can be partitioned into λ disjoint stationary sets.
(ii) If κ is a successor cardinal then every stationary subset of Pκ(λ) can

be partitioned into λ disjoint stationary sets.
(iii) If 0� does not exist then every stationary subset of Pκ(λ) can be par-

titioned into λ disjoint stationary sets.
(iv) If GCH holds then Pκ(λ) can be partitioned into λ<κ stationary sets,

and if moreover 0� does not exist then every stationary subset of Pκ(λ)
can be partitioned into λ<κ disjoint stationary sets.

Proof. Let us consider the following set

(38.1) E = {x ∈ Pκ(λ) : |x ∩ κ| = |x|}.

It is easy to see that E is stationary and that if κ is a successor cardinal
then E contains a closed unbounded subset (Exercise 38.19). The question
whether, for an inaccessible κ, the complement of E is stationary, involves
large cardinals; cf. the following lemma and Exercise 38.20.

Lemma 38.11. If {x ∈ Pκ(λ) : |x ∩ κ| < |x|} is stationary then 0� exists.
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Proof. By the assumption there exists a model M ∈ Pκ(Lλ) such that κ ∈
M ≺ Lλ, κM = M ∩ κ ∈ κ, and κM < |M |. Let Lα be the transitive collapse
of M . Thus there is an elementary embedding j : Lα → Lλ with critical
point κM , and since κM < |α|, 0� exists. ��

Consequently, the following two lemmas will complete the proof of Theo-
rem 38.10:

Lemma 38.12. Every stationary subset of the set E can be partitioned into
λ disjoint stationary sets.

Lemma 38.13. If GCH holds and if cf λ < κ then every stationary set
in Pκ(λ) can be partitioned into λ+ disjoint stationary sets.

Proof of Lemma 38.12. Assume that λ > κ (if λ = κ we have Theorem 8.10).
Let S be a stationary set in Pκ(λ) such that |x ∩ κ| = |x| for every x ∈ S.
For each x ∈ S, let fx : x → x ∩ κ be one-to-one. For each α < λ, let
gα(x) = fx(α), for all x ∈ S with α ∈ x. There exists a stationary set Sα

such that gα is constant on Sα, with value γα < κ.
Now if µ is any regular cardinal with κ < µ ≤ λ, there exists a γ < κ

such that γα = γ for µ many α’s. The corresponding sets Sα are pairwise
disjoint stationary subsets of S. Thus for every regular cardinal µ ≤ λ, every
stationary subset of E has µ pairwise disjoint stationary subsets. It follows
easily that every S ⊂ E can be partitioned into λ disjoint stationary sets. ��

Proof of Lemma 38.13. Assume GCH and let λ > κ be such that cf λ < κ.
First we note that |Pκ(λ)| = λ+, and that every unbounded (and there-
fore every stationary) subset of |Pκ(λ)| has size λ+: If Y is unbounded then
Pκ(λ) =

⋃
x∈Y P (x) and the assertion follows.

Let 〈fα : α < λ+〉 enumerate the set of all functions fα : [λ]<ω → Pκ(λ)
such that each function appears cofinally often. By Lemma 8.26, for every
closed unbounded set C and every γ < λ+ there exists an α > γ such that
C ⊃ C(fα) = {x : f(e) ⊂ x whenever e ⊂ x}.

Now let S be a stationary set in Pκ(λ). By induction on α < λ+ we
construct one-to-one sequences 〈xα

ξ : ξ < α〉 such that {xα
ξ : ξ < α} ⊂

S ∩ C(fα), and that {xα
ξ : ξ < α} and {xβ

ξ : ξ < β} are disjoint whenever
α �= β. If we let, for each ξ < λ+, Sξ = {xα

ξ : ξ < α < λ+}, the sets Sξ,
ξ < λ+, are pairwise disjoint, and we complete the proof by showing that
each Sξ is stationary.

If C is closed unbounded, then C ⊃ C(fα) for some α > ξ, and since
xα

ξ ∈ Sξ ∩ C(fα), we have Sξ ∩ C nonempty. ��

By Theorem 23.17 the nonstationary ideal on κ is not κ+-saturated, for
any κ ≥ ℵ2. A similar result is true for the nonstationary ideal on Pκ(λ):

Theorem 38.14. If κ is a regular uncountable cardinal and λ > κ then the
nonstationary ideal on Pκ(λ) is not λ+-saturated. ��
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The result follows easily from Theorem 23.17 when λ is regular: Let κ < λ
be regular uncountable. The proof of Theorem 23.17 shows that there are
almost disjoint stationary sets Aξ ⊂ λ, ξ < λ+, such that cf α < κ for all
α ∈ Aξ and all ξ < λ+. For each ξ let Sξ = {x ∈ Pκ(λ) : supx ∈ Aξ}.
Then Sξ, ξ < λ+, are stationary sets with Sξ ∩ Sη nonstationary if ξ �= η
(Exercise 38.21).

When λ is singular, the result is a combination of several cases, depending
on κ and cf λ. The nonsaturation of INS on [λ]ω for singular λ is an application
of the concept of mutually stationary sets that we shall briefly describe in
the next section (see Corollary 38.17).

Mutually Stationary Sets

The following definition, due to Foreman and Magidor, exploits the fact that
if κ is a regular cardinal and λ > κ then a set S ⊂ κ is stationary if and
only if for every model A = 〈Hλ,∈, . . .〉 there exists some M ≺ A such that
sup(M ∩ κ) ∈ S; i.e., if and only if the set {M ∈ P (Hλ) : sup(M ∩ κ) ∈ S}
is stationary in P (Hλ).

Definition 38.15. Let A be a set of regular cardinals and let λ = sup A.
The sets Sκ, κ ∈ A, where Sκ ⊂ κ for each κ ∈ A, are mutually stationary if
the set {M : sup(M ∩ κ) ∈ Sκ for every κ ∈ M} is stationary in P (Hλ).

Not much is known about mutual stationarity beyond the following the-
orem:

Theorem 38.16 (Foreman-Magidor). Let A be a set of regular cardi-
nals with λ = sup A. If for each κ, Sκ is a stationary subset of κ such that
cf α = ω for every α ∈ Sκ, then the Sκ are mutually stationary. For every
A = 〈Hλ,∈, . . .〉 there exists a countable M ≺ A such that sup(M ∩ x) ∈ Sκ

for every κ ∈ M .

Proof. Foreman and Magidor [2001]. ��

One consequence of this result is that the nonstationary ideal on [λ]ω is
not λ+-saturated when λ is singular:

Corollary 38.17. If λ is a limit cardinal then there exist stationary station-
ary sets Sξ, ξ < λcf λ, in [λ]ω such that Sξ ∩ Sη is nonstationary whenever
ξ �= η.

Proof. Let µ = cf λ and let A = {κα : α < µ} be a set of regular cardinals
with limit λ. For each α < µ, let {Sα

β : β < κα} be a partition of Eκα
ω into

κα disjoint stationary sets. For each function f ∈
∏

α<µ κα, let Sf = {M ∈
[λ]ω : sup(M ∩κα) ∈ Sα

f(α) for all α ∈ M}. The sets Sf are stationary in [λ]ω

and if f �= g then for any α with f(α) �= g(α), the closed unbounded set
{M : α ∈ M} is disjoint from Sf ∩ Sg. ��
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Weak Squares

The theory of inner models shows that in the absence of very large cardinals,
Jensen’s principle �κ holds whenever κ is a singular cardinal. In this last
section we take a look at some weaker versions of Square.

Definition 38.18. Let κ be an uncountable cardinal, and let ν be a cardinal,
1 ≤ ν ≤ κ; �κ,ν is as follows:

(�κ,ν) There exists a sequence 〈Cα : α ∈ Lim(κ+)〉 such that
(i) Cα is nonempty and |Cα| ≤ ν, and each C ∈ Cα is a closed

unbounded subset of α;
(ii) if C ∈ Cα and β ∈ Lim(C) then C ∩ β ∈ Cβ;
(iii) if cf α < κ then |C| < κ for every C ∈ Cα.

(38.2)

The principle �κ,<ν is defined similarly, replacing |Cα| ≤ ν by |Cα| < ν.

The weakest principle of these, �κ,κ, is also denoted by �∗
κ and is called

Weak Square. By Jensen [1972], �∗
κ is equivalent to the existence of a special

Aronszajn κ+-tree, and therefore, if κ is regular, �∗
κ follows from 2κ = κ+.

The main interest in the principles �κ,ν and �κ,<ν is in the case when κ is
a singular cardinal. The failure of �∗

κ for κ singular (which, as mentioned
below, entails a Woodin cardinal) is consistent: In [1979] Shelah proved the
consistency, relative to a supercompact cardinal, of the negation of �∗

ℵω
.

The failure of Weak Square for singular κ has the consistency strength
of (roughly) at least one Woodin cardinal: If there is a measurable cardinal
and there is no inner model for the Woodin cardinal, then �κ,cf κ holds for
every strong limit singular cardinal. This follows from results of Mitchell,
Schimmerling and Steel; cf. Schimmerling [1995].

Exercise 38.5 shows that if �κ holds then κ+ has a nonreflecting sta-
tionary set. The proof is easily modified to show that �κ,<ω suffices, see
Exercise 38.23. (In contrast, �ℵω,ω is consistent with “every stationary sub-
set of ℵω+1 reflects;” cf. Cummings, Foreman and Magidor [2001].)

The proof of Theorem 31.28 can be modified to show that PFA implies
the negation of �κ,ω1 for every κ ≥ ω1; see Exercise 38.24. This, and the
afore mentioned results on �κ,cf κ and Woodin cardinals yields Schimmer-
ling’s Theorem 31.30.

As a final application of weak squares we mention the following; for sim-
plicity, let κ = ℵω. By the pcf theory there exists a scale 〈fα : α < ℵω+1〉
in

∏
n∈A ℵn (mod finite) for some A ⊂ ω. If �ℵω,ℵm holds for some m, then

there exists a scale 〈gα : α < ℵω+1〉 with this property:

(38.3) For every α < ℵω+1 such that cf α > ω there exists a closed un-
bounded set C ⊂ α and some k such that for all β < γ in C and all
n ≥ k in A, gβ(n) < gγ(n).

(See Exercise 38.25.) Such scales were used in Cummings, Foreman and Magi-
dor [2001] to prove (negative) results on stationary reflection.
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Exercises

38.1. If κ is α-Mahlo and INS� Reg is κ+-saturated, then κ has Mitchell order α
in Km.

[Use Theorem 35.16 and generic ultrapowers. Find an almost disjoint collec-
tion W of stationary subsets of Reg such that the length of < restricted to W is at
least α, and that the dual of INS�S restricted to Km is a normal measure US ∈ Km.
Then show that S < T implies K � US < UT . For details, see Jech [1984]. (The
symbol < is used both for the hierarchy of stationary sets and for the Mitchell
ordering.)]

38.2. If INS on ℵ2 is precipitous then ℵ2 is a measurable cardinal of Mitchell order 2
in Km.

[Use Theorem 35.16 and generic ultrapowers, or see Gitik [1984].]

38.3. Let I0 be the normal ideal generated by the sets that do not reflect, let
Iα+1 be the smallest normal ideal extending Iα that contains every X such that
{β : X does not reflect at β} ∈ Iα, and let Iα =

S

β<α Iα if α is limit. Then κ is
a reflecting cardinal if and only if κ /∈ S

α<κ+ Iα.

38.4. If κ is a reflecting cardinal then κ is a reflecting cardinal in L.

38.5. If �λ holds then for every stationary set S ⊂ λ+ there exists a stationary
T ⊂ S that does not reflect.

[Let 〈Cα : α < λ+〉 be a square sequence, and let f(α) be the order-type of Cα.
There is a stationary set T ⊂ S on which f is constant. Show that T does not
reflect (as in Lemma 23.6).]

38.6. If κ is supercompact and ν < κ < λ (regular cardinals) then every stationary
S ⊂ Eλ

ν reflects.
[Compare with Exercise 27.3.]

38.7. Let µ < λ < κ be regular with λ+ < κ. There exist stationary set S ⊂ Eκ
µ

and A ⊂ Eκ
λ such that S does not reflect at any α ∈ A.

[As in Exercise 23.12.]

The Π1
n filter on κ is the filter F 1

n generated by the sets {α < κ : Vα � ϕ} where
ϕ is a Π1

n formula true in Vκ; the Π1
n ideal I1

n is the dual ideal. κ is Π1
n-indescribable

if and only if the Π1
n filter is a filter, i.e., κ /∈ I1

n.

38.8. Let κ be a Mahlo cardinal, let E0 be the set of all inaccessible non Mahlo
cardinals and assume that every stationary set S ⊂ κ of singular cardinals reflects
at almost all α ∈ E0. If A ∈ L is a subset of κ such that A ∈ I1

1 in L, then A ∩E0

is nonstationary.
[Jeh and Shelah [1993], Lemma 2.1.]

As a consequence, if κ is Mahlo and satisfies full reflection, then κ is Π1
1-

indescribable in L. The following generalization implies that if κ is n-Mahlo and
satisfies full reflection, then κ is Π1

n-indescribable in L:

38.9. Let κ be an n-Mahlo cardinal that satisfies full reflection and let En−1 be
the set of all α < κ that are (n− 1)-Mahlo but not n-Mahlo. If A ∈ L is a subset
of κ such that A ∈ I1

n in L, then A ∩En−1 is nonstationary.

38.10. For every closed unbounded set C in Pκ(λ) there exists a function F :
[λ]<ω → λ such that C ⊃ {x : x ∩ κ ∈ κ and F“[x]<ω ⊂ x}.
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Let [λ]ν = {x ∈ Pν+ (λ) : |x| = ν}. A set C ⊂ [λ]ν is strongly closed unbounded
if C = CF ∩ [λ]ν for some F : [λ]<ω → λ.

38.11. If the set {x ∈ [λ]ν : x ⊃ ν} contains a strongly closed unbounded set then
every closed unbounded set C ⊂ [λ]ν contains a strongly closed unbounded set.

38.12. The following are equivalent:

(i) The closed unbounded filter on [ω2]
ℵ1 is generated by strongly closed un-

bounded sets.
(ii) Chang’s Conjecture.

38.13. If S ⊂ IA is stationary and if P is <κ-closed, then S is stationary in V P .

38.14. Let P be the forcing that collapses |Hλ| to κ (with conditions of size < κ).
In V P , the set (IA)V contains a closed unbounded set.

38.15. There exists a stationary set S ⊂ [ω2]
ω of size ℵ2.

[For each α < ω2, let f : α → ω1 be one-to-one. If α < ω2 and ξ < ω1, let
Xα,ξ = {β < α : fα(β) < ξ}. Let S = {Xα,ξ : α < ω2, ξ < ω1}.]

38.16. There exists a closed unbounded set C ⊂ [ω4]
ω2 of size ℵℵ1

4 .
[Baumgartner [1991], Corollary 3.5.]

38.17. If Xα, α < λ, are stationary sets in Pκ(λ) such that Xα∩Xβ is nonstationary
for all α �= β, then there exist pairwise disjoint stationary sets Yα with Yα ⊂ Xα

for all α < λ.
[Yα = Xα ∩ {x : α ∈ x and ∀β ∈ x if β �= α then x /∈ Xβ}.]

38.18. For every stationary set S ⊂ Pκ(λ) the ideal INS�S is not κ-saturated.
[Gitik [1985], p. 893.]

38.19. Let E = {x ∈ Pκ(λ) : |x ∩ κ| = |x|}.
(i) E is stationary.
(ii) If κ is a successor cardinal then E contains a closed unbounded subset.

38.20. If κ is supercompact and λ > κ then the set {x ∈ Pκ(λ) : |x ∩ κ| < |x|} is
stationary.

38.21. Let κ < λ be regular uncountable and let A ⊂ λ be such that cf α < κ
for all α ∈ A. A is stationary if and only if {x ∈ Pκ(λ) : sup x ∈ A} is stationary
in Pκ(λ).

38.22. If κ is supercompact then for all λ ≥ κ, �λ,<κ fails.

38.23. If �κ,<ω holds then for every stationary S ⊂ κ+ there exists a stationary
T ⊂ S that does not reflect.

[Let 〈Cα : α < κ+〉 be a �κ,<ω sequence and let f(α) = {o.t.(C) : C ∈ Cα}.
Then proceed as in Exercise 38.5.]

38.24. PFA implies that �κ,ω1 fails for every uncountable cardinal κ.
[Let 〈Cα : α < κ+〉 be a �κ,ω1 sequence, and let T be the tree of all (α, A)

with A ∈ Cα, ordered by (α, A) ≺ (β, B) if and only if α ∈ Lim(B) and A =
B ∩ α. Let P = {p ⊂ κ+ : p is closed and countable}, ordered by end-extension.
In V P , T �

S

Ġ has no ω1-branch. Let Q̇ be the c.c.c. forcing that specializes T �
S

Ġ.
Applying PFA to P ∗ Q̇ leads to a contradiction as in Theorem 31.28. For details,
see Schimmerling [1995].]
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38.25. Prove (38.3) using �ℵω,ℵm .
[Let 〈Cα : α < ℵω+1〉 be a �ℵω ,ℵm sequence, and assume that m < n for all

n ∈ A. For a limit γ, let gγ be such that gγ > gα for all α < γ, gγ(n) > fγ(n)
for all n ∈ A, and such that for all n ∈ A, gγ(n) > sup{supβ∈C gβ(n) : C ∈ Cγ ,
|C| < ℵn}.]

Historical Notes

The first consistency proof for the saturation of INS was obtained by Steel and
van Wesep [1982], forcing over a model of ZF + ADR + “Θ is regular” (ADR is
the determinacy of games where moves are real numbers). Following the proof of
Theorem 37.16 (by Foreman, Magidor and Shelah), Shelah obtained the consistency
from the existence of a Woodin cardinal (Theorem 38.1).

Theorem 38.2 will appear in the forthcoming book on AD, cf. Woodin et al. [∞].
Theorem 38.3 is proved in Woodin [1999].

Theorem 38.4: Jech and Woodin [1985].
Theorem 38.5: Gitik [1984].
Theorem 38.6: Mekler and Shelah [1989].
Theorem 38.9: Jech and Shelah [1993].
Theorem 38.10 is a combination of several results, including Jech [1972/73],

Matsubara [1987], [1988] and [1990], Di Prisco and Baumgartner.
Lemma 38.11: Baumgartner.
Lemma 38.12: Di Prisco.
Lemma 38.13: Matsubara.
Theorem 38.14 is a combination of several results, including Gitik and She-

lah [1997], Baumgartner and Taylor [1982], Donder and Matet [1993], Burke and
Matsubara [1999] and Foreman and Magidor [2001].

Mutually stationary sets are investigated in Foreman and Magidor [2001].
For weak squares, see Schimmerling [1995] and Cummings, Foreman and Magi-
dor [2001].

Exercises 38.3 and 38.4: Mekler and Shelah [1989].
Exercises 38.5: Jensen.
Exercises 38.6 and 38.22: Solovay.
Exercises 38.7: Shelah.
Exercises 38.8 and 38.9: Jech and Shelah [1993].
Exercises 38.10: Kueker.
Exercises 38.11, 38.12, 38.13 and 38.14: Foreman, Magidor and Shelah [1988].
Exercises 38.15, 38.16, 38.19 and 38.20: Baumgartner.
Exercises 38.24: Magidor.
Exercises 38.25: Cummings, Foreman and Magidor [2001].
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P. Erdős and A. Hajnal

Some remarks concerning our paper “On the structure of set map-
pings”. Non-existence of a two-valued σ-measure, for the first uncount-
able inaccessible cardinal. Acta Math. Acad. Sci. Hungar. 13 (1962),
223–226. MR 25 #5001.



712 Bibliography

[1966] On a problem of B. Jónsson. Bull. Acad. Polon. Sci. Sér. Sci. Math.
Astronom. Phys. 14 (1966), 19–23. MR 35 #64.

[1971] Unsolved problems in set theory. In “Axiomatic Set Theory” (D. S.
Scott, ed.), Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. Cali-
fornia, Los Angeles, Calif., 1967. Amer. Math. Soc., Providence, R.I.,
1971, pp. 17–48. MR 43 #6101; the entire collection MR 43 #38.

[1968]
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Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme. I. Monatsh. Math. Phys. 38 (1931), 173–198.
Zbl. 002.00101.

[1938] The consistency of the axiom of choice and of the generalized contin-
uum hypothesis. Proc. Natl. Acad. Sci. U.S.A. 24 (1938), 556–557.
Zbl. 020.29701.

[1939] Consistency-proof for the generalized continuum hypothesis. Proc.
Natl. Acad. Sci. U.S.A. 25 (1939), 220–224. Zbl. 021.00102.

[1940] “The Consistency of the Continuum Hypothesis.” Ann. of Math. Stud-
ies, No. 3, Princeton University Press, Princeton, N.J., 1940. MR 2,66c.

[1965] Remarks before the Princeton bicentennial conference on problems in
mathematics. (1946). In “The Undecidable. Basic Papers on Undecid-
able Propositions, Unsolvable Problems and Computable Functions”
(M. Davis, ed.). Raven Press, Hewlett, New York, 1965, 84–88. MR 32
#7412.

[1995]
M. Goldstern and S. Shelah

The bounded proper forcing axiom. J. Symbolic Logic 60 (1995), no. 1,
58–73. MR 96g:03083.

[1980]
R. L. Graham, B. L. Rothschild, and J. H. Spencer

“Ramsey Theory.” Wiley Interscience Series in Discrete Mathematics,
John Wiley & Sons, Inc., New York, 1980. MR 82b:05001.

[1976]
J. Gregory

Higher Souslin trees and the generalized continuum hypothesis. J. Sym-
bolic Logic 41 (1976), no. 3, 663–671. MR 58 #5208.

[1991]
M. J. Groszek and T. J. Jech

Generalized iteration of forcing. Trans. Amer. Math. Soc. 324 (1991),
no. 1, 1–26. MR 91f:03107.

[1998]
M. J. Groszek and T. A. Slaman

A basis theorem for perfect sets. Bull. Symbolic Logic 4 (1998), no. 2,
204–209. MR 99c:03072.

[1956]
A. Hajnal

On a consistency theorem connected with the generalized continuum
problem. Z. Math. Logik Grundlagen Math. 2 (1956), 131–136. MR
19,1031d.

[1964] Remarks on the theorem of W. P. Hanf. Fund. Math. 54 (1964), 109–
113. MR 28 #3945.

[1963]
A. W. Hales and R. I. Jewett

Regularity and positional games. Trans. Amer. Math. Soc. 106 (1963),
222–229. MR 26 #1265.

[1950]
P. R. Halmos

“Measure Theory.” University Series in Higher Mathematics, D. van
Nostrand Co., Inc., New York, N. Y., 1950. MR 11,504d.

[1971]
J. D. Halpern and A. Lévy
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[1905] Sur les fonctions représentables analytiquement. J. de Math. 1 (1905),

Sér 6, 139–216.

[1957]
A. Lévy
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problèmes concernant la propriété C. Proc. Cambridge Philos. Soc. 37
(1941), 109–126. MR 2,352a.

[1971]
F. Rowbottom

Some strong axioms of infinity incompatible with the axiom of con-
structibility. Ann. Math. Logic 3 (1971), no. 1, 1–44. MR 48 #1928.

[1966]
M. E. Rudin

Types of ultrafilters. In “Topology Seminar” (R. H. Bing and R. J.
Bean, eds.), Wisconsin, 1965. Ann. of Math. Studies, No. 60, Princeton



Bibliography 727

University Press, Princeton, N.J., 1966, pp. 147–151. MR 35 #7284;
the entire collection MR 34 #1974.

[1971] Partial orders on the types in βN . Trans. Amer. Math. Soc. 155 (1971),
353–362. MR 42 #8459.

[1956]
W. Rudin

Homogeneity problems in the theory of Čech compactifications. Duke
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Sur une définition des ensembles mesurables B sans nombres transfinis.
C. R. Acad. Sci. Paris 164 (1917), 88–91.

[1920] Problème 3. Fund. Math. 1 (1920), 223.

[1970]
G. Takeuti

A relativization of axioms of strong infinity to ω1. Ann. Japan Assoc.
Philos. Sci. 3 (1970), 191–204. MR 43 #6083.

[1925a]
A. Tarski

Sur les ensembles finis. Fund. Math. 6 (1925), 45–95.
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[1945] Ideale in vollständingen Mengenkörpern. II. Fund. Math. 33 (1945),

51–65. MR 8,193b.
[1962] Some problems and results relevant to the foundations of set theory. In

“Logic, Methodology and Philosophy of Science” (E. Nagel et al., eds.),
Proc. 1960 Internat. Congr. Stanford Univ. Press, Stanford, Calif.,
1962, pp. 125–135. MR 27 #1382; the entire collection MR 29 #3347.

[1968]
S. Tennenbaum

Souslin’s problem. Proc. Natl. Acad. Sci. U.S.A. 59 (1968), 60–63. MR
37 #55.

[1984]
S. Todorčević
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Notation

ZF Zermelo-Fraenkel axiomatic theory 3
ZFC the theory ZF with the Axiom of Choice 3
x ∈ y, x = y atomic formulas: x is a member of y, x is equal to y 5
∧,∨,¬,→,↔ logical connectives: conjunction, disjunction, negation, im-

plication, equivalence 5
∀x, ∃x quantifiers: for all x, there exists x 5
{x : ϕ(x, p1, . . . , pn)} the class of all x satisfying ϕ(x, p1, . . . , pn) 5
C = D a class C is equal to a class D 5
V universal class (universe, {x : x = x}) 6
C ⊂ D a class C is included in a class D 6
C ∩D the intersection of classes C and D 6
C ∪D the union of classes C and D 6
C −D the difference of classes C and D 6
S

C the union of sets from a class C 6
{a, b} the pair 7
{a} the singleton 7
(a, b) the ordered pair 7
(a1, . . . , an+1) the ordered n + 1-tuple 7
∅ the empty set 8
T

C the intersection of sets from a class C 8
S

X the union 9
{a1, . . . , an} the set with elements a1, . . . , an 9
X � Y symmetric difference of X and Y 9
P (X) the power set of X 9
X × Y the product of X and Y 10
X1 × . . .×Xn+1 the product of n + 1 sets 10
Xn the power of a set X 10
dom(R) the domain of a relation R 10
ran(R) the range of a relation R 10
field(R) the field of a relation R 10
y = f(x) y is the value of f at x 11
f : X → Y f is a function from X to Y 11
Y X the set of functions from X to Y 11
f�X the restriction of a function f to a set X 11
f ◦ g composition of f and g 11
f“X, f(X) the image of a set X by a function f 11
f−1(X) the inverse image of a set X by a function f 11
f−1 the inverse of a function f 11
F“C, F (C) the image of a class C by a class function F 12
[x] the equivalence class of x 12
X/≡ the quotient of X by an equivalence relation ≡ 12



734 Notation

N the smallest inductive set 13
0, 1, 2, 3, . . . the natural numbers 13
(P, <) a partially ordered set 17
sup X the supremum of X 17
inf X the infimum of X 17
Ord the class of ordinals 19
α + 1 the successor of an ordinal α 20
ω, N the set of finite ordinals (natural numbers) 20
〈aξ : ξ < α〉 an α-sequence; a (transfinite) sequence of length α 21
s�x, sx the extension of a sequence s by an element x 21
〈aα : α ∈ Ord〉 a sequence 21
limξ→α γξ the limit of a sequence 〈γξ : ξ < α〉 22
α + β the sum of ordinals α and β 23
α · β the product of ordinals α and β 23
αβ the power of an ordinal α by an ordinal β 23
ε0 the least ordinal α such that α = ωα 24
ρ(x) the rank of an element x in a well-founded relation E 25
|X| = |Y | sets X, Y have the same cardinality 27
|X| ≤ |Y | the cardinality of a set X is less or equal to the cardinality

of a set Y (there exists a one-to-one mapping of X into Y ) 27
κ + λ the sum of cardinals κ and λ 28
κ · λ the product of cardinals κ and λ 28
κλ the power of a cardinal κ by a cardinal λ 28
χX the characteristic function of a subset X of a given set 28
|W | the cardinal of a well-ordered set W 29
α+ the cardinal successor of an ordinal α 29
h(X) Hartogs function 29
ℵα the αth infinite cardinal 30
ωα the αth infinite order-type of a well-ordered set 30
Γ the canonical well-ordering of Ord2 30
cf α the cofinality of an ordinal α 31
R the set of real numbers 37
c the cardinality of the continuum (continuum) 37
Q the set of rational numbers 37
C the Cantor set 37
CH the Continuum Hypothesis 37
Gδ , Fσ Gδ sets, Fσ sets 42
N the Baire space (ωω) 42
O(s) a basic clopen set in the Baire space 42
Seq the set of finite sequences of natural numbers 43
[T ] the set of infinite paths through a tree T 43
AC the Axiom of Choice 47
DC the Principle of Dependent Choices 50
[A]λ the set of subsets of A of cardinality λ 51
[A]<κ, Pκ(A) the set of subsets of A of cardinality less than κ 52
P

i∈I κi the sum of cardinal numbers κi, i ∈ I 52
Q

i∈I Xi the product of sets Xi, i ∈ I 53
Q

i∈I κi the product of cardinal numbers κi, i ∈ I 53
GCH the Generalized Continuum Hypothesis 55
�α the beth function 55
(κ)ג the gimel function (κcf κ) 56
SCH the Singular Cardinal Hypothesis 58
TC(S) the transitive closure of a set S 64
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Vα the αth set of the cumulative hierarchy of sets 64
rank(x) the rank of a set x (in the cumulative hierarchy of sets) 64
Ĉ the set of elements of a class C with minimal rank 65
[x] the type of an equivalence class of an equivalence relation

on a proper class 65
C/≡ the quotient of a (proper) class C by an equivalence rela-

tion ≡ 65
extE(x) the extension of x by a binary relation E ({z : z E x}) 67
BG Bernays-Gödel axiomatic theory 70
BGC the theory BG with the Axiom of Choice 70
P̂ {Q ∈ [A]<ω : P ⊂ Q} for P ∈ [A]<ω 73
u + u, u · v, −u the Boolean operations: the sum, the product, and the

complement 78
[ϕ] the class of equivalent sentences of a first order language

(member of the Lindenbaum algebra) 79
B+ the set of all nonzero elements of a Boolean algebra B 79
B�a the Boolean algebra {u ∈ B : u ≤ a} with the partial order

inherited from B 79
u� v (u− v) + (v − u) 80
B/I, B/∼ the quotient of a Boolean algebra B mod I 80
P{u : u ∈ X} the supremum (sum) of a set X in a Boolean algebra 82
Q{u : u ∈ X} the infimum (product) of a set X in a Boolean algebra 82
sat(B) the least κ that B is κ-saturated 84
f∗(U) the ultrafilter {X ⊂ T : f−1(X) ∈ U} 86
a = limU an a is the U -limit of an, n ∈ ω 86
u⊕ v (u− v) + (v − u) 87
�α<κ Xα the diagonal intersection of Xα, α < κ 92
INS the nonstationary ideal 93
P

α<κ Xα the diagonal union of Xα, α < κ 93
Eκ

λ {α < κ : cf α = λ} 94
Tr(S) the trace of a stationary set S 99
Lim(C) the set of all limit points of a set C 100
o(A) the order of a stationary set A 100
�a∈A Xa the diagonal intersection in Pκ(A) 101
X�A the projection of X ∈ Pκ(B) to a set A ⊂ B 102
Y B the lifting of Y ∈ Pκ(A) to B ⊃ A 102
κ→ (λ)n

m κ arrows λ 109
κ→ (α)n

m κ arrows α 112
κ→ (α, β)n κ arrows (α, β) 112
o(x) the order-type of {y : y < x} in a tree T 114
height(T ) the height of a tree T , sup{o(x) + 1 : x ∈ T} 114
κ→ (α)<ω

m κ arrows α 121
Σ0

α, Σ0
α the hierarchy of Borel sets (Σ0

α sets, Π0
α sets) 140

A{As : s ∈ Seq} Suslin operation (
S

a∈ωω

T∞
n=0 Aa�n) 143

Σ1
n, Π1

n, ∆1
n the hierarchy of projective sets (Σ1

n sets, Π1
n sets, ∆1

n sets) 144
µ∗(X) the outer measure of a set X 146
v(I) the volume of an interval I 146
µ(A) the Lebesgue measure of a set A 147
tA [a1, . . . , an] the value of a term t in a model A 155
A � ϕ[a1, . . . , an] a formula ϕ holds in a model A 155
B ≺ A a model B is an elementary submodel of a model A 156
f =F g the functions f and g are equal modulo a filter F 158
ϕM,E , ϕM , (M, E) � ϕ the relativization of a formula ϕ 161
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Form the set of all formulas of the language {∈} 162
�ϕ� the set coding a formula ϕ (�ϕ� ∈ Form) 162
#σ the Gödel number of a sentence σ 162
T (x) the truth definition 162
Hκ the set of all x with |TC(X)| < κ 171
def(M) the set of subsets of M definable over (M,∈) 175
Lα, L the hierarchy of constructible sets 175
G1, . . . , G10 Gödel operations 178
cl(M) the closure of a set M under Gödel operations G1, . . . , G10 181

CM the class {x : ϕM (x)} where C = {x : ϕ(x)} 182
F M the operation F defined in a class M 182
cM the constant c defined in a class M 182
Σn, Πn, ∆n the hierarchy of properties, classes, relations, and functions 183
�n, �M

n the satisfaction relation restricted to Σn formulas 186
M ≺Σn N M is a Σn-elementary submodel of N 187
<n

α+1 the end-extensions of canonical well-orderings of the subsets
W α

n of Lα+1 189
<α+1 the canonical well-ordering of Lα+1 189
<L the canonical well-ordering of L 190
♦ the Diamond Principle 191
defA(M) the set of subsets of M definable over (M,∈, A ∩M) 192
Lα[A], L[A] the hierarchy of sets constructible from a set A 192
L(R) the smallest inner model that contains all reals 193
Lα(A), L(A) the hierarchy of sets constructible from elements of the tran-

sitive closure of a set A 193
OD the class of ordinal-definable sets 194
HOD the class of hereditarily ordinal-definable sets 194
OD [A] the class of ordinal-definable sets from A 195
HOD [A] the class of hereditarily ordinal-definable sets from A 195
OD(A) the class of ordinal-definable sets over A 195
HOD(A) the class of hereditarily ordinal-definable sets over A 196
ZF− Zermelo-Fraenkel set theory without the Power Set Axiom 198
L[A] the class of sets constructible from a class A 199
M [X] the least model of ZF such that M ⊂M [X] and X ∈M [X] 199
ȧ a name of a set from V [G] 203
x ∼ y the set of conditions compatible with x in a forcing notion

is the same as that for y 205
Q = P/∼ Q is the separative quotient of P 205
e : P → B(P ) the Boolean completion of a partially ordered set P 206
‖x = y‖, ‖x ∈ y‖ Boolean functions in a Boolean universe, the Boolean val-

ues of x = y and x ∈ y 206
‖ϕ‖ the Boolean value of a formula in a Boolean-valued model 207

V B the Boolean-valued model 209
ρ(x) the rank function in V B 209
u⇒ v −u + v 209
‖x ∈ y‖, ‖x ⊂ y‖, ‖x = y‖ the Boolean values of atomic formulas in V B 209
x̌ the canonical name for a set in the ground model 211
x̌ the canonical name for a set in the ground model 212
Ġ the canonical name for generic ultrafilter 214
MB the Boolean-valued model inside a transitive model M 214
MP the class of P -names, MP = MB(P ) 215
�, �P the forcing relation 215
p � ϕ p forces ϕ 215
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M̌ the canonical name for the ground model 215
xG the interpretation of a name by a generic ultrafilter 216
M [G] the generic extension of a transitive model M 216

xG the interpretation of a P -name by a generic filter 218
P ×Q the product forcing 229
G = G1 ×G2 a generic set G is the product of projections G1 and G2 in

a product forcing 229
Q

i∈I Pi the product of forcing notions Pi, i ∈ I 230
s(p) the support of a condition in an infinite product forcing,

s(p) = {i ∈ I : p(i) �= 1} 230
Gi, i ∈ I the projections of a generic filter G on the coordinates of

the product forcing
Q

i∈I Pi 230
P≤λ × P >λ the decomposition of Easton product into two parts, one

satisfying the λ+-chain condition and the other being λ-
closed 233

Col(κ, <λ) the Lévy collapsing algebra (λ is an inaccessible cardinal) 238
(PT , <) the forcing associated with a tree T 242
p ≤n q p ≤ q and every nth splitting node of q is an nth splitting

node of p 244
p�s the tree {t ∈ p : t ⊂ s or t ⊃ s} 245
B1�a the algebra {x · a : x ∈ B1} for an a ∈ B2 ⊃ B1, a �= 0 248
ZFA set theory with atoms 250
P α(S), P∞(S) the cumulative hierarchy in ZFA 250
P∞(∅) the kernel in ZFA 250
sym(x) the symmetry group of a set in ZFA, the group of permuta-

tions {π ∈ G : π(x) = x} 251
fix(E) the subgroup of permutations fixed on a set E of a given

group 252
sym(ẋ) the symmetry group of a name ẋ ∈ V B , the group of auto-

morphisms of B, {π ∈ G : π(ẋ) = ẋ} 253
HS the class of hereditarily symmetric names 253
x �→ x̃ an embedding of a permutation model U with the set of

atoms A into a symmetric model N of ZF so that (Pα(A))U

and (Pα(Ã))N are ∈-isomorphic 256
♦′ a principle equivalent to the Diamond Principle ♦ 263
P ∗ Q̇ two-step iteration of forcing notions 267
�P ϕ ‖ϕ‖B(P ) = 1 267
G ∗H two-step iteration of generic filters 267
B ∗ Ċ the iteration of two complete Boolean algebras 269
D : B the quotient of a complete Boolean algebra D by a filter

generated by the generic ultrafilter on a complete subalge-
bra B 269

Pα the iteration of a sequence 〈Q̇β : β < α〉 of names of forcing
notions 270

MA, MAκ Martin’s Axiom 272
SH Suslin’s Hypothesis 274
s(p) the support of p, s(p) = {β : not �β p(β) = 1} 280
f =∗ g f equals g modulo an ultrafilter U , {x ∈ S : f(x) = g(x)} ∈

U 285
[f ] the class of f in =∗ 285
f ∈∗ g, [f ] ∈∗ [g] a function f is a member of a function g modulo an ul-

trafilter U , {x ∈ S : f(x) ∈ g(x)} ∈ U 285
Ult, UltU (V ), (Ult,∈∗) the ultraproduct of the universe 285
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j, jU an elementary embedding of V in Ult 285
ext(f) the extension of the equivalence class [f ], {[g] : g ∈∗ f} 286
M(X) the Mahlo operation for a class X, M(X) = {α : X ∩ α is

stationary in α} 290
Lκ,ω a language with κ variables, and infinitary connectives

W

ξ<α,
V

ξ<α, for α < κ 293
Lκ,κ a language with κ variables, infinitary connectives

W

ξ<α,
V

ξ<α, and infinitary quantifiers ∃ξ<αvξ , ∀ξ<αvξ for α < κ 293
cϕ
ξ , ξ < α Skolem constants 293

∃ξ<αvξ ϕ(vξ, . . .)ξ<α → ϕ(cϕ
ξ , . . .)ξ<α a Skolem sentence for a formula ϕ in

an Lκ,κ language 294
Πn

m, Σn
m the hierarchy of higher order formulas 295

hϕ(x1, . . . , xn) a definable Skolem function for a formula ϕ(u, v1, . . . , vn) 300

0� zero-sharp, 0� = {ϕ : Lℵω � ϕ[ℵ1, . . . ,ℵn]} 312
hϕ(v1, . . . , vn) the canonical Skolem function for ϕ(u, v1, . . . , vn) 313

HA(X) the Skolem hull of X 314
Σ(A, I) the set of all formulas ϕ(v1, . . . , vn) true in A for increasing

sequences of elements of a set of indiscernibles I 314
Ult = UltD(M) the ultraproduct of M by an M -ultrafilter D 324
x� x-sharp, x� = {ϕ : (Lℵω [x],∈, x) � ϕ[ℵ1, . . . ,ℵn]}, for x ⊂ ω 328

Hδ(α ∪ p) the Skolem hull of α ∪ p in (Lδ,∈) 331
Hρ

n(Z) the Σn Skolem hull of a set Z in (Lρ,∈) 333

{(Ult(α), E(α)), iα,β : α, β ∈ Ord}, Ult
(α)
U (V ) the iterated ultrapowers 342

U (α) the κ(α)-complete ultrafilter on κ(α), U (α) = i0,α(U) 342
κ(α) the measurable cardinal in Ult(α), κ(α) = i0,α(κ) 344
Un the product ultrafilters, U1 = U , Un+1 = {X ⊂ κn+1 : {α :

{〈α1, . . . , αn〉 : 〈α, α1, . . . , αn〉 ∈ X} ∈ Un} ∈ U} 345
UE the ultrafilter induced by Un via the order isomorphism be-

tween n = |E| and E 346
inE,S(X) the inclusion map, inE,S(X) = {t ∈ κS : t�E ∈ X} for

X ⊂ κE 346
(Bα,⊂) the Boolean algebra of sets Z ⊂ κα having a finite support,

i.e., Z = inE,α(X) for some X ⊂ κE with finite E ⊂ α 347
0† zero-dagger 353
〈Mγ : γ ≤ λ〉 the iterated ultrapower of an inner model M 356
o(U) the order of a normal measure U (the rank of U in the

Mitchell order) 358
o(κ) the order of a cardinal κ (height of the Mitchell order) 358
U <U W U is a closed set of normal measures, U, W ∈ U , and U ∈

jW (U) 358
oU (U) the order of U ∈ U in <U 358
oU (κ) the order of a cardinal κ in <U 358
l(U) the length of a set of normal measures U 359
L〈Aα : α < θ〉 the model L[A] where A = {(α, X) : X ∈ Aα} 360
L[U ] the model L〈Uα,β : α, β〉 where U = {Uα,β : α, β} 360
x̂ {y ∈ Pκ(A) : x ⊂ y} 365
Ult−, Ult−U (V ) the version of ultrapower considering only functions on λ+

that assume at most λ values; U is an ultrafilter on λ+ for
a cardinal λ 367

[f ]− the element of the transitive collapse of Ult−(V ) represented
by the function f 367

κx, λx κx = x ∩ κ and λx = the order-type of x, for x ∈ Pκ(λ) 374
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αx the order type of x ∩ α 377
VP Vopěnka’s Principle 380
E = {Ea : a ∈ [λ]<ω} the (κ, λ)-extender derived from an elementary em-

bedding j with critical point κ 382
UltE the direct limit of the directed system {UltEa , ia,b : a ⊂ b ∈

[λ]<ω} associated with an extender E 382
jE : V → UltE the elementary embedding associated with an extender E 382
Ṗ

(α)
β the forcing iteration of 〈Q̇α+ξ : ξ < β〉 inside V Pα so that

Pα+β is isomorphic to Pα ∗ Ṗ
(α)
β 396

�s As {α < κ : α ∈ T{As : max(s) < α}} 402
A � s A− (max(s) + 1) for A ⊂ κ and s ∈ [κ]<ω 403
sat(I) sat(P (κ)/I) where I is an ideal on κ 409
f∗(I) the ideal {X ⊂ κ : f−1(X) ∈ I} where I is an ideal and f is

an ideal on κ 410
f∗(µ) the measure ν defined by ν(X) = µ(f−1(X)) where f : κ→

κ and µ is a (real-valued) measure on κ 410
g < h dom(g) ⊂ dom(h) and g(α) ≤ h(α) for α ∈ dom(g) where

g and h are functions into κ defined on a set of positive
measure 411

UltG(M) the generic ultrapower where G is a generic ultrafilter on
P (κ)/I 421

jG the canonical embedding from M into UltG(M) 421
W1 ≤W2 the I-partition W1 is a refinement of the I-partition W2 424
WF the I-partition {dom(f) : f ∈ F} associated with a func-

tional F 424
GI the infinite game on sets of positive I-measure played by

the players Empty and Nonempty 426
♦(E) the Diamond Principle restricted to a stationary set E 442
♦κ the Diamond Principle ♦(κ) 442
�κ Jensen’s Square Principle 443
PS the forcing shooting a closed unbounded set (conditions are

bounded closed subsets of a stationary set S; p is stronger
than q if q = p ∩ α for some α) 445

I+ {S ⊂ κ : S /∈ I} 450
I�S {X ⊂ κ : X ∩ S ∈ I}, the ideal concentrating on a set S 450
Reg {α < κ : α is a regular cardinal} 452
‖ϕ‖ the (rank) norm of a function ϕ : ω1 → ω1 458
f =I g, f ≤I g, f <I g the relations between functions modulo an ideal on

an infinite set 460
f =F g, f ≤F g, f <F g the relations between functions modulo the dual

ideal to a filter F 460
‖f‖ Galvin-Hajnal norm of an ordinal function f 460
fη , η < κ+ the canonical ordinal functions 461
cof D, cof

Q

A/D the cofinality of the ultraproduct
Q

A/D in the order-
ing <D 466

pcf A the set of all cofinalities of ultraproducts
Q

A/U 466
Ma

α, α < ωk an elementary chain of submodels of some (Hϑ,∈,≺) where
≺ is a well-ordering of Hϑ with Ma

α ⊃ a∪ωk for a countable
set a ⊂ ωk 468

χa
α the characteristic function of Ma

α for a countable set a ⊂ ωk

and α < ωk, χa
α(n) = sup(Ma

α ∩ ωn) 468
Ma Ma =

S

α<ωk
Ma

α for a countable set a ⊂ ωk 468
χa the characteristic function of Ma for a countable set a ⊂ ωk 468
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Bλ ⊂ A, λ ∈ pcf A the generators of pcf A 470
Jλ the ideal generated by the sets Bν , ν < λ 470
Jκ[Bκ] the ideal generated by Jκ ∪ {Bκ} 471

Bλ, λ ∈ A the transitive generators of pcf A 474
Σ1

n, Π1
n, ∆1

n the lightface hierarchy of projective sets 479
Σ1

n(a), Π1
n(a), ∆1

n(a) the relativization of the hierarchy of projective sets 479
Σ0

n, Π0
n the lightface Borel hierarchy (hierarchy of arithmetical sets) 480

um, m ∈ N (or zm, m ∈N ) the canonical homeomorphism between N
and Nω; um(n) = u(Γ(m, n)) 482

Seqr the set of r-tuples of sequences of natural numbers of the
same length 483

T (x) the tree {(s1, . . . , sr) ∈ Seqr : (x�n, s1, . . . , sr) ∈ T where
n = length si} 483

T/s the tree {t : s�t ∈ T} 484
‖T‖ the height of a well-founded tree T 484
ρT (t) the rank of an element t of a well-founded tree T 484
[T ] {f ∈ Xω : ∀n f�n ∈ T} 484
Seq(K) the set of all finite sequences in K 485
p[T ] {x ∈ N : T (x) is ill-founded} 485
Ex the relation {(m, n) : x(Γ(m,n)) = 0} coded by x ∈ N 485
WF {x ∈ N : x codes a well-founded relation} 485
WO {x ∈ N : x codes a well-ordering on N} 485
�ϕ the prewellordering induced by a norm ϕ; a �ϕ b↔ ϕ(a) ≤

ϕ(b) 496
δ1
2 sup{α : α is the length of a Σ1

2 prewellordering} 502
I1, I2, . . . , Ik, . . . a recursive enumeration of open intervals with rational

endpoints 504
u(c), vi(c) the elements of N defined, for c ∈ N and i ∈ N , by

u(c)(n) = c(n + 1), vi(c)(n) = c(Γ(i, n) + 1) 504
Σα, Πα the set of Σ0

α-codes and the set of Π0
α-codes, respectively,

0 < α < ω1 504
BC the set of all Borel codes

S

α<ω1
Σα =

S

α<ω1
Πα 504

Ac the Borel set coded by a c ∈ BC 504
Im, Ic the ideals {B ∈ B : µ(B) = 0} and {B ∈ B : B is meager},

respectively 511
Bm, Bc the quotient algebras B/Im and B/Ic, respectively 511
B∗ the Borel set Ac if B = AM

c for some c ∈M 511
R(M), C(M) the sets of all random and all Cohen reals over M , respec-

tively 514
Col(ℵ0, λ) the collapsing algebra 516
A � s A− (max(s) + 1) for A ⊂ ω and s ∈ [ω]<ω 524
[s, A] {X ∈ [ω]ω : s ⊂ X and X � s ⊂ A} 524
add(LM), cov(LM), unif(LM), cof(LM) the cardinal invariants of Lebesgue

measure 532
add(BP), cov(BP), unif(BP), cof(BP) the cardinal invariants of the Baire

property 532
d, b the dominating number and the bounding number, respec-

tively 533
t the least cardinality of a tower 540
u the least cardinality of a family of subsets of ω that gener-

ates an ultrafilter 540
rud(M) the rudimentary closure of M ∪ {M} 548
Jα, α ∈ Ord the Jensen hierarchy of constructible sets 548
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ρn
α the Σn-projectum of α, i.e., the least ρ ≤ α such that there

is a Σn(Jα) function such that f“Jρ = Jα 549
p�s the tree {t ∈ p : t ⊂ s or t ⊃ s} for a tree p and s ∈ p 557
F(T ) the fusion

T∞
n=0

S

s∈{0,1}n T (s) for a fusionable collection of

perfect trees T = {T (s) : s ∈ Seq({0, 1})} 558
T ′ the tree {t ∈ T : t has ℵ2 extensions in T} where T ⊂ ω<ω

2

is a tree 561
hT (t) the least α such that t /∈ Tα+1 where Tα is defined by in-

duction: T0 = T , Tα+1 = T ′
α, and Tα =

T

β<α Tβ if α is
limit 561

sp the stem of a Laver tree p 565
Sp(t) the set {a ∈ ω : t�a ∈ p} where p is a Laver tree and t ∈ p 565
sp

i , i = 0, 1, . . . a canonical enumeration of nodes in a Laver tree p 565
q ≤n p q ≤ p and sp

i ∈ q for all i = 0, . . . , n where p, q are Laver
trees 565

U + V the ultrafilter {X ⊂ N : {m ∈ N : X − m ∈ V } ∈ U}
where X −m = {n : m + n ∈ X} and U , V are ultrafilters
on N 573

βN the Stone-Čech compactification of N 573
A∗ the clopen set {V ∈ βN : A ∈ V } in βN for A ⊂N 574
OCA the Open Coloring Axiom 576
I × J the ideal of sets X ⊂ S × T such that {x ∈ S : {y ∈ T :

(x, y) ∈ X} /∈ J} ∈ I where I and J are ideals on S and T ,
respectively 580

Cκ the complete Boolean algebra of the forcing for adding κ Co-
hen reals 588

B the completion of a Boolean algebra B 588
A ≤reg B A is a regular subalgebra of a Boolean algebra B 588
prA(b), prA(b) the projections of b to a subalgebra A 589
〈X〉 the subalgebra generated by a set X 589
A(b1, . . . , bn) the subalgebra generated by the set A ∪ {b1, . . . , bn} where

A is a subalgebra 589
PS , CS CS = B(PS) and PS is the forcing consisting of finite

0–1 functions with domain ⊂ S 589
FrG the free Boolean algebra with a set G of free generators 590
lim supn an

Q∞
n=0

P

k≥n an (a Boolean operation) 598

lim infn an

P∞
n=0

Q

k≥n an (a Boolean operation) 598
limn an the common value of lim supn an and lim infn an provided

that they are equal 598
M [G] {ẋG : ẋ ∈M} where M ≺ Hλ and G is V -generic 605
PFA the Proper Forcing Axiom 607
T �C the tree {t ∈ T : o(t) ∈ C} where T is an ω1-tree and

C ⊂ ω1 is a closed unbounded set 612
PFA+ ifD = {Dα : α < ω1} are dense subsets of a proper forcing P

and if � Ṡ ⊂ ω1 is stationary, then there exists a D-generic
filter G such that ṠG is stationary 613

PFA− if P is proper such that |P | ≤ ℵ1 and if D = {Dα : α < ω1}
are dense then there exists a D-generic filter 614

GA the game of players I and II in which the players choose
the consecutive members of a sequence of natural numbers
〈a0, b0, a1, b1, . . .〉; I wins if the sequence is in the set A ⊂ ωω

and otherwise II wins 627
AD the Axiom of Determinacy 627
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σ ∗ b a play played by player I by a strategy σ in the game GA 627
a ∗ τ a play played by player II by a strategy τ in the game GA 627
PD the Projective Determinacy 628
ADL(R) the Axiom of Determinacy in L(R) 628
cone(x0) the cone {x ∈ N : x0 ∈ L[x]} 633
δ1

n sup{ξ : ξ is the length of a ∆1
n prewellordering of N} (the

projective ordinal) 636
Θ sup{ξ : ξ is the length of a prewellordering of N} 636
G

〈a0,b0,...,an,bn〉
A the game in which player I plays 〈an+1, an+2 . . .〉, player II

plays 〈bn+1, bn+2 . . .〉, and in which II wins when 〈a0, b0, a1,
b1, . . .〉 ∈ A 637

Ga0
A the game in which II makes a first move b0, then I plays a1,

etc., and II wins if 〈a0, b0, a1, b1, . . .〉 ∈ N − A 637
� the linear ordering of Seq that extends the partial order-

ing ⊃ 638
Ts {t ∈ Seq : (u, t) ∈ T for some u ⊂ s} where T ⊂ Seq2 is

a tree and s ∈ Seq 638
Ks the set {t0, . . . , tn−1} ∩ Ts where |s| = 2n, {tn : n ∈ ω} is

an enumeration of Seq and T ⊂ Seq2 is a tree 638
ks the size of the finite set Ks 638
Ts the set {t ∈ Seq : (s, t) ∈ T for some s ∈ Seq} and a tree T

on ωr ×K 642
µs, s ∈ Seq the measures on Ts’s ensuring that the tree T on ω ×K is

homogeneous 642
µs,t the natural projection map from Tt to Ts for s ⊂ t in Seq 642
Q, Q<κ the stationary tower forcing 653
f =G g, f ∈G g the predicates in the generic ultrapower by the stationary

tower forcing 653
K the core model up to a measurable cardinal 660
rudA(M) the closure of M ∪ {M} under functions rudimentary in A 660
JA

α , α ∈ Ord the relativized Jensen hierarchy of sets 660
Cλ the closed unbounded filter on λ 661
M < M ′ the well-ordering of mice 662
Km the core model up to o(κ) = κ++ 664
Kstrong the core model up to a strong cardinal 666
ρ1

M the Σ1-projectum of M 667
MS =

S∞
n=0 MSn the class of all measure sequences 676

RU the Radin forcing for a measure sequence U 677
MM Martin’s Maximum 681
SPFA Semiproper Forcing Axiom 681
RCS revised countable support iteration 682
X⊥ X⊥ = {M ∈ [Hλ]ω : M ≺ Hλ and N /∈ X for every count-

able N that satisfies M ≺ N ≺ Hλ and N ∩ ω1 = M ∩ ω1} 684
RP, RP(λ) the Reflection Principle 688
SRP, SRP(λ) the Strong Reflection Principle 688
IA the set of all internally approachable models 699
�κ,ν , �κ,<ν weaker square principles 702
�κ,κ, �∗

κ the Weak Square 702
F 1

n the Π1
n filter 703

ADR the determinacy of games where moves are real numbers 705
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Bukovský, Lev, 61, 407, 571
Burgess, John P., 617, 626
Burke, Maxim R., 465, 466, 469, 470,

477, 705

Cantor, Georg Ferdinand Ludwig
Philipp, (1845–1918), 15, 24, 26–29,
33, 35, 37, 38, 40, 42–45, 55, 88, 139,
148, 151, 153, 244, 492, 500, 522,
524, 539, 561, 619, 623, 632

Carr, Donna M., 105
Cartan, Henri Paul, 89
Cauchy, Augustin-Louis, (1789–1857),

40, 42
Čech, Eduard, (1893–1960), 573
Chang, Chen Chung, 172, 328, 337,

582, 704
Cohen, Paul Joseph, 201, 202, 219, 221,

224–226, 236, 241, 243, 255, 256, 262,
264, 265, 273, 281, 282, 419, 437,
456, 511, 513–515, 520, 523, 536, 537,
539, 563, 564, 569, 571, 582, 588,
589, 591, 592, 599, 667, 691

Comfort, William Wistar, 89
Cummings, James, 673, 680, 702, 705

Davis, Morton, 644
Dedekind, Julius Wilhelm Richard,

(1831–1916), 34, 35, 39, 45, 48, 83
Dehornoy, Patrick, 407
De Morgan, Augustus, (1806–1871), 78,

88
Devlin, Keith J., 330, 337, 545, 547,

550, 551
Dodd, Anthony J., 387, 658–661, 663,

664, 666, 668
Donder, Hans-Dieter, 682, 705



744 Name Index

Douwen, Eric Karel van, (1946–1987),
540

Dushnik, Ben, 112, 123

Easton, William Bigelow, 232–235, 237,
262, 264, 393, 395, 396, 398, 399,
670, 672, 674

Ehrenfeucht, Andrzej, 313, 314, 337
Ellentuck, Erik, 524, 525, 527, 528, 540
Ellis, R., 583
Engelking, Ryszard, 264
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Lévy, Azriel, 172, 183, 200, 237, 238,
255, 256, 259, 264, 265, 389, 392,
407, 434, 435, 439, 445, 446, 454,
493, 508, 516, 518–522, 529, 553, 555,
570, 626, 650, 651, 656, 674, 675

Lindenbaum, Adolf, (1904–1941), 79
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Monk, J. Donald, 309
Montague, Richard, 71, 172
Morgenstern, Carl F., 387
Moschovakis, Yiannis N., 496, 508, 509,

636, 640, 645
Mostowski, Andrzej, (1913–1975), 69,

71, 265, 286, 313, 314, 337, 484, 494,
508

Mycielski, Jan, 644
Myhill, John R., 200

Namba, Kanji, 561, 571, 675
Neumann, John von, (1903–1957), 26,

71
Novikov, Peter Sergeevich, (1901–1975),

509

Paris, Jeffrey B., 364, 392, 407
Patai, L., 61
Pawlikowski, Janusz, 534, 540
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Peano, Giuseppe, (1858–1932), 157
Pierce, Richard S., (1927–1992), 89
Pincus, David F., 265
Posṕı̌sil, Bedřich, (1912–1944), 75, 89
Powell, William C., 387
Prikry, Karel L., 105, 400–403, 406,

407, 410, 421, 438, 524, 525, 540, 566,
583, 664, 669, 674–677, 680, 682, 692

Prisco, Carlos Augusto Di, 705

Radin, Lon Berk, 675–678, 680
Rado, Richard, (1906–1989), 60, 61,

111–113, 122, 123, 456, 462, 540, 582
Raisonnier, Jean, 533, 540
Ramsey, Frank Plumpton, (1903–1930),

76, 77, 86, 87, 89, 107–110, 121–123,
135, 136, 138, 283, 299–302, 305, 308,
311, 315, 318, 320, 328, 390, 391,
524–527, 529, 537, 538, 540, 573, 574,
626

Reinhardt, William Nelson,
(1939–1998), 138, 274, 283,
309, 386, 387

Rothberger, Fritz, (1902–2000), 540,
541, 583

Rothschild, Bruce L., 573
Rowbottom, Frederick, 138, 282, 283,

300, 305, 308, 309, 406, 412
Rubin, Matatyahu, 583, 610, 614
Rudin, Mary Ellen, 86, 89
Rudin, Walter, 89
Russell, Bertrand Arthur William,

(1872–1970), 4

Sacks, Gerald E., 244, 264, 595, 604,
691

Scheepers, Marion, 575, 583
Schimmerling, Ernest, 611, 697, 702,

704, 705
Schlindwein, Chaz, 682, 694
Scott, Dana Stewart, 200, 224, 265,

285, 296, 297, 300, 309, 323
Shanin, Nikolai Aleksandrovich, 118,

123
Shelah, Saharon, 76, 89, 387, 442, 443,

450, 451, 453, 456, 457, 460, 461,
465, 466, 469, 470, 473, 476, 477,
537, 540, 550, 555, 556, 563, 570,
571, 583, 592, 595, 598, 599, 601,
604, 607, 610, 614, 620, 626, 658,
667, 672, 673, 680, 682, 684, 686–688,
690–695, 697, 698, 702, 703, 705

Shepherdson, John Cedric, 200

Shoenfield, Joseph R., (1927–2000), 70,
71, 200, 490, 491, 495, 507, 508, 557,
618

Sierpiński, Wac�law, (1882–1969), 61,
123, 153, 490, 508, 540

Sikorski, Roman, (1920–1983), 88, 89,
265

Silver, Jack H., 96, 105, 232, 283, 309,
311–313, 318–320, 322, 323, 328, 330,
336, 337, 339, 353, 364, 394, 395,
407, 421, 422, 438, 439, 457, 524,
540, 553, 556, 569, 571, 583, 615,
617, 618, 623, 626, 647, 661, 663,
669, 670, 672, 686

Skolem, Thoralf Albert, (1887–1963),
15, 71, 155–157, 168, 169, 171, 172,
198, 293, 294, 300, 301, 304, 305,
308, 313–318, 320, 321, 323, 326,
331–334, 336, 348–352, 370, 371, 412,
545–547, 549, 550, 660, 662, 685, 689

Slaman, Theodore A., 626
Smith, Edgar, 438
Sochor, Antońın, 256, 265
Solovay, Robert M., 95, 105, 138, 224,

264, 267, 272, 274, 276, 282, 337,
364, 372, 386, 387, 389, 392, 407,
410, 424, 428, 429, 438, 439, 450,
492, 508, 509, 511, 515, 519–523, 529,
540, 547, 551, 556, 599, 620, 626,
633, 634, 636, 645, 650, 699, 705

Specker, Ernst P., 265, 571
Spencer, Joel H., 573
Steel, John R., 387, 642, 643, 645,

666–668, 695, 702, 705
Steinhaus, Hugo, (1887–1972), 644
Stern, Jacques, 533, 540
Stewart, Frank M., 644
Stone, Marshall Harvey, (1903–1989),

78, 81, 89, 573
Suslin, Mikhail Yakovlevich,

(1894–1919), 39, 45, 113–116,
123, 143–146, 153, 239, 241, 242,
262–264, 267, 274, 282, 484, 485, 488,
497, 503, 527, 551, 556, 559, 563,
571, 593–595, 599, 612, 615, 621,
642–644, 656

Świerczkowski, Stanis�law, 644
Szpilrajn, Edward, see Marczewski,

Edward

Takeuti, Gaisi, 407
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Tarski, Alfred, (1902–1983), 14, 15, 61,
75, 81, 89, 123, 137, 138, 162, 172,
308, 309, 386, 438

Taylor, Alan D., 688, 705
Tennenbaum, Stanley, 264, 267, 272,

274, 282
Tikhonov, Andrei Nikolaevich,

(1906–1993), 50, 256
Todorčević, Stevo, 563, 571, 574, 577,

583, 609, 610, 612, 614, 688, 689,
693, 694

Truss, John K., 533, 540

Ulam, Stanis�law Marcin, (1909–1984),
126, 131–133, 137, 153, 409

Urysohn, Pavel Samuilovich,
(1898–1924), 105

van der Waerden, B. L., see Waerden,
Bartel Leendert van der

van Douwen, E. K., see Douwen, Eric
Karel van

van Wesep, R., see Wesep, Robert van
Vaught, Robert L., (1926–2002), 172
Veličković, Boban, 614, 626
Vitali, Giuseppe, (1875–1932), 48, 137,

138, 147, 149, 152

Vladimirov, Denis Artemievich,
(1929–1994), 598, 599

von Neumann, J., see Neumann, John
von

Vopěnka, Petr, 200, 224, 249, 265, 366,
380, 386, 540

Waerden, Bartel Leendert van der,
(1903–1996), 574, 583

Welch, Philip, 668
Wesep, Robert van, 705
Witzany, Jǐŕı, 698
Woodin, W. Hugh, 365, 384, 387, 390,

395, 430, 450, 452, 456, 607, 611,
623, 626, 636, 639, 640, 642, 643,
645, 647–650, 653–659, 666–669, 673,
674, 678–680, 689, 695–697, 702, 705

Young, William H., (1863–1942), 153

Zapletal, Jindřich, 463, 593, 599
Zermelo, Ernst Fridrich Ferdinand,

(1871–1953), 3, 15, 26, 48, 50, 61,
198

Zorn, Max A., (1906–1993), 49, 50, 59,
61, 75, 88, 575, 581
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Absolute formula (property)
– downward absolute formula, 185
– formula absolute for a transitive

model, 163
– upward absolute formula, 185
Σ1

3-Absolute universe for generic
extensions, 624

Addition of cardinals, κ + λ, 28
Addition of ordinals, α + β, 23
κ-Additive measure, 129
Adequate model, 184
Adequate set, 188
Aleph, 29
Algebra, see algebra of sets, Boolean

algebra, subalgebra
Algebra of sets, 41
– κ-complete algebra of sets, 82
– σ-algebra, 41
– σ-algebra of Borel sets, 41
– σ-algebra of Lebesgue measurable

sets, 42
– σ-algebra of sets having the Baire

property, 149
Algebraic real number, 44
Almost all, 99, 159, 409
Almost disjoint family
– almost disjoint family of functions,

97
– almost disjoint family of sets, 118
– strongly almost disjoint family of

sets, 451
Almost disjoint forcing, 277
Almost disjoint functions, 118, 419
Almost disjoint sets, 118, 578, 651
Almost everywhere, 159
Almost universal class, 182
Alphabet, 574
Amalgamation
– amalgamation of Laver trees, 565
– amalgamation of perfect trees, 245

Amenable model, 549
Analytic set, 142
Antichain
– antichain below a condition, 202
– antichain in a Boolean algebra, 84
– antichain in a tree, 114
– antichain of conditions, 201
– maximal antichain, 84
Arithmetic progression, 574
Arithmetical set, Σ0

n, Π0
n, 480

Aronszajn tree, 116
Arrow notation
– κ→ (α)n

m, 112
– κ→ (α, β)n, 112
– κ→ (λ)n

m, 109
Atom
– atom in the theory ZFA, 250
– atom of an ideal, 410
– atom of a Boolean algebra, 79
– atom of a measure, 126
Atomic formulas, x ∈ y, x = y, 5
Atomless ideal, 410
Atomless measure, 126
Automorphism
– automorphism of a Boolean algebra,

79
– automorphism of a Boolean-valued

universe V B , 221
– automorphism of a partially ordered

set, 18
– automorphism of a tree, 262
– ∈-automorphism of the universe, 66
– ∈-automorphism of the universe of

ZFA, 251
Axiom
– a weak form of the Axiom of Choice,

628
– ADL(R), 628
– Analytic Determinacy, 637
– axiom (20.30), 381
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– axiom consistent relative to a theory,
163

– axiom consistent with a theory, 163
– axiom independent of a theory, 163
– Axiom of Choice, AC, 3, 47, 70
– Axiom of Constructibility, V = L,

175
– Axiom of Determinacy, AD, 627
– Axiom of Determinateness, AD, 644
– Axiom of Extensionality, 3, 6, 70, 250
– Axiom of Infinity, 3, 13, 70
– Axiom of Pairing, 3, 6, 70
– Axiom of Power Set, 3, 9, 70
– axiom of predicate calculus, 6
– Axiom of Regularity, 3, 63, 70
– Axiom of Replacement, 70
– Axiom of Union, 3, 9, 70
– Continuum Hypothesis, CH, 37
– Countable Axiom of Choice, 50
– ∆1

n Determinacy, 639
– Diamond Principle, ♦, 191
– Generalized Continuum Hypothesis,

GCH, 55
– Martin’s Axiom, MA, 272
– Martin’s Axiom, MAκ, 272
– Open Coloring Axiom, OCA, 576
– see principle
– Projective Determinacy, PD, 628
– Proper Forcing Axiom, PFA, 607,

PFA+, 613, PFA−, 614
– Reflection Principle, RP, 688
– restricted Diamond Principle, ♦(E),
♦κ, 442

– Singular Cardinal Hypothesis, SCH,
58

– Strong Reflection Principle, SRP,
688

– Suslin’s Hypothesis, SH, 274
Axiom schema
– Axiom Schema of Comprehension, 4,

70
– Axiom Schema of Replacement, 3, 13
– Axiom Schema of Separation, 3, 4, 7
– Collection Principle, 65
– Vopěnka’s Principle, VP, 380
Axioms of Bernays-Gödel, BG, BGC,

70
Axioms of Zermelo-Fraenkel, ZF, ZFC,

3
Axiom A, 614

Baire Category Theorem, (T4.8) 41
Baire property, 148

Baire space, N , 42
Bernays-Gödel axioms, BG, BGC, 70
Beth function, �α, 55
Binary relation, see relation
Boolean algebra, 78
– (κ, λ)-distributive Boolean algebra,

246
– atomic Boolean algebra, 79
– atomless Boolean algebra, 79
– Boolean algebra completely generated

by a set, 83
– Boolean algebra generated by a set,

79
– class Boolean algebra, 235
– Cohen algebra, 588
– collapsing algebra Col(ℵ0, λ), 516
– complete Boolean algebra, 82
– countably complete Boolean algebra,

82
– free Boolean algebra, FrG, 590
– κ-complete Boolean algebra, 82
– κ-distributive Boolean algebra, 85
– κ-generated Boolean algebra, 247
– κ-saturated Boolean algebra, 84
– Lévy collapsing algebra Col(κ, <λ),

(T15.22) 238
– Lindenbaum algebra, 79
– measure algebra, 415, 585
– minimal algebra, 595
– quotient algebra, 80
– rigid algebra, 595
– σ-complete Boolean algebra, 82
– semi-Cohen algebra, 591
– simple algebra, 595
– strategically ω-closed Boolean

algebra, 596
– see subalgebra
– Suslin algebra, 593
– trivial Boolean algebra, {0, 1}, 81
– weakly (κ, λ)-distributive Boolean

algebra, 246
Boolean operation
– +, ·, −, 78
– ⇒, 209
– ⊕, 87
– infinite Boolean operations,

P

,
Q

,
82, lim supn an, lim infn an, 598

Boolean universe, 206
Boolean value of a formula, ‖ϕ‖, 207
Boolean-valued model, 206
– Boolean valued model V B , 209
– Boolean-valued model with a class

Boolean algebra, 235
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– extensional Boolean-valued model,
209

– full Boolean-valued model, 208
Borel code, 504
– Π0

α-code, 504
– Σ0

α-code, 504
Borel set, 41, 140
Borel’s Conjecture, 564
Bounded MA(P), 691
Bounded set in a tree, 240
Bounded subset of an ordinal, 32
Boundedness Lemma, (C25.14) 487
Bounding number, b, 533
Branch in a tree, 114
α-Branch in a tree, 114
Branching family, 579

Canonical embedding, see embedding
Canonical inner model, see inner model
Canonical name, see name
Canonical stationary set, see stationary

set
Canonical well-ordering, see well-

ordering
Cantor space
– Cantor set, C , 37
– generalized Cantor space, λω, 623
Cantor’s Normal Form Theorem,

(T2.26) 24
Capture (model N captures dense

set A), 655
Cardinal invariant, 529
– additivity, add, 532
– bounding number, b, 533
– cofinality, cof, 532
– covering, cov, 532
– dominating number, d, 533
– uniformity, unif, 532
Cardinal number, 29
– α-Mahlo cardinal, 696
– see cardinal invariant
– cardinal satisfying full reflection, 698
– Erdős cardinal, ηα, 302
– extendible cardinal, 379
– finite cardinal, 27
– greatly Mahlo cardinal, 697
– huge cardinal, 380
– inaccessible cardinal, 58
– ineffable cardinal, 308
– Jónsson cardinal, 305
– λ-strong cardinal, 382
– λ-strong cardinal for a set A, 647
– λ-supercompact cardinal, 375

– limit cardinal, 30
– Mahlo cardinal, 95
– measurable cardinal, 127
– n-huge cardinal, 386
– Πn

m-indescribable cardinal, 295
– Ramsey cardinal, 121
– real-valued measurable cardinal, 130
– reflecting cardinal, 697
– regular cardinal, 32
– Rowbottom cardinal, 305
– singular cardinal, 32
– strong cardinal, 381
– strong limit cardinal, 58
– strongly compact cardinal, 136
– sufficiently large cardinal, 602
– supercompact cardinal, 136, 374
– superstrong cardinal, 657
– weakly compact cardinal, 113
– weakly inaccessible cardinal, 33
– weakly Mahlo cardinal, 96
– Woodin cardinal, 384, 647
Cardinal successor of an ordinal, α+, 29
Cardinality, |X|, 27
Chain
– chain in a partially ordered set, 49
– E-chain, 611
– elementary chain of models, 611
Chain condition
– countable chain condition, c.c.c., 84,

220
– κ-chain condition, κ-c.c., 84, 227
Chang’s Conjecture, 328
Characteristic function
– characteristic function of a model,

χa
α(n), 468

Choice function, 47
Class, 5, 70
– almost universal class, 182
– class closed under an operation, 177
– class definable from parameters, 5
– class of forcing conditions, 235
– class of hereditarily ordinal-definable

sets from a set, HOD [A], 195
– class of hereditarily ordinal-definable

sets over a set, HOD(A), 196
– class of hereditarily ordinal-definable

sets, HOD , 194
– class of hereditarily symmetric

names, HS , 253
– class of ordinal-definable sets from

a set, OD[A], 195
– class of ordinal-definable sets over

a set, OD(A), 195
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– class of ordinal-definable sets, OD ,
194

– class of sets constructible from a set,
L[A], 192

– class of Silver indiscernibles, 311
– δ-closed class, 325
– definable class, 5
– ∆n class, 184
– extensional class, 68
– generic class over a model, 235
– Πn class, 183
– proper class, 6
– Σn class, 183
– the smallest inner model containing

a set, L(A), 193
– universal class, V , 6
Class Boolean algebra, 235
Closed forcing
– essentially <κ-closed forcing, 455
– κ-closed forcing, 228
– <κ-closed forcing, 228
Closed set
– closed set of normal measures, 358
– closed subset of Pκ(A), 100
– ≡-closed set, 633
– set closed under an operation, 102
– set of indiscernibles closed in OrdA ,

318
Closed unbounded filter
– closed unbounded filter on Pκ(A),

100
– closed unbounded filter on κ, 91
– closed unbounded filter Cκ survives

at β, 663
Closed unbounded set
– closed unbounded set in κ, 91
– closed unbounded subset of Pκ(A),

100
– locally closed unbounded set, 691
– strongly closed unbounded set, 704
Closure
– closure point of a function, 102, 678
– closure under functions rudimentary

in A, rudA(M), 660
– rudimentary closure, rud(M), 548
– transitive closure, TC(S), 64
Club-guessing property, 442
Club-guessing sequence, 442
Club-isomorphic trees, 612
Co-dense subalgebras, 591
Code
– Borel code, 504

– code of an uncountable set in almost
disjoint forcing, 277

– code of a binary relation on N , 485
– code of a formula by a set, �ϕ�, 162
– code of a set by a set of ordinals, 196
– Π0

α-code, 504
– Σ0

α-code, 504
– standard code, 549
Cofinal sequence, 31
Cofinal set
– cofinal subset of an ordinal, 31
– cofinal subset of a partially ordered

set, 461
Cofinality
– see cardinal invariant
– cofinality of an ordinal, cf α, 31
– cofinality of a partially ordered set,

461
– possible cofinalities of ultraproducts,

pcf, 466
– true cofinality of a partially ordered

set, 461
Cohen algebra, 588
Cohen forcing, 202
Cohen real, 202, 225, 513
Coherent system of measures, 382
Coiteration, 358
Collapse forcing, 237
Collapsing a cardinal, 203
Collapsing cardinals, 237
Collection, see family
Collection Principle, 65
Compactness of pcf, 472
Compactness Theorem, 293
Comparison of mice, 661
Compatible conditions, 201
Complete Boolean algebra, 82
Complete embedding, 83
Complete homomorphism, 83
Complete linearly ordered set, 38
Complete metric space, 40
Complete subalgebra, 83
Completely generated algebra

(subalgebra), 83
Completely Ramsey set, 525
Completion of a Boolean algebra, 82
n-Component of a Laver tree, 565
Composition of functions, 11
Condensation Lemma, (L13.17) 188,

(L18.38) 332, (L27.5) 550
Condensation point, 45
Condition, see forcing condition, forcing

conditions
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Cone, 633
Conjecture
– Borel’s Conjecture, 564
– Chang’s Conjecture, 328
Connectives, ∧, ∨, ¬, →, ↔, 5
Consistent set of sentences, 157
Constant function, ca, 161
Constructible set, 175
Constructible universe, L, 175
Continued fraction, 42
Continuous sequence, 22
Continuum (real line), R, 37
Continuum (the cardinality of R), c, 37
Continuum function, 2κ, 55
Continuum Hypothesis, CH, 37
Core model
– core model up to a measurable

cardinal, K, 660
– core model up to a strong cardinal,

Kstrong, 666
– core model up to a Woodin cardinal,

Ksteel, 667
– core model up to o(κ) = κ++, Km,

664
Correct position in a strategy, 631, 632
Correspondence, 12
Countable Axiom of Choice, 50
Countable chain condition, c.c.c., 39,

84, 220
Countable set, 30
Countably complete Boolean algebra,

82
Countably complete filter, 77
Countably complete ideal, 77
Critical point
– critical point of an elementary

embedding, 323
– critical point of an extender, 382
Cumulative hierarchy, 171
– constructible hierarchy of sets, Lα,

175
– hierarchy Lα(A), 193
– hierarchy of sets constructible from

a set, Lα[A], 192
– hierarchy of sets with atoms, P α(S),

250
– hierarchy of sets, Vα, 64
– Jensen hierarchy, Jα, 548
– relativized Jensen hierarchy, JA

α , 660
Cut
– cut in a Boolean algebra, 83
– Dedekind cut in a linearly ordered

set, 39

– regular cut in a Boolean algebra, 83
– regular cut in a separative partially

ordered set, 205

D-finite set, 34
D-infinite set, 34
∆-Lemma, 118
∆-system, 117
Decide a formula, 204
Dedekind cut, 39
Definable class, 5
Definable element, 157
Definable set
– definable class, 5
– definable set in a model, 157
– definable set over a model, 157
ω1-Dense ideal, 695
Dense linearly ordered set, 38
Dense open set, 41
Dense set, 201, 205
Dense subalgebra, 82
Dense subset, 38
Density
– density of a Boolean algebra, 589
– subset of N of density 0, 74
– uniform density of a Boolean algebra,

589
Determinacy, 627
– ADR , 705
– ADL(R), 628
– Analytic Determinacy, 637
– Borel Determinacy, 637
– ∆1

n Determinacy, 639
– Determinacy of open games, 636
– the Axiom of Determinacy, AD, 627
– the Projective Determinacy, PD, 628
Diagonal function, d, 287, 374
Diagonal intersection
– �α<κ Xα, 92
– �s∈[κ]<ω As, 402

– diagonal intersection in Pκ(A),
�a∈A Xa, 101

Diagonal limit of ordinal functions, 461
Diagonal union,

P

α Xα, 93
Diamond Principle
– ♦, 191
– ♦(E), 442
– ♦κ, 442
– ♦κ(E), 550
Difference of sets, X − Y , 8
Direct limit, 158
λ-Directed closed forcing notion, 395
Directed set, 157
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Directed subset of Pκ(A), 101
Directed system of models, 157
Disjoint elements, 78
Disjoint family of sets, 12
Disjoint sets, 8
I-Disjoint sets, 580
(κ, λ)-Distributive Boolean algebra, 246
κ-Distributive Boolean algebra, 85
κ-Distributive forcing, 228
<κ-Distributive forcing, 228
Distributivity, 85, 228, 246
Domain of a relation, 10
Dominating family, 532
Dominating number, d, 533
Domination
– a function dominates a function, 243
– eventual domination, 580
– function eventually dominates

a function, 278
Dual filter, 73
Dual ideal, 73

E.M. set (Ehrenfeucht-Mostowski), 314
Easton product, 233
Easton support, 395
Element
– definable element, 157
– E-minimal element, 25
– element hereditarily in a set, 66
– greatest element, 17
– independent element over a subalge-

bra, 590
– least element, 17
– maximal element, 17, 49
– minimal element, 17
– stable element, 84, 88
Elementarily equivalent models, 156
Elementary chain of models, 611
Elementary embedding, 157
Σn-Elementary submodel, M ≺Σn N ,

187
Elementary submodel, B ≺ A, 156
Ellentuck topology, 524
Embedding, 79, 156
– canonical embedding, j, 161, jG, 421
– complete embedding, 83
– elementary embedding, 157
– elementary embedding of the

universe, 285
– nontrivial elementary embedding (of

the universe), 287
Empty set, ∅, 8
End-extension

– end-extension of a model, 654
– end-extension of a set, 406
– end-extension of <α (on Lα), 188
Enumeration, 21
Enumeration of alephs, ℵα, 30
Equivalence class, [x], 12
Equivalence relation, 12
Erdős cardinal ηα, 302
Erdős-Rado Partition Theorem, (T9.6)

111
Essentially <κ-closed forcing, 455
Eventual domination, 580
Exact upper bound of a set of ordinal

functions, 461
Exponentiation of cardinals, κλ, 28
Exponentiation of ordinals, αβ , 23
Extender
– (κ, λ)-extender derived from an

elementary embedding, 382
– (κ, λ)-extender derived from the

direct limit embedding, 384
– two extenders overlap, 666
Extendible cardinal, 379
Extension
– see end-extension
– extension of a function, 11
– extension of a set in a binary relation,

67
– generic extension, 216
Extensional Boolean-valued model, 209
Extensional class, 68
Extensional relation, 68

Fσ set, 42
Factor Lemma, (L19.5) 342, (L21.8)

396, (C26.11) 518
Family, 12
– almost disjoint family, 118
– branching family, 579
– disjoint family, 12
– dominating family, 532
– functional, 424
– fusionable collection of perfect trees,

558
– independent family, 75
– see set
– strongly almost disjoint family of

sets, 451
– unbounded family, 532
Field of a relation, 10
Filter, 73, 80, 202
– see closed unbounded filter
– countably complete filter, 77
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– dual filter, 73
– filter generated by a set, 74
– filter on a group, 251
– Fréchet filter, 73
– see generic filter
– κ-complete filter, 77, 82
– maximal filter, 74
– normal filter, 96
– Π1

n filter on κ, 703
– principal filter, 73, 80
– σ-complete filter, 77
– trivial filter, {S}, 73, {1}, 80
– see ultrafilter
Fine measure, see measure
Finite cardinal, 27
Finite intersection property, 74, 80
Finite ordinal, 20
Finite sequence, 21
Finite set, 14, 20
– D-finite set, 34
– T-finite set, 14
First category, 148
Fixed point, 26
Forces, p forces σ, p � σ, 204
Forcing, 201
– almost disjoint forcing, 277
– Cohen forcing, 202
– collapse forcing, 237
– λ-directed closed forcing, 395
– forcing adding ℵ2 eventually different

reals, 593
– forcing adding a closed unbounded

set with finite conditions, 613
– forcing collapsing a cardinal, 203
– forcing collapsing cardinals, 237
– forcing preserving cardinals, 219
– forcing satisfying Axiom A, 604
– forcing shooting a closed unbounded

set, 445
– forcing with a class of conditions, 235
– forcing with countable normal trees,

239
– forcing with perfect trees (Sacks

forcing), 244
– Hechler forcing, 278
– see iterated forcing
– κ-closed forcing, 228
– <κ-closed forcing, 228
– κ-distributive forcing, 228
– <κ-distributive forcing, 228
– Laver forcing, 565
– Lévy collapse, 238
– Magidor’s forcing, 674

– Mathias forcing, 524
– Prikry forcing, 401
– product forcing, 229
– proper forcing, 601
– Radin forcing, RU , 677
– random forcing, 243
– semiproper forcing, 649
– stationary set preserving forcing, 681
– stationary tower forcing, 653, 678
– strategically ω-closed forcing, 596
Forcing axiom
– Bounded MA(P), 691
– MA(P), 690
– MA+(P), 690
– Martin’s Maximum, MM, 681
– Semiproper Forcing Axiom, 681
Forcing condition
– empty condition, ∅, 230
– master condition, 400
– (M, P )-generic condition, 602
– (M, P )-semigeneric condition, 649
– stronger forcing condition, 201
Forcing conditions, 201
– compatible forcing conditions, 201
– incompatible forcing conditions, 201
– semiproper set of conditions, 654
Forcing language, 215
Forcing notion, see forcing
Forcing relation, �P , �, 215
Forcing Theorem, (T14.6) 204
Formula, 5, 155
– atomic formulas, x ∈ y, x = y, 5
– formula of nth order, 295
– formula valid in a Boolean-valued

model, ‖ϕ‖ = 1, 207
– Πn formula, 183
– Πn

m formula, 295
– Σn formula, 183
– Σn

m formula, 295
Fréchet filter, 73
Free Boolean algebra, FrG, 590
Free variable, 5
Full Boolean-valued model, 208
Full reflection, 698
Function, 11
– beth function, �α, 55
– canonical ordinal function on κ, fη,

460
– see characteristic function
– choice function, 47
– constant function, ca, 161
– continuum function, 2κ, 55
– diagonal function, d, 287, 374
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– ∆n function, 184
– exact upper bound of a set of ordinal

functions, 461
– function eventually dominates

a function, 278
– function from a set to a set, 11
– function on a set, 11
– function on κα with finite support,

347
– function onto a set, 11
– gimel function, ,(κ)ג 56
– Hartogs function, h(X), 29
– inclusion map, 346
– increasing function, 17
– inverse of a function, 11
– Laver function, 378
– monotone function, 306
– n-ary function on a set, 11
– normal (ordinal) function, 92
– one-to-one function, 11
– order-preserving function, 17
– Πn function, 183
– rank function, ρ(x), 68
– regressive (ordinal) function, 93
– rudimentary function, 548
– rudimentary function in A, 660
– Skolem function, 156
– Σn function, 183
– Σn Skolem function, 333
– unbounded function on a set of

positive measure, 410
Functional, 424
Fusion, 244
– fusion of a fusion sequence, 565
– fusion of a fusionable collection, 558
Fusion sequence
– fusion sequence of Laver trees, 565
– fusion sequence of perfect trees, 244
Fusionable collection of perfect trees,

558

Gδ set, 42
Game
– analytic game, 637
– Banach-Mazur game, 630
– Borel game, 637
– closed game, 637
– covering game, 629
– determined game GA, 627
– GA, 627
– game G on a Boolean algebra, 596
– GI , 426
– open game, 636

– perfect set game, 632
– projective game, 628
– proper game for P below p, 603
– Solovay game, 634
Gap
– Hausdorff gap, 575
– (κ, λ)-gap, 575
Generalized Continuum Hypothesis,

GCH, 55
σ-Generates (a set σ-generates

a Boolean algebra), 585
Generators of pcf, 470
– transitive generators of pcf, 473
Generic class, 235
(M, P )-Generic condition, 602
Generic extension, 216
Generic filter
– D-generic filter, 202
– generic filter minimal over the ground

model, 244
– generic ultrafilter, 206
Generic Model Theorem, (T14.5) 203
Generic real
– Cohen real, 202, 225, 513
– Laver real, 565
– Mathias real, 527
– random real, 243, 513
– Sacks real, 244
Generic set, 202
Generic ultrafilter, 206
Generic ultrapower, UltG(M), 421, 653
Gimel function, ,(κ)ג 56
Gödel number of a sentence, #σ, 162
Gödel numbering, 162
Gödel operations, G1, . . . , G10, 177
Gödel’s Completeness Theorem, 157
Gödel’s First Incompleteness Theorem,

157
Gödel’s Normal Form Theorem, (T13.4)

177
Greatest element, 17
Greatly Mahlo cardinal, 697
Ground model, 201

Hausdorff formula, 57
Hausdorff gap, 575
Hechler forcing, 278
Height
– height of a tree, 114
– height of a well-founded relation, 25
Hereditarily countable set, 171
Hereditarily finite set, 171
Hereditarily in a set, 66
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Hereditarily ordinal-definable set, 194
Hereditary set (in ZFA), 250
Hierarchy
– see cumulative hierarchy
– hierarchy of Borel sets, Σ0

α, Π0
α, ∆0

α,
140

– hierarchy of large cardinals, 302, 358,
389, 620

– hierarchy of projective sets, Σ1
n, Π1

n,
∆1

n, 144
– hierarchy of stationary sets, 99
– Kleene’s hierarchy of analytic

predicates, 153
– lightface Borel hierarchy, Σ0

n, Π0
n, 480

– lightface projective hierarchy, Σ1
n,

Π1
n, ∆1

n, 479
– relativization of the projective

hierarchy, Σ1
n(a), Π1

n(a), ∆1
n(a), 479

– Σn hierarchy, 184
Homogeneous measure algebra, 585
Homogeneous set, 107, 524
– 0-homogeneous set, 609
– 1-homogeneous set, 609
Homogeneous tree, 262, 642
κ-Homogeneous tree, 642
Homomorphism, 79
– complete homomorphism, 83
Huge cardinal, 380
n-Huge cardinal, 386

Ideal, 73, 80
– atomless ideal, 410
– countably complete ideal, 77
– dual ideal, 73
– ideal of nonstationary sets, 93
– κ-complete ideal, 77, 82
– λ-saturated ideal, 409
– normal ideal, 96
– ω1-dense ideal, 695
– Π1

n ideal on κ, 703
– precipitous ideal, 424
– prime ideal, 74, 81
– principal ideal, 73, 80
– σ-ideal, 77, 82
– σ-saturated ideal, 128
– trivial ideal, {∅}, 73, {0}, 80
Idempotent element of a semigroup,

573
Idempotent ultrafilter, 573
Ill-founded sequential tree, 483
Image
– image of a set by a function, 11
– inverse image of a set by a function,

11

Inaccessible cardinal, 58
Inclusion map, 346
Inclusion of classes, C ⊂ D, 6
Incomparable nodes of a tree, 43
Incompatible conditions, 201
Increasing function, 17
Indecomposable ordinal, 26
Independence results, 219
Independent element over a subalgebra,

590
Independent family, 75
Independent sentence of the axioms,

219
Independent set in a Boolean algebra,

590
Indiscernibles, 299
– indiscernibles for A, 314
– indiscernibles for L, 312
– Silver indiscernibles, 311
Induction
– ∈-Induction Theorem, (T6.4) 66
– Induction Theorem, (E1.9) 14
– Transfinite Induction, (T2.14) 21
– Well-Founded Induction, (T6.10) 68
Inductive set, 12
Ineffable cardinal, 308
Infimum, inf X, 17
Infinite game, see game
Infinite product, 53
Infinite product,

Q

i κi, 53
Infinite sequence, 21
Infinite set, 14, 20
– D-infinite set, 34
– T-infinite set, 14
Infinite sum,

P

i κi, 52
Initial segment
– initial segment of a closed set of

normal measures, 359
– initial segment of a well-ordered set,

18
Inner model
– canonical inner model of a measurable

cardinal of order 2, 360
– see core model
– inner model of ZF, 182
– the class of constructible sets, L, 175
– the class of sets constructible from

a set, L[A], 192
– the smallest inner model containing

a set, L(A), 193
Instance of ∆0 separation, 177
Instance of a variable word, 574
Internally approachable model, 699
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Interpretation, 155
– interpretation by a generic ultrafilter,

216
– G-interpretation of P -names, 218
Intersection of sets, X ∩ Y , 8
Interval of regular cardinals, 466
Inverse image of a set by a function, 11
Inverse limit, 280
Inverse of a function, 11
Isomorphic models, 156
Isomorphism, 79
– isomorphism between models, 156
– isomorphism of partially ordered

sets, 18
– isomorphism of trees, 262
– measure-preserving isomorphism of

Boolean algebras, 587
Iterable M -ultrafilter, 354
Iterated forcing, 280
– iteration with I-support, 280
– iteration with countable support, 280
– iteration with finite support, 270
– revised countable support iteration,

RCS, 682
– two-step iteration, P ∗ Q̇, 267, B ∗ Ċ,

269
Iterated ultrapower of an inner model,

356
Iterated ultrapower, Ult

(α)
U (V ), 342

Jensen hierarchy, Jα, 548
Jensen’s Covering Theorem, (T18.30)

329
Jónsson cardinal, 305

Kernel of an homomorphism, 80
Kernel of the universe in ZFA, P∞(∅),

250
Kondô’s Uniformization Theorem,

(T25.36) 498
Kurepa tree, 119

Language
– first order language, L, 155
– forcing language, 215
– infinitary language, Lκ,ω, Lκ,κ, 293
– language of BG, BGC, 70
– language of ZF, ZFC, 4
– language of ZFA, 250
– nth order language, 295
Laver forcing, 565
Laver function, 378
Laver real, 565
Laver tree, 565

Least element, 17
Lebesgue measurable set, 147
Lebesgue measure, 44, 147
Left-topological semigroup, 573
Lemma on Transitive Generators,

(L24.31) 473
Length
– length of an extender, 382
– length of a branch, 114
– length of a set of normal measures,

359
Level of a tree, 114
– αth level of a tree, 114
Lévy collapse, 238
Lifting, 102
Limit
– diagonal limit of ordinal functions,

461
– direct limit, 158
– inverse limit, 280
– limit of a sequence, 22
– of a convergent sequence in a Boolean

algebra, 598
– U -limit of a sequence, 86
Limit cardinal, 30
Limit ordinal, 20
Limit point of a set of ordinals, 91
Lindenbaum algebra, 79
Linear ordering, 17
Linearly ordered set, 17
– dense linearly ordered set, 38
– unbounded linearly ordered set, 38
Localization Lemma, (L24.32) 475
Locally closed unbounded set, 691
Logical symbols, 155, 293, 295
Lower bound, 17
Luzin set, 539

Magidor’s forcing, 674
Mahlo cardinal, 95
α-Mahlo cardinal, 696
Mahlo operation, Tr(S), 99, M(X), 290
Mapping, see function
Martin’s Axiom
– MA, 272
– MAκ, 272
Martin’s Maximum, MM, 681
Master condition, 400
Mathias forcing, 524
Mathias real, 527
Maximal antichain, 84
Maximal element, 17, 49
Maximal filter, 74
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Meager set, 87, 148
Measurable cardinal, 127
Measure
– atomless measure, 126
– fine measure, 136, 365
– κ-additive measure, 129
– Lebesgue measure, 147
– measure of a set, 125
– measure on a Boolean algebra, 585
– nontrivial σ-additive probabilistic,

125
– normal fine measure, 136
– normal measure on Pκ(A), 374
– normal real-valued measure, 410
– probabilistic measure on a Boolean

algebra, 586
– product measure, 415
– signed measure on a Boolean algebra,

586
– strictly positive measure on a Boolean

algebra, 586
– strongly normal measure, 385
– translation invariant measure, 125
– two-valued measure, 126
Measure algebra, 415, 585
– homogeneous measure algebra, 585
Measure Problem, 125
Measure sequence, 676
Measure space, (S,F , µ), 415
Measure-preserving isomorphism of

Boolean algebras, 587
Membership relation, 4
Menge, 15
Milner-Rado paradox, 60
Minimal Boolean algebra, 595
Minimal degree of constructibility, 244
Minimal element, 17
– E-minimal element, 25
– ∈-minimal element, 14
Minimal generic filter, 244
Minimal ultrafilter, 87
Mitchell order, 358
Model, 162
– adequate model, 184
– amenable model, 549
– see Boolean-valued model
– end-extension of a model, 654
– ground model, 201
– see inner model
– internally approachable model, 699
– model for a given language, 155
– model of type (κ, λ), 304
– N captures A, 655

– permutation model, 251
– remarkable (Σ, α)-model, 317
– (Σ, α)-model, 315
– transitive model, 163
– unbounded (Σ, α)-model, 316
Monotone function, 306
Mostowski’s Absoluteness Theorem,

(T25.4) 484
Mostowski’s Collapsing Theorem,

(T6.15) 69
Mouse, 660
Move
– move by a strategy, 627
– move in the game GA, 627
Multiplication of cardinals, κ · λ, 28
Multiplication of ordinals, α · β, 23
Mutually stationary sets, 701

Name, 215
– canonical name for a generic

ultrafilter, Ġ, 214
– canonical name for a set from the

ground model, x̌, 211–212
– canonical name for the ground model,

M̌ , 215
– hereditary symmetric name, 253
– P-name
– – P -name, 215
– symmetric name, 253
Natural number, 20
Near, 576
Node, see splitting node
Nondecreasing sequence, 22
Nonstationary ideal, 93
Nontrivial elementary embedding of

the universe, 287
Norm, 496
– norm of a function (rank), ‖ϕ‖, 458
– Π1

1-norm, 496
– Π1

n-norm, 640
– Σ1

2-norm, 496
– Σ1

n-norm, 640
Normal filter, 96
– normal filter on Pκ(A), 104
Normal fine measure, 136
Normal Form Theorem for Π1

1, (T25.3)
483

Normal function, 92
Normal ideal, 96
Normal measure, 134
– real-valued normal measure, 410
Normal measure on Pκ(A), 374
Normal sequence, 22
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Normal tree, 114
Notion of forcing, see forcing
Nowhere dense set, 41, 148
Null set, 146
Number, see cardinal number, natural

number, ordinal number, real number

One-to-one function, 11
Open Coloring Axiom, OCA, 576
Open dense set, 85, 202
– open dense set below a condition, 202
Open set
– dense open set, 41
– open subset of [X]2, 576
Operation
– absolute operation on Borel sets, 507
– arithmetic operation on cardinals,

κ + λ, κ · λ, κλ, 28
– arithmetic operations on ordinal

numbers, α + β, α · β, αβ, 23
– see Boolean operation
– see diagonal intersection, diagonal

union
– Gödel operations, G1, . . . , G10, 177
– Mahlo operation, Tr(S), 99, M(X),

290
– n-ary operation on a set, 11
– operation + on βN , 573
– operation on a set, 102
– operations on classes, ∩, ∪, −,

S

, 6
– Suslin operation A, 143
Order
– Mitchell order of normal measures,

U1 < U2, 358
– order of a cardinal number (height of

the Mitchell order), o(κ), 358
– order of a normal measure, o(U), 358
– order of a stationary set, o(A), o(κ),

100
Order-preserving function, 17
Order-type, 19
Order-type of an ordinal in the generic

ultrapower, 421
Ordered n-tuple, 7
Ordered pair, 7
Ordering
– linear ordering, 17
– partial ordering, 17
– prewellordering, 496
– Rudin-Keisler ordering, 86
– strict ordering, 17
– well-ordering, 18
Ordinal function, see function

Ordinal number, 19
– finite ordinal, 20
– indecomposable ordinal, 26
– projective ordinal, δ1

n, 636
Ordinal-definable set, 194
– hereditarily ordinal-definable set, 194
– ordinal-definable set from a set, 195
– ordinal-definable set over a set, 195
Outer measure, 146
Overlapping extenders, 666

Pair, 7
Paradox
– Milner-Rado Paradox, 60
– Russell’s Paradox, 4
Parameter
– parameter in a formula (property), 5
– standard parameter, 549
Partial ordering, 17
Partial play, 597
Partially ordered set, 17
– separative partially ordered set, 204
Partition, 12, 84
I-Partition, 424
Partition property, 109
Partition relation
– κ→ (α)n

m, 112
– κ→ (α, β)n, 112
– κ→ (λ)n

m, 109
Path, 43
pcf (possible cofinalities), 466
– compactness of pcf, 472
Perfect set, 40
Perfect tree, 43, 244, 561
– superperfect tree, 618
Permutation, 251
Permutation model, 251
Pigeonhole principle, 107
Play
– in the game GA, 627
– partial play, 597
– play by a strategy, 627
Player
– Empty and Nonempty, 426
– I and II, 596, 627
– in the infinite game G on a Boolean

algebra, 596
p-Point, 76
Polish space, 44
Possible cofinalities, pcf(A), 466
Power of a set, Xn, 10
Power set, P (X), 9
Precipitous ideal, 424
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Predense set, 202
Predense set below a condition, 202
Prewellordering, 496
Prikry forcing, 401
Prime ideal, 74, 81
Prime Ideal Theorem, (T7.10) 81
Principal filter, 73, 80
Principal ideal, 73, 80
Principle
– Collection Principle, 65
– see Diamond Principle
– pigeonhole principle, 107
– Principle of Dependent Choices, DC,

50
– reduction principle, 507
– Reflection Principle, (T12.14) 168
– Reflection Principle, RP, 688
– Σ1

1-Separation Principle, (L11.11)
146

– ∆0-Separation, 177
– separation principle, 507
– see Square
– Strong Reflection Principle, SRP,

688
– Vopěnka’s Principle, VP, 380
Probabilistic measure on a Boolean

algebra, 586
Problem
– Measure Problem, 125
– Problem 36.7, 673
– Singular Cardinal Problem, 672
– Suslin’s Problem, 39
Product
– infinite product, 53
– infinite product,

Q

i κi, 53
– product of cardinals, κ · λ, 28
– product of linear orders, 24
– product of measure spaces, 415
– reduced product, 159
Product forcing, 229
– Easton product, 233
– κ-product, 230
– product of a collection of forcing

notions, 230
– product of two forcing notions, 229
Product Lemma, (L15.9) 229
Product measure, 415
Product of two sets, 10
Projection, 102, 142
– projection of a generic filter on

a coordinate of a product forcing, 230
– projection to a subalgebra, 589
Projection of a set, 34

Projective Determinacy, PD, 628
Projective ordinal, δ1

n, 636
Projective set, 145
Projective stationary set, 688
Σn-Projectum, 549
n-Projectum, 547
Proper class, 6
Proper forcing, 601
Proper Forcing Axiom, PFA, 607,

PFA+, 613, PFA−, 614
Proper game for P below p, 603
Proper subset, 9
Property, 4
– absolute property, 185
– Axiom A, 614
– Baire property, 148
– club-guessing property, 442
– ∆n property, 184
– Knaster property (K), 231
– partition property, 109
– perfect set property, 150
– Πn property, 183
– Σn property, 183
– the finite intersection property, 74,

80
– the prewellordering property, 496,

640
– the scale property, 498, 640
– the tree property, 120
– the uniformization property, 498

Quantifiers, ∀x, ∃x, 5
Quotient
– of a Boolean algebra, B/I, 80
– separative quotient, 206
– X/≡, 12

Radin forcing, RU , 677
Ramsey cardinal, 121
Ramsey null set, 525
Ramsey set, 524
– completely Ramsey set, 525
– Ramsey null set, 525
Ramsey ultrafilter, 76
Random forcing, 243
Random real, 243, 513
Range of a relation, 10
Rank
– Galvin-Hajnal norm of an ordinal

function, ‖f‖, 460
– rank function, ρ(x), 68
– rank of an element in a relation, ρ(x),

25
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– rank of a set, rank(x), 64
Rapid sequence of ordinal functions,

464
Real line, R, 37
Real number
– algebraic real number, 44
– see generic real
– real of minimal degree of con-

structibility, 244
– transcendental real number, 44
Real-valued measurable cardinal, 130
Real-valued measure, 125
Real-valued normal measure, 410
Recursion
– ∈-Recursion, (T6.5) 66
– Transfinite Recursion, (T2.15) 22
– Well-Founded Recursion, (E2.15) 26,

(T6.11) 68
Reduced product, 159
Reduction principle, 507
Refinement
– refinement of an I-partition, 424
– refinement of a partition, 85
Reflecting cardinal, 697
Reflection Principle, (T12.14) 168
Reflection Principle, RP, 688
Reflexive relation, 12
Regressive ordinal function, 93
Regular cardinal, 32
Regular cut, 83
Regular open set, 152
Regular subalgebra, 588
Relation
– binary relation, 10
– ∆n relation, 184
– equality predicate, =, 4
– equivalence relation, 12
– extensional relation, 68
– forcing relation, �P , �, 215
– membership relation, ∈, 4
– n-ary relation, 10
– see partition relation
– Πn relation, 183
– reflexive relation, 12
– relation between Boolean algebras

and logic, 79
– relation between Determinacy and

large cardinals, 633
– relation between ideals and

homomorphisms, 80
– relation between pcf and cardinal

arithmetic, 466
– relation on X, 10

– Σn relation, 183
– symmetric relation, 12
– transitive relation, 12
– well-founded relation, 25
Relative constructibility, 192
Relativization of a formula, ϕM,E, ϕM ,

161
Remarkable (Σ, α)-model, 317
Representation Lemma, (L19.13) 347
Restriction of a function, 11
Rigid Boolean algebra, 595
Rigid tree, 262
Rowbottom cardinal, 305
Rudimentary closure, rud(M), 548
Rudimentary function, 548
Rudimentary function in A, 660
Rudin-Keisler ordering, 86
Russell’s Paradox, 4

Sacks real, 244
Satisfaction, 155
Satisfaction for an nth order formula,

295
σ-Saturated ideal, 128
κ-Saturated Boolean algebra, 84
λ-Saturated ideal, 409
Saturation, 84
Scale, 498
– κ-scale, 133
– Π1

1-scale, 498
– Π1

n-scale, 640
– Σ1

n-scale, 640
– scale in

Q

a∈A γa, 461
Second category, 148
Semi-Cohen Boolean algebra, 591
(M, P )-Semigeneric condition, 649
Semiproper forcing, 649
Semiproper Forcing Axiom, 681
Semiproper set of conditions, 654
Sentence, 5
Sentence independent of the axioms,

219
Separable metric space, 40
Separated sets, 145
Separation principle, see principle
Separative partially ordered set, 204
Separative quotient, 206
Sequence, 21
– α-sequence, 21
– club-guessing sequence, 442
– cofinal sequence, 31
– continuous sequence, 22
– ♦-sequence, 191
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– finite sequence, 21
– fusion sequence of Laver trees, 565
– fusion sequence of perfect trees, 244
– infinite sequence, 21
– measure sequence, 676
– nondecreasing sequence, 22
– normal sequence, 22
– Prikry generic sequence, 402
– rapid sequence of ordinal functions,

464
– sequence in a set, 21
– sequence of length α, 21
– sequence of length n, 21
– square-sequence, 443
– transfinite sequence, 21
Sequential tree, 43
– ill-founded sequential tree, 483
– r-dimensional sequential tree, 483
– well-founded sequential tree, 483
Set, 70
– adequate set, 188
– analytic set, 142
– arithmetical set, Σ0

n, Π0
n, 480

– Borel set, 41, 140
– bounded set in a tree, 240
– bounded set of ordinal functions, 464
– closed subset of Pκ(A), 100
– see closed unbounded set
– cofinal set, 31
– cofinal set of ordinal functions, 464
– constructible set, 175
– countable set, 30
– D-finite set, 34
– D-infinite set, 34
– see definable set
– dense set, 201, 205
– directed set, 157
– directed subset of Pκ(A), 101
– ≡-closed set, 633
– E.M. set of formulas, 314
– empty set, ∅, 8
– Fσ, Gδ set, 42
– see family
– finite set, 14, 20
– generates a model (Skolem hull), 300
– has n-elements, 14
– has strong measure zero, 538
– has the Baire property, 148
– hereditarily countable set, 171
– hereditarily finite set, 171
– hereditary set (in ZFA), 250
– homogeneous set, 107, 524
– homogeneously Suslin set, 642

– independent subset of a Boolean
algebra, 590

– inductive set, 12
– infinite set, 14, 20
– κ-homogeneously Suslin set, 642
– κ-Suslin set, 485
– κ-weakly homogeneously Suslin set,

643
– Lebesgue measurable set, 147
– Luzin set, 539
– meager set, 87, 148
– nowhere dense set, 41, 148
– null set, 146
– open dense set, 85, 202
– open dense set below a condition, 202
– open subset of [X]2, 576
– see ordinal-definable set
– partially ordered set, 17
– perfect set, 40
– predense set, 202
– predense set below a condition, 202
– projective set, 145
– see Ramsey set
– recursive closed set, Π0

1 set, 480
– recursive open set, recursively

enumerable set, Σ0
1 set, 480

– reflects a formula, 168
– regular open set, 152
– relative constructible set, 192
– remarkable set of formulas, 318
– Σ0

α, Π0
α, ∆0

α set, 140
– Σ1

n, Π1
n, ∆1

n set, 144
– semiproper set of conditions, 654
– set accepts a set, 525
– set at most countable, 30
– set captures a Mathias forcing

condition, 527
– set closed under an operation, 102
– set constructible from a set, 192
– set definable from a sequence of

ordinals, 519
– set generic over M , 202
– set of all Borel codes, BC, 504
– set of all infinite paths, 43
– set of first category, 148
– set of indiscernibles, 299
– set of indiscernibles closed in OrdA ,

318
– set of indiscernibles for A, 314
– set of measure one, 409
– set of measure zero, 409
– set of positive measure, 409



764 Index

– set of possible cofinalities, pcf(A),
466

– set of second category, 148
– set of the first category, 41
– set rejects a set, 525
– set σ-generates a Boolean algebra,

585
– Solovay set of reals, 515
– see stationary set
– superperfect set in N , 618
– symmetric set, 251
– T-finite set, 14
– T-infinite set, 14
– transitive set, 13, 19
– unbounded E.M. set of formulas, 317
– unbounded linearly ordered set, 38
– unbounded set in Pκ(A), 100
– uncountable set, 30
– universal Σ0

n set, 141
– universal Σ1

n set, 145
– universally Baire set, 623
– weakly homogeneously Suslin set,

643
– well-founded E.M. set, 318
Sets
– mutually stationary sets, 701
Sets of ZFA, 250
Sharp
– sharp for a strong cardinal, 666
– x-sharp, x�, 328
– zero-sharp, 0�, 312
Shoenfield’s Absoluteness Theorem,

(T25.20) 490
Signed measure on a Boolean algebra,

586
Sikorski’s Extension Theorem, (E7.30)

88
Silver indiscernibles, 311
Simple Boolean algebra, 595
Singleton, {a}, 7
Singular cardinal, 32
Singular Cardinal Hypothesis, SCH, 58
Singular Cardinal Problem, 672
Skolem constants, cϕ

ξ , 293
Skolem function, 156
– canonical Skolem function, 313
– definable Skolem function, 300
– Σn Skolem function, 333
Skolem hull, 156
Skolem sentence, 294
Skolem term, 300
Σn Skolem hull, 333
Solovay set of reals, 515

Special ℵ2-Aronszajn tree, 571
Special Aronszajn tree, 117
Splitting node, 244
– nth splitting node, 244
– ω-splitting node, 618
Square
– Square Principle, �κ, 443
– �κ,ν , 702
– Weak Square, �κ,κ, �∗

κ, 702
Square-sequence, 443
Stable element, 84, 88
Standard code, 549
Standard parameter, 549
Stationary set
– canonical stationary set, 477
– projective stationary set, 688
– stationary set reflects at α, 444
– stationary subset of Pκ(A), 100
– stationary subset of a cardinal

number, 91
– stationary subset of P (A), 678
Stationary set preserving forcing, 681
Stationary tower forcing, 653, 678
Stem, 557
– stem of a Laver tree, 565
Stone’s Representation Theorem,

(T7.11) 81
Strategically ω-closed Boolean algebra,

596
Strategically ω-closed notion of forcing,

596
Strategy
– strategy in the game G, 596
– strategy in the game GI , 426
– strategy in the game GA, 627
– winning strategy, 426, 596, 627
Strength
– consistency strength, 358, 367, 382,

389, 394, 404, 426, 429, 450, 456, 547,
610, 623, 624, 636, 647, 659, 665, 669,
672, 679, 680, 691, 695–698, 702

– relative strength, 249, 387
– strength of an embedding, 676
Strict ordering, 17
Strictly positive measure on a Boolean

algebra, 586
Strong cardinal, 381
λ-Strong cardinal, 382
λ-Strong cardinal for a set A, 647
Strong limit cardinal, 58
Strong measure zero, 538
Strong Reflection Principle, SRP, 688
Stronger forcing condition, 201
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Strongly closed unbounded set, 704
Strongly compact cardinal, 136
Strongly normal measure, 385
Subalgebra, 79
– co-dense subalgebra, 591
– complete subalgebra, 83
– dense subalgebra, 82
– regular subalgebra, 84, 588
– subalgebra completely generated by

a set, 83
– subalgebra generated by a set, 79
Subclass of a class, C ⊂ D, 6
Submodel, 156
– elementary submodel, B ≺ A, 156
– Σn-elementary submodel, M ≺Σn N ,

187
– symmetric submodel of a generic

extension, 253
Subset, 9
– dense subset, 38
– proper subset, 9
– symmetric subset, 404
Successor cardinal, ℵα+1, 30
Successor of an ordinal, 20
Successor ordinal, β + 1, 20
Sufficiently large cardinal number, 602
Sum
– infinite sum of cardinals,

P

i κi, 52
– sum of cardinals, κ + λ, 28
– sum of linear orders, 23
Supercompact cardinal, 136, 374
λ-Supercompact cardinal, 375
Superperfect set in N , 618
Superperfect tree, 618
Superstrong cardinal, 657
Support
– countable support, 230, 280
– Easton support, 395
– finite support, 230, 270
– I-support, 280
– κ-support, 230
– <κ-support, 230
– support for a set in a permutation

model, 252
– support of a condition, 230
– support of a condition in the

stationary tower forcing, 653
– support of a subset of κα, 347
Supremum, supX, 17
Suslin algebra, 593
Suslin line, 114
Suslin operation A, 143
κ-Suslin set, 485

Suslin tree, 114
κ+-Suslin tree, 551
Suslin’s Hypothesis, SH, 274
Suslin’s Problem, 39
Symmetric difference, 9
Symmetric name, 253
– hereditarily symmetric name, 253
Symmetric relation, 12
Symmetric set, 251
Symmetric submodel of a generic

extension, 253
Symmetric subset, 404
Symmetry, 253
Symmetry Lemma, (L14.37) 221

T-finite set, 14
T-infinite set, 14
Tarski’s Ultrafilter Theorem, (T7.5) 75
Term, 155
– Skolem term, 300
– Σn Skolem term, 333
Theorem
– Aronszajn’s Theorem, (T9.16) 116
– Bagaria’s Theorem, (T37.28) 691
– Bartoszyński-Raisonnier-Stern’s

Theorem, (T26.46) 533
– Baumgartner-Malitz-Reinhardt’s

Theorem, (T16.17) 274
– Booth’s Theorem, (T16.27) 278
– Boundedness Lemma, (C25.14) 487
– Cantor’s Normal Form Theorem,

(T2.26) 24
– Cantor’s Theorem, (T3.1) 27, (T4.1)

37, (T4.3) 38
– Cohen’s Theorem, (T14.36) 221
– Condensation Lemma, (L27.5) 550
– Dodd-Jensen’s Covering Theorem

for K, (T35.14) 663
– Dodd-Jensen’s Covering Theorem

for L[U ], (T35.16) 664
– Dodd-Jensen’s Theorem, (T35.6)

661, (T35.13) 663
– Dushnik-Miller’s Theorem, (T9.7)

112
– Easton’s Theorem, (T15.18) 232
– Erdős-Rado Partition Theorem,

(T9.6) 111
– Fodor’s Theorem, (T8.7) 93
– Foreman’s Theorem, (T30.25) 597
– Foreman-Magidor’s Theorem,

(T38.16) 701
– Foreman-Magidor-Shelah’s Theorem,

(T37.9) 684, (T37.13) 686, (T37.16)
687
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– Fremlin’s Lemma, (L30.5) 586
– Fremlin’s Theorem, (T26.45(ii)) 533
– Gaifman’s Theorem, (T19.7) 343
– Galvin-Hajnal Theorem, (T24.1) 457
– Galvin-Prikry-Silver’s Theorem,

(T26.22) 524
– Gitik’s Theorem, 669
– Gitik-Shelah Theorem, (T23.17) 450
– Glazer’s Lemma, (L29.2) 573
– Gödel’s Condensation Lemma,

(L13.17) 188, (L18.38) 332
– Gödel’s Normal Form Theorem,

(T13.4) 177
– Gödel’s Theorem, (T13.18) 188,

(T13.20) 190, (T25.26) 494
– Gödel’s Completeness Theorem, 157
– Gödel’s First Incompleteness

Theorem, 157
– Gödel’s Second Incompleteness

Theorem, 157
– Gödel’s Second Incompleteness

Theorem, 157
– Gödel’s Theorem, (T13.16) 187
– Gregory’s Theorem, (T23.2) 442
– Hajnal’s Theorem, (T27.11) 554
– Hanf-Scott’s Theorem, (T17.18) 297
– Hausdorff’s Theorem, (T29.7) 575
– Hindman’s Theorem, (T29.1) 573
– Jech’s Theorem, (T8.20) 100, (T8.22)

101, (T8.24) 101
– Jech-Shelah’s Theorem, (T27.12) 555
– Jech-Sochor’s Theorem, (T15.53) 256
– Jensen’s Covering Theorem, (T18.30)

329
– Jensen’s Theorem, (T13.21) 191,

(T15.26) 241, (T27.1) 546, (T27.7)
551, (T28.1) 557

– Kondô’s Uniformization Theorem,
(T25.36) 498

– König’s Theorem, (T5.10) 54
– König’s Lemma, (E9.5) 122
– Kripke’s Theorem, (C26.8) 516
– Kueker’s Theorem, (T8.28) 102
– Kunen’s Theorem, (T17.7) 290,

(T18.20) 323, (T19.14) 348, (T20.4)
367

– Kunen-Martin Theorem, (T25.43)
503

– Lévy’s Theorem, (T15.22) 238
– Laver’s Theorem, (T20.21) 378,

(T28.14) 564
– Laver-Shelah’s Theorem, (T28.25)

570

– Lemma on Transitive Generators,
(L24.31) 473

– Localization Lemma, (L24.32) 475
– �Loś’s Theorem, (T12.3) 159
– Magidor’s Theorem, (T23.10) 446,

(T23.23) 453, (T32.16) 621, (T36.3)
672

– Magidor-Shelah-Gitik’s Theorem,
(T36.5) 673

– Maharam’s Theorem, (T30.1) 585
– Mansfield’s Theorem, (T25.39) 500
– Mansfield-Solovay’s Theorem,

(T25.23) 492
– Martin’s Theorem, (T25.42) 502,

(T32.15) 621, (T33.18) 637
– Martin-Solovay’s Theorem, (T16.20)

276, (T26.39) 529
– Martin-Solovay-Mansfield’s Theorem,

(T32.14) 620
– Martin-Steel’s Theorem, (T33.28)

642, (T33.34) 643, 666
– Martin-Steel-Woodin’s Theorem,

(T33.26) 642
– Mathias’ Theorem, (T21.14) 402,

(T26.23) 524, (T26.35) 527
– Menas’ Theorem, (T8.27) 102
– Mitchell’s Theorem, (T19.30) 356,

(T19.37) 361, (T19.38) 361, (T19.39)
362, (T28.24) 569, (C35.18) 665,
(T35.17) 665, (T36.16) 678

– Moschovakis’ Theorem, (T33.23) 640
– Mostowski’s Absoluteness Theorem,

(T25.4) 484
– Mostowski’s Collapsing Theorem,

(T6.15) 69
– Namba’s Theorem, (T28.10) 561
– Normal Form Theorem for Π1

1,
(T25.3) 483

– Pawlikowski’s Theorem, (T26.47) 534
– Posṕı̌sil’s Theorem, (T7.6) 75
– Prikry’s Theorem, (T21.10) 401,

(T22.2) 410
– Properties of Forcing, (T14.7) 204
– Ramsey’s Theorem, (T9.1) 107
– Rowbottom’s Theorem, (T17.27) 300
– Sacks’ Theorem, (T15.34) 244
– Schimmerling’s Theorem, (T31.30)

611
– Scott’s Theorem, (T17.1) 285
– Shanin’s Theorem (∆-Lemma),

(T9.18) 118
– Shelah’s Theorem, (T23.3) 442,

(T24.8) 461, (T24.16) 465, (T24.18)
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466, (T24.25) 470, (T24.33) 476,
(T28.12) 563, (T31.15) 604, (T32.13)
620, (T37.4) 682, (T37.10) 684,
(T37.26) 690, (T38.1) 695

– Shoenfield’s Absoluteness Theorem,
(T25.20) 490

– Sierpiński’s Theorem, 490
– Sikorski’s Extension Theorem,

(E7.30) 88
– Silver’s Theorem, (T8.12) 96, (T8.13)

96, (T18.1) 311, (T18.1 relativized)
328, (T19.3) 339, (T21.4) 395,
(T27.9) 553, (T28.23) 569, (T32.1)
615, (T32.20) 623

– Solovay’s Theorem, (T8.10) 95,
(T20.8) 372, (T22.1) 410, (T22.26)
428, (T26.14) 519, (T26.20) 522,
(T27.8) 551, (T33.12) 633

– Solovay-Tennenbaum’s Theorem,
(T16.13) 272

– Steel’s Theorem, (T35.22) 667
– Stone’s Representation Theorem,

(T7.11) 81
– Suslin’s Theorem, (T11.10) 145
– Symmetry Lemma, (L14.37) 221
– Tarski’s Theorem, (T12.7) 162
– Tarski’s Ultrafilter Theorem, (T7.5)

75
– the Baire Category Theorem, (T4.8)

41
– the Cantor-Bendixson Theorem,

(T4.6) 40
– the Cantor-Bernstein Theorem,

(T3.2) 28
– the Compactness Theorem, 293
– the Ehrenfeucht-Mostowski Theorem,

313
– the Factor Lemma, (L19.5) 342,

(L21.8) 396, (C26.11) 518
– the Forcing Theorem, (T14.6) 204,

236
– the Fubini Theorem, (L11.12) 148
– the Generic Model Theorem, (T14.5)

203
– the Hales-Jewett Theorem, (T29.4)

574
– the Homogeneity of the Lévy

Collapse, (T26.12) 518
– the Induction Theorem, (E1.9) 14
– the ∈-Induction Theorem, (T6.4) 66
– the Kunen-Paris Theorem, (T21.3)

392

– the Lévy-Solovay Theorem, (T21.1)
389

– the Löwenheim-Skolem Theorem,
(T12.1) 157

– the Prime Ideal Theorem, (T7.10) 81
– the Product Lemma, (L15.9) 229
– the ∈-Recursion Theorem, (T6.5) 66
– the Reflection Principle, (T12.14)

168
– the Representation Lemma, (L19.13)

347
– the Σ1

1-Separation Principle, (L11.11)
146

– the Transfinite Induction, (T2.14) 21
– the Transfinite Recursion, (T2.15) 22
– the Vopěnka-Hrbáček Theorem,

(T20.3) 366
– the Weak Compactness Theorem,

293
– the Well-Founded Induction, (T6.10)

68
– the Well-Founded Recursion, (E2.15)

26, (T6.11) 68
– Todorčević’s Lemma, (L31.24) 609
– Todorčević’s Theorem, (T29.8) 577,

(T31.23) 609, (T31.28) 610, (T37.18)
688

– Truss-Miller Theorem, (T26.45(i))
533

– Ulam’s Theorem, (T10.1) 126
– van der Waerden’s Theorem, (T29.3)

574
– Vitali’s Theorem, (E10.1) 137
– Vladimirov’s Lemma, (E30.11) 598
– Vopěnka’s Theorem, (T15.46) 249
– Woodin’s Theorem, (T33.16) 636,

(T33.27) 642, (T33.33) 643, (T34.6)
650, (T34.14) 655, (T34.16) 656,
(T36.2) 669, (T36.18) 678, (T38.2)
695, (T38.3) 696

– Woodin-Cummings’ Theorem,
(T36.6) 673

– Woodin-Gitik’s Theorem, (T36.4)
673

– Zermelo’s Well-Ordering Theorem,
(T5.1) 48

– Zorn’s Lemma, (T5.4) 49
Theory
– axiomatic set theory with atoms,

ZFA, 250
– axiomatic set theory with classes,

BG, BGC, 70
– axiomatic set theory, ZF, ZFC, 3
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– combinatorial set theory, 107–123,
267, 573–583

– descriptive set theory, 42, 44, 50, 126,
139, 148, 479–509, 529, 595, 615–626,
637, 645

– fine structure theory, 330, 337, 443,
545–550, 556

– measure theory, 42, 73, 125–138,
146–148, 409–420, 522–523, 585–588

– model theory, 155–161, 172, 283, 285,
292, 313, 381

– pcf theory, 457, 460, 461, 463,
466–477, 669, 672, 702

– Peano Arithmetic, 157
– theory of cardinal and ordinal

numbers, 15
– theory of core models, 659–661,

663–666, 672
– theory of inner models, 659, 660, 668,

675, 702
– theory of iteration trees, 666
– theory of large cardinals, 58, 113–117,

120–138, 157, 285–439, 441, 442, 444,
620–623, 633–636, 649

– theory of mice, 661
– theory of ordinal and cardinal

numbers, 17–35
– theory of partition relations, 107–123
– theory of stationary sets, 91–105,

441–456
– theory of transitive models, 63–71,

163–200
– theory of well-ordered sets, 17–26
Topology
– Baire topology, 42
– Ellentuck topology, 524
– Σ1

1-topology, 615
– topology based on the Mathias

forcing, 524
– topology of the real line, 40
Tower, 540
Trace of a stationary set, Tr(S), 99
Transcendental real number, 44
Transfinite Induction, (T2.14) 21
Transfinite Recursion, (T2.15) 22
Transfinite sequence, 21
Transitive closure, TC(S), 64
Transitive collapse, 68
Transitive generators of pcf, 473
Transitive model, 163
Transitive relation, 12
Transitive set, 13, 19
Translation invariant measure, 125

Tree, 114
– Aronszajn tree, 116
– club-isomorphic trees, 612
– homogeneous tree, 262, 642
– ill-founded sequential tree, 483
– κ-homogeneous tree, 642
– κ+-Suslin tree, 551
– κ-weakly homogeneous tree, 643
– Kurepa tree, 119
– Laver tree, 565
– normal α-tree, 114
– perfect tree, 43, 244, 561
– r-dimensional sequential tree, 483
– rigid tree, 262
– sequential tree, 43
– special ℵ2-Aronszajn tree, 571
– special Aronszajn tree, 117
– superperfect tree, 618
– Suslin tree, 114
– tree of 0–1 sequences, 244
– tree on ω ×K, 485
– tree on ω2, 561
– weakly homogeneous tree, 643
– well-founded sequential tree, 483
Tree property, 120
Trivial Boolean algebra, {0, 1}, 81
Trivial filter, {S}, 73, {1}, 80
Trivial ideal, {∅}, 73, {0}, 80
True cofinality, 461
Truth definition, 162
Two-step iteration
– two-step iteration of complete

Boolean algebras, B ∗ Ċ, 269
– two-step iteration of forcing notions,

P ∗ Q̇, 267
Two-valued measure, 126

Ulam matrix, 131
– (ℵ1,ℵ0)-matrix, 131
– (λ+, λ)-matrix, 132
Ultrafilter, 74, 81
– fine measure, 136
– generic ultrafilter, 206
– idempotent ultrafilter, 573
– (κ, λ)-regular ultrafilter, 373
– see M -ultrafilter
– minimal ultrafilter, 87
– normal fine measure, 136
– normal measure, 134
– p-point, 76
– Ramsey ultrafilter, 76
– uniform ultrafilter, 75
M -Ultrafilter, 323
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– iterable M -ultrafilter, 354
– κ-complete M -ultrafilter, 323
– normal iterable M -ultrafilter, 354
– normal M -ultrafilter, 323
Ultrapower
– UltU A, 161
– generic ultrapower, UltG(M), 421,

653
– iterated ultrapower, Ult

(α)
U (V ), 342

Ultraproduct, UltU{Ax : x ∈ S}, 159
Unbounded family, 532
Unbounded function on a set of positive

measure, 410
Unbounded linearly ordered set, 38
Unbounded subset of Pκ(A), 100
Unbounded subset of an ordinal, 32
Uncountable set, 30
Uniform density of a Boolean algebra,

589
Uniform ultrafilter, 75
Uniformization, 498
Uniformization Theorem (Kondô),

(T25.36) 498
Union
–

S

X, 9
– diagonal union,

P

α Xα, 93
Universal class, V , 6
Universal set
– universal Σ0

n set, 141
– universal Σ1

n set, 145
Universally Baire set, 623
Universe
– Boolean universe, 206
– constructible universe, L, 175
– Σ1

3-absolute universe for generic
extensions, 624

– universal class, V , 6
Upper bound, 17, 49
– exact upper bound of a set of ordinal

functions, 461
– least upper bound of ordinal

functions, 460
– upper bound of ordinal functions,

460

Valid formula, ‖ϕ‖ = 1, 207
Value of a function at a set, 11
Value of a term, 155
Variable, 5, 574
– free variable, 5
– variable of order k, 295
Variable word, 574
Vopěnka’s Principle, VP, 380

Weak Covering Theorem, (T35.17(v))
665

Weak Square, �∗
κ, 702

Weakly compact cardinal, 113
Weakly homogeneous tree, 643
κ-Weakly homogeneous tree, 643
Weakly inaccessible cardinal, 33
Weakly (κ, λ)-distributive Boolean

algebra, 246
Weakly Mahlo cardinal, 96
Weight of measure algebra, 585
Well-Founded Induction, (T6.10) 68
Well-Founded Recursion, (E2.15) 26,

(T6.11) 68
Well-founded relation, 25
Well-founded sequential tree, 483
Well-ordering, 18
– canonical well-ordering of α× α, 30
– canonical well-ordering of Ord ×Ord ,

30
– canonical well-ordering of L, 190
Winning strategy in an infinite game,

see strategy, game
Woodin cardinal, 384, 647
Word, 574
– variable word, 574

Zermelo’s Well-Ordering Theorem,
(T5.1) 48

Zermelo-Fraenkel axioms, ZF, ZFC, 3
Zero-dagger, 0†, 353
Zero-sharp, 0�, 312
ZFA, 250
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