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Abstract
We consider Cauchy problem for a divergence form second order parabolic operator
with rapidly oscillating coefficients that are periodic in spatial variables and random
stationary ergodic in time. As was proved in Zhikov et al. (Mat Obshch 45:182–236,
1982) and Kleptsyna and Piatnitski (Homogenization and applications to material
sciences. GAKUTO Internat Ser Math Sci Appl vol 9, pp 241–255. Gakkōtosho,
Tokyo, 1995) in this case the homogenized operator is deterministic. The paper focuses
on the diffusion approximation of solutions in the case of non-diffusive scaling, when
the oscillation in spatial variables is faster than that in temporal variable. Our goal is
to study the asymptotic behaviour of the normalized difference between solutions of
the original and the homogenized problems.
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1 Introduction

In thisworkwe consider the asymptotic behaviour of solutions to the followingCauchy
problem

∂

∂t
uε = div

[
a
( x

ε
,
t

εα

)
∇uε

]
in Rd × (0, T ]

uε(x, 0) = ϕ(x). (1)

Here ε is a small positive parameter that tends to zero, α ∈ (0, 2), a(z, s) is a positive
definite matrix whose entries are periodic in z variable and random stationary ergodic
in s.

It was shown in [29] and [17] that this problem admits homogenization and that
the homogenized operator is deterministic and has constant coefficients both in space
and in time. The homogenized Cauchy problem takes the form

∂

∂t
u0 = div(aeff∇u0)

u0(x, 0) = ϕ(x). (2)

The formula for the effective matrix aeff is given in (5) in Sect. 2 (see also [17]).
The goal of this paper is to study the limit behaviour of the difference uε − u0, as

ε → 0.
In applications problem (1) describes for instance various processes in porousmedia

in the presence of gas bubble formations. The gas bubble formations might essentially
affect the characteristics of the media. The artificial porous materials used in physical
experiments and in the industry often have a periodic microstructure, while the gas
bubble formations and migration are the processes which are random in time, see [24]
for further details.

Also, when studying the diffusion in porous media whose characteristics might
depend on the atmosphere pressure, humidity, etc. we often face the model problem
in (1).

The first rigorous homogenization results for second order elliptic operators with
random coefficients were obtained in pioneer works [21] and [25]. The approach
developed in [21] and [25] for random divergence form elliptic operators also applies
to the corresponding parabolic problems and yields the semigroup convergence.

In the existing literature there is a number of works devoted to homogenization of
random parabolic equations with time dependent coefficients.

In the presence of large lower order terms the limit dynamics might remain random
and showdiffusive or evenmore complicated behaviour. The papers [6, 20, 26] focus on
time dependent parabolic operators with large lower order terms in the case of periodic
in spatial variables and random in time coefficients. Under the natural assumptions
the limit (effective) dynamics is described by a SPDE with a multiplicative noise. The
fully random case has been studied in [4, 5, 14, 27]. Here the structure of the limit
operator might depend on the dimension.
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One of the important aspects of homogenization theory is estimating the rate of
convergence. For random operators the first estimates have been obtained in [16]. An
important progress in this direction was achieved in the works [12, 13]. Further refer-
ences and a complete presentation of the theory that allows to obtain sharp estimates in
stochastic homogenization can be found in the recent book [2]. The pathwise structure
of fluctuations in stochastic homogenization has been studied in [8].

The paper [1] deals with stochastic homogenization of divergence form parabolic
equations with time dependent coefficients. The authors consider the diffusive scaling
and obtain optimal estimates for the rate of convergence.

Problem (1) in the case of diffusive scaling α = 2 was studied in our previous
work [18]. It was shown that, under proper mixing conditions, the difference uε − u0

is of order ε, and that the normalized difference ε−1(uε − u0) after subtracting an
appropriate corrector, converges in law to a solution of some limit SPDE.

In the present paper we consider the case 0 < α < 2. In other words, bearing in
mind the diffusive scaling, we assume that the oscillation in spatial variables is faster
than that in time.

In this case, due to the disagreement with the diffusive scaling, the principal part
of the asymptotic expansion of uε − u0 consists of a finite number of correctors, the
oscillating part of each of them being a solution of an elliptic PDE with periodic in
spatial variable coefficients. The number of correctors increases as α approaches 2.
After subtracting these correctors, the resulting expression divided by εα/2 converges
in law to a solution of the limit SPDE. See Sect. 2.4 for further details.

Previously, higher order correctors were used in stochastic homogenization of ellip-
tic operators for rather different purposes, see works [10] and [9]. In [10] the higher
order correctors are introduced in the context of the large-scale regularity. In [9] the
authors construct higher-order two-scale expansion and obtain improved large-scale
estimates using annealed Calderon–Zygmund estimates for elliptic operators with
random coefficients.

In contrast with the diffusive scaling, for α < 2 the interplay between the scalings
in spatial variables and time and the necessity to construct higher order correctors
results in additional regularity assumptions on the coefficients. Indeed, each corrector
is introduced as a solution of some elliptic equation in which time is a parameter,
thus this corrector has the same regularity in time as the coefficients of the equation.
When we construct the higher-order terms of the expansion, at each step the corrector
obtained at the previous step is differentiated in time, which reduces the regularity.
The result mentioned in the previous paragraph holds if the coefficients ai j (z, s) in
(1) are sufficiently smooth in temporal variable.

We also consider in the paper the special case of diffusive dependence on time.
Namely,we assume in this case thata(z, s) = a(z, ξs), where ξ· is a stationary diffusion
process in R

n and a(z, y) is a smooth deterministic function that is periodic in z.
It should be emphasized that in the said diffusive case Theorem 1 does not apply
because the coefficients ai j do not possess the required regularity in time. This lack of
regularity leads to additional difficulties in treating the diffusive case. As was shown in
our previous work [19], the statement of Theorem 1 remains valid if α < 1. Also, for
1 ≤ α < 2 in dimension one the issues can be addressed using the equation satisfied
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by the potential of the discrepancy. This technique fails to work in dimension higher
than 1. Here we treat the case α = 1 in any dimension.

The paper is organized as follows.

– In Sect. 2 we introduce the problem and provide all the assumptions. Then we
formulate the main result (Theorem 1) of the paper concerning the smooth case
for α < 2.

Sect. 2.4 focuses on the proof of Theorem 1. At the beginning we consider a
number of auxiliary problems and define the higher order terms of the asymptotics
of solution.

– In Sect. 3 we consider the special case of diffusive dependence on time for α ≤ 1.
We extend to the dimension d the result of [19] in Theorem 2.

2 The smooth case

In this section we provide all the assumptions on the data of problem (1), introduce
some notations and formulate the main result.

For the Cauchy problem (1), where ε is a small positive parameter, we assume that
the following conditions hold true:

a1. thematrix a(z, s) = {ai j (z, s)}di, j=1 is symmetric and satisfies uniform ellipticity

condition: there exists λ > 0 such that for any (z, s) ∈ R
d ×R and any ζ ∈ R

d :

λ|ζ |2 ≤ a(z, s)ζ · ζ ≤ λ−1|ζ |2 .

a2. ϕ ∈ C∞
0 (Rd). In fact, this condition can be essentially relaxed, see Remark 3.

In the first setting it is assumed that the coefficients ofmatrix a are smooth functions
that havegoodmixingproperties in timevariable. The smoothness is important because
our approach relies on auxiliary elliptic equations that depend on time as a parameter,
and we have to differentiate these equations w.r.t. time.

In the case of smooth coefficients our assumptions read:

h1. The coefficients ai j (z, s) are periodic in z with the period [0, 1]d and ran-
dom stationary ergodic in s. Given a probability space (Ω,F ,P) with an
ergodic measure-preserving dynamical system τs , we assume that ai j (z, s, ω) =
ai j (z, τsω), where {ai j (z, ω)}di, j=1 is a collection of random periodic in z func-
tions that satisfy the above uniform ellipticity condition.

h2. Realizations ai j (z, s) are almost surely elements of C∞([0,+∞);C1,β(Td)
)

for some β > 0, and for any N � 0 and k � 1 there exist Ck,N such that

E ‖∂N
s ai j‖kC0([0,∞);C1,β (Td ))

≤ Ck,N

(see Remark 3).

Here and in what follows we identify periodic functions with functions on the
torus Td , E stands for the expectation.
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Our last condition concerns the decay of the strong mixing coefficient of a(·). We
recall here the definition of the strong mixing coefficient. Let F≤s and F≥s be the
σ -algebras generated by {a(z, t) : z ∈ T

d , t ≤ s} and {a(z, t) : z ∈ T
d , t ≥ s},

respectively. We set

γ (r) = sup
∣∣P(A ∩ B) − P(A)P(B)

∣∣,

where the supremum is taken over all A ∈ F≤0 and B ∈ F≥r . See among others [15,
Chapter 8.3.101] or [23, Chapter 5.8] for more details or different mixing conditions.

h3. Mixing condition. The strong mixing coefficient γ (r) of a(z, ·) satisfies the
inequality

∫ ∞

0
(γ (r))1/2dr < ∞.

We say that Condition (H) holds if a1, a2 and h1 – h3 are fulfilled.

Remark 1 In the proof of Theorem 1 formulated belowwe deal with stationary ergodic
processes taking on values in finite dimensional spaces. For such processes the law
of large number holds, however, the functional central limit theorem (invariance prin-
ciple) need not hold without additional assumptions. One of the typical conditions
that ensure the applicability of the CLT is condition h3. For an ergodic process the
σ -algebras generated by the process evaluated at times t and t + s are getting less and
less dependent as s is growing. The strong mixing coefficient is one of the charac-
teristics that quantify this dependence, and condition h3. implies that this coefficient
decay fast enough so that the invariance principle holds.

2.1 Homogenized problem and first corrector

According to [17], under (H), the sequence uε converges in probability, as ε → 0, to a
solution u0 of problem (2). For the reader convenience we provide here the definition
of the effective matrix aeff . We solve the following auxiliary problem

div
(
a(z, s, ω)∇χ0(z, s, ω)

) = −div a(z, s, ω), z ∈ T
d; (3)

here s and ω are parameters, and χ0 is an unknown vector function: χ0 =
(χ0,1, . . . , χ0,d). In what follows we usually do not indicate explicitly the depen-
dence of ω. Due to ellipticity of the matrix a Eq. (3) has a unique, up to an additive
constant vector, periodic solution, χ0 ∈ (

L∞(Td) ∩ H1(Td)
)d . This constant vector

is chosen in such a way that

∫

Td
χ0(z, s) dz = 0 for all s and ω. (4)
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Then we define the effective matrix aeff by

aeff = E
∫

Td
a(z, s)

(
I + ∇χ0(z, s)

)
dz, (5)

where I stands for the unit matrix, and {∇χ0(z, s)}i j = ∂
∂zi

χ0, j .

It is known that thematrix aeff is positive definite (see, for instance, [17]). Therefore,
problem (2) is well posed, and function u0 is uniquely defined. Under assumption a2
the function u0 is smooth and satisfies the estimates

∣∣∣(1 + |x |)N ∂ku0(x, t)

∂tk0∂xk11 . . . ∂xkdd

∣∣∣ ≤ CN ,k (6)

for all N > 0 and all multi index k = (k0, k1, . . . , kd), ki ≥ 0.

2.2 Main result for smooth coefficients with goodmixing properties

Here we assume that condition (H) holds. In order to formulate the main results
we need a number of auxiliary functions and quantities. For j = 1, 2, . . . , J 0 with
J 0 = 
 α

2(2−α)
�+ 1, the higher order correctors are introduced as periodic solutions to

the equations

div
(
a(z, s)∇χ j (z, s)

) = ∂sχ
j−1(z, s), (7)

where 
·� stands for the integer part. Due to (4) for j = 1 this equation is solvable in
the space of periodic in z functions. A solution χ1 is uniquely defined up to an additive
constant vector. Choosing the constant vector in a proper way yields

∫

Td
χ1(z, s) dz = 0 for all s and ω

and thus the solvability of the equation for χ2. Iterating this procedure, we define all
χ j , j = 1, 2, . . . , J 0.

Next, we introduce the functions u j = u j (x, t), j = 1, . . . , J 0. They solve the
following problems:

∂

∂t
u j = div(aeff∇u j ) +

j∑
k=1

div(ak,eff∇u j−k), u j (x, 0) = 0 (8)

with

ak,eff = E
∫

Td
a(z, s)∇χk(z, s) dz. (9)
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To characterize the diffusive term in the limit equation we introduce the matrix

Ξ(s) =
∫

Td

[(
a(z, s) + a(z, s)∇χ0(z, s)

) − E
{
a(z, s) + a(z, s)∇χ0(z, s)

}]
dz.(10)

By construction the matrix function Ξ is stationary and its entries satisfy condition
h3 (mixing condition). Denote

Λ =
∫ ∞

0
E
(
Ξ(s) ⊗ Ξ(0) + Ξ(0) ⊗ Ξ(s)

)
ds, Λ = {Λi jkl}, (11)

where (Ξ(s)⊗Ξ(0))i jkl = Ξ i j (s)Ξ kl(0) (see [15, TheoremVIII.5.56] or [23, Chap-
ter 9, Theorem 2]). Under condition h3 the integral on the right-hand side converges.
Indeed we can use [15, Lemma VIII.3.102] to obtain that coordinate by coordinate

∣∣∣E
(
Ξ(s) ⊗ Ξ(0)

)∣∣∣ ≤
[
E
(
Ξ(0)2

)]1/2 [
E
(
E
[
Ξ(s)

∣∣F0
] )2]1/2

≤ 4
[
E
(
Ξ(0)2

)]1/2
γ (r)1/2‖a(I + ∇χ0)‖L∞(Td×[0,+∞)).

Since γ 1/2 is integrable, the claim follows.
The first main result of this paper is

Theorem 1 Let Condition (H) be fulfilled. Then the functions

U ε = ε−α/2
(
uε − u0 −

J0∑
j=1

ε j(2−α)u j
)

converge in law, as ε → 0, in L2(Rd × (0, T )) to the unique solution of the following
SPDE

dv0 = div(aeff∇v0) dt + (Λ1/2)i jkl
∂2

∂xi∂x j
u0 dWkl

t

v0(x, 0) = 0; (12)

where W· = {Wi j· } is the standard d2-dimensional Brownian motion.

Remark 2 According to [7, Theorem 5.4] Eq. (12) is well-posed and has exactly one
weak solution. The definition of a solution to problem (12) can also be found in [7].

Remark 3 The regularity assumption on ϕ given in condition a2 can be weakened.
Namely, the statement of Theorem 1 holds if ϕ is J 0 + 1 times continuously differ-
entiable and the corresponding partial derivatives decay at infinity sufficiently fast.
The regularity assumptions imposed on a(·) in condition h2 can also be relaxed. Our
result holds if a is J 0 + 1 times continuously differentiable w.r.t. the time variable as
a function from (−∞,+∞) to C1,β(Td).
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The scheme of the proof is the following. We write down the following ansatz

V ε(x, t) = ε− α
2

⎧
⎨
⎩uε(x, t) −

J 0∑
k=0

εkδ
[
uk(x, t)

+
J 0−k∑
j=0

ε( jδ+1)χ j
( x

ε
,
t

εα

)
· ∇uk(x, t)

]⎫⎬
⎭ ,

here and in what follows the symbol δ = δα stands for 2 − α. Then we substitute
V ε for uε in (1) and we obtain for V ε a PDE with random coefficients when (H) is
in force. We prove that V ε converges in law in the suitable functional space to the
solution of (12). We combine the definition of correctors, formula (8) and the Cental
Limit Theorem for stationary mixing processes. After some manipulations this yields
the desired convergence (see Sect. 2.4). The rest of this section concerns the proof of
this result.

2.3 Heuristic scheme

As ε → 0, the random solution uε converges to the deterministic limit u0. Since we
study the asymptotic behaviour of the difference uε − u0, we need to construct higher
order terms of the asymptotic expansion of uε. If we try to follow the same scheme as
in the case α = 2 (see [18]), then, letting t = s

ε2
, z = x

ε
, for the first corrector χ(z, s)

we obtain the equation

∂sχ(z, s) − div
(
a(z, εδs)∇χ(ξ, s)

) = −div a(z, εδs), (z, s) ∈ T
d × (−∞,+∞),

which, in contrast with the case α = 2, depends on ε. It was shown in [18] that, for
each ε > 0, this equation has a unique up to an additive constant stationary solution.
Moreover, it is not difficult to see that, at least for continuous in time coefficients, the
solution of this equation is close to that of the elliptic equation

div
(
a(z, εδs)∇χ0(ξ, εδs)

) = −div a(z, εδs), z ∈ T
d ,

in the latter equation s is a parameter. Indeed, for time independent coefficients the
solution of parabolic equation stabilizes at exponential rate to the solution of the cor-
responding elliptic equation, and the desired closeness follows from the perturbation
theory arguments. In order to obtain a more precise asymptotics of χ we represent it
as χ(z, s) = χ0(z, εδs) + χ̃ (z, s). Substituting this expression in the above parabolic
equation we have

∂s χ̃(z, s) − div
(
a(z, εδs)∇χ̃ (ξ, s)

) = −∂sχ
0(z, εδs), (z, s) ∈ T

d × (−∞,+∞).

Since ∂sχ
0(z, εδs) = εδ∂τχ

0(z, τ )
∣∣
τ=εδs , this suggests that the next termof the expan-

sion should be of order εδ . Repeating the above arguments we conclude that χ̃ (z, s)
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is close to the function εδχ1(z, εδs) with χ1(z, τ ) being a solution of the equation

div
(
a(z, τ )∇χ1(ξ, τ )

) = −∂sχ
0(z, τ ), z ∈ T

d ,

Iterating this step we arrive at Eqs. (7). Observe that the right hand side in the latter
equation and in the higher order equations in (7) is well defined only if a(z, s) is
sufficiently regular in the temporal variable.

Since the corrector χ is represented as a sum of several terms, the regular part
of the asymptotics also takes the form u0(x, t) + εδu1(x, t) + . . ., see (8). Indeed,
collecting the terms of order ε0 in the asymptotic expansion and taking the average of
these terms with respect to the fast variables we obtain the homogenized equation, u0

being a solution to this equation. The terms of order εδ also have a non-trivial average
w.r.t. the fast variables. Taking this average results in the equation for u1. Iterating this
procedure we obtain {u j } for all j such that δ j � α

2
Considering the difference uε − u0 and dividing it by εδ , one can pass to the limit;

if the limit is deterministic we consider the difference uε − u0 − εδu1, divide it by
ε2δ and pass to the limit again. We iterate this procedure until at some stage we reach
a random limit; it happens as soon as jδ � α

2 , where j is the number of iterations.
Returning to uε, we obtain its expansion being a sum of terms of increasing order of
ε, and the random term coming with the scaling factor εα/2.

It should be noted that the stochastic term in the expansion is of order εα/2 even for
the coefficients having a finite range of dependence. This is just the normalization of
the central limit theorem.

2.4 Proof of Theorem 1

Auxiliary problems.

We begin by considering problem (3). This equation has a unique up to an additive
constant vector periodic solution such that

‖χ0‖L∞(Td×[0,∞)) ≤ C . (13)

Indeed, multiplying Eq. (3) by χ0, using the Schwartz and Poincaré inequalities and
considering (4), we conclude that ‖χ0(·, s)‖H1(Td ) ≤ C for all s ∈ R. Estimate
(13) then follows from [11, Theorem 8.15]. And from [11, Theorem 8.24], χ0(·, s) is
Hölder continuous in z. If a(·, s) ∈ C1,β for some β > 0, −div a(·, s, ω) ∈ Cβ , and
from the Schauder estimates [11, Theorem 6.2], χ0(·, s) ∈ C2,β . Now we can deduce
that ∂sχ0, solution of

div
(
a(z, s, ω)∇(∂sχ

0)(z, s, ω)
) = −div ∂sa(z, s, ω)

− div
(
∂sa(z, s, ω)∇χ0(z, s, ω)

)
, z ∈ T

d ,

inherits the same regularity C2,β .
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Since χ0(·, s) only depends on a(·, s), the solution with zero average is
stationary and the strong mixing coefficient of the pair (a(·, s), χ0(·, s)) coin-
cides with that for a(·, s). The same statement is valid for any finite collection
(a(·, s), χ0(·, s), χ1(·, s), . . .).

By the similar arguments, the solutions χ j of Eq. (7) are stationary, satisfy strong
mixing condition with the same coefficient γ (r). Indeed from Schauder estimate [11,
Theorem6.2],χ1 belongs toC2,β andwith the samearguments as before, ∂sχ1 ∈ C2,β .
By recursion the same property holds for any j : for any k ≥ 0 and N = 1, . . . , J 0

E‖χ j‖kC0([0,∞);C2,β (Td ))
+ E‖∂N

s χ j‖kC0([0,∞);C2,β (Td ))
≤ Ck,N . (14)

Solutions u0 and u j , j = 1, 2, . . . , J0, of problems (2) and (8) are smooth functions.
Moreover, for any k = (k0, k1, . . . , kd) and N > 0 there exists a constant Ck,N such
that

|Dku j | ≤ Ck,N (1 + |x |)−N , (15)

where Dk f (x, t) = ∂k0

∂tk0
∂k1

∂xk11
. . .

∂kd

∂xkdd
f (x, t).

The proof of Theorem 1.

For the sake of brevity we use the following notational conventions

∂z j = ∂

∂z j
, ∂t = ∂

∂t
,

(∂x j f )
( x
ε

) = ∂z j f (z)
∣∣
z=x/ε, (∂t f )

( t

εα

) = ∂s f (s)
∣∣
s=t/εα . (16)

Denote

â0,i j (z, s) = ai j (z, s) +
d∑

m=1

[
aim(z, s)∂zmχ0, j (z, s) + ∂zm

(
ami (z, s)χ0, j (z, s)

)]
,

and for k = 1, 2, . . .

âk,i j (z, s) =
d∑

m=1

[
aim(z, s)∂zmχk, j (z, s) + ∂zm

(
ami (z, s)χk, j (z, s)

)]
,

and (see (9))

ak,eff = E
∫

Td

[̂
ak(z, s)

]
dz.
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Substituting V ε for uε in (1) yields

∂t V
ε − div

[
a
( x
ε
,
t

εα

)∇V ε
]

= −ε− α
2

J 0∑
k=0

εkδ
[
∂t u

k

+
J 0−k∑
j=0

ε( jδ+1−α)
(
∂tχ

j )( x
ε
,
t

εα

)∇uk +
J 0−k∑
j=0

ε( jδ+1)χ j ( x
ε
,
t

εα

)
∂t∇uk

]

+ε− α
2

J 0∑
k=0

εkδ−1
[
(diva)

( x
ε
,
t

εα

) +
J 0−k∑
j=0

ε jδ(div(a∇χ j )
)( x

ε
,
t

εα

)]∇uk

+ε− α
2

J 0∑
k=0

J 0−k∑
j=0

ε(k+ j)δ
∑

1≤�,m≤d

[
â j,�m( x

ε
,
t

εα

) ∂2

∂x�∂xm
uk

]

+ε− α
2

J 0∑
k=0

J 0−k∑
j=0

ε(k+ j)δ+1
∑

1≤i,�,m≤d

[
(aimχ j,�)

( x
ε
,
t

εα

) ∂3

∂xi∂xm∂x�

uk
]

,

(17)

with

V ε(x, 0) =
J 0∑
j=0

ε( jδ+1)χ j
( x

ε
, 0

)
∇u0(x, 0).

Due to (3) and (7) and with δ = 2 − α:

−
J 0∑
k=0

εkδ
J 0−k∑
j=0

ε( jδ+1−α)
(
∂tχ

j )( x
ε
,
t

εα

)∇uk

+
J 0∑
k=0

εkδ−1
[
(diva)

( x
ε
,
t

εα

) +
J 0−k∑
j=0

ε jδ(div(a∇χ j )
)( x

ε
,
t

εα

)]∇uk

= −ε(J 0+1)δ−1
J 0∑
k=0

(
∂tχ

J 0−k)( x
ε
,
t

εα

)∇uk .

Considering our choice of J 0 we have: (J 0 +1)δ −1 > α/2. Therefore, with the help
of (2) and (8) the first relation in (17) can be rearranged as follows

∂t V
ε − div

[
a
( x
ε
,
t

εα

)∇V ε
] = −ε− α

2

J 0∑
k=0

εkδ∂t u
k
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+ε− α
2

J 0∑
k=0

J 0−k∑
j=0

ε(k+ j)δ Tr

[
â j ( x

ε
,
t

εα

)∇2uk
]

+ Rε(x, t)

= ε− α
2

J 0∑
j=0

J 0− j∑
k=0

ε(k+ j)δTr

[(̂
a j ( x

ε
,
t

εα

) − a j,eff)∇2uk
]

+ Rε(x, t), (18)

where we identify a0,eff with aeff , Tr is the trace, ∇2 the Hessian matrix w.r.t. x , and
Rε is the sum of all the terms on the right-hand side in (17) that are multiplied by a
positive power of ε. One can easily check that

Rε(x, t) = ε−α/2
J0∑
j=0

ε1+ jδθ j
( x

ε
,
t

εα

)
Φ j (x, t), (19)

where θ j (z, s) are periodic in z, stationary in s and satisfy the estimates

E
(‖θ j‖kC(Td×[0,∞))

) ≤ Ck; (20)

Φ j are smooth functions such that

|DkΦ j | ≤ Ck,N (1 + |x |)−N ; (21)

wedonot specify these quantities explicitly becausewedonot need them.We represent
V ε as the sum V ε = V ε

1 + V ε
2 , where V

ε
1 and V ε

2 solve the following problems:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂t V
ε
1− div

[
a
( x

ε
,
t

εα

)
∇V ε

1

]

= ε−α/2
J 0∑
k=0

J 0−k∑
j=0

ε(k+ j)δTr

[(
â j ( x

ε
,
t

εα

) − a j,eff
)

∇2uk
]

,

V ε
1 (x, 0) = 0,

(22)

and
⎧⎨
⎩

∂t V
ε
2 − div

[
a
( x

ε
,
t

εα

)
∇V ε

2

]
= Rε(x, t),

V ε
2 (x, 0) = V ε(x, 0).

(23)

From (13) and (14) it follows that the initial condition in the latter problem satisfies
for any k > 0 the estimate E‖V ε(·, 0)‖k

C(Rd )
≤ Ckε

kδ/2. If we multiply Eq. (23) by

V ε
2 and integrate the resulting relation over Rd × (0, T ), then integrating by parts and

combining estimates (19), (20) and the estimates for Φ j , we obtain

E‖V ε
2 ‖2L2(Rd×(0,T ))

≤ Cεδ. (24)
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Denote

〈a〉0(s) =
∫

Td
â0(z, s)dz

〈a〉k(s) =
∫

Td
âk(z, s)dz, k = 1, 2, . . .

It follows from the definition of âk that for any � > 0 there is a constant C� such
that E‖(̂ak − 〈a〉k)‖�

C1(Td×[0,∞))
≤ C�. Since for each s ∈ R the mean value of

(̂ak(·, s) − 〈a〉k(s)) is equal to zero, the problem

Δzζ
k,im(z, s) = (̂ak(z, s) − 〈a〉k(s))im

has for each i and m a unique up to an additive constant periodic solution. Letting
Θk,im(z, s) = ∇ζ k,im(z, s), we obtain a stationary in s vector functions Θk,im such
that

divΘk,im(z, s) = (̂ak(z, s) − 〈a〉k(s))im, (25)

with

E‖Θk,im‖�
C1(Td×[0,∞))

≤ C�.

It is then straightforward to check that for the functions

Fε(x, t) = ε−α/2
J 0∑
k=0

J 0−k∑
j=0

ε(k+ j)δ
∑

1≤�,m≤d

[
â j

( x
ε
,
t

εα

)
− 〈a〉 j

( t

εα

)]�m ∂2

∂x�∂xm
uk(x, t)

= ε1−
α
2

J 0∑
k=0

J 0−k∑
j=0

ε(k+ j)δ
∑

1≤�,m≤d

{
div

[
Θ j,�m

( x
ε
,
t

εα

) ∂2

∂x�∂xm
uk(x, t)

]

−Θ j,�m
( x

ε
,
t

εα

)∑
i

( ∂3

∂xi∂x�∂xm
uk(x, t)

)}

the following estimate is fulfilled:

E‖Fε‖2L2(0,T ;H−1(Rd ))
≤ Cεδ. (26)

Therefore, a solution to the problem

⎧
⎨
⎩

∂t V
ε
1,2 − div

[
a
( x

ε
,
t

εα

)
∇V ε

1,2

]
= Fε(x, t),

V ε
1,2(x, 0) = 0,

(27)
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admits the estimate

E‖V ε
1,2‖2L2(0,T ;H1(Rd ))

≤ Cεδ. (28)

Splitting V ε
1 = V ε

1,1 + V ε
1,2, we conclude that V

ε
1,1 solves the following problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂t V
ε
1,1− div

[
a
( x

ε
,
t

εα

)
∇V ε

1,1

]

= ε−α/2
J 0∑
k=0

J 0−k∑
j=0

ε(k+ j)δTr

[(
〈a〉 j

( t

εα

)
− a j,eff

)
∇2uk

]
,

V ε
1,1(x, 0) = 0.

(29)

By construction the strong mixing coefficient of âk remains unchanged and is equal
to γ (·). Denote by V 0,ε

1,1 the solution of the following problem:

⎧⎪⎨
⎪⎩

∂t V
0,ε
1,1 − div

[
a
(
x
ε
, t

εα

)
∇V 0,ε

1,1

]
= ε− α

2 Tr
[(

〈a〉0
(

t
εα

)
− aeff

)
∇2u0

]
,

V 0,ε
1,1 (x, 0) = 0.

(30)

Lemma 1 The solution of problem (30) converges in law, as ε → 0, in L2(Rd×(0, T ))

equipped with strong topology, to the solution of (12).

Proof We consider an auxiliary problem

⎧⎪⎨
⎪⎩

∂t V
ε
aux − div

[
aeff∇V ε

aux

]
= ε−α/2Tr

[(
〈a〉0

( t

εα

)
− aeff

)
∇2u0

]

V ε
aux(x, 0) = 0,

(31)

and notice that this problem admits an explicit solution

V ε
aux(x, t) = Tr

[
εα/2ζ

(
t

εα

)
∇2u0(x, t)

]
with ζ(s) =

∫ s

0

[〈a〉0(r) − aeff
]
dr .

(32)

Since the matrix Ξ defined by (10) is equal to 〈a〉0
( ·

εα

)
− aeff , then, due to [15,

Lemma VIII.3.102], there exists a constant C that depends only on the L
∞-norm

of the functions a, χ0 and of their first order spatial derivatives, such that for any
1 ≤ �,m ≤ d we have

E
(
E
[
(〈a〉0(r) − aeff)�m

∣∣∣∣F0

])2

≤ Cγ (r).
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Hence with assumption h3,

∫ ∞

0

[
E
(
E
[
(〈a〉0(r) − aeff)�m

∣∣∣∣F0

])2
]1/2

dr ≤ C
∫ ∞

0
γ (r)1/2dr < +∞.

Moreover, since
(〈a〉0(0) − aeff

)�m
are bounded, we have

E
[(

〈a〉0(0) − aeff
)�m

]2
< +∞.

From [15, Theorem VIII.3.97] (with p = q = 2 and r = ∞), the invariance principle
holds for the process εα/2ζ

( t
εα

)
, that is εα/2ζ

( t
εα

)
, converges in law, as ε → 0, in

C([0, T ])d2 to a d2-dimensional Brownian motion with the covariance matrixΛ given
by (11) (see [28, Theorem 3]). Since u0 satisfies estimates (6), the last convergence
implies that V ε

aux converges in law in C((0, T ); L2(Rd)) to the solution of problem
(12). Note that∇V ε

aux can be expressed in terms of the third derivative of u0, it is suffi-
cient to differentiate (32) in x . Thus V ε

aux also converges in law inC((0, T ); H1(Rd)).
Next, we represent V 0,ε

1,1 as V 0,ε
1,1 (x, t) = Zε(x, t) + V ε

aux(x, t). Then Zε solves the
problem

⎧⎨
⎩

∂tZε − div
[
a
( x

ε
,
t

εα

)
∇Zε

]
= div

([
a
( x

ε
,
t

εα

)
− aeff

]
∇V ε

aux(x, t)
)

Zε(x, 0) = 0,
(33)

and our goal is to show that Zε goes to zero in probability in L2((0, T ) × R
d), as

ε → 0. To this end we consider one more auxiliary problem that reads

⎧⎨
⎩

∂tYε − div
[
a
( x

ε
,
t

εα

)
∇Yε

]
= div

([
a
( x

ε
,
t

εα

)
− aeff

]
Υ (x, t)

)

Yε(x, 0) = 0.
(34)

We now prove that Yε converges to zero in probability in L2((0, T ) × R
d). The

arguments are basically the same as in [18, Lemma 5.1]. If the vector function Υ ∈
L2((0, T )×R

d), then problem (34) has a unique solution, and, by the standard energy
estimate,

‖Yε‖L2(0,T ;H1(Rd )) + ‖∂tYε‖L2(0,T ;H−1(Rd )) ≤ C‖Υ ‖L2((0,T )×Rd ).

According to [22, Lemma1.5.2] the family {Yε} is locally compact in L2(Rd×(0, T )).
Combining this with Aronson’s estimate (see [3]) we conclude that the family {Yε} is
compact in L2((0, T ) × R

d).
Assume for a while that Υ is smooth and satisfies estimates (6). Multiplying Eq. (34)
by a test function of the formϕ(x, t)+εχ0

( x
ε
, t

εα

)∇ϕ(x, t)withϕ ∈ C∞
0 ((0, T )×R

d)
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and integrating the resulting relation yields

−
∫ T

0

∫

Rd
Yε

(
∂tϕ + ε1−α(∂tχ

0)
( x
ε
,
t

εα

)∇ϕ + εχ0( x
ε
,
t

εα

)
∂t∇ϕ(x, t)

)
dxdt

+
T∫

0

∫

Rd

∑
1≤i, j,m≤d

∂xmYεaim
( x
ε
,
t

εα

)[
∂xi ϕ + (

∂xi χ
0, j )( x

ε
,
t

εα

)
∂x j ϕ

+εχ0, j ( x
ε
,
t

εα

) ∂2ϕ

∂xi∂x j

]
dxdt

=
T∫

0

∫

Rd

∑
1≤i, j,m≤d

[
a
( x
ε
,
t

εα

) − aeff
]im

Υ m[∂xi ϕ + (
∂xi χ

0, j )( x
ε
,
t

εα

)
∂x j ϕ

+εχ0, j ( x
ε
,
t

εα

) ∂2ϕ

∂xi∂x j

]
dxdt;

here we have used the relation ϕ(·, 0) = ϕ(·, T ) = 0. Since
∫
Td χ0(z, s)dz = 0, we

have ‖(∂tχ0)(x/ε, t/εα)∇ϕ‖L2(0,T ;H−1(Rd )) ≤ Cε. Therefore

∫ T

0

∫

Rd
Yεε1−α(∂tχ

0)
( x
ε
,
t

εα

)∇ϕdxdt

tends to zero, as ε → 0. Considering (3) and (5) we obtain

T∫

0

∫

Rd

∑
1≤i, j,m≤d

∂xmYεaim
( x
ε
,
t

εα

)[
∂xiϕ + (

∂xi χ
0, j )( x

ε
,
t

εα

)
∂x j ϕ

]
dxdt

= −
T∫

0

∫

Rd

Yε
∑

1≤i, j≤d

{
a
( x
ε
,
t

εα

)[
I + (∇χ0)( x

ε
,
t

εα

)]}i j ∂2ϕ

∂xi∂x j
dxdt

and

T∫

0

∫

Rd

∑
1≤i, j,m≤d

[
a
( x
ε
,
t

εα

) − aeff
]im

Υ m[∂xi ϕ + (
∂xi χ

0, j )( x
ε
,
t

εα

)
∂x j ϕ

]
dxdt

=
T∫

0

∫

Rd

∑
1≤i,m≤d

{
a
( x
ε
,
t

εα

)[
I + (∇χ0)( x

ε
,
t

εα

)] − aeff
}im

Υ m∂xi ϕdxdt

−
T∫

0

∫

Rd

∑
1≤i, j,m≤d

{aeff}imΥ m(∂xi χ0, j )( x
ε
,
t

εα

)
∂x j ϕdxdt .
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The last term tends to zero as ε → 0, one can easily justify it bymeans of integration by
parts. For the other term, recalling the definition of aeff and using the ergodic theorem
we deduce that

{
a
( x

ε
, t

εα

)[
I + (∇χ0

)( x
ε
, t

εα

)] − aeff
} → 0 weakly in L2(Rd ×

(0, T ))d
2
, as ε → 0. Therefore, this term also tends to zero. Denoting by Y0 the limit

of Yε for a subsequence, we conclude that

∫ T

0

∫

Rd
Y0

(
− ∂tϕ − (aeff)i j

∂2ϕ

∂xi∂x j

)
dxdt = 0.

Therefore,Y0 = 0, and thewhole familyYε converges a.s. to 0 in L2((0, T )×R
d). By

the density argument this convergence also holds for any Υ ∈ L2((0, T )×R
d). Since

V ε
aux converges in law in C((0, T ); H1(Rd)), the solution of problem (33) converges

to zero in probability in L2((0, T ) × R
d), and the statement of the lemma follows. ��

From the last lemma it follows that the solution of problem (29) converges in law,
as ε → 0, in L2(Rd × (0, T )) equipped with strong topology, to the solution of (12).
Combining this convergence with (24) and (28) we conclude that V ε converges in law
in the same space to the solution of (12). This completes the proof of Theorem 1.

3 Diffusion case

In this second setting we assume that the matrix a(z, s) has the form

a(z, s) = a(z, ξs), (35)

where ξs is a stationary diffusion process in Rn with a generator

L = 1

2
Tr[q(y)D2] + b(y).∇

(∇ stands for the gradient, D2 for the Hessian matrix). In this case even for smooth
functions a(z, y) the coefficients of matrix a(z, ξs) are just Hölder continuous in time
and not differentiable, and the method used in the smooth case fails to work.

We still assume that Conditions a1 and a2 hold. Moreover we suppose that the
matrix-functions a(z, y), q(y) and vector-function b(y) possess the following proper-
ties:

c1. a = a(z, y) is periodic in z and belongs to C∞(Rn;C1,β(Td)) for some β > 0,
such that for each N > 0 there exists CN > 0 such that

‖∂N
y a‖C0(Rn;C1,β (Td )) ≤ CN .

c2. Thematrix q = q(y) satisfies the uniform ellipticity conditions: there existλ > 0
such that

λ−1|ζ |2 ≤ q(y)ζ · ζ ≤ λ|ζ |2, y, ζ ∈ R
n .
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Moreover there exists a matrix σ = σ(y) such that q(y) = σ ∗(y)σ (y).
c3. The matrix function σ and vector-function b are smooth, for each N > 0 there

exists CN > 0 such that

‖σ‖CN (Rn) ≤ CN , ‖b‖CN (Rn) ≤ CN .

c4. The following inequality holds for some R > 0 and C0 > 0 and p > −1:

b(y) · y ≤ −C0|y|p for all y ∈ {y ∈ R
n : |y| ≥ R}.

We say that Condition (C) holds if a1, a2 and c1 – c4 are satisfied. This case is called
the diffusive case.

3.1 Existing results

Again according to [17], under (C), the sequenceuε converges in probability, as ε → 0,
to a solution u0 of problem (2). Corrector χ0 = χ0(z, y) is a periodic solution of the
equation

divz
(
a(z, y)∇zχ

0(z, y)
) = −divza(z, y); (36)

here y ∈ R
n is a parameter. We choose an additive constant in such a way that∫

Td χ0(z, y) dz = 0. The arguments developed to solve problem (3) can also be used
here to obtain χ0(·, y) ∈ C2,β(Td) and smooth in y, with the same estimate as in (13).
Let us emphasize that it follows from (3) and (36) that the zero order correctors χ0

coincide in both settings: χ0(z, s) = χ0(z, ξs). The effective matrix is again given by
(5):

aeff = E
∫

Td
a(z, ξs)

(
I + ∇zχ

0(z, ξs)
)
dz.

Let us recall that according to [27] under conditions c2 and c4 a diffusion process
ξ· with the generator L has an invariant measure in R

n that has a smooth density
ρ = ρ(y). For any N > 0 it holds

(1 + |y|)Nρ(y) ≤ CN

with some constant CN . The function ρ is the unique up to a multiplicative constant
bounded solution of the equation L∗ρ = 0; here ∗ denotes the formally adjoint oper-
ator. We assume that the process ξt is stationary and distributed with the density ρ.
The effective matrix can be written here as follows:

aeff =
∫

Rn

∫

Td

(
a(z, y) + a(z, y)∇zχ

0(z, y)
)
ρ(y) dzdy.
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In [19], under the condition that d = 1, a result similar to Theorem 1 is proved. We
formulate this result under the assumption that condition (C) is fulfilled. As before we
introduce several correctors and auxiliary quantities.

Higher order correctors are defined as periodic solutions of the equations

divz
(
a(z, y)∇zχ

j (z, y)
) = −Lyχ

j−1(z, y), j = 1, 2, . . . , J 0. (37)

Notice that
∫
Td χ j−1(z, y) dz = 0 for all j = 1, 2, . . . , J 0, thus the compatibility

condition is satisfied and the equations are solvable. Let us give some details for χ1.
Since χ0 belongs to C∞(Rn;C2,β(Td)), then due to condition a3, Lyχ

0(·, ·) is also
an element of this space.

The solutions χ j defined by (37) satisfy the same estimate as (14): for any N > 0
there exists CN such that

‖χ j‖C∞(Rn;C2,β (Td )) + ‖∂N
y χ j‖C0(Rn;C2,β (Td )) ≤ CN .

Remark 4 We have already mentioned that according to (3) and (36) the zero order
correctors coincide in both studied cases. It is interesting to compare the correctors
defined in (37)with the ones given by (7) and to observe that the higher order correctors
need not coincide.

Remark 5 In the diffusive case the regularity assumption on the initial condition ϕ can
be relaxed as in the case studied in the previous sections, see Remark 3 for the details.

However, since Ly is a second order differential operator, the function a(·) should
be 2J 0 + 2 times continuously differentiable w.r.t. y.

We introduce the matrices

ak,eff =
∫

Rn

∫

Td

[
a(z, y)∇zχ

k(z, y) + ∇z
(
a(z, y)χk(z, y)

)]
ρ(y) dzdy,

k = 1, 2, . . . ,

and matrix valued functions

â0(z, y) = a(z, y) + a(z, y)∇zχ
0(z, y) + ∇z

(
a(z, y)χ0(z, y)

)
,

âk(z, y) = a(z, y)∇zχ
k(z, y) + ∇z

(
a(z, y)χk(z, y)

)
, k = 1, 2, . . . , (38)

〈a〉0(y) =
∫

Td

(̂
a0(z, y) − aeff

)
dz,

〈a〉k(y) =
∫

Td

(̂
ak(z, y) − ak,eff

)
dz, k = 1, 2, . . . (39)

The functions u j = u j (x, t) are defined as solutions of problems (8):

∂

∂t
u j = div(aeff∇u j ) +

j∑
k=1

{ak,eff }im ∂2

∂xi∂xm
u j−k
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u j (x, 0) = 0

Since for each j = 1, 2, . . . problem (8) has a unique solution, the functions u j are
uniquely defined. Finally, we consider the equation

LQ0(y) = 〈a〉0(y). (40)

According to [28, Theorems 1 and 2], this equation has a unique up to an additive
constant solution of at most polynomial growth. Denote

Λ = {Λi jml} =
∫

Rn

[ ∂

∂ yr1
(Q0)i j (y)

]
qr1r2(y)

[ ∂

∂ yr2
(Q0)ml(y)

]
ρ(y) dy. (41)

The matrix Λ is non-negative. Consequently its square root Λ1/2 is well defined.
In the diffusive case the following result holds:

Theorem 2 Under Condition (C), if d = 1 or if α ≤ 1, the normalized functions

U ε = ε−α/2
(
uε − u0 −

J0∑
j=1

ε j(2−α)u j
)

converge in law, as ε → 0, in L2(Rd × (0, T )) to the unique solution of (12) with the
standard d2-dimensional Brownian motion W and Λ defined in (41).

Let us again emphasize that the case d = 1 has been addressed in [19]. Here we only
deal with the case α ≤ 1.

3.2 Proof of Theorem 2 for˛ ≤ 1

The beginning is the same as in Sect. 2.4 and is developed in [19, Section 3.1]. We
consider the following expression:

V ε(x, t) = ε−α/2
{
uε(x, t) −

J 0∑
k=0

εkδ
(
uk(x, t) +

J 0−k∑
j=0

ε( jδ+1)χ j
( x

ε
, ξ t

εα

)
∇uk(x, t)

)}
,

where χ j (z, y) and uk(x, t) are defined in (37) and (8), respectively. We substitute
V ε for uε in (1) using Itô’s formula:

dV ε − div
[
a
( x
ε
, ξ t

εα

)∇V ε
]
dt

= −ε− α
2

J 0∑
k=0

εkδ
[
∂t u

k +
J 0−k∑
j=0

ε( jδ+1−α)
(Lyχ

j )( x
ε
, ξ t

εα

)∇uk
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+
J 0−k∑
j=0

ε( jδ+1)χ j ( x
ε
, ξ t

εα

)
∂t∇uk

]
dt

+
J 0∑
k=0

J 0−k∑
j=0

ε(1−α+(k+ j)δ)σ (ξ t
εα

)∇yχ
j
( x

ε
, ξ t

εα

)
∇uk dBt

+ ε− α
2

J 0∑
k=0

εkδ−1
[
(diva)

( x
ε
, ξ t

εα

) +
J 0−k∑
j=0

ε jδ(div(a∇χ j )
)( x

ε
, ξ t

εα

)]∇ukdt

+ ε− α
2

J 0∑
k=0

J 0−k∑
j=0

ε(k+ j)δ â j,im( x
ε
, ξ t

εα

) ∂2

∂xi∂xm
ukdt

+ ε− α
2

J 0∑
k=0

J 0−k∑
j=0

ε(k+ j)δ+1 (aimχ j,l)
( x
ε
, ξ t

εα

) ∂3

∂xi∂xm∂xl
ukdt .

Here the n × n matrix σ(y) is such that σ(y)σ ∗(y) = 2q(y), B. is a standard n-
dimensional Brownian motion. Due to (36) and (37)

−
J 0∑
k=0

εkδ
J 0−k∑
j=0

ε( jδ+1−α)
(Lyχ

j )( x
ε
, ξ t

εα

)∇uk

+
J 0∑
k=0

εkδ−1
[
(diva)

( x
ε
, ξ t

εα

) +
J 0−k∑
j=0

ε jδ(div(a∇χ j )
)( x

ε
, ξ t

εα

)]∇uk

= −ε(J 0+1)δ−1
J 0∑
k=0

(Lyχ
J 0−k)( x

ε
, ξ t

εα

)∇uk .

Considering Eq. (8) and the definitions of ak,eff and âk(z, y), we obtain an expression
similar to that in (18)

dV ε(x, t) − div
[
a
( x

ε
, ξ t

εα

)
∇V ε

]
dt

=
(
ε−α/2

J 0∑
j=0

J 0− j∑
k=0

ε(k+ j)δ
[
âk
( x

ε
, ξ t

εα

)
− ak,eff

]im ∂2u j

∂xi∂xm

)
dt

+
J 0∑
k=0

J 0−k∑
j=0

ε(1−α+(k+ j)δ)σ (ξ t
εα

)∇yχ
j
( x

ε
, ξ t

εα

)
∇uk(x, t) dBt

+ Rε(x, t) dt, (42)
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with a0,eff = aeff and the initial condition

V ε(x, 0) = ε1−α/2
J 0∑
k=0

J 0−k∑
j=0

ε jδχ j
( x

ε
, ξ0

)
∇uk(x, 0)

and

Rε(x, t) = ε−α/2
J 0∑
j=0

ε1+ jδϑ j
( x

ε
, ξ t

εα

)
Φ j (x, t) (43)

with periodic in z smooth functions ϑ j = ϑ j (z, y) of at most polynomial growth in
y, and Φ j satisfying (21).

We represent V ε as the sum V ε = V ε
1 +V ε

2 +V ε
3 where V ε

1 and V ε
2 solve problems

equivalent to (22) and (23):

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂t V
ε
1− div

[
a
( x

ε
, ξ t

εα

)
∇V ε

1

]

= ε−α/2
J 0∑
k=0

J 0−k∑
j=0

ε(k+ j)δ
[
â j

( x
ε
,
t

εα

)
− a j,eff

]im ∂2uk

∂xi∂xm
,

V ε
1 (x, 0) = 0,

(44)

and

⎧⎨
⎩

∂t V
ε
2 − div

[
a
( x

ε
, ξ t

εα

)
∇V ε

2

]
= Rε(x, t),

V ε
2 (x, 0) = V ε(x, 0).

(45)

We have

E‖Rε‖2L2(Rd×(0,T ))
≤ Cε1−α/2

∫ T

0

∫

Rd

∫

Rn
(1 + |y|)N1(1 + |x |)−2nρ(y) dydxdt

≤ Cε1−α/2.

Similarly, E‖V ε
2 (·, 0)‖2

L2(Rd )
≤ Cε1−α/2. Therefore, V ε

2 still satisfies (24) and thus
does not contribute in the limit.

The last term V ε
3 satisfies the SPDE:

dV ε
3 (x, t) − div

[
a
( x

ε
, ξ t

εα

)
∇V ε

3

]
dt

= ε1−α
J 0∑
k=0

J 0−k∑
j=0

ε(k+ j)δσ (ξ t
εα

)∇yχ
j
( x

ε
, ξ t

εα

)
∇uk(x, t) dBt (46)
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with initial condition V ε
3 (x, 0) = 0. Let us again emphasize that the diffusive case

cannot be deduced from our first case because of the presence of V ε
3 .

We turn to V ε
1 . The statement similar to that of Lemma 1 still holds. Indeed the

equivalent of Fε

H ε(x, t) = ε−α/2
J 0∑
j=0

J 0− j∑
k=0

ε(k+ j)δ
[
âk
( x

ε
, ξ t

εα

)
− 〈a〉k(ξ t

εα

)]im ∂2u j

∂xi∂xm

admits the estimate (26):

E‖H ε‖2L2(0,T ;H−1(Rd )) ≤ Cε2−α. (47)

We split V ε
1 = V ε

1,1 + V ε
1,2, where

– V ε
1,2 solves (27) with H ε on the right-hand side instead of Fε, it admits estimate

(28);
– V ε

1,1 solves (29).

According to [28, Theorem 3] the processes

Ak(t) =
∫ t

0
(〈a〉k(ξs) − ak,eff)ds

satisfy the functional central limit theorem (invariance principle), that is the process

Aε,k(t) = ε
α
2

∫ ε−α t

0
(〈a〉k(ξs) − ak,eff)ds

converges in law inC([0, T ];Rd2) to a d2-dimensional Brownian motion with covari-
ance matrix

(Λk) = {(Λk)
i jml} =

∫

Rn

[ ∂

∂ yr1
(Qk)i j (y)

]
qr1r2(y)

[ ∂

∂ yr2
(Qk)ml(y)

]
ρ(y) dy.

with matrix-function Q0 defined in (40) and Qk given by

LQk(y) = 〈a〉k(y), k = 1, . . . . (48)

By the same arguments as those in the proof of Theorem 1 (see also [18, Lemma 5.1]),
we obtain the same conclusions as in Lemma 1.

To finish the proof of Theorem 2, we need to control V ε
3 , solution of problem (46).

Here we distinguish two cases: α < 1 and α = 1. As remarked in [19, Section 4.3],
if α < 1, E‖ sup0≤t≤T V ε

3 (·, t)‖2
L2(Rd )

≤ Cε1−α and thus this term also does not
contribute in the limit equation. Nonetheless for α = 1, the leading term in V ε

3 solves
the SPDE

drε(x, t) − div
[
a
( x

ε
, ξ t

ε

)
∇rε

]
dt = ∇yχ

0
( x

ε
, ξ t

ε

)
∇u0(x, t)σ (ξ t

ε
) dBt . (49)
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Lemma 2 rε converges to zero in probability in L2(0, T ; L2(Rd)).

Assume for a while that this claim holds. Then due to positive powers of ε in the
other terms of (46), we deduce that V ε

3 also tends to zero in the same space and the
conclusion of Theorem 2 follows.

3.3 Proof of Lemma 2

Let us define

vε
t =

∫

R
d
rε(x, t)2dx = ‖rε(·, t)‖2

L2(Rd )

and

Θε
( x

ε
, ξ t

ε
, x, t

)
= ∇yχ

0
( x

ε
, ξ t

ε

)
∇u0(x, t)σ (ξ t

ε
).

Note that vε
0 = 0. Itô’s formula and an integration by part lead to: for any 0 ≤ t ≤ T

vε
t + 2

∫ t

0

∫

R
d
∇rε(x, s)

[
a
( x

ε
, ξ s

ε

)
∇rε(x, s)

]
dxds

= 2
∫ t

0

∫

R
d
rε(x, s)Θε

( x
ε
, ξ s

ε
, x, s

)
dx dBs

+
∫ t

0

∫

R
d

∥∥∥Θε
( x

ε
, ξ s

ε
, x, s

)∥∥∥
2
dx ds.

From condition a1, taking t = T and the expectation, there exists a constant C
independent of ε such that

E
∫ T

0

∥∥∇rε(·, s)∥∥2L2(Rd )
ds ≤ C . (50)

Moreover by Burkholder–Davis–Gundy, Cauchy–Schwarz and Young inequalities we
have

E

[
sup

t∈[0,T ]
vε
t

]
= E

[
sup

t∈[0,T ]
‖rε(·, t)‖2

L2(Rd )

]
≤ C . (51)

Indeed

E

[
sup

t∈[0,T ]
vε
t

]
= E

[
sup

t∈[0,T ]
‖rε(·, t)‖2

L2(Rd )

]

≤ CE

⎡
⎣
(∫ T

0

∣∣∣∣
∫

R
d
rε(x, s)Θε

( x
ε
, ξ s

ε
, x, s

)
dx

∣∣∣∣
2

ds

)1/2
⎤
⎦
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+ E
[∫ T

0

∫

R
d

∥∥∥Θε
( x

ε
, ξ s

ε
, x, s

)∥∥∥
2
dx ds

]

≤ 1

2
E

[
sup

t∈[0,T ]
vε
t

]
+ C

2
E
[∫ T

0

∫

R
d

∥∥∥Θε
( x

ε
, ξ s

ε
, x, s

)∥∥∥
2
dx ds

]

+ E
[∫ T

0

∫

R
d

∥∥∥Θε
( x

ε
, ξ s

ε
, x, s

)∥∥∥
2
dx ds

]
.

Now we prove that the sequence rε is tight in

VT = L2
w(0, T ; H1(Rd)) ∩ C(0, T ; L2

w(Rd)).

Remenber that the index w means that the corresponding space is equipped with the
weak topology. We turn to estimating the modulus of continuity of the inner product
of rε with a test function φ.

For any function φ ∈ C∞
0 (Rd) we define

v̂ε
t =

∫

R
d
rε(x, t)

(
φ(x) + ε∇φ(x)χ0

( x
ε
, ξ t

ε

))
dx = 〈rε(·, t), φε(·, t)〉L2(Rd ).

Again by Itô’s formula for any 0 ≤ t ≤ T

v̂ε
t =

∫ t

0

∫

R
d
φε(x)div

[
a
( x

ε
, ξ s

ε

)
∇rε(x, s)

]
dxds

+
∫ t

0

∫

R
d
rε(x, s)∇φ(x)Lyχ

0
( x

ε
, ξ s

ε

)
dxds

+
∫ t

0

∫

R
d
φε(x, s)Θε

( x
ε
, ξ s

ε
, x, s

)
dx dBs

+ ε1/2
∫ t

0

∫

R
d
rε(x, s)∇φ(x)∇χ0

( x
ε
, ξ s

ε

)
dxdBs

+ ε1/2
∫ t

0

∫

R
d
Θε

( x
ε
, ξ s

ε
, x, s

)
∇φ(x)∇χ0

( x
ε
, ξ s

ε

)
dxds.

Evoke that â0 is defined by (38). With an integration by parts we obtain

v̂ε
t =

∫ t

0

∫

R
d
rε(x, s )̂a0

( x
ε
, ξ s

ε

)
∇2φ(x)dxds

+
∫ t

0

∫

R
d
rε(x, s)∇φ(x)Lyχ

0
( x

ε
, ξ s

ε

)
dxds

+
∫ t

0

∫

R
d
φ(x, s)Θε

( x
ε
, ξ s

ε
, x, s

)
dx dBs

+ ε1/2
∫ t

0

∫

R
d
rε(x, s)∇φ(x)∇zχ

0
( x

ε
, ξ s

ε

)
dxdBs
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+ ε1/2
∫ t

0

∫

R
d
Θε

( x
ε
, ξ s

ε
, x, s

)
∇φ(x)∇zχ

0
( x

ε
, ξ s

ε

)
dxds

+ ε

∫ t

0

∫

R
d
rε(x, s)χ0

( x
ε
, ξ s

ε

)
∇3φ(x)a

( x
ε
, ξ s

ε

)
dxds

+ ε

∫ t

0

∫

R
d
∇φ(x, s)χ0

( x
ε
, ξ s

ε

)
Θε

( x
ε
, ξ s

ε
, x, s

)
dx dBs (52)

since from the very definition of χ0, the two terms of order ε−1

ε−1
∫ t

0

∫

R
d
(divza)

( x
ε
, ξ s

ε

)
∇φ(x)rε(x, s)dxds

+ε−1
∫ t

0

∫

R
d
∇φ(x)divz

[
a
( x

ε
, ξ s

ε

)
∇zχ

0
( x

ε
, ξ s

ε

)]
rε(x, s)dxds

are equal to zero.
Using BDG inequality and the estimate (51) we deduce that there exists C > 0

such that for any 0 ≤ t ≤ τ ≤ T

E

[
sup

s∈[t,τ ]
|̂vε

s − v̂ε
t |
]

= C
√

τ − t + Cε1/2.

Hence the sequence v̂ε is tight in C(0, T ;R), that is rε is tight in C(0, T ; L2
w(Rd)).

For any i = 1, . . . , n, since 〈Lyχ
0〉 = 〈(∇yχ

0)i 〉 = 0, we can define ζ 0,i such that
divzζ 0,i = (∇yχ

0)i and divz ζ̂ 0 = Lyχ
0 and we have

∫ t

0

∫

R
d
φ(x, s)Θε

( x
ε
, ξ s

ε
, x, s

)
dx dBs

=
∫ t

0

∫

R
d
φ(x, s)∇yχ

0
( x

ε
, ξ s

ε

)
∇u0(x, s)dxσ(ξ s

ε
) dBs

= ε

∫ t

0

∫

R
d
φ(x, s)divζ 0

( x
ε
, ξ s

ε

)
∇u0(x, s)dxσ(ξ s

ε
) dBs

= −ε

∫ t

0

∫

R
d
ζ 0

( x
ε
, ξ s

ε

)
∇

(
φ(x, s)∇u0(x, s)

)
dxσ(ξ s

ε
) dBs

and

∫ t

0

∫

R
d
rε(x, s)∇φ(x)Lyχ

0
( x

ε
, ξ s

ε

)
dxds

= ε

∫ t

0

∫

R
d
rε(x, s)∇φ(x)div̂ζ 0

( x
ε
, ξ s

ε

)
dxds

= −ε

∫ t

0

∫

R
d
∇(rε(x, s)∇φ(x))̂ζ 0

( x
ε
, ξ s

ε

)
dxds.
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From (50), these two quantities converge to zero. Therefore every term in (52), except
for the first one, converges to zero.

For the first one, we have

∫ t

0

∫

R
d
rε(x, s )̂a0

( x
ε
, ξ s

ε

)
∇2φ(x)dxds

=
∫ t

0

∫

R
d
rε(x, s)aeff∇2φ(x)dxds +

∫ t

0

∫

R
d
rε(x, s)

(
〈a〉0(ξ s

ε
) − aeff

)
∇2φ(x)dxds

+
∫ t

0

∫

R
d
rε(x, s)

(
â0
( x

ε
, ξ s

ε

)
− 〈a〉0(ξ s

ε
)
)

∇2φ(x)dxds,

where 〈a〉0 is defined by (39). Since

〈
â0
( x

ε
, ξ s

ε

)
− 〈a〉0(ξ s

ε
)
〉
= 0,

the last part converges to zero. Moreover by definition of aeff , we also obtain the
convergence to zero of the penultimate term. Hence (52) becomes:

v̂ε
t =

∫

R
d
rε(x, t)

(
φ(x) + ε∇φ(x)χ0

( x
ε
, ξ t

ε

))
dx

=
∫ t

0

∫

R
d
rε(x, s)aeff∇2φ(x)dxds

+
∫ t

0

∫

R
d
rε(x, s)

(
〈a〉0(ξ s

ε
) − aeff

)
∇2φ(x)dxds

+
∫ t

0

∫

R
d
rε(x, s)

(
â0
( x

ε
, ξ s

ε

)
− 〈a〉0(ξ s

ε
)
)

∇2φ(x)dxds + O(ε1/2).

Here O(ε1/2) stands for functions whose L2(Ω; L∞(0, T )) norm is bounded by
a constant times ε1/2. On the right-hand side, the last two integrals converge to
zero. Hence we have proved that the sequence rε converges in probability in
L2(0, T ; L2

w(Rd)) ∩ L2(0, T ; L2
loc(R

d)) to the unique solution r0 of the PDE (2)
with initial value zero. Hence r0 = 0.

To finish the proof of Lemma 2, we now show that the convergence holds in
L2(0, T ; L2(Rd)). Define a non-negative function θR ∈ C∞(Rd) equal to zero on
{|x | ≤ R} and equal to one on {|x | ≥ 3R} and such that ‖∇θR‖ ≤ 1/R. For

θε
R(x, t) = θR(x) + ε∇θR(x)χ0

( x
ε
, ξ t

ε

)

we have

d(rε(x, t)θε
R(x)) − div

[
a
( x

ε
, ξ t

ε

)
∇(rεθε

R)
]
dt

= θε
R(x)∇yχ

0
( x

ε
, ξ t

ε

)
∇u0(x, t)σ (ξ t

ε
) dBt
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− 2a
( x

ε
, ξ s

ε

)
∇rε(x, s)∇θR(x)dt

− rε(x, s)
[
a + a∇χ0 + div(aχ0)

] ( x
ε
, ξ s

ε

)
∇2θR(x)dt

+ rε(x, s)∇θR(x)Lyχ
0
( x

ε
, ξ s

ε

)
dt

+ ε1/2rε(x, s)∇θR(x)∇χ0
( x

ε
, ξ s

ε

)
dBt

+ ε1/2Θε
( x

ε
, ξ s

ε
, x, s

)
∇θR(x)∇χ0

( x
ε
, ξ s

ε

)
dt

− εrε(x, s)a
( x

ε
, ξ s

ε

)
χ0

( x
ε
, ξ s

ε

)
∇3θR(x)dt .

If we apply Itô’s formula to

vR(t) = ‖rε(·, t)θε
R(·)‖2

L2(Rd )

then

vR(t) + 2
∫ t

0

∫

R
d
∇(rε(x, s)θε

R(x))
[
a
( x

ε
, ξ t

ε

)
∇(rε(x, s)θε

R(x))
]
dxds

= 2
∫ t

0

∫

R
d
rε(x, s)θε

R(x)θε
R(x)∇yχ

0
( x

ε
, ξ s

ε

)
∇u0(x, s)σ (ξ s

ε
)dx dBs

− 4
∫ t

0

∫

R
d
rε(x, s)θε

R(x)a
( x

ε
, ξ s

ε

)
∇rε(x, s)∇θR(x)dxds

− 2
∫ t

0

∫

R
d
rε(x, s)θε

R(x)rε(x, s)
[
a + a∇χ0 + div(aχ0)

] ( x
ε
, ξ s

ε

)
∇2θR(x)dxds

+ 2
∫ t

0

∫

R
d
rε(x, s)θε

R(x)rε(x, s)∇θR(x)Lyχ
0
( x

ε
, ξ s

ε

)
dxds

+
∫ t

0

∫

R
d
θε
R(x)2

∥∥∥∇yχ
0
( x

ε
, ξ s

ε

)
∇u0(x, s)σ (ξ s

ε
)

∥∥∥
2
dxds + O(ε1/2).

Since u0 is a Schwartz class function and ‖∇θε
R‖ ≤ 1/R, the expectation of the right-

hand side does not exceed C

(
1

R
+ √

ε

)
. It implies tightness in L2(0, T ; L2(Rd)).
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