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Abstract. We consider a spectral problem for convolution-type operators in environments with locally periodic microstructure
and study the asymptotic behavior of the bottom of the spectrum. We show that the bottom point of the spectrum converges
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Hamilton–Jacobi equation. In the periodic case, we establish a more accurate two-term asymptotic formula.
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1. Introduction

This work deals with the homogenization of spectral problems for nonlocal convolution-type operators
in environments with locally periodic microstructure. In a bounded C1-domain Ω ⊂ R

d, we consider the
spectral problem

Lερε = λερε(x) in Ω (1.1)
for the operator

Lερ = − 1
εd

∫
Ω

J
(x − y

ε

)
κ
(
x, y,

x

ε
,
y

ε

)
ρ(y)dy + a

(
x,

x

ε

)
ρ(x), (1.2)

with a small parameter ε > 0 that characterizes the microscopic length scale of the medium. Under
natural positiveness and periodicity conditions as well as fast decay of J at infinity, we study the bottom
of the spectrum of this problem. The main focus of this work is on the asymptotic behavior as ε → 0 of
the point of the spectrum with the smallest real part.

Many models in mathematical biology and population dynamics take into account nonlocal interactions
in the studied systems. These interactions are described by convolution-type integral operators with
integrable kernels. More specifically, the simplest nonlocal model of population dynamics reads (see, e.g.,
[14]), [20])

∂tρ(x, t) −
∫

Ω

J(x − y)ρ(y, t)dy +
∫
Rd

J(y − x)dy ρ(x, t) = 0 in Ω, ρ = 0 on R
d \ Ω,

where ρ denotes the population density, J(x−y) ≥ 0 is a dispersal kernel that describes the rate of jumps
from the location y to the location x and the above equation defines the nonlocal transport in Ω, while
the Dirichlet condition ρ = 0 (imposed everywhere on R

d \ Ω) represents the case of a hostile exterior
domain. In the case when the growth of the population is taken into account, the above equation is also
supplemented by an additional KPP type (local) nonlinear term (see, e.g., [11], [13]). Then, the large
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time behavior of ρ(x, t) can be qualitatively characterized by linearizing the problem and studying the
bottom part of the spectrum of the corresponding operator; in particular, an optimal persistence criterion
is formulated in terms of the bottom point of the spectrum [2,6,8,12,16,26].

To model nonlocal diffusion in strongly inhomogeneous media, in [24,25] evolution problems with
dispersal kernels of the form J(x−y)κ(x, y) with integrable J ≥ 0 and positive periodic κ were considered
in the parabolic scaling t → t/ε2, x → x/ε. It was shown in [24] that the asymptotic behavior of
solutions is described by a local effective diffusion problem in the symmetric case (when J(z) = J(−z)
and κ(x, y) = κ(y, x)), while [25] revealed a large effective drift appearing in asymmetric case, and the
corresponding homogenization result was established in rapidly moving coordinates. The approach in [25]
was developed for problems stated in the whole space R

d, and it fails to work in the case of a bounded
domain because of the presence of large effective drift. To overcome this difficulty, one can combine the
study of the evolution problem with the spectral analysis of problem (1.1).

Peculiar features of the spectral problem (1.1) can be seen in the case of nonlocal diffusion operator
in R

d

L̂ερ = − 1
εd

∫
Rd

J
(x − y

ε

)
κ
(x

ε
,
y

ε

)
(ρ(y) − ρ(x)) dy (1.3)

with a periodic coefficient κ. One can formally assign to L̂ε the singularly perturbed differential operator
D̂ε given by the two-term asymptotic formula D̂ε = −ε2div(A∇· )+ εB ·∇ with a constant matrix A > 0
and a constant vector B. Indeed, as shown in [25] the semigroups e−tL̂ε/ε2

and e−tD̂ε/ε2
generated by

operators 1
ε2 L̂ε and 1

ε2 D̂ε are close as ε → 0 (uniformly on finite time intervals). Therefore, it can be
expected that the asymptotic behavior of the bottom part of the spectrum of the operator Lε is also
somehow similar to that of singularly perturbed elliptic differential operators.

It should be noted that, in contrast with differential operators, the point of the spectrum of Lε with
the smallest real part need not be a principal eigenvalue; it might lie on the edge of the essential spectrum.
However, we show that the limit of this point as ε → 0 can be specified in terms of an additive eigenvalue
for an effective Hamilton–Jacobi equation, like in the case of principal eigenvalues of singularly perturbed
elliptic differential operators. Despite this similarity of the results, related to the fact that the operator Lε

is becoming more and more localized for small ε, many technical aspects of the proofs are quite different
in the local and nonlocal cases.

The asymptotic behavior of the principal eigenpair of singularly perturbed local (differential) convection–
diffusion operators with oscillating coefficients was studied in [23] (see also [22]), where the Cole–Hopf
transformation e−Wε(x)/ε of the first eigenfunction was used, yielding a perturbed Hamilton–Jacobi equa-
tion. The latter was naturally dealt with by means of the vanishing viscosity techniques. In the case of
nonlocal operators, the Cole–Hopf transformation does not lead to a perturbed Hamilton–Jacobi equa-
tion, and we rather exploit the monotonicity of the map Wε �→ e−Wε/ε to devise a version of perturbed
test functions method [10] for nonlocal operators. The main difficulty, however, is in finding relevant
uniform bounds for the function Wε. In the case of local operators, appropriate tools are Bernstein’s
estimates and Harnack’s inequality. Bernstein’s method is developed for local operators, and it is not
clear how to adapt it in the nonlocal case, while the known results [7] on the Harnack type inequalities
are established for dispersal kernels with a finite support and are not scaling invariant. We prove instead
uniform estimates in Lemma 4.2 to establish the existence of half-relaxed limits of Wε.

When the functions κ and a in (1.2) do not depend on the slow variables (periodic case), the solution
of the effective Hamilton–Jacobi problem is a linear function. In this case, using a factorization trick
inspired by asymptotic analysis of differential operators with periodic coefficients [4], we establish a more
accurate two-term asymptotic formula for eigenvalues (if exist) in the bottom part of the spectrum. This,
in particular, generalizes an asymptotic result of [3] obtained for symmetric operators with homogeneous
dispersal kernels (note, however, that in this special case, the analysis in [3] covers also unbounded
domains that are outside of the scope of the present work).
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It is known that operator (1.3) is the generator of a jump Markov process in R
d. Therefore, one of the

ways of obtaining homogenization results for problems involving operator (1.3) is based on probabilistic
interpretation of solutions to these problems and on the limit theorems for the corresponding jump Markov
processes. In particular, an alternative approach of studying the principal eigenpair of problem (1.1)–(1.2)
could rely on a probabilistic interpretation of operator (1.2). Since this operator is the generator of a
jump Markov process with birth and death, one can try to exploit the large deviation principle for this
process to investigate the asymptotic properties of problem (1.1)–(1.2). In the case of operators defined in
(1.3) and similar locally periodic operators, the large deviation result for the mentioned jump processes
was obtained in [21].

The paper is organized as follows. In Sect. 2, we state Theorem 2.1 describing the limit as ε → 0 of
the bottom point of the spectrum of the operator (1.2) in the general locally periodic case. Section 3
is devoted to establishing more precise asymptotics of eigenvalues in the case of periodic environments.
Finally, Sect. 4 contains the proof of Theorem 2.1.

2. Problem setup. Convergence result for the bottom point of the spectrum

We begin with specifying assumptions on the functions J , κ, and a appearing in the definition (1.2) of
Lε. We assume that J satisfies

J ∈ C(Rd), J(0) > 0 and 0 ≤ J(z) ≤ Ce−|z|1+β ∀z ∈ R
d, (2.1)

for some C, β > 0, besides,

κ > 0 and κ ∈ C(Ω × Ω × T
d × T

d), a ∈ C(Ω × T
d), (2.2)

where T
d denotes the torus T

d = R
d/Zd and we identify periodic functions in R

d with functions defined
on T

d. Thus, coefficients κ and a in (1.2) are periodic functions of the fast variables ξ = x/ε and η = y/ε,
so that operator (1.2) corresponds to a locally periodic environment.

We are interested in the asymptotic behavior as ε → 0 of the following quantity introduced in [6],

λε = sup
{

λ
∣∣ ∃v ∈ C(Ω), v > 0 such that Lεv ≥ λv in Ω

}
. (2.3)

It is known [18] (Theorem 2.2) that λε belongs to the spectrum σ(Lε) of the operator Lε (considered in
L2(Ω) or C(Ω)) and λε = inf{Reλ |λ ∈ σ(Lε)}, i.e., λε is the bottom point of the spectrum. Typically, λε

is the principal eigenvalue of the operator Lε, i.e., an isolated simple eigenvalue (with minimal real part)
whose corresponding eigenfunction can be chosen strictly positive, as in the case of elliptic differential
operators. However, if λε = minΩ a(x, x

ε ) rather than λε < minΩ a(x, x
ε ), the principal eigenvalue does not

exist and λε is the bottom point of the essential spectrum of Lε. In both cases, the sign of λε is crucial
for stability of the corresponding evolution semigroup e−Lεt or for the maximum principle to hold, see
Theorem 2.3 in [18].

To state the main result on the asymptotic behavior of λε for locally periodic environments, introduce
the following function

H(p, x) = sup

{
λ

∣∣∣ ∃ϕ ∈ C(Td), ϕ > 0, such that

−
∫
Rd

J(z)ep·zκ(x, x, ξ, ξ − z)ϕ(ξ − z)dz + a(x, ξ)ϕ(ξ) ≥ λϕ(ξ) on T
d

}
.

(2.4)

Theorem 2.1. Suppose that J satisfies (2.1) and κ, a satisfy (2.2). Then

λε → −Λ as ε → 0, (2.5)
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where Λ is a unique additive eigenvalue of the problem

− H(∇W (x), x) = Λ in Ω, −H(∇W (x), x) ≥ Λ on ∂Ω. (2.6)

Both the equation and the boundary condition in (2.6) are understood in the viscosity sense, see, e.g.,
[9]. It follows from the definition (2.4) that function H(p, x) is continuous, H ∈ C(Rd × Ω), concave in
p and H(p, x) → −∞ uniformly in x ∈ Ω as |p| → ∞. Then (see, e.g., [5]) there is a unique Λ such that
problem (2.6) has a continuous viscosity solution. Moreover, the additive eigenvalue Λ can be calculated
by the following formula

Λ = inf
W∈C1(Ω)

max
x∈Ω

−H(∇W (x), x). (2.7)

Yet another representation for Λ is given by minimization of action functional for the Lagrangian L(q, x) =
maxp∈Rd(q · p + H(p, x)),

Λ = − inf

{
1
T

∫ T

0

L(ξ̇(t), ξ(t))dt
∣∣∣ T > 0, ξ ∈ W 1,∞(0, T ; Ω)

}
. (2.8)

In the periodic case, H(p, x) is independent of x, H(p, x) = H(p), and one can show that the additive
eigenvalue Λ in this case is given by Λ = −max H(p) while solutions W (x) of (2.6) are linear functions
W (x) = p · x with p solving H(p) = −Λ. This suggests the representation (3.10) for eigenfunctions with
the exponential factor e−p·x/ε. In this case, however, we find much more accurate asymptotic formulas
for eigenvalues (see Theorem 3.1) and eigenfunctions (see Remark 2).

3. Periodic case

In this section, we consider a particular case of problem (1.1) when functions κ and a do not depend on
the slow variables x and y, so that the operator Lε has the following form

Lερ(x) = − 1
εd

∫
Ω

J
(x − y

ε

)
κ
(x

ε
,
y

ε

)
ρ(y)dy + a

(x

ε

)
ρ(x) (3.1)

with
κ ∈ C(Td × T

d), κ > 0, a ∈ C(Td), (3.2)

and J satisfying (2.1).
Let us introduce the notation

m = min a(x), (3.3)

and for any p ∈ R
d define

H(p) = sup

{
λ

∣∣∣ ∃ϕ ∈ C(Td), ϕ > 0, such that

−
∫
Rd

J(ξ − η)ep·(ξ−η)κ(ξ, η)ϕ(η)dη + a(ξ)ϕ(ξ) ≥ λϕ(ξ) on T
d

}
.

(3.4)

It follows from (3.4) that H(p) is a continuous concave function, taking finite values for all p ∈ R
d and

such that H(p) → −∞ as |p| → ∞. Also, by Theorem 2.2 in [18] one has H(p) ≤ m. Let p0 be a maximum
point of H(p),

H(p0) = max H(p). (3.5)

The asymptotic behavior of the bottom part of the spectrum of the operator Lε in the periodic case
is described in the following
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Theorem 3.1. Assume that conditions (2.1), (3.2) are fulfilled. Let λε be the point of the spectrum of Lε

with the minimal real part. Then λε belongs to the essential spectrum of Lε for sufficiently small ε in the
case H(p0) = m, or λε is the principal eigenvalue of Lε in the case H(p0) < m, and
(i) If H(p0) = m, then λε = H(p0) for sufficiently small ε;
(ii) If H(p0) < m, then

λε = H(p0) + Λ1ε
2 + o(ε2) as ε → 0, (3.6)

where Λ1 is the principal eigenvalue of the operator

L0v = −div
(
A∇v

)
in Ω, v = 0 on ∂Ω, (3.7)

whose matrix of coefficients A has entries

Aij = −1
2
∂2

pipj
H(p0). (3.8)

Moreover, in the case H(p0) < m the operator Lε has a large or infinite number of other eigenvalues λ
(j)
ε

for small ε. Assuming that eigenvalues of both Lε and L0 are arranged by their increasing real parts (and
repeated according to their multiplicities), we have

λ(j)
ε = H(p0) + Λjε

2 + o(ε2) as ε → 0, (3.9)

where Λj are eigenvalues of the operator L0.

Remark 1. The following example inspired by [6] shows that the cases H(p0) = m and H(p0) < m do
occur. Assume that d ≥ 3, κ = 1 and consider J(z) given by

J(z) =
μe−|z|2∑

l∈Zd e−|z+l|2 ,

where μ > 0. Then
∫
Rd J(x−y)ϕ(y)dy = μ

∫
Td ϕ(y)dy for every ϕ ∈ C(Td). Let a(x) be a smooth periodic

function strictly positive in R
d \ Z

d and such that a(0) = 0 and a(x) > τ |x|2 (τ > 0) in a neighborhood
of zero. For such J , κ, and a, we have m = 0, while H(0) = 0 if μ is small and H(0) < 0 if μ is
sufficiently large. Indeed, according to [18] it always holds that H(0) ≤ 0 and H(0) < 0 iff ∃ ϕ ∈ C(Td),
ϕ > 0 satisfying −μ

∫
Td ϕ(y)dy + a(x)ϕ = H(0)ϕ, i.e., ϕ = 1

a(x)−H(0) (up to multiplication by a positive
constant) and

∫
Td

μ
a(y)−H(0)dy = 1. Thus, H(0) < 0 iff

∫
Td

μ
a(x)dx > 1.

3.1. Problem reduction

Similar to spectral problems for differential operators with periodic oscillating coefficients [4], problem
(1.1) can be transformed via a factorization trick to a form more convenient for the asymptotic analysis.
First, we set

ρε(x) = e−p·x/εuε(x) in Ω, (3.10)
so that the new unknown uε(x) satisfies

− 1
εd

∫
Ω

J
(x − y

ε

)
e

1
ε p·(x−y)κ

(x

ε
,
y

ε

)
uε(y)dy + a

(x

ε

)
uε(x) = λεuε(x) in Ω. (3.11)

Then consider a periodic counterpart of (3.11) in the rescaled variables ξ = x/ε, η = y/ε,

−
∫
Rd

J(ξ − η)ep·(ξ−η)κ(ξ, η)ϕ(η)dη + a(ξ)ϕ(ξ) = H(p)ϕ(ξ) on T
d. (3.12)

Specifically, we are interested in the principal eigenvalue H(p) (with the minimal real part), which, if
exists, is real and simple; its corresponding eigenfunction is sign-preserving and thus can be chosen strictly
positive, ϕ > 0. It is known [18] that H(p) given by (3.4) is always the principal eigenvalue of the problem
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(3.12) provided that H(p) < m (otherwise H(p) = m, it lies at the bottom point of the essential spectrum
and the principal eigenvalue does not exist). In the case H(p) < m, the adjoint problem

−
∫
Rd

J(η − ξ)ep·(η−ξ)κ(η, ξ)ϕ∗(η)dη + a(ξ)ϕ∗(ξ) = H(p)ϕ∗(ξ) on T
d (3.13)

has the same principal eigenvalue H(p) and there also is a positive eigenfunction ϕ∗.
Now we perform another change of the unknown

uε(x) = ϕ
(x

ε

)
vε(x), (3.14)

where ϕ is a positive solution of (3.12), and introduce an affine change of the spectral parameter

με =
1
ε2

(λε − H(p)) (3.15)

to transform (1.1) to the spectral problem

L̃εvε = μεvε in Ω, (3.16)

where

L̃εv = − 1
εd+2

∫
Ω

K
(x

ε
,
y

ε

)
v(y)dy +

1
εd+2

∫
Rd

K
(x

ε
,
y

ε

)
dy v(x), (3.17)

and

K(x, y) =
1

ϕ(x)
J(x − y)ep·(x−y)κ(x, y)ϕ(y). (3.18)

In what follows, we will also deal with the kernel

Q(x, y) = ϕ∗(x)ϕ(x)K(x, y); (3.19)

by virtue of (3.12)–(3.13) this kernel satisfies the following important property∫
Rd

Q(x, y)dy =
∫
Rd

Q(y, x)dy ∀x ∈ R
d. (3.20)

Since the operators in problems (3.12) and (3.13) analytically depend on pi, and H(p) is a simple
isolated eigenvalue if H(p) < m, then by perturbation theory (see, e.g., [17]) H(p) is an analytic function
of pi and eigenfunctions ϕ, ϕ∗ can also be chosen analytic in pi, i = 1, . . . , d.

Proposition 3.2. Let p0 be the maximum point of H(p), and assume that H(p0) < m. Then the function
χ∗

i := ∂pi
logϕ∗∣∣

p=p0
satisfies

∫
Rd

Q
(
ξ + z, ξ

)(
zi + χ∗

i (ξ + z) − χ∗
i (ξ)

)
dz = 0 on T

d, i = 1, . . . , d, (3.21)

and

∂2
pipj

H(p0) = − 1∫
Td ϕ(ξ)ϕ∗(ξ)dξ

∫
Td

∫
Rd

Q
(
ξ + z, ξ

)(
zizj + 2χ∗

i (ξ + z)zj

)
dzdξ. (3.22)

Proof. To derive (3.21), we differentiate (3.13) with respect to pi at p = p0, then multiply by ϕ(ξ), and
change the variables in the integral by setting z = η − ξ. Similarly, (3.22) is obtained by taking second
derivatives of (3.13) and integrating the result over T

d with the weight ϕ(ξ). �

Lemma 3.3. Let p0 be the maximum point of H(p), and assume that H(p0) < m. Then

∂2
pipj

H(p0)qiqj < 0 ∀q ∈ R
d \ {0}. (3.23)

Hereafter, we assume summation over repeated indices.
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Proof. By (3.22), we have to show positive definiteness of the matrix A∗ with entries

A∗
ij =

∫
Td

∫
Rd

Q
(
ξ + z, ξ

)(1
2
zizj + χ∗

i (ξ + z)zj

)
dzdξ, (3.24)

where χ∗
i ∈ L2(Td) are solutions of problems (3.21). To this end for any q ∈ R

d, we write, using (3.21),

2A∗
ijqiqj =

∫
Td

∫
Rd

Q(ξ + z, ξ) (qiziqjzj + 2qi(χ∗
i (ξ + z) − χ∗

i (ξ))qjzj) dzdξ

− 2qiqj

∫
Td

∫
Rd

Q(η, ξ)χ∗
i (ξ)(χ

∗
j (η) − χ∗

j (ξ))dηdξ.

Thanks to (3.20), we have

−
∫
Td

∫
Rd

Q(η, ξ) (χ∗
i (ξ) (χ∗

j (η) − χ∗
j (ξ)) + χ∗

j (ξ)(χ
∗
i (η) − χ∗

i (ξ))
)
dηdξ

=
∫
Td

∫
Rd

Q(η, ξ)χ∗
i (ξ)χ

∗
j (ξ)dηdξ +

∫
Td

∫
Rd

Q(ξ, η)χ∗
i (ξ)χ

∗
j (ξ)dηdξ

−
∫
Td

∫
Rd

Q(η, ξ)
(
χ∗

i (ξ)χ
∗
j (η) + χ∗

i (η)χ∗
j (ξ)

)
dηdξ,

also ∫
Td

∫
Rd

Q(ξ, η)χ∗
i (ξ)χ

∗
j (ξ)dηdξ =

∑
l∈Zd

∫
Td×Td

Q(ξ, η + l)χ∗
i (ξ)χ

∗
j (ξ)dηdξ

=
∑
l∈Zd

∫
Td×Td

Q(ξ − l, η)χ∗
i (ξ − l)χ∗

j (ξ − l)dηdξ

=
∫
Td

∫
Rd

Q(η, ξ)χ∗
i (η)χ∗

j (η)dηdξ.

Therefore,

2A∗
ijqiqj =

∫
Td

∫
Rd

Q(ξ + z, ξ)qi(zi + χ∗
i (ξ + z) − χ∗

i (ξ))qj(zj + χ∗
j (ξ + z) − χ∗

j (ξ))dzdξ ≥ 0.

The inequality is strict unless q = 0; otherwise, qiχ
∗
i (x) is a linear function whose gradient equals −q,

and hence, qiχ
∗
i (x) cannot be periodic if q �= 0. �

From now on, we will assume that p = p0, in particular, this assumption will always be tacitly made
when we refer to (3.12)–(3.13) and (3.15)–(3.21).

3.2. Resolvent convergence

Assume that H(p0) < m, and consider, for a given fε ∈ L2(Ω) the following problem

L̃εvε + vε = fε in Ω, vε = 0 in R
d \ Ω, (3.25)

where L̃ε is given by (3.17). Since vε = 0 in R
d \ Ω, we can rewrite

L̃εvε = − 1
εd+2

∫
Rd

K
(x

ε
,
y

ε

)(
vε(y) − vε(x)

)
dy. (3.26)

Theorem 3.4. There is a unique solution vε(x) of the problem (3.25) in L2(Rd) for any fε ∈ L2(Ω).
If ‖fε‖L2(Ω) ≤ C with a constant C independent of ε, then the sequence of solutions vε contains a
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subsequence converging strongly in L2(Rd) as ε → 0. If additionally fε → f strongly in L2(Ω), then the
whole sequence of solutions vε converges to the unique solution of the problem

−Aij∂
2
xixj

v(x) + v(x) = f(x) in Ω, (3.27)

v(x) = 0 on ∂Ω, (3.28)

extended by setting v = 0 in R
d \ Ω.

Proof. It is convenient to extend fε(x) by zero into R
d \Ω. Observe that the Fredholm alternative applies

to the problem (3.25) since the operator on the left-hand side is represented as the sum of a compact
operator and an invertible one.

To show that there is a solution of (3.25) and to derive an a priori estimate multiply (3.25) by
ϕ(x

ε )ϕ∗(x
ε )vε(x) and integrate over R

d, using (3.20) we obtain

1
2εd+2

∫
Rd

∫
Rd

Q
(x

ε
,
y

ε

)
|vε(y) − vε(x)|2 dydx +

∫
Rd

(
|vε(x)|2 − fε(x)vε(x)

)
ϕ
(x

ε

)
ϕ∗

(x

ε

)
dx = 0

It follows that problem (3.25) cannot have nonzero solution for fε = 0. Thus, (3.25) has a unique solution,
and using the Cauchy–Schwartz inequality we get∫

Rd

∫
Rd

Q
(x

ε
,
y

ε

)
|vε(y) − vε(x)|2 dydx ≤ Cεd+2, ‖vε‖L2(Rd) ≤ C, (3.29)

with a constant C independent of ε. Due to the fact that Q(ξ, η) = ϕ∗(ξ)J(ξ − η)ep0·(ξ−η)ϕ(η) and
J(0) > 0, we then have ∫

Rd

dx

∫
|z|≤r0ε

|vε(x + z) − vε(x)|2dz ≤ Cεd+2 (3.30)

for some r0 > 0 independent of ε.

Lemma 3.5. Let vε ∈ L2(Rd) be a sequence of functions satisfying (3.30) and such that vε = 0 in R
d \ Ω.

Then, up to extracting a subsequence, functions vε converge strongly in L2(Rd) to some limit v as ε → 0.
Moreover, v ∈ H1(Rd) and v = 0 in R

d \ Ω.

Proof. Without loss of generality, we can assume that vε ∈ C∞
0 (Rd). By Fubini’s theorem∫ r0ε

0

dr

∫
Rd

dx

∫
|z|=r

|vε(x + z) − vε(x)|2dS ≤ Cεd+2,

therefore there exists rε such that r0ε/2 ≤ rε ≤ r0ε and∫
Rd

dx

∫
|z|=rε

|vε(x + z) − vε(x)|2dS ≤ 2Cεd+1/r0. (3.31)

Consider functions

vε(x) =
1

|B1| rd
ε

∫
|z|≤rε

vε(x + z)dz.

where |B1| = Γ( d
2 +1)

πd/2 is the volume of the unit ball in R
d. From (3.30) using Jensen’s inequality, we get∫

Rd

|vε(x) − vε(x)|2dx ≤ Cε2. (3.32)

Next observe that ∀ i = 1, . . . , d,

∂xi
vε(x) =

1
|B1|rd

ε

∫
|z|=rε

vε(x + z)νidS =
1

2|B1|rd
ε

∫
|z|=rε

(vε(x + z) − vε(x − z))νidS,
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where νi = νi(z) = zi/|z| denotes the i-th component of the unite outward pointing normal to the
(d − 1)-sphere |z| = rε. Hence, using the Cauchy–Schwarz inequality we obtain

|∂xi
vε(x)|2 ≤ C

εd+1

∫
|z|=rε

|vε(x + z) − vε(x)|2 dS.

Thus, thanks to (3.31) we have ∫
Rd

|∇vε(x)|2 dx ≤ C, (3.33)

and since functions vε vanish in R
d \ Ω, it holds that vε = 0 in R

d \ Ω′ for sufficiently small ε, where Ω′

is any bounded domain containing Ω. Then it follows from (3.33) that, up to extracting a subsequence,
functions vε converge weakly in H1

0 (Ω′) to a function v ∈ H1(Rd) vanishing in R
d \ Ω. Thanks to the

compactness of the embedding H1
0 (Ω′) ⊂ L2(Ω′) and (3.32) we also have the strong L2-convergence of

functions vε to v. Finally, since v = 0 in R
d \ Ω and ∂Ω is C1-smooth, v = 0 on ∂Ω. Lemma 3.5 is

proved. �

We continue the proof of Theorem 3.4. By Lemma 3.5, we can extract a subsequence of functions vε

converging strongly to some function v ∈ H1(Rd) such that v = 0 in R
d \Ω. Thus, to complete the proof,

it suffices to show that (3.27) is satisfied in the sense of distributions. To this end, consider an arbitrary
φ ∈ C∞

0 (Ω) (φ = 0 in R
d \ Ω) and construct test functions φε(x) such that, as ε → 0,

− 1
εd+2

∫
Rd

Q
(y

ε
,
x

ε

)
(φε(y) − φε(x)) dy ⇀ −A∗

ij∂
2
xixj

φ(x) weakly in L2(Ω), (3.34)

φε(x) → φ(x) strongly in L2(Ω), (3.35)

where A∗
ij are given by (3.24). We set

φε(x) = φ(x) + ε∂xi
φ(x)χ∗

i (x/ε), (3.36)

where χ∗
i are solutions of (3.21). Then, it is straightforward to see that (3.35) holds. To check (3.34)

perform changes of variables x/ε = ξ, y = x + εz,

1
εd+2

∫
Rd

Q
(y

ε
,
x

ε

)
(φε(y) − φε(x)) dy =

1
ε2

∫
Rd

Q
(
ξ + z, ξ

)
(φε(x + εz) − φε(x)) dz,

and substitute the expansion

φε(x + εz) = φε(x) + ε(zi + χ∗
i (ξ + z) − χ∗

i (ξ))∂xi
φ(x) +

ε2

2
∂2

xixj
φ(x)zizj

+ ε2χ∗
i (ξ + z)

(
zj∂

2
xixj

φ(x) + O(ε|z|2)
)

+ O(ε3|z|3).
Taking into account (3.21), we find that

1
εd+2

∫
Rd

Q
(y

ε
,
x

ε

)(
φε(y) − φε(x)

)
dy =

∫
Rd

Q(ξ + z, ξ)∂2
xixj

φ(x)
(

zi

2 + χ∗
i (ξ + z)

)
zjdz + O(ε).

Since functions a∗
ij(ξ) =

∫
Rd Q(ξ + z, ξ)

(
1
2zj + χ∗

i (ξ + z)zj

)
dz are periodic, we have

a∗
ij(x/ε)∂2

xixj
φ(x) ⇀ ∂2

xixj
φ(x)

∫
Td

a∗
ij(ξ)dξ weakly in L2(Ω),

so that (3.34) is also proved.
Now we can use ϕ(x/ε)ϕ∗(x/ε)φε(x) as a test function in (3.25) and pass to the limit as ε → 0. We

have
1

εd+2

∫
Rd

vε(x)
∫
Rd

Q
(y

ε
,
x

ε

)(
φε(y) − φε(x)

)
dydx −

∫
Rd

ϕ
(x

ε

)
ϕ∗

(x

ε

)(
vε(x) − fε(x)

)
φε(x)dx = 0,
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whence we find in the limit ε → 0,

−
∫
Rd

v(x)A∗
ij∂

2
xixj

φ(x)dx =
∫
Td

ϕ(ξ)ϕ∗(ξ)dξ

∫
Rd

(
f(x) − v(x)

)
φ(x)dx.

Thus, v is a solution of the problem (3.27)–(3.28), and thanks to its uniqueness the whole sequence of
functions vε converge to v strongly in L2(Rd) as ε → 0. Theorem 3.4 is proved. �

3.3. Proof of theorem 3.1

Consider first the case H(p0) = m. By (3.4), we have, ∀δ > 0 there is a positive function φ ∈ C(Td) such
that

−
∫
Rd

J(ξ − η)ep0·ξ−η)κ(ξ, η)φ(η)dη + a(ξ)φ(ξ) ≥ (m − δ)φ(ξ).

On the other hand,

λε = sup

{
λ

∣∣∣ ∃ρ ∈ C(Ω), ρ > 0, such that

− 1
εd

∫
Ω

J
(x − y

ε

)
κ
(x

ε
,
y

ε

)
ρ(y)dy + a

(x

ε

)
ρ(x) ≥ λρ(x) in Ω

}
,

then taking ρ(x) = ep0·x/εφ(x/ε), we see that λε ≥ m − δ. Thus, λε ≥ m and if min
x∈Ω

a(x/ε) = m (that is

always true for sufficiently small ε), then λε = m and it belongs to the essential spectrum of Lε.
Now consider the case H(p0) < m. Let vε be an eigenfunction corresponding to an arbitrary (not

necessarily principal) eigenvalue με. First we show that if the real part of με is bounded, then |με| is
bounded. To this end, multiply (3.16) by ϕ(x

ε )ϕ∗(x
ε )vε(x), where vε denotes the complex conjugate; take

real part and integrate over R
d. Then using (3.20) we obtain the following equality

1
2εd+2

∫
Rd

∫
Rd

Q
(x

ε
,
y

ε

)
|vε(y) − vε(x)|2 dydx = Reμε

∫
Rd

|vε(x)|2 ϕ
(x

ε

)
ϕ∗

(x

ε

)
dx (3.37)

Therefore, if ‖vε‖L2(Ω) = 1, then (3.30) holds and by Lemma 3.5 functions converge strongly in L2(Ω) to
a (nonzero) function v as ε → 0 along a subsequence. Assume by contradiction that |με| → ∞ as ε → 0.
Then introducing ṽε = 1

1+με
vε and passing to the limit in the equality L̃εṽε + ṽε = vε, we obtain by

virtue of Theorem 3.4 that functions ṽε converge to a solution ṽ of the problem L0ṽ = v. One the other
hand, ṽε → 0 (since |με| → ∞), thus v = 0, a contradiction.

Next we show that for μ from every compact subset M of C \ ∪∞
k=1{Λk} and sufficiently small ε

the operator
(
μI − L̃ε

)−1 : L2(Ω) → L2(Ω) exists and its operator norm is uniformly bounded. Indeed,
otherwise there exist functions vε with ‖vε‖L2(Ω) = 1 and numbers με ∈ M such that L̃εvε − μεvε → 0
strongly in L2(Ω) as ε → 0 (along a subsequence). Then, by Theorem 3.4 one can extract a subsequence
of functions vε converging to a nontrivial solution v of the equation L0v − μv = 0 for some μ ∈ M that
is impossible since M ∩ ∪∞

k=1{Λk} = ∅. Moreover, applying Theorem 3.4 we conclude that ∀f ∈ L2(Ω)
and μ ∈ M ,

(
μI − L̃ε

)−1
f → (

μI − L0

)−1
f strongly in L2(Ω) as ε → 0; therefore, spectral projectors

Πε(ω) = 1
2πi

∫
∂ω

(
μI − L̃ε

)−1
dμ converge strongly to the projector Π0(ω) = 1

2πi

∫
∂ω

(
μI − L0

)−1
dμ for

any bounded open set ω ⊂ C whose boundary is smooth and does not contain eigenvalues Λk. In fact,
there is the compact convergence of projectors, i.e., additionally to the strong convergence it holds that
for any sequence of functions fε bounded in L2(Ω) the sequence of projections vε = Πε(ω)fε contains a
strongly converging subsequence. Indeed, observe that vε satisfy

L̃εvε + vε =
1

2πi

∫
∂ω

(1 + μ)
(
μI − L̃ε

)−1
fεdμ
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and thanks to the uniform boundedness of
(
μI − L̃ε

)−1 Theorem 3.4 guarantees that the sequence of
functions vε does contain a strongly converging (as ε → 0) subsequence. The compact convergence of
spectral projectors in turn implies that the dimensions of the subspaces Πε(ω)L2(Ω) and Π0(ω)L2(Ω)
coincide as ε is sufficiently small, i.e., operators L̃ε and L0 have the same number of eigenvalues (counting
multiplicities) in the domain ω. This means, in particular, that there is an eigenvalue of L̃ε converging to
Λ1 as ε → 0. Therefore, the principal eigenvalue of L̃ε exists for sufficiently small ε. It remains bounded
as ε → 0 since its real part remains bounded, and it converges (up to a subsequence) to an eigenvalue
of L0 (any compact subset of C \ ∪∞

k=1{Λk} belongs to the resolvent set of L̃ε for sufficiently small ε).
Thus, the principal eigenvalue of L̃ε converges to Λ1. Other eigenvalues can be treated similarly. Thus,
Theorem 3.1 is proved. �
Remark 2. It follows from the above proof of Theorem 3.1 that, in the case H(p0) < m, the j-th eigen-
function ρ

(j)
ε of Lε can be represented as

ρ(j)
ε (x) = e−p0·x/ε(v(j)

ε (x) + o(1)),

where v
(j)
ε is a j-th eigenfunction of (3.7) with unit L2(Ω)-norm and o(1) stands for a function whose

norm in L2(Ω) tends to zero as ε → 0.

4. Locally periodic case

This section is devoted to the proof of Theorem 2.1, i.e., we study operator Lε given by (1.2) with generic
functions κ and a satisfying (2.2). Introduce the notation

Eε(x, y) =
1
εd

J
(x − y

ε

)
κ
(
x, y,

x

ε
,
y

ε

)
,

then Lε writes as

Lερε = −
∫

Ω

Eε(x, y)ρε(y)dy + a
(
x,

x

ε

)
ρε(x), (4.1)

and

λε = sup

{
λ

∣∣∣ ∃v ∈ C(Ω), v > 0 such that −
∫

Ω

Eε(x, y)
v(y)
v(x)

dy + a
(
x,

x

ε

)
≥ λ in Ω

}
. (4.2)

Assume first that λε < minΩ a(x, x/ε), then λε is the principal eigenvalue of Lε (see, e.g., [18]). Therefore,
the corresponding eigenfunction can be written as ρε = e− 1

ε Wε(x). We consider the following ansatz for
Wε, Wε(x) = W (x) + εw(x, x/ε) + . . . , where w(x, ξ) is periodic in ξ. Together with the fast variable
ξ = x/ε, we also introduce η = y/ε and regard these variables as independent of the slow ones, x and y.
We also hypothesize that λε converges to a finite number −Λ. Then, for fixed x ∈ Ω we expand

W (y) = W (x + ε(η − ξ)) = W (x) + ε∇W (x) · (η − ξ) + . . .

and formally obtain in the leading term of the eigenvalue equation Lερε = λερε that Λ = −H(∇W (x), x),
H(p, x) being the principal eigenvalue of the cell problem

−
∫
Rd

J(ξ − η)ep·(ξ−η)κ(x, x, ξ, η)ϕ(η, p, x)dη + a(x, ξ)ϕ(ξ, p, x) = H(p, x)ϕ(ξ, p, x) on T
d (4.3)

depending on the parameters p ∈ R
d and x ∈ Ω, while w(x, ξ) = − log ϕ(ξ,∇W (x), x). Adopting the

normalization condition
∫
Tn ϕ(ξ, p, x)dξ = 1, we obtain a function ϕ(ξ, p, x) continuous in all their ar-

guments (ξ, p and x), provided that the principal eigenvalue exists. Notice that the principal eigenvalue
H(p, x) is given by (2.4) and always satisfies H(p, x) < minξ∈Td a(x, ξ); moreover, the latter inequality is
sufficient and necessary for existence of the principal eigenvalue of (4.3). We show below that if

λε < min
Ω

a(x, x/ε) and H(p, x) < min
ξ∈Td

a(x, ξ) (4.4)
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then λε → −Λ as ε → 0, where Λ is in fact the minimal eigenvalue of the problem −H(∇W (x), x) = Λ
in Ω or, equivalently,

Λ = min
{
Λ̃ | ∃ a viscosity subsolution of − H(∇W (x), x) ≤ Λ̃ in Ω

}
.

As known, see, e.g., [19], this formula (along with (2.7) and (2.8)) determines the unique additive eigen-
value Λ of problem (2.6).

The additional technical assumptions (4.4) will then be eliminated by devising small deformations of
a(x, ξ) regularizing eigenvalue problems, and in this way we will get the proof of Theorem 2.1.

Theorem 4.1. Suppose that J satisfies (2.1) and κ, a satisfy (2.2). Assume also that λε (given by (2.3))
and H(p, x) (given by (2.4)) satisfy (4.4). Then λε → −Λ as ε → 0, where Λ is a unique additive
eigenvalue of problem (2.6).

Proof. We begin with the following lower bound, obtained by using the test function

vε(x) = e− 1
ε W (x)ϕ(x/ε,∇W (x), x)

in (4.2),

λε ≥ min
x∈Ω

{
−

∫
Ω

Eε(x, y)
vε(y)
vε(x)

dy + a
(
x,

x

ε

)}
,

where W is an arbitrary function of the class C∞
0 (Rd). Notice that uniformly in x ∈ Ω,

−
∫

Ω

Eε(x, y)
vε(y)
vε(x)

dy+a
(
x,

x

ε

)
= a

(
x,

x

ε

)
+ o(1)

−
∫

x
ε − 1

ε Ω

J(z)κ
(
x, x,

x

ε
,
x

ε
− z

)
e

1
ε (W (x)−W (x−εz)) ϕ(x/ε − z,∇W (x), x)

ϕ(x/ε,∇W (x), x)
dz.

Expanding W (x− εz) = W (x)− ε∇W (x) · z +O(ε2|z|2), using (4.3) and taking into account (2.1) we get

lim inf
ε→0

λε ≥ min
x∈Ω

H(∇W (x), x). (4.5)

Therefore, by density of functions W |Ω, W ∈ C∞
0 (Rd) in C1(Ω) we have

lim inf
ε→0

λε ≥ −Λ, where Λ = inf
W∈C1(Ω)

max
x∈Ω

−H(∇W (x), x). (4.6)

Next, considering a partial limit λ of λε as ε → 0, we use the techniques of half-relaxed limits
(introduced in [1]) to show that there is a viscosity subsolution W ∗(x) of

− H(∇W ∗(x), x) ≤ −λ in Ω. (4.7)

Specifically, let e− 1
ε Wε(x) be the eigenfunction of Lε corresponding to the eigenvalue λε and assume that

this function satisfies the following normalization condition∫
Ω′

Wε(x)dx = 0, (4.8)

where Ω′ is a domain such that Ω′ ⊂ Ω. Since λε < minx∈Ω a(x, x/ε) and (4.6) holds, we can assume,
after passing to a subsequence that λε → λ as ε → 0. Then we consider the half-relaxed limit

W ∗(x) = lim
r→0

lim sup
ε→0

sup{Wε(ξ)| ξ ∈ Br(x) ∩ Ω}. (4.9)

Lemma 4.2. Assume that functions Wε(x) satisfy (4.8). Then W ∗(x) given by (4.9) is a bounded function
in Ω.
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Proof. As J(0) > 0 and J is continuous, there is r̂0 > 0 such that inf |z|≤r̂0 J(z) > 0. Furthermore, since
∂Ω is C1-smooth, there is r̃ε ≥ cε (with c > 0 independent of ε) such that any ball Br̂0ε(x) centered at
a point x ∈ Ω contains a ball Br̃ε

(ξ) that is also contained in Ω, i.e., Br̃ε
(ξ) ⊂ Br̂0ε(x) ∩ Ω.

We argue as in Lemma 3.5. Thanks to (4.6), eigenvalues λε are uniformly bounded from below and
we have ∫

Ω

∫
Ω

J
(x − y

ε

)
κ
(
x, y,

x

ε
,
y

ε

)
e

1
ε (Wε(x)−Wε(y))dxdy ≤ Cεd;

therefore, ∫
Ωε

∫
|z|<r̃ε

e
1
ε |Wε(x+z)−Wε(x)|dzdx ≤ Cεd,

where Ωε = {x ∈ Ω |dist(x, ∂Ω) > r̃ε}. In particular, using the elementary inequality et ≥ td+1/(d + 1)!
∀t ≥ 0, we obtain

∫
Ωε

∫
|z|<r̃ε

|Wε(x + z) − Wε(x)|d+1dzdx ≤ Cε2d+1. (4.10)

It follows that there is some rε, r̃ε/2 ≤ rε ≤ r̃ε such that∫
Ωε

∫
|z|=rε

|Wε(x + z) − Wε(x)|d+1dSdx ≤ Cε2d.

Set
W ε(x) =

1
|B1|rd

ε

∫
|z|<rε

Wε(x + z)dz.

Using Jensen’s inequality, we get ∫
Ωε

|W ε(x) − Wε(x)|d+1dx ≤ Cεd+1. (4.11)

Then, arguing as in Lemma 3.5 we derive∫
Ωε

|∇W ε(x)|d+1dx ≤ C. (4.12)

Now, taking into account (4.8), (4.11) we can apply the Poincaré inequality to conclude that
∫
Ωε

|W ε(x)|d+1dx ≤
C for small ε. Then by the compactness of the embedding W 1,d+1(Ωε) ⊂ C(Ωε) (Morrey’s theorem) we
derive that |W ε(x)| ≤ C on Ωε with C independent of ε. Combining this with (4.11), we infer that W ∗(x)
is bounded from below.

Repeating the above reasonings for the positive part W+
ε (x) of Wε(x) (notice that the inequality

(4.10) is also valid for W+
ε (x)), we get that

W
+

ε (x) =
1

|B1|rd
ε

∫
|z|<rε

W+
ε (x + z)dz

satisfies
∫
Ωε

|∇W
+

ε (x)|d+1dx ≤ C. Besides, using (4.11) one sees that
∫
Ω′ W

+

ε (x)dx ≤ C. Then applying
the Poincaré inequality and exploiting the compactness of the embedding W 1,d+1(Ωε) ⊂ C(Ωε) we obtain
that W

+

ε (x) ≤ C on Ωε with C independent of ε.
Taking log of

1
εd

∫
Ω

J
(x − y

ε

)
κ
(
x, y,

x

ε
,
y

ε

)
e− 1

ε Wε(y)dy = (a(x) − λε)e− 1
ε Wε(x)

and using Jensen’s inequality, we get

Wε(x) ≤ 1∫
Ω

J
(

x−y
ε

)
κ(x, y, x

ε , y
ε )dy

∫
Ω

J
(x − y

ε

)
κ
(
x, y,

x

ε
,
y

ε

)
Wε(y)dy + εRε(x),
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where

Rε(x) = log(a(x) − λε) − log
(

1
εd

∫
Ω

J
(x − y

ε

)
κ
(
x, y,

x

ε
,
y

ε

)
dy

)
.

Let xε ∈ Ω be a maximum point of Wε. Choose a ball Br̃ε
(ξε) contained in Br0ε(xε) ∩ Ω. Then ξε ∈ Ωε,

Brε
(ξε) ⊂ Br0ε(xε) ∩ Ω and we have

Wε(xε) ≤
∫

Brε (ξε)
J
(

xε−y
ε

)
κ
(
xε, y, xε

ε , y
ε

)
Wε(y)dy∫

Brε (ξε)
J

(
xε−y

ε

)
κ(xε, y, xε

ε , y
ε )dy

+ Cε

≤
C1

∫
Brε (ξε)

W+
ε (y)dy∫

Brε (ξε)
J

(
xε−y

ε

)
κ(xε, y, xε

ε , y
ε )dy

+ Cε ≤ C2Wε
+

(ξε) + Cε ≤ C3.

Lemma 4.2 is proved. �

To show that W ∗ is a subsolution of (4.7) consider an arbitrary test function Φ ∈ C∞
0 (Rd) and assume

that a maxx∈Ω(W (x) − Φ(x)) is attained at a point x0 ∈ Ω, and this maximum is strict. Then we can
extract a subsequence such that the maximum points xε of

Ψε(x) = Wε(x) − Φ(x) + ε log ϕ(x/ε,∇Φ(x), x)

converge to x0. We have Ψε(xε) − Ψε(y) ≥ 0 for y ∈ Ω, or

Wε(xε) − Wε(y) ≥ Φ(xε) − Φ(y) + ε log
ϕ(y/ε,∇Φ(x), x)

ϕ(xε/ε,∇Φ(xε), xε)
,

therefore ∫
Ω

Eε(xε, y)e
1
ε (Wε(xε)−Wε(y))dy ≥

∫
Ω

Eε(xε, y)e
1
ε (Φ(xε)−Φ(y)) ϕ(y/ε,∇Φ(y), y)

ϕ(xε/ε,∇Φ(xε), xε)
dy.

Then

−λε =
∫

Ω

Eε(xε, y)e
1
ε (Wε(xε)−Wε(y))dy − a

(
xε,

xε

ε

)

≥
∫

Ω

Eε(xε, y)e
1
ε (Φ(xε)−Φ(y)) ϕ(y/ε,∇Φ(y), y)

ϕ(xε/ε,∇Φ(xε), xε)
dy − a

(
xε,

xε

ε

)
,

and passing to the limit in this inequality as ε → 0 we derive −H(∇Φ(x0), x0) ≤ −λ. Thus, W ∗(x) is
indeed an upper semicontinuous subsolution of (4.7), being a subsolution of (4.7) function W ∗(x) is in
fact Lipschitz continuous on Ω (see, e.g., Appendix A.3 in [15]). Consequently, −λ ≥ Λ. Theorem 4.1 is
proved. �

Proof of Theorem 2.1. For sufficiently small δ > 0, set

â(x) = minξ∈Td a(x, ξ), â(δ)(x) = max
{
â(x),miny∈Ω â(y) + δ/2

}
,

and
a(δ)(x, ξ) = max

{
a(x, ξ), â(δ)(x) + δ/2

}
.

Then for any x ∈ Ω the function a(δ)(x, ξ) attains its minimum over ξ ∈ T
d on a set of positive measure,

and a(δ)(x, x
ε ) attains its minimum over x ∈ Ω on a set of positive measure for sufficiently small ε. Hence,

we can replace a with a(δ) to modify spectral problems (1.1) and (4.3) such that they do have some
principal eigenvalues λ

(δ)
ε and H(δ)(p, x) by Theorem 2.1 in [18]. Then applying Theorem 4.1 we get

that λ
(δ)
ε → −Λ(δ) as ε → 0, where Λ(δ) = infW∈C1(Ω) maxx∈Ω −H(δ)(∇W (x), x). On the other hand

|a(δ)(x, ξ) − a(x, ξ)| ≤ δ and therefore |λ(δ)
ε − λε| ≤ δ, |Λ − Λ(δ)| ≤ δ. Thus, letting δ → 0 we obtain that

λε → −Λ, Theorem 2.1 is proved. �
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