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0 Introduction

As is well known, representation theory began with the work of G. Frobenius
who invented the notion of a character of a noncommutative finite group
and solved a highly nontrivial problem of describing irreducible characters
of symmetric groups S(n) (see his paper [41] of 1900, and also Curtis [30]).
Twenty five years later H. Weyl computed the irreducible characters of the
compact classical Lie groups U(N), SO(N), Sp(N) (see his famous book
[133] and references therein). These results of Frobenius and Weyl form the
basis of the whole representation theory of groups, and in one way or another
they usually appear in any introductory course on finite-dimensional group
representations (e.g., Fulton and Harris [42], Goodman and Wallach [52],
Simon [111], Zhelobenko [136]).

It is a remarkable fact that character theory can be built for infinite-
dimensional analogs of symmetric and classical groups if one suitably mod-
ifies the notion of the character. This was independently discovered by
E. Thoma in the sixties [117] for the infinite symmetric group S(∞) and
by D. Voiculescu in the seventies [130], [131] for infinite-dimensional classical
groups U(∞), SO(∞), Sp(∞). It turned out that for all these groups the so-
called extreme characters (analogs of the irreducible characters) depended on
countably many continuous parameters, and in the two cases, i.e. for S(∞)
and infinite-dimensional classical groups, the formulas looked very similar.

In spite of all the beauty of Thoma’s and Voiculescu’s results, they looked
too unusual and even exotic, and were largely away from the principal routes
of representation theory that formed the mainstream in the 1960s and 70s.
It took time to appreciate their depth and realize what kind of mathematics
lies behind them. Thoma’s and Voiculescu’s original motivation came from
the theory of von Neumann factors and operator algebras. Nowadays we can
point out some connections with other areas of mathematics. First of all,
those are

(a) combinatorics of symmetric functions and multivariate special func-
tions of hypergeometric type,

and
(b) probabilistic models of mathematical physics: random matrices, de-

terminantal point processes, random tiling models, Markov processes of in-
finitely many interacting particles. Let us emphasize that such connections
to probability theory and mathematical physics are new; previously known
ones were of a different kind (see, e.g., P. Diaconis’ book [31]).
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Pioneering work of A. M. Vershik and S. V. Kerov (see [63], [121], [122],
[123], [124], [125], [126]) played a key role in bringing forward the combi-
natorial and probabilistic aspects of the representation theory of S(∞) and
infinite-dimensional classical groups. We will say more about their work
below.

—
The goal of this book is to provide a detailed introduction to the rep-

resentation theory of the infinite symmetric group that would be accessible
to graduate and advanced undergraduate students. The amount of material
that would be required for the reader to know in advance is rather modest:
Some familiarity with representation theory of finite groups and basics of
functional analysis (measure theory, Stone-Weierstrass’ theorem, Choquet’s
theorem on extreme points of a compact set, Hilbert spaces) would suffice.
Theory of symmetric functions plays an important role in our approach, and
while some previous exposure to it would be useful, we also provide all the
necessary background along the way.

We aimed at writing a relatively short, simple, and self-contained book
and did not try to include everything people know about representations of
S(∞). We also do not touch upon representations of infinite-dimensional
classical groups — while being analogous, that theory is somewhat more
involved. The infinite symmetric group can be viewed as a “toy model” for
infinite-dimensional classical groups. We feel that it makes sense to begin the
exposition with S(∞), in parallel to how the subject of representation theory
historically and logically started from the finite symmetric groups S(n) that
form the simplest and most natural family of finite noncommutative groups.

The knowledge of the material in this book should be sufficient for under-
standing research papers on representations of S(∞) and infinite-dimensional
groups as well as their applications. Speaking of applications we first of all
mean the class of probabilistic models of mathematical physics where repre-
sentation theoretic ideas turned out to be remarkably successful. We hope
that probabilists and mathematical physicists interested in representation
theoretic mechanism behind such applications would find the book useful.

—
We have not defined our main object of study yet; let us do that now. One

could give different (meaningful) definitions of the infinite symmetric group.
In this book we define S(∞) as the group of all finite permutations of the
set Z>0 := {1, 2, 3, . . . }, where the condition of a permutation s : Z>0 → Z>0

being finite means that s(j) 6= j for finitely many j ∈ Z>0. Equivalently,
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S(∞) can be defined as the inductive limit (or simply the union) of the
infinite chain S(1) ⊂ S(2) ⊂ S(3) ⊂ . . . of growing finite symmetric groups.
The group S(∞) is countable, and it is reasonable to view it as a natural (yet
not canonical) infinite analog of the finite symmetric groups S(n). Infinite-
dimensional classical groups are defined in a similar fashion as inductive
limits of finite-dimensional classical Lie groups.

The first part of the book deals with characters of S(∞). Similarly to
the case of finite groups, a substantial part of representation theory can be
built in the language of characters without even mentioning actual represen-
tations. Many applications would just require operating with characters. We
believe, however, that ignoring representations behind the characters takes
away an essential part of the subject and may eventually negatively influence
future developments. For that reason, in the second part we turn to unitary
representations.

Let us now describe the content of the book with a little more detail.
—

The first part of the book is devoted to Thoma’s theorem and related
topics. As was mentioned above, Thoma’s theorem is an analogue of the
classical Frobenius’ theorem on irreducible characters of the finite symmetric
groups. The word “analogue” should be taken with a grain of salt here.
The point is that S(∞) does not have conventional irreducible characters
(except for two trivial examples), and the notion needs to be revised. Here
is a definition given by Thoma that we use:

(a) A character of a given groupK is a function χ : K → C that is positive
definite, constant on conjugacy classes, and normalized to take value 1 at the
unity of the group. (For topological groups one additionally assumes that
the function χ is continuous.)

(b) An extreme character is an extreme point of the set of all characters.
(This makes sense as the characters as defined in (a) form a convex set.)

In the case when the group K is finite or compact, the set of all char-
acters (in the sense of the above definition) is a simplex whose vertices are
the extreme characters. Those are exactly the normalized irreducible char-
acters, i.e. functions of the form χπ(g)/χπ(e), where π denotes an arbitrary
irreducible representation (it is always finite-dimensional), χπ(g) = Trπ(g) is
the trace of the operator π(g) corresponding to a group element g ∈ K, and
the denominator χπ(e) (the value of χπ at the unity of the group) coincides
with the dimension of the representation. For S(∞) and its relatives the
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numerator and denominator in

χπ(g)

χπ(e)
=

Tr π(g)

Tr π(e)

do not make sense when considered separately, but the notion of extreme
character assigns a meaning to their ratio.

According to Frobenius’ theorem, irreducible characters of S(n) are pa-
rameterized by Young diagrams with n boxes. According to Thoma’s theo-
rem, extreme characters of S(∞) are parameterized by points of an infinite-
dimensional space Ω situated inside the infinite-dimensional unit cube; a
point ω ∈ Ω is a pair (α, β) of infinite sequences with entries from [0, 1] such
that

α = (α1 ≥ α2 ≥ . . . ), β = (β1 ≥ β2 ≥ . . . ),
∞∑
i=1

αi +
∞∑
i=1

βi ≤ 1.

Direct comparison of the two theorems leads to a somewhat perplexing
conclusion that the extreme characters of S(∞) are both simpler and more
complicated than the irreducible characters of S(n). They are more com-
plicated because instead of the finite set of Young diagrams with n boxes
one gets a countable set of continuous parameters αi, βi. But at the same
time they are simpler because for the extreme characters there is an explicit
elementary formula (found by Thoma), while the irreducible characters of
finite symmetric groups should be viewed as special functions — there are
algorithms for computing them but no explicit formulas.

Thoma’s theorem can be (nontrivially) reformulated in several ways. In
particular, it is equivalent to:

(1) Classifying infinite upper-triangular Toeplitz matrices all of whose
minors are nonnegative (matrices with nonnegative minors are called totally
positive).

(2) Describing all multiplicative functionals on the algebra of symmetric
functions that take nonnegative values on the basis of the Schur symmetric
functions.

(3) Describing the entrance boundary for a certain Markov chain related
to the Young graph or, equivalently, describing the extreme points in a suit-
ably defined space of Gibbs measures on paths of the Young graph.

The original proof by Thoma consisted in reduction to (1) and solving
the classification problem. Apparently, Thoma did not know that the latter
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problem had been studied earlier by Schoenberg and his followers ([109], [1],
[2]) and its solution had been finalized by Edrei [36]. 1

Interpretations (2) and (3) are due to Vershik and Kerov [122], [124].
The proof of Thoma’s theorem that we give is based on (3) and it is an
adaptation of an argument from the paper [64] by Kerov, Okounkov, and
Olshanski, where a more general result had been proved. We do not focus on
extreme characters but rather establish an isomorphism between the convex
set of all characters and the convex set of all probability measures on Ω, which
immediately implies Thoma’s theorem. Although our approach deviates from
the proof outlined by Vershik and Kerov in [122], we substantially rely on
their asymptotic method , which, in particular, explains the nature of Thoma’s
parameters {αi, βi}.

The solution of problem (1) given by Edrei [36] and Thoma [117] is largely
analytic, while our approach to the equivalent problem (3) is in essence al-
gebraic; we work with symmetric functions and rely on results of Okounkov,
Olshanski [80], and Olshanski, Regev, and Vershik [97], [98].

—
In the second part of the book we move from characters to representations.

Our exposition is based on the works of Olshanski [87] and Kerov, Olshanski,
and Vershik [67].

There exist two approaches that relate characters to unitary representa-
tions. To be concrete, let us discuss extreme characters χ = χω of S(∞),
where ω = (α, β) ∈ Ω and (α, β) are Thoma’s parameters of χ. The first ap-
proach gives the corresponding factor-representations Πω of the group S(∞)
(Thoma [117]), while in the second approach one deals with irreducible rep-
resentations T ω of the “bi-symmetric group” S(∞)×S(∞) (Olshanski [84]).
Factor-representations Πω are analogs of the irreducible representations πλ

of the finite symmetric groups, but they are (excluding two trivial cases) not
irreducible at all: The term “factor” means that these are unitary representa-
tions that generate a von Neumann factor (in our case this is the hyperfinite
factor of type II1). The representations T ω are exactly those irreducible rep-
resentations of the bi-symmetric group S(∞)×S(∞) that contain a nonzero
vector that is invariant with respect to the subgroup diag S(∞) (the image

1Likewise, the extreme characters of U(∞) correspond to arbitrary (not necessarily
upper triangular) totally positive Toeplitz matrices; such matrices were classified, prior
to Voiculescu’s work, in another paper by Edrei, [37]. At the present time, the theory of
total positivity became popular due to works of G. Lusztig, S. Fomin, and A. Zelevinsky,
but in the sixties and seventies it was much less known.
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of S(∞) under its diagonal embedding in S(∞) × S(∞)). Such represen-
tations are called spherical . Similar representations for finite bi-symmetric
groups S(n)×S(n) have the form πλ⊗πλ, but representations T ω cannot be
written as a (exterior) tensor product of two irreducibles. Such phenomenon
is typical for so-called wild (or non-type I) groups, and the infinite symmetric
group is one of them.

For wild groups the space of equivalence classes of irreducible representa-
tions has pathological structure, and for that reason standard representation
theoretic problem settings require modifications. There are many interesting
examples of wild groups but there is no general recipe of addressing their rep-
resentation theories. This highlights the remarkable fact that for the infinite
symmetric group and the infinite-dimensional classical groups it is possible
to develop a meaningful representation theory, and the purpose of the second
part of the book is to give an introduction to this theory.

Returning to factor-representations Πω and irreducible spherical repre-
sentations T ω, let us note that they are closely related. Namely, Πω is the
restriction of T ω to the subgroup S(∞)×{e} in the bi-symmetric group (that
should not be confused with the diagonal subgroup diag S(∞)!). Thus, to
a certain extent the choice between factor-representations of S(∞) and irre-
ducible representations of S(∞)×S(∞) is a matter of taste (the theories do
diverge in further developments though). We follow the approach of Olshan-
ski [84] and prefer to work with irreducible representations T ω.

The existence of such representations is a simple corollary of Thoma’s
theorem. However, that theorem gives no information as to how such rep-
resentations could be explicitly constructed. This is a typical representation
theoretic situation when it is known how to parameterize the representa-
tions but their explicit construction may be completely unobvious and very
complicated.

The first realization of representations T ω was found by Vershik and Kerov
[121] (actually, they dealt with factor-representations Πω but at this place the
passage to T ω is easy). We describe a modification of their construction that
employs infinite tensor products of Hilbert spaces in the sense of von Neu-
mann. For generic values of Thoma’s parameters, when α- and β-parameters
of ω are nonzero, the Hilbert spaces involved in the tensor product construc-
tion have a Z2-grading, i.e. they are super-spaces, and their tensor product
has to be understood according to the sign rule from linear super-algebra.
The super-algebra actually already appears in the first half of the book — it
is present in the formula for Thoma’s characters where super-analogs of New-
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ton power sums arise. Representation theory of the infinite symmetric group
is an example of a subject where the need for the use of super-symmetric
notions is dictated by the nature of the objects involved rather than by a
pure wish to generalize known results to a super-setting.

Let us note that the infinite tensor product construction also gives more
general, so-called admissible representations of the bi-symmetric group (see
Olshanski [87]), and that there is also one more realization due to Okounkov
[78], [79].

Next, following the general philosophy of unitary representation theory,
we proceed from the theory of irreducible representations to harmonic anal-
ysis. The problem of (noncommutative) harmonic analysis is to a certain
extent similar to Fourier analysis or to expansion in eigenfunctions of a self-
adjoint operator. One starts with a (“natural” in some sense) reducible uni-
tary representation, and the problem consists in finding its decomposition on
irreducible components. As for self-adjoint operators, the spectrum of the
decomposition may be complicated, e.g. not necessarily discrete. In the case
of continuous spectrum one talks about decomposing a representation into a
direct integral (rather than a direct sum).

It is a matter of discussion which representations should be considered
as “natural” objects for harmonic analysis. However, each finite or compact
group has one distinguished representation — the regular representation in
the Hilbert space L2 with respect to the Haar measure on the group. The
action of the group is given by left (equivalently, right) shifts. It is even
better to consider both left and right shifts together, i.e. the so-called bi-
regular representation of the direct product of two copies of the group.

For compact (in particular, finite) groups, the decomposition of the bi-
regular representation is well known and it is quite simple (Peter-Weyl’s
theorem). In particular, the bi-regular representation of the bi-symmetric
group S(n) × S(n) is a multiplicity free direct sum of irreducible spherical
representations πλ ⊗ πλ that were already mentioned above. Note now that
for infinite-dimensional classical groups there is no Haar measure (they are
not locally compact) and, therefore, there is no (bi)regular representation.

At first glance, for S(∞) the situation is different — it is a discrete
countable group that carries a Haar measure (which is simply the counting
measure), and its bi-regular representation makes perfect sense. However, it
ends up being irreducible and thus useless for harmonic analysis.

This dead end turns out to be illusory, and we explain how it can be
overcome. The essence of the problem is in the fact that the discrete group
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S(∞) is too small to carry a suitable measure with respect to which we would
like to build the L2 space. The way out is in constructing a compactification
S ⊃ S(∞) called the space of virtual permutations that serves as the support
of the measure (Kerov, Olshanski, and Vershik [66]).2 The space S does not
have a group structure, but S(∞)×S(∞) acts on it, and there is a (unique)
invariant measure µ on S which is finite, as opposed to the counting measure
on S(∞). It is that measure that should be viewed as the correct analog of
the Haar measure. Furthermore, the measure µ is just a representative of
a whole family of probability measures with good transformation properties
that are equally suitable for constructing representations.3 One thus obtains
a whole family {Tz} of generalized bi-regular representations that depend on
a parameter z ∈ C. The problem of harmonic analysis in our understanding
is the problem of decomposing these representations on irreducibles.

We prove that each Tz decomposes on irreducible spherical representations
T ω, and that the decomposition spectrum is simple. We also prove that the
spectral measures that govern the decomposition of Tz are mutually singular.
This result is important as it implies that the representations Tz are pairwise
disjoint, and thus the parameter z is not fictitious.

Investigating the spectral measures goes beyond the goals of this book. It
turns out that their structure substantially depends on whether parameter z
is an integer or not. These two cases are studied separately and using different
means in Kerov, Olshanski, and Vershik [67], and in Borodin and Olshanski
[9], respectively. The case of non-integral z is especially interesting as in the
course of its study one discovers novel models of determinantal random point
processes and close connections to random matrix theory.

We conclude with a (short and incomplete) guide to the literature encom-
passing other aspects of the theory and its further development:

• A few expository papers (unfortunately, already rather old): Borodin
and Olshanski [8], [12], [14], Olshanski [92].
•Asymptotic approach to characters of infinite-dimensional classical groups :

Vershik and Kerov [123], Okounkov and Olshanski [81], [82], Borodin and Ol-
shanski [22].

2The construction of the space S, was inspired by Pickrell’s paper [102]. A close (but
not identical) construction is that of Chinese Restaurant Process, see Pitman [104].

3These measures, called Ewens measures, are very interesting in their own right. They
are closely related to the Ewens sampling formula that is widely used in the literature on
mathematical models of population genetics, see e.g. the survey paper Ewens and Tavaré
[38].
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• Irreducible unitary representations of infinite-dimensional classical groups :
Olshanski [84], [87], [86], Pickrell [103].
• Quasiinvariant measures for infinite-dimensional classical groups : Pick-

rell [102], Neretin [75].
• Harmonic analysis on U(∞): Olshanski [91], Borodin and Olshanski

[13], Gorin [54], Osinenko [99].
• The Plancherel measure on partitions : Kerov [60], [61], [63], Baik, Deift,

and Johansson [4], Johansson [58], Borodin, Okounkov, and Olshanski [7],
Strahov [115].
• Other measures on partitions of representation-theoretic origin and their

generalizations : Borodin and Olshanski [9], [10], [15], [16], [18], [24], Borodin,
Olshanski and Strahov, [25], Olshanski [90], [93], [96], Strahov [116].
• Models of Markov dynamics of representation-theoretic origin: Borodin

and Olshanski [17], [19], [20], [21], Olshanski [94], [95],
—

Acknowledgments. We are grateful to Cesar Cuenca, Vadim Gorin, Leonid
Petrov, and the anonymous referee whose remarks helped us to fix typos and
improve the exposition. The work of the second-named author (G.O.) was
partially supported by the Simons Foundation (the Simons–IUM fellowship).

Part I

Symmetric functions and
Thoma’s theorem

1 Preliminary facts from representation the-

ory of finite symmetric groups

A partition of a natural number n is a weakly decreasing sequence of non-
negative integers which add up to n:

λ = (λ1 ≥ λ2 ≥ · · · ≥ 0), λ1 + λ2 + · · · = n.

Partitions are often pictured by Young diagrams (also called Ferrers di-
agrams): the diagram corresponding to a given partition λ of n is the left
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justified collection of n boxes containing λi boxes in the ith row, counting
from top to bottom (Sagan [107, Definition 2.1.1]). In what follows we iden-
tify a partition and the corresponding Young diagram. We denote the set of
all partitions of n by Yn, and we agree that Y0 consists of a single element
— the zero partition or the empty diagram ∅.

Given λ ∈ Yn, we write |λ| = n and denote by d = d(λ) the number of
diagonal boxes in λ. We also use the Frobenius notation (Macdonald [72])

λ = (p1, . . . , pd | q1, . . . , qd).

Here pi = λi − i is the number of boxes in the ith row of λ to the right
from the ith diagonal box; likewise, qi = λ′i − i is the number of boxes in
the ith column of λ below the ith diagonal box (λ′ stands for the transposed
diagram).

For instance, if λ = (6, 5, 2, 0, . . . ), then d = 2, λ′ = (3, 3, 2, 2, 2, 1), and
λ = (5, 3 | 2, 1) in the Frobenius notation.

Note that

p1 > · · · > pd ≥ 0, q1 > · · · > qd ≥ 0,
d∑
i=1

(pi + qi + 1) = |λ|.

The numbers pi and qi are called the Frobenius coordinates of the diagram λ.
Obviously, transposition of λ amounts to switching its Frobenius coordinates:
pi ↔ qi.

We denote by S(n) the group of permutations of the set {1, 2 . . . , n}.

Proposition 1.1. The conjugacy classes of the group S(n) are parameterized
by the elements of Yn. More precisely, λ ∈ Yn corresponds to the class
consisting of permutations which can be represented as products of disjoint
cycles of lengths λ1, λ2, . . . .

This fact is easy to prove (see e.g. Sagan [107, Section 1.1] for details).
If a permutation s belongs to the conjugacy class parameterized by λ then
we also say that s has the cycle structure λ.

Proposition 1.2. The complex irreducible representations of the group S(n)
are also parameterized by Yn. (They are all finite-dimensional and unitary,
as for any finite group.)
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The correspondence is much more involved than that for the conjugacy
classes; see e.g. Sagan [107, Section 2]. We denote by πλ the representation
corresponding to λ, and we set dimλ := dimπλ.

To any box � of a Young diagram λ we assign a number h(�) called the
hook length of the box: if � is located in row i and column j then

h(�) = λi − i+ λ′j − j + 1.

We denote by `(λ) the number of nonzero parts of a partition λ.
Here are four useful formulas for dimλ.

Proposition 1.3. Let λ be a partition, and let N be any integer ≥ `(λ). Set
d = d(λ). Then

dimλ

|λ|!
=
∏
�∈λ

1

h(�)
(1.1)

= det

[
1

(λi − i+ j)!

]N
i,j=1

(1.2)

=

∏
1≤i<j≤N(λi − i− λj + j)∏N

i=1(λi +N − i)!
(1.3)

=
1∏d

i=1 pi!qi!

∏
1≤i<j≤d(pi − pj)(qi − qj)∏d

i,j=1(pi + qj + 1)
. (1.4)

Equality (1.1) is called the hook formula, and (1.2) is called the Frobenius
formula; see, e.g., Sagan [107, Theorems 3.10.2 and 3.11.1]. Hints of how to
prove the equivalence of all four formulas are given in the exercises to this
section.

We will use the notation µ ↗ λ or λ ↘ µ to indicate that that diagram
λ is obtained from diagram µ by appending a box:

|λ| = |µ|+ 1, λi = µi + 1 for exactly one i.

Given a group G, its subgroup H, and a representation π of G, we denote
by π|H or by ResGH π the restriction of π to H. If G is finite, and ρ is a
representation of H, we denote by IndGH ρ the representation of G induced by
ρ.

For every n = 1, 2, . . . , the embedding {1, . . . , n} ⊂ {1, . . . , n+1} induces
a natural embedding of S(n) into S(n + 1): namely, the S(n) is identified
with the stabilizer of the point n+ 1 in S(n+ 1).
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Proposition 1.4 (Branching relations). (i) For any n = 2, 3, . . . and λ ∈ Yn

Res
S(n)
S(n−1) πλ =

⊕
µ∈Yn−1:µ↗λ

πµ.

(ii) Equivalently, for any n = 1, 2, . . . and λ ∈ Yn

Ind
S(n+1)
S(n) πλ =

⊕
ν∈Yn+1: ν↘λ

πν .

The equivalence of these statements follows from the Frobenius reci-
procity , see e.g. Sagan [107, Theorem 1.12.6]. The first statement is often
called the Young branching rule (Sagan [107, Theorem 2.8.3]).

The branching relations immediately imply that for any partition λ,

dimλ =
∑
µ:µ↗λ

dimµ, dimλ =
1

n+ 1

∑
ν: ν↘λ

dim ν. (1.5)

Iterating the first relation we see that for every λ ∈ Yn, dimλ is equal to
the number of sequences

∅↗ λ(1)↗ λ(2)↗ · · · ↗ λ(n) = λ, λ(i) ∈ Yi.

These sequences can be encoded by standard Young tableaux of shape λ. Such
a tableau is, by definition, a filling of all boxes of the Young diagram λ with
numbers from 1 to n in such a way that the numbers increase from left to
right and from top to bottom.

If G is a finite group and π is a finite-dimensional (complex) representa-
tion of G, then the term character of π usually refers to the function on G
which takes value Tr(π(g)) at g ∈ G. We will denote this function by χπ.

A function ϕ on a group G (not necessarily finite) is called positive definite
if for any k = 1, 2, . . . , and g1, . . . , gk ∈ G the matrix [ϕ(g−1

j gi)]
k
i,j=1 is Her-

mitian and positive definite. Equivalently, for any g ∈ G we have ϕ(g−1) =
ϕ(g), and for any number k = 1, 2, . . . and any k-tuples z1, . . . , zk ∈ C,
g1, . . . , gk ∈ G we have

k∑
i,j=1

zizj ϕ(g−1
j gi) ≥ 0.

A function χ on a group G is called central (another name is class func-
tion) if it is constant on conjugacy classes. Equivalently, for any g, h ∈ G
one has χ(gh) = χ(hg).
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Proposition 1.5. Characters of complex finite–dimensional representations
of finite groups have the following properties:

• Characters are central functions on G.

• The value of a character at the unit element of the group is equal to the
dimension of the corresponding representation.

• Any character χ is a positive definite function on the group G.

• A character defines the corresponding representation uniquely, i.e. nonequiv-
alent representations have unequal characters.

• Characters of the irreducible representations of G form an orthonormal
basis in the space of all central functions on G equipped with the inner
product

〈φ, ψ〉 =
1

|G|
∑
g∈G

φ(g)ψ(g).

The first three statements are easy to prove, and the proofs of the last
two can be found e.g. in Sagan [107, Section 1.8 and 1.9] (or in any textbook
on representations of finite groups).

Characters are extremely useful in studying representations of finite groups.
However, for more complicated groups (like the infinite symmetric group
S(∞) that we will define a little later) the representations become infinite–
dimensional, and it becomes hard to define the characters using the trace.
Thus, it is useful to have an independent characterization of characters.

We denote by Ĝ the set of (equivalency classes of) irreducible represen-
tations of a finite group G.

Proposition 1.6. For a finite group G, a function ϕ : G → C is central,
positive definite, and takes value 1 at the unit element of the group if and
only if it is a convex combination of normalized characters of the irreducible
representations of G:

ϕ =
∑
π∈Ĝ

cπ
χπ

dimπ
, cπ ≥ 0,

∑
π∈Ĝ

cπ = 1.

That is, all such functions form a simplex of dimension |Ĝ|−1 whose vertices
are the normalized characters of the irreducible representations of G.
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Proof. The “if” part is fairly obvious, it also follows from the statements of
Proposition 1.5 above. Let us prove the “only if” implication.

Consider the space C[G] of complex-valued functions on G. Define a
multiplication operation (called convolution) on C[G] by

(ϕ ∗ ψ)(g) =
1

|G|
∑
h∈G

ϕ(gh−1)ψ(h).

We also define an involution on C[G] by ϕ∗(g) := ϕ(g−1). The space C[G]
equipped with these two operations is called the group algebra of G.

The orthogonality relations for irreducible characters of finite groups and
the fact that representations of finite groups are unitarizable imply

(χπ)∗ = χπ, χπ1 ∗ χπ2 =


χπ1

dim π1

, π1 = π2,

0, otherwise,
π, π1, π2 ∈ Ĝ.

If ϕ is a positive definite function on G and ψ ∈ C[G] is arbitrary, one
readily checks that ψ ∗ ϕ ∗ ψ∗ ∈ C[G] is also positive definite.

If ϕ is a central function then the last statement of Proposition 1.5 implies
that ϕ =

∑
π∈Ĝ aπχ

π. Evaluating χπ ∗ ϕ ∗ (χπ)∗ for π ∈ Ĝ we see that if ϕ
is also positive definite then aπ ≥ 0. The fact that

∑
π aπ dim π = 1 follows

from the evaluation of both sides at the unit element.

Proposition 1.6 motivates the following modification of the conventional
definition of a character. This is the definition that we will use.

Definition 1.7. Let G be an arbitrary group. By a character of G we mean
a function χ : G → C which is central, positive definite (the explanation is
in Proposition 1.5 above), and takes value 1 at the unit element.

If G is finite and π is a finite-dimensional representation of G then

g 7→ Tr(π(g))/ dim π

is a character of G in the sense of this new definition. Let us emphasize once
more – the purpose of Definition 1.7 is to extend the notion of the character
to groups with infinite–dimensional representations.

Proposition 1.6 may be viewed as an analog of the classical Bochner the-
orem (see e.g. Reed and Simon [106, Theorem IX.9]), which says that the
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Fourier transform on R establishes a bijection between continuous positive
definite functions on R which take value 1 at the origin and probability
measures on R. The role of a probability measure on R is played by the set
{cπ}π∈Ĝ which can be viewed as a probability measure on Ĝ, and the normal-
ized traces Tr(π(·))/ dimπ are the analogs of the 1-dimensional continuous
unitary representations x 7→ eipx of the abelian topological group R (which
are exactly all irreducible continuous unitary representations of R.)

Here are three examples of characters of S(n).
1) The trivial character χ ≡ 1 corresponds to the trivial representation

of S(n) and λ = (n) ∈ Yn.
2) The sign character χ : σ 7→ sgnσ ∈ {±1} corresponds to the one-

dimensional sign representation of S(n) and λ = (1, 1, . . . , 1) ∈ Yn.
3) The delta–function at the unit element of S(n) (or any other finite

group) is the character (=normalized trace) of the regular representation of
S(n) in the group algebra C[S(n)]; the action on functions is given by shifts
of the argument: (σ · ϕ)(τ) = ϕ(σ−1τ).

For an arbitrary finite group G, the delta–function at the unit element is
expanded on irreducible characters in the following way:

δe =
1

|G|
∑
π∈Ĝ

dim π χπ .

Rewriting this as

δe =
∑
π∈Ĝ

dim2 π

|G|
χπ

dimπ

we get a representation of the delta–function as a convex combination of
normalized irreducible characters. Indeed, the coefficients of the latter ex-
pansion are positive and sum up to 1, as it is seen by evaluating both sides
at e. Another way to see this is to apply the Burnside identity (Sagan [107,
Proposition 1.10.1, item 2]) ∑

π∈Ĝ

(dimπ)2 = |G|.

It follows that {
(dimπ)2

|G|

∣∣∣ π ∈ Ĝ}
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is a probability measure on Ĝ. In particular, in the symmetric group case,

G = S(n), we get a probability measure on Ŝ(n) = Yn,{
(dimλ)2

n!

∣∣∣λ ∈ Yn

}
,

which is called the Plancherel measure on partitions.

Exercises

1.1. Prove that the expressions given by (1.2) and (1.3) coincide. (Hint: use
the fact that for any sequence of monic polynomials pn(x) = xn + . . . the
determinant det[pi−1(xj)]

N
i,j=1 coincides (up to a sign) with the Vandermonde

determinant in the variables x1, . . . , xN .)

1.2. Show that (1.3) is independent of the choice of N ≥ `(λ).

1.3. Show that the hook formula (1.1) written in terms of the row coordinates
{λi} yields (1.3), while in terms of the Frobenius coordinates {pi, qi} it yields
(1.4).

1.4. Prove the relations (1.5) directly by using the formula (1.3) for the
dimensions. Prove that (1.5) imply the following special case of the Burnside
identity ∑

λ∈Yn

dim2 λ = n!.

1.5. Let G be a finite group. Prove that the normalized traces χπ/ dim π

of irreducible representations π ∈ Ĝ can be characterized as those nonzero
functions χ : G→ C that satisfy the relation

1

|G|
∑
h∈G

χ(g1hg2h
−1) = χ(g1)χ(g2), g1, g2 ∈ G.

This relation is often referred to as the functional equation for irreducible
characters of G. Note that if G is abelian then we just get χ(g1g2) =
χ(g1)χ(g2).

The functional equation provides one more way of characterizing the ir-
reducible characters without involving the trace in the representation space.
Later we will see what the functional equation looks like for the infinite
symmetric group S(∞).
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1.6. Consider the action of S(n) on Cn by permutations of coordinates.
Then the orthogonal complement to the vector (1, 1, . . . , 1) is an irreducible
representation. The corresponding character (normalized trace) is equal to

χ(σ) =
#{trivial cycles of σ} − 1

n− 1
.

One can show that this representation corresponds to λ = (n− 1, 1).

1.7. Prove that for n ≥ 5 the dimension of any irreducible representation πλ
of S(n), with the exception of the two one-dimensional representations, is at
least n − 1. This minimum is reached at exactly two conjugate partitions
λ = (n− 1, 1) or (2, 1, . . . , 1).

One can use this fact to derive that S(∞) has no finite–dimensional rep-
resentations which are not direct sums of the one–dimensional ones.

1.8. (a) Let G be a finite group such that each element g ∈ G is conjugate
to its inverse g−1. Show that any character of G is real-valued.

(b) Check that the symmetric group S(n) satisfies the assumption in (a)
and hence its characters are real-valued. (Because of this fact, we will be
dealing with real valued functions on the groups S(n).)

2 Theory of symmetric functions

In this section we discuss the algebra of symmetric functions, several of its
bases, and interrelationships between them. The bases described below all
have traditional names; those are monomial, elementary, complete homoge-
neous, and Schur symmetric functions, and also products of Newton power
sums.

Take N variables x1, . . . , xN and consider the algebra of polynomials
R[x1, . . . , xN ] over the field of real numbers. The polynomials which are
invariant under permutations of the variables xi generate a subalgebra

SymN = R[x1, . . . , xN ]S(N).

This algebra is graded:

SymN =
∞⊕
n=0

Symn
N ,

where Symn
N consists of homogeneous symmetric polynomials of degree n.
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For every multi-index α = (α1, . . . , αN) ∈ ZN≥0 denote by xα the monomial
xα1

1 · · ·x
αN
N . Let λ be an arbitrary partition with `(λ) ≤ N . Clearly, the

polynomials

mλ =
∑
α

xα,

where the sum is taken over all distinct permutations of the entries of the
vector (λ1, λ2, . . . , λN), are symmetric, and they form a basis in Symn

N when
λ ranges over all partitions of n of length ≤ N .

For example,

m(1) = x1 + x2 + . . . , m(2) = x2
1 + x2

2 + . . . , m(1,1) =
∑
i<j

xixj.

What we would like to do is to consider the symmetric polynomials in a
very large number of variables, or even better, in an infinite number of those.
The corresponding objects are called symmetric functions , and they can be
formally constructed as follows.

For N ′ > N define a projection (an algebra homomorphism)

prN ′,N : R[x1, . . . , xN ′ ]→ R[x1, . . . , xN ]

which maps xN+1, . . . , xN ′ to zero, and all the other variables x1, . . . , xN are
just mapped to themselves. Observe that

prN ′,N(mλ) =

{
mλ, `(λ) ≤ N,

0, otherwise,

where the “mλ” in the left-hand size are polynomials in N ′ variables while
those in the right-hand side are polynomials in N variables.

Let us now form the inverse (=projective) limit

Symn = lim←− Symn
N

with respect to projections prN ′,N . This means that Symn is the space of
sequences (f1, f2, . . . ) such that

fN ∈ Symn
N , N = 1, 2, . . . ; prN ′,N(fN ′) = fN , N ′ > N.

Because of this stability property, every f ∈ Symn may be viewed as a true
function on the set R∞0 formed by infinite real vectors x = (x1, x2, . . . ) with
finitely many nonzero coordinates.
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Example 2.1. Fix a partition λ. Then the sequence of symmetric polyno-
mials mλ in growing number of variables is an element of Symn for n = |λ|;
let us denote it still by mλ. This element is called the monomial symmetric
function corresponding to λ. It is not hard to show that {mλ}λ: |λ|=n is a
linear basis in Symn.

The algebra of symmetric functions over the base field R is, by definition,
the direct sum

Sym =
∞⊕
n=0

Symn, Sym0 := R.

This is a graded unital algebra.

Example 2.2. The expression
∏∞

i=1(1+xi) does not define a symmetric func-

tion even though the symmetric polynomials
∏N

i=1(1+xi) are consistent with

projections prN ′,N . Indeed, the degree of
∏N

i=1(1 + xi) grows with N while
a symmetric function must be a finite linear combination of homogeneous
components.

An equivalent definition of Sym is as follows: Elements of Sym are formal
power series f(x1, x2, . . . ) in infinitely many indeterminates x1, x2, . . . , of
bounded degree, and invariant under permutations of the xi’s. (It does not
matter whether permutations in question are arbitrary or are assumed to
move only finitely many indeterminates, this does not affect the definition.)

This definition makes it possible to work with infinitely many indetermi-
nates, which is often very convenient. A general principle is that one deals
with finitely or infinitely many xi’s depending on the concrete situation.
To distinguish between these two options, one can speak about symmetric
polynomials or symmetric functions , respectively. The use of the term “func-
tions” can be justified, e.g., by the fact that elements of Sym can be viewed
as functions on R∞0 .

The algebra of symmetric functions has a number of distinguished bases.
One of them we have already introduced — it is the set of monomial sym-
metric functions parameterized by the partitions. Let us define another one.

For a partition of the form (1r) (r nonzero parts all equal to 1), the
corresponding elementary symmetric function is defined by

er =
∑

i1<i2···<ir

xi1xi2 · · ·xir = m(1r).
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We also agree that e0 = 1.
Alternatively, er’s can be defined via their generating function

E(t) =
∞∑
r=0

ert
r =

∞∏
i=1

(1 + xit).

Note that if the number N of nonzero variables xi is finite (thus, we are
in SymN), then er vanishes for r > N .

For any partition λ = (λ1, λ2, . . . ) we now define eλ = eλ1eλ2 · · · . The fact
that {eλ} is a basis of Sym is not as obvious as in the case of the monomial
functions. To prove this fact we need some preparation.

Definition 2.3. The lexicographic order on partitions of the same number
n is a linear order on Yn defined as follows: µ ≤ λ if and only if µ = λ or
else for some i

µ1 = λ1, . . . , µi = λi, µi+1 < λi+1.

Example 2.4. The ordered set Y5 looks as follows:

(1, 1, 1, 1, 1) < (2, 1, 1, 1) < (2, 2, 1) < (3, 1, 1) < (3, 2) < (4, 1) < (5).

Proposition 2.5. Let λ be a partition and λ′ be its conjugate, that is, the
corresponding Young diagrams are transposed to each other. Then

eλ′ = mλ +
∑
µ<λ

aλµmµ,

where aλµ are some nonnegative integers.

Example 2.6. For Y1,Y2,Y3 we have

e1 = m(1) e(1,1,1) = m(3) + 3m(2,1) + 6m(1,1,1)

e(1,1) = m(2) + 2m(1,1) e(2,1) = m(2,1) + 3m(1,1,1)

e2 = m(1,1) e3 = m(1,1,1)

The triangular structure is clearly visible.

Proof of Proposition 2.5. The coefficient of mλ in the expansion of any sym-
metric function in the basis of monomial functions equals the coefficient of
xλ in the expansion on monomials. Setting mi = λi − λi+1 we have

eλ′ = em1
1 em2

2 · · · = (x1 + . . . )m1(x1x2 + . . . )m2(x1x2x3 + . . . )m3 · · · ,
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where the dots in the parentheses denote lower terms in the lexicographic
order. When we open the parentheses and list the resulting monomials in the
lexicographic order, the highest one will be xm1

1 (x1x2)m2(x1x2x2)m3 · · · = xλ.
Hence, mλ enters the expansion of eλ′ in the basis of monomial symmetric
functions with coefficient 1, and all other participating mµ’s are smaller in
the sense that µ < λ. The fact that aλµ ∈ Z≥0 is obvious.

Proposition 2.5 immediately implies the following corollary.

Corollary 2.7. The functions {er}r≥1 are algebraically independent, and

Sym = R[e1, e2, . . . ].

Likewise, SymN = R[e1, . . . , eN ] (see Exercise 2.1 below).
Let us now define the third basis, {hλ}, which is built from the complete

homogeneous symmetric functions hr. We set

h0 = 1, hr = h(r) =
∑
|λ|=r

mλ =
∑

i1≤···≤ir

xi1 · · · xir , r ≥ 1,

hλ = hλ1hλ2 · · · for a partition λ = (λ1, λ2, . . . ).

Alternatively, the generating function for {hr}r≥0 has the form

H(t) =
∞∑
r=0

hrt
r =

∏
i≥1

1

1− xit
.

Observe that the generating function E(t) is just the inverse of H(−t).
That is, H(−t)E(t) = 1, which is equivalent to

n∑
r=0

(−1)rerhn−r = 0, n = 1, 2, . . . .

Since er’s are algebraically independent, we may define an algebra homo-
morphism ω : Sym → Sym by ω(er) = hr, r ≥ 1. Since the above relations
uniquely determine hr’s as polynomials in er’s, and they do not change if we
swap e’s and h’s, we conclude that ω2 = Id. Therefore, ω is an automorphism
of the algebra Sym, and we obtain the following statement.

Proposition 2.8. The complete homogeneous symmetric functions h1, h2, . . .
are algebraically independent, and

Sym = R[h1, h2, . . . ].
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The next basis of Sym that we introduce is obtained from the Newton
power sums

pr =
∑
i≥1

xri = m(r), r ≥ 1.

The basis elements are again monomials labeled by arbitrary partitions λ =
(λ1, λ2, . . . ):

pλ =

{
pλ1 · · · p`(λ), λ 6= ∅,
1, λ = ∅.

A generating function for the power sums is defined by

P (t) =
∞∑
r=1

prt
r

r
.

In contrast to the generating series H(t) and E(t), the series P (t) starts with
a degree 1 term. This is one of the reasons why we avoid extending the
definition of the Newton power sums pr to r = 0; it seems that this would
be incorrect, contrary to the case of the hr and er where it is reasonable to
set h0 = e0 = 1.

Proposition 2.9. The functions {pr}r≥1 are algebraically independent, and

Sym = R[p1, p2, . . . ].

Proof. Observe that

P (t) =
∑
i≥1

∞∑
r=1

xri t
r

r
= −

∑
i≥1

log(1− xit) = − log
∏
i≥1

(1− xit) = logH(t) .

Therefore,

P ′(t) =
∞∑
r=1

prt
r−1 =

H ′(t)

H(t)
.

Similarly, P ′(−t) = E ′(t)/E(t). These relations imply

nhn =
n∑
r=1

prhn−r, nen =
n∑
r=1

(−1)r−1pren−r, n ≥ 1.

Hence, e’s and h’s can be polynomially expressed through p’s, and vice versa.
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For us the most important basis in Sym is formed by the Schur functions
which are defined as follows. Let us first assume that the number of variables
is finite and denote it by N , as above. Take a monomial xα = xα1

1 · · ·x
αN
N

and antisymmetrize it:

aα = aα(x1, . . . , xN) :=
∑

σ∈S(N)

sgnσ · σ(xα), (2.1)

where the action of a permutation σ on xα consists in permuting the variables.
The polynomial aα is skew-symmetric. In particular, if it is nonzero then

αi’s are pairwise distinct. Thus, by possibly changing the sign of aα, we may
assume that α1 > α2 > · · · > αN ≥ 0, or, in other words, α = λ + δ, where
λ is a partition with `(λ) ≤ N and

δ = δN = (N − 1, N − 2, . . . , 1, 0).

We have

aλ+δ = det
[
x
λj+N−j
i

]N
i,j=1

.

This determinant is divisible in the algebra of polynomials by each of the
differences xi− xj (because of the skew–symmetry). Hence, it is divisible by
their product, which is the Vandermonde determinant. Set

sλ(x1, . . . , xN) =
det
[
x
λj+N−j
i

]N
i,j=1

det
[
xN−ji

]N
i,j=1

=
aλ+δ

aδ
.

This is a symmetric polynomial called the Schur polynomial labeled by
λ. We agree that if the number of variables is smaller then `(λ) then
sλ(x1, . . . , xN) ≡ 0.

Proposition 2.10. The polynomials {sλ}λ: `(λ)≤N form a basis in SymN .

Proof. Multiplication by aδ is a linear isomorphism of SymN onto the space of
skew-symmetric polynomials in x1, . . . , xN . On the other hand, {aλ+δ}`(λ)≤N
is a linear basis in this space.

One readily checks that any Schur polynomial in N+1 variables turns into
the corresponding polynomial in N variables by setting one of the variable
to zero:

sλ(x1, . . . , xN , 0) = sλ(x1, . . . , xN)

for any partition λ. This makes it possible to give the following definition.
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Definition 2.11. For any partition (=Young diagram) λ, the element of
Sym defined by the sequence of Schur polynomials {sλ(x1, . . . , xN)}∞N=0 is
called the Schur symmetric function corresponding to λ and denoted by sλ
or sλ(x1, x2, . . . ). Since all polynomials sλ(x1, . . . , xN) are homogeneous of
degree |λ|, we have sλ ∈ Sym|λ|.

We proceed with proving a few elementary formulas involving the Schur
polynomials and the Schur functions.

Proposition 2.12 (Cauchy’s identity). For any N = 1, 2, . . .

N∏
i,j=1

1

1− xiyj
=

∑
λ: `(λ)≤N

sλ(x1, . . . , xN)sλ(y1, . . . , yN) .

Proof. The proof is based on the following formula for the Cauchy determi-
nant :

det

[
1

1− xiyj

]N
i,j=1

=

∏
1≤i<j≤N

(xi − xj)(yi − yj)

n∏
i,j=1

(1− xiyj)
. (2.2)

(A hint for proving this formula can be found in Exercise 2.5 below.)
Substitution of this formula turns Cauchy’s identity into

det

[
1

1− xiyj

]N
i,j=1

=
∑

λ: `(λ)≤N

aλ+δ(x1, . . . , xN)aλ+δ(y1, . . . , yN).

Using the geometric series (1 − q)−1 =
∑

k≥0 q
k for all the entries of the

determinant, we obtain

det

[
1

1− xiyj

]N
i,j=1

=
∑

k1>···>kN≥0

∑
σ,τ∈S(n)

sgn(στ)·(xσ(1)yτ(1))
k1 · · · (xσ(n)yτ(n))

kN ,

and the right-hand side is readily seen to coincide with the needed sum over
λ of aλ+δ(x)aλ+δ(y).

Remark 2.13. It is often convenient to omit the restriction i, j ≤ N and
write the Cauchy identity in the form

∞∏
i,j=1

1

1− xiyj
=
∑
λ∈Y

sλ(x1, x2, . . . )sλ(y1, y2, . . . ) ,

which makes sense, e.g., as an identity of functions on R∞0 × R∞0 .
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Proposition 2.14 (Jacobi-Trudi). For any partition λ, the following for-
mula expressing the Schur symmetric function sλ as a polynomial in one-row
complete homogeneous symmetric functions {hr} holds:

sλ = det [hλi−i+j]
N
i,j=1 .

Here N is an arbitrary integer ≥ `(λ), h0 := 1, and h−n := 0 for n > 0.

Proof. It suffices to prove the formula for Schur polynomials withN variables.
Observe that if f(x) =

∑
m≥0 fmx

m is an arbitrary formal power series, then

f(x1) · · · f(xN) =
∑

λ: `(λ)≤N

det [fλi−i+j]
N
i,j=1 sλ(x1, . . . , xN),

where we agree that f−m = 0 for m > 0. Indeed, to prove this formula one
just collects the coefficients of xk11 . . . xkNN in aδ(x1, . . . , xN) · f(x1) · · · f(xN).

It remains to apply this formula to

f(x) :=
∞∑
r=0

hr(y1, . . . , yN)xr =
r∏
i=1

1

1− xyi

and to use Cauchy’s identity.

Here is another classical determinantal formula, which expresses general
Schur functions through Schur functions parameterized by hook Young dia-
grams, that is, Young diagrams with the length of the diagonal equal to 1.
Such diagrams are written in Frobenius notation as (p | q).

Proposition 2.15 (Giambelli formula). For any Young diagram λ with
Frobenius coordinates (p1, . . . , pd | q1, . . . , qd) one has

sλ = det[s(pi|qj)]
d
i,j=1.

Proof. The proof can be found e.g. in Macdonald [72, Ex. I.3.9].

Next, let us discuss the interaction of Schur functions with power sums.

Definition 2.16. A rim hook is an edgewise connected set of boxes on the
border of a Young diagram, which does not contain any 2 × 2 square. (See
Sagan [107, Definition 4.10.1].)
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Proposition 2.17. For any partition µ and r ≥ 1 one has

pr · sµ =
∑
λ

(−1)height(λ−µ)sλ,

where the sum is taken over all Young diagrams λ ⊃ µ such that the com-
plement λ− µ of µ in λ is a rim hook, and its height is the total number of
rows it occupies minus 1.

Proof. We have

pr(x1, . . . , xN) · aµ+δ(x1, . . . , xN) =
N∑
k=1

aµ+δ+rε̄k ,

where ε̄k ∈ ZN has the kth coordinate equal to 1 and all other coordi-
nates equal to 0. Adding r to the kth row of µ + δ so that it becomes
the lth row of λ + δ for another partition λ is equivalent to adding a rim
hook occupying rows from l to k to µ and obtaining λ. The change of sign
from aµ+δ+rε̄k to aλ+δ comes from reordering the coordinates, and it equals
(−1)k−l = (−1)height(λ−µ).

Corollary 2.18 (Murnaghan–Nakayama rule). Let ρ and λ be two partitions
with |ρ| = |λ|. The coefficient of sλ in the expansion of pρ in the basis of the
Schur functions is equal to

∑
S(−1)height(S), where the sum is taken over all

sequences of partitions

S = {(∅ = λ(0) ⊂ λ(1) · · · ⊂ λ(`(ρ)) = λ)}

such that λ(i) − λ(i−1) is a rim hook with ρi boxes, and

height(S) :=

`(ρ)∑
i=1

height(λ(i) − λ(i−1)).

Proof. Induction on `(ρ) using Proposition 2.17.

We conclude this section by stating some results which relate the sym-
metric functions to the irreducible characters of the symmetric groups that
we discussed in Section 1.
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Definition 2.19. Consider a map ψ : S(n)→ Symn defined by ψ(σ) = pρ(σ),
where the partition ρ = ρ(σ) is the cycle structure of σ. For any f ∈ R[S(n)]
define

ch(f) =
1

n!

∑
σ∈S(n)

f(σ)ψ(σ).

The map ch : R[S(n)]→ Symn is called the characteristic map.

Proposition 2.20 (See Section I.7 in Macdonald [72]). Let χλ ∈ R[S(n)] be
the trace of the irreducible representation of S(n) corresponding to λ ∈ Yn.
Then

ch(χλ) = sλ.

This statement allows us to express the transition matrix between the
basis of the Schur functions and the basis of the power sums, as well as
its inverse, in terms of the irreducible characters of the symmetric groups.
Indeed, the image of the indicator function of a conjugacy class Cρ of S(n)
parameterized by ρ ∈ Yn under the characteristic map is |Cρ|pρ/n!. This
immediately gives

sλ =
1

n!

∑
ρ∈Yn

χλρ |Cρ| · pρ, λ ∈ Yn,

where χλρ stands for the value of χλ on any of the elements in Cρ. Using
Macdonald’s notation

zρ =
n!

|Cρ|
we rewrite the above relation as

sλ =
∑
ρ∈Yn

z−1
ρ χλρpρ, λ ∈ Yn, (2.3)

An explicit expression for zρ is given in Exercise 2.14.
Applying the orthogonality relations for the characters of S(n) (see e.g.

Sagan [107, Section 1.9]), we also get the following statement.

Proposition 2.21 (Frobenius’ formula). For any partition ρ

pρ =
∑
λ∈Y|ρ|

χλρ · sλ.
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Frobenius’ formula is the most efficient theoretical tool for handling the
characters. One of its consequences is that the Murnaghan-Nakayama rule
(Corollary 2.18) provides an algorithm for computing the character values
χλρ .

Exercises

2.1. Deduce from the proof of Proposition 2.5 that the elements e1, . . . , eN ,
viewed as symmetric polynomials in N variables, are algebraically indepen-
dent and generate the algebra SymN . This result is often referred to as the
“fundamental theorem of symmetric polynomials”.

2.2. Denote by R∞1 the space of infinite sequences (x1, x2, . . . ) of real numbers
such that

∑∞
i=1 |xi| < ∞. Show that the elements of Sym can be correctly

defined as functions on R∞1 .

2.3. (a) Take λ ∈ Yn and consider the expansion of eλ in the basis of mono-
mial functions:

eλ =
∑
µ∈Yn

Mλµmµ.

Prove that the coefficient Mλµ is equal to the number of matrices A = [aij]
which are large enough (e.g. of size n × n), and which satisfy for every i, j
the constraints

aij ∈ {0, 1},
∑
k

aik = λi,
∑
k

akj = µj.

(b) Similarly, prove that the coefficient Nλµ in the expansion

hλ =
∑
µ∈Yn

Nλµmµ

is equal to the number of large enough matrices B = [bij] such that

bij ∈ {0, 1, 2, . . . },
∑
k

bik = λi,
∑
k

bkj = µj.

(The only difference between A and B is in the range of their matrix ele-
ments.)

2.4. Show that the image of the power sum pr under involution ω is (−1)r−1pr.
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2.5. (a) Prove formula (2.2) for the Cauchy determinant. (Hint: Use the
fact that a polynomial in xi’s and yj’s which is separately skew-symmetric
with respect to each set of variables, is divisible by the product of the Van-
dermonde determinant in xi’s and the Vandermonde determinant in yj’s).

(b) Prove the following generalization of the Cauchy determinant formula:
For M ≤ N∏

1≤i<j≤M(xi − xj)
∏

1≤i<j≤N(yi − yj)∏M
i=1

∏N
j=1(xi + yj)

=
∑

y′ty′′=y

sgn(y′, y′′)
∏

1≤i<j≤N−M

(y′i − y′j) · det

[
1

xi + y′′j

]M
i,j=1

.

Here the summation in the right-hand side is taken over all possible ways
to split the set y = {yj}Nj=1 into two disjoint sets y′ = {y′1, . . . , y′N−M} and
y′′ = {y′′1 , . . . , y′′M}, and sgn(y′, y′′) stands for the sign of the permutation that
brings the sequence (y′1, . . . , y

′
N−M , y

′′
1 , . . . , y

′′
M) to the sequence (y1, . . . , yN).

2.6. Prove the dual Cauchy identity∏
i,j

(1 + xiyj) =
∑
λ

sλ(x1, x2, . . . )sλ′(y1, y2, . . . ).

2.7. Prove the dual Jacobi-Trudi formula: For any partition λ and N ≥ `(λ′)

sλ = det[eλ′i−i+j]
N
i,j=1,

where e0 := 1 and e−m := 0 for m > 0.

2.8. Deduce from the above formula the duality relation for the Schur func-
tions:

ω(sλ) = sλ′ .

2.9. Prove Pieri’s formula: For a partition µ and r ≥ 1

hrsµ =
∑
λ

sλ,

where the sum is taken over all partitions (=Young diagrams) λ such that
λ−µ is a horizontal r-strip (meaning that λ−µ has r boxes no two of which
lie in the same column).
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Dually,

ersµ =
∑
λ

sλ,

where the sum is taken over all λ such that λ−µ is a vertical r-strip (no two
boxes are in the same row).

2.10. Prove the binomial formula

sλ(1 + x1, . . . , 1 + xN) =
∑
µ:µ⊂λ

det

[(
λi +N − i
µj +N − j

)]N
i,j=1

sµ(x1, . . . , xN).

Here the sum is taken over all Young diagrams µ which are subsets of the
Young diagram λ.

2.11. Show that for any n ≥ 1

pn1 =
∑
λ∈Yn

dimλ · sλ.

2.12. Apply the Murnaghan–Nakayama rule to:
(a) evaluate χ

(p|q)
(p+q+1);

(b) prove that dimλ equals the number of standard Young tableaux of
shape λ;

(c) prove that χλρ = 0 if d(λ) > `(ρ).

2.13. (a) Let χ1 ∈ R[S(n1)] and χ2 ∈ R[S(n2)] be the traces of (finite-
dimensional) representations π1 and π2 of S(n1) and S(n2), respectively.
Prove that

ch
(

trace of Ind
S(n1+n2)
S(n1)×S(n2)(π1 ⊗ π2)

)
= ch(χ1) ch(χ2).

(Hint: Use Frobenius reciprocity.)
(b) Let cλµν denote the coefficient of sλ in the expansion of sµsν in the basis

of the Schur functions. Clearly, cλµν can be nonzero only if |λ| = |µ|+ |ν|. The
coefficients cλµν are called the Littlewood–Richardson coefficients . Apply (a)
to show that cλµν is equal to the multiplicity of the irreducible representation

πλ in Ind
S(|λ|)
S(|µ|)×S(|ν|)(πµ ⊗ πν). Thus, cλµν is a nonnegative integer. (This fact

is used below in the proof of Theorem 4.3.)
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2.14. Recall the notation

zρ =
n!

|Cρ|
,

where ρ is a partition, n = |ρ|, and Cρ is the conjugacy class in S(n) corre-
sponding to ρ. Show that

zρ =
∏
i≥1

imi(ρ)mi(ρ)! ,

where mi(ρ) stands for the number of parts in ρ equal to i.

2.15. Equip Sym with the inner product ( · , · ) in which the Schur functions
form an orthonormal basis.

(a) Show that the functions pρ, where ρ ranges over the set of partitions,
form an orthogonal basis and

(pρ, pρ) = zρ,

where the quantities zρ are defined in Exercise 2.14.
(b) Let {aλ} be an arbitrary homogeneous basis in Sym (here λ may

range over an abstract set of indices but in concrete applications this will be
always the set of partitions). Observe that there exists a unique biorthogonal
homogeneous basis {bλ}, that is, (aλ, bµ) = δλµ. Show that

∞∏
i,j=1

1

1− xiyj
=
∑
λ∈Y

aλ(x1, x2, . . . )bλ(y1, y2, . . . ) .

Conversely, if {aλ} and {bλ} are two homogeneous bases in Sym such that
the above identity holds then these are biorthogonal bases.

(c) Show that {mλ} and {hλ} are biorthogonal bases.

2.16. Define the algebra morphism ∆ : Sym→ Sym⊗ Sym by setting

∆(1) = 1, ∆(pk) = pk ⊗ 1 + 1⊗ pk, k = 1, 2, . . . .

The map ∆ is called the comultiplication in Sym. (Together with a natural
counit map Sym→ R, ∆ satisfies a number of conditions meaning that Sym
is a Hopf algebra, but we will not use this fact.)
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(a) Let us fix an arbitrary splitting of the set x1, x2, . . . of the indeter-
minates into two disjoint infinite parts, say x′1, x

′
2, . . . and x′′1, x

′′
2, . . . . Let

f ∈ Sym be an arbitrary element and write ∆(f) as a finite sum

∆(f) =
∑
i

g′i ⊗ g′′i , g′i, g
′′
i ∈ Sym,

which is always possible. Show that

f(x1, x2, . . . ) =
∑
i

g′i(x
′
1, x
′
2, . . . )g

′′
i (x′′1, x

′′
2, . . . ).

Thus, the comultiplication map has a very simple interpretation: we regard
symmetric functions as separately symmetric ones, with respect to a splitting
of variables into two groups.

(b) Show that

∆(hk) = h1 ⊗ hk−1 + h2 ⊗ hk−2 + · · ·+ hk−1 ⊗ h1 .

In terms of the generating series H(t) this can be conveniently written as

∆ (H(t)) = H(t)⊗H(t).

(c) Show that the action of ∆ on the elementary symmetric functions is
given by the similar formula,

∆ (E(t)) = E(t)⊗ E(t).

(d) Let {aλ} and {bλ} be arbitrary biorthogonal homogeneous bases in
Sym. Show that the structure constants of the comultiplication map in the
the basis {aλ} coincide with the structure constants of the multiplication
map in the basis {bλ}. As a corollary, one gets the following important fact:
the structure constants of ∆ in the basis of Schur functions coincide with the
Littlewood–Richardson coefficients cλµν (see Exercise 2.13):

∆(sλ) =
∑
µ,ν

|µ|+|ν|=|λ|

cλµνsµ ⊗ sν .

In particular, they are nonnegative integers.
(e) Show that the structure constants of ∆ in the basis of monomial

symmetric functions are nonnegative integers, too.
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2.17. The algebra of supersymmetric functions is defined as the subalgebra
in Sym⊗ Sym that is the image of Sym under the morphism

(id⊗ω) ◦∆ : Sym→ Sym⊗ Sym,

where ω : Sym → Sym is the involution introduced just before Proposition
2.8 and ∆ is the comultiplication map defined above. Since ∆ is injective
(prove this!), the above morphism is also injective, so that the algebra of
supersymmetric functions is nothing else than a certain realization of the
algebra Sym. However, this “super” realization is very useful.

(a) Viewing Sym⊗ Sym as an algebra of functions in a doubly infinite
collection of variables, say, x = (xi) and y = (yj), one can also describe the
algebra of supersymmetric functions as the algebra generated by the super
power sums

pk(x; y) : =
∑
i

xki + (−1)k−1
∑
j

ykj

=
∑
i

xki −
∑
j

(−yj)k

(indeed, the equivalence of the both definitions follows from Exercise 2.4). 4

(b) For an arbitrary element f ∈ Sym we will denote by f(x; y) the
corresponding supersymmetric function. Show that

(ω(f))(x; y) = f(y;x).

As a consequence, one obtains (see Ex. 2.8),

sλ′(x; y) = sλ(y, x).

(c) Show that the “super” version of the generating series H(t) and E(t)
for the complete and elementary symmetric functions takes the form

H(t)(x; y) =

∏
(1 + yjt)∏
(1− xit)

, E(t)(x; y) =

∏
(1 + xit)∏
(1− yjt)

.

4Some authors (including Macdonald [72]) adopt a slightly different definition of su-
persymmetric functions, which reduces to our definition by changing the sign of yj ’s.
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3 Coherent systems on the Young graph

The infinite symmetric group and the Young graph

Definition 3.1. The infinite symmetric group S(∞) is the group of finite
permutations of the set Z>0 = {1, 2, . . . }. In other words, an element of
S(∞) is a bijection σ : Z>0 → Z>0 such that σ(x) = x for x large enough.

We fix a tower of finite symmetric groups

S(1) ⊂ S(2) ⊂ · · · ⊂ S(n) ⊂ . . .

so that the union of them is S(∞). The simplest way to do it is to realize S(n)
as permutations of the subset {1, . . . , n} ⊂ Z>0. That is, we embed S(n) into
S(∞) as the subgroup of bijections that are identical outside {1, . . . , n}.

One can also say that S(∞) is the direct (inductive) limit lim−→S(n) of
the finite symmetric groups with respect to embeddings S(n) → S(n + 1)
described above.

Definition 3.2. Let us denote by Y the set of all partitions: Y = tn≥0Yn.
It is convenient to turn this set into a Z≥0-graded graph whose nth level
consists of Yn, and whose edges join Young diagrams if they differ by exactly
one box. It is called the Young graph and it is denoted by the same symbol
Y. See the picture below.

A general definition of what we mean by a graded graph is given in Section
7 below (Definition 7.4).

The graph structure on the set Y reflects the Young branching rule
(Proposition 1.4): Two vertices µ ∈ Yn−1 and λ ∈ Yn are joined by an edge
if and only if πµ enters the decomposition of πλ restricted to S(n−1) ⊂ S(n).

The Young graph comes with a canonical collection of stochastic matrices
that are indexed by numbers n = 1, 2, . . . and determine “transitions” from
the nth level of the graph to the (n− 1)th one. Here is the definition:

Definition 3.3. Given n = 1, 2, . . . , let λ range over Yn and µ range over
Yn−1. We define a Yn×Yn−1 stochastic matrix Λn

n−1 = [Λn
n−1(λ, µ)] by setting

Λn
n−1(λ, µ) =


dimµ

dimλ
, µ↗ λ,

0, otherwise.
(3.1)



3 COHERENT SYSTEMS ON THE YOUNG GRAPH 38

Figure 1: The first five levels of the Young graph.
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Recall that dimλ denotes the dimension of πλ, or, in combinatorial terms,
the number of standard Young tableaux of shape λ (see Exercise 2.12).

Recall also that a matrix is said to be stochastic if its entries are nonneg-
ative and all row sums equal 1. For Λn

n−1, the first condition is obvious, and
the second condition is equivalent to the equality∑

µ:µ↗λ

dimµ = dimλ, λ ∈ Yn,

which follows from the Young branching rule.

Coherent systems

We start the study of characters of S(∞) in the sense of Definition 1.7. Our
first aim is to give for them a purely combinatorial interpretation in terms
of the Young graph.

Observe that if M is a probability measure on Yn, viewed as a row vector
with coordinates indexed by elements of Yn, then the row vector MΛn

n−1 is
a probability measure on Yn−1. Indeed, this is an immediate consequence of
the fact that Λn

n−1 is a stochastic matrix.

Definition 3.4. We say that a sequence {M (n)}n≥0 of probability measures
on the sets Yn forms a coherent system of distributions on the Young graph
if

M (n)Λn
n−1 = M (n−1), n = 1, 2, . . . . (3.2)

In more detail, the above coherence relation means that∑
λ:λ↘µ

M (n)(λ)Λn
n−1(λ, µ) = M (n−1)(µ), n = 1, 2, . . . , µ ∈ Yn−1. (3.3)

Given a character χ of S(∞), we write χn for its restriction to the sub-
group S(n) ⊂ S(∞).

Proposition 3.5. There is a natural bijective correspondence χ↔ {M (n)}n≥0

between the characters of S(∞) and the coherent systems of probability dis-
tributions on Y, uniquely determined by the relations

χn =
∑
λ∈Yn

M (n)(λ) · χλ

dimλ
, n = 1, 2, . . . . (3.4)
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Proof. Again, this is simple consequence of the Young branching rule.
Indeed, let χ be a character of S(∞). For every n = 1, 2, . . . , χn is a

character of S(n), as it follows from the very definition of characters. By
Proposition 1.6, χn is uniquely written as a convex combination of the nor-
malized irreducible characters χλ/ dimλ, where λ ranges over Yn. The coef-
ficients of this expansion form a probability distribution on Yn; denote it by
M (n). These distributions obey the coherence relation (3.3), for it just ex-
presses the fact that χn−1 coincides with the restriction of χn to the subgroup
S(n− 1) ⊂ S(n); here we use the Young branching rule.

Conversely, the above argument can be inverted: Starting with a coherent
system {M (n)} we define the characters χn of the groups S(n) by means of
(3.4). Then the coherence property says that χn is an extension of χn−1, so
that the sequence {χn} comes from a character χ of S(∞).

An obvious but important observation is that both the set of characters
and the set of coherent systems have a natural structure of convex sets, and
the bijection of Proposition 3.5 preserves this structure.

As was pointed out in Proposition 1.6, the set of characters of a finite
group is isomorphic, as a convex set, to a finite-dimensional simplex. It turns
out that a similar assertion holds for characters of the group S(∞). Namely,
we will see that the convex set of characters of S(∞) can be realized as a
“generalized simplex”, that is, the set of probability measures on a certain
space. In the next subsection we explain what this space is.

Definition 3.6. A function ψ on the vertices of the Young graph Y is said
to be harmonic (in the sense of Vershik and Kerov; see their papers [122],
[126], [63]) if the value of ψ at each vertex is equal to the sum of the values
at all the adjacent vertices located on the next level:

ψ(µ) =
∑
λ:λ↘µ

ψ(λ). (3.5)

This relation is essentially equivalent to the coherence relation (3.3).
Namely, (3.3) just means that the function

ψ(λ) :=
M (n)(λ)

dimλ
, n = |λ|, (3.6)

is harmonic. It is easily seen that (3.6) determines a bijective correspondence
between coherent systems and nonnegative harmonic functions taking value
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1 at the root vertex ∅ ∈ Y. Due to simplicity of relation (3.5) it is some-
times convenient to switch from the language of coherent systems to that of
harmonic functions.

Remark 3.7. We would like to notice that the use of the term “harmonic
function” in the present context disagrees with its conventional use in prob-
abilistic potential theory and random walks on discrete groups: As we will
see in Section 7, coherent systems of distributions (and hence harmonic func-
tions in Vershik–Kerov’s sense) are tied to the entrance boundaries of some
Markov processes, while harmonic functions in the conventional sense are
tied to the exit boundaries. On a discrete space, one often identifies func-
tions and measures; Vershik–Kerov’s harmonic functions should actually be
viewed as (densities of) measures.

The Thoma simplex

Let [0, 1]∞ be the space of infinite vectors (x1, x2, . . . ) with coordinates in
the closed unit interval [0, 1]. We regard [0, 1]∞ as the direct product of
countably many copies of [0, 1] and equip it with the product topology, in
which it is a compact metrizable separable space.

Definition 3.8. The Thoma simplex is the subset Ω ⊂ [0, 1]∞ × [0, 1]∞

formed by pairs ω = (α, β) of infinite vectors whose coordinates αi ∈ [0, 1],
βi ∈ [0, 1] satisfy the constraints

α1 ≥ α2 ≥ . . . , β1 ≥ β2 ≥ . . . ,
∞∑
i=1

(αi + βi) ≤ 1.

The above constraints just mean that the numbers x1, x2, . . . , y1, y2, . . . ,
and γ defined by

xi := i(αi − αi+1), yi := i(βi − βi+1), γ := 1−
∞∑
i=1

(αi + βi)

are nonnegative and sum to 1. Thus, Ω can be realized as a simplex with
countably many vertices and coordinates (x1, x2, . . . ; y1, y2, . . . ; γ), which ex-
plains the use of the word “simplex”. However, the simplex structure on Ω
is of no importance for us. What is really important is that Ω is closed in
[0, 1]∞ × [0, 1]∞ and hence is itself a compact metrizable separable space.
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Let C(Ω) denote the space of real-valued continuous functions on Ω with
supremum norm; this is a real Banach algebra with respect to pointwise
multiplication. Recall that p1, p2, . . . denote the power-sum elements in Sym,
which generate this algebra.

Proposition 3.9. (i) There exists a unique algebra morphism f 7→ f ◦ of the
algebra Sym into the algebra C(Ω), preserving the unit elements and such
that

p◦k(ω) =
∞∑
i=1

αki + (−1)k−1

∞∑
i=1

βki , k = 2, 3, . . . , (3.7)

where ω = (α, β) ∈ Ω, and
p◦1 ≡ 1. (3.8)

(ii) The image of the algebra Sym in C(Ω) is dense in the norm topology.
(iii) The kernel of the morphism f 7→ f ◦ is the principal ideal in Sym

generated by p1 − 1.

Proof. (i) The uniqueness claim is evident because the elements p1, p2, . . .
are algebraically independent and generate the algebra Sym. To prove that
the map f 7→ f ◦ is well defined we have to check that the functions p◦k defined
by (3.7) and (3.8) are continuous. For k = 1 the assertion is trivial, so that
we may assume k ≥ 2.

Since αi’s decrease, the condition
∑
αi ≤ 1 implies αi ≤ i−1 for any i =

1, 2, . . . , so that αki ≤ i−k. Similarly, βki ≤ i−k. Since the series
∑
i−k < ∞

converges for k ≥ 2, it follows that the two series in (3.7) converge uniformly
on α and β, which implies the desired continuity property.

(ii) Observe that the nonzero values of αi’s and βi’s are uniquely recon-
structed as the positive and negative poles of the generating series

∞∑
k=1

p◦k(α, β)

uk
=
∞∑
i=1

αi
u− αi

+
∞∑
i=1

βi
u+ βi

+
γ

u
,

where (we recall)

γ = 1−
∞∑
i=1

(αi + βi). (3.9)

Next, possible multiplicities of αi and βi are uniquely determined from the
residues.
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It follows that the functions p◦1 ≡ 1 and p◦k ∈ C(Ω), k ≥ 2, defined above
separate points of Ω; then the desired claim will follow from the Stone–
Weierstrass theorem whose formulation is given below.

(iii) By virtue of (3.8), the kernel of morphism f 7→ f ◦ contains the ideal
generated by p1 − 1. To prove that the kernel coincides with this ideal it
remains to check that the functions p◦k ∈ C(Ω) with k ≥ 2 are algebraically
independent. From (3.7) it is seen that these functions coincide with the
conventional power sums in variables α1, α2, . . . when restricted to the subset
of Ω where all coordinates βi vanish. Then the claim becomes evident.

For the reader’s convenience we formulate the Stone–Weierstrass theorem
that we have used above. For its proof, see, e. g., Reed and Simon [105,
Theorem IV.9].

Theorem 3.10 (Stone-Weierstrass’ theorem: real version). Let X be a com-
pact topological space, let C(X) be the algebra of real–valued continuous func-
tions on X with the supremum norm, and let A ⊂ C(X) be a closed subalgebra
in C(X) that separates points. (That is, for any two distinct points x1 and
x2 in X, there exists f ∈ A such that f(x1) 6= f(x2).) Furthermore, assume
that A contains the constant function 1. Then A = C(X).

Remark 3.11. Let us explain why we have defined the functions p◦k sep-
arately for k ≥ 2 and for k = 1, because, at first glance, (3.8) may look
strange. A reason is that the expression

∑
αi +

∑
βi is not a continuous

function. Here is a justification of (3.8): On the dense subset Ω0 ⊂ Ω (see
Exercise 3.3), one can use (3.7) as the definition of the functions p◦k for all
k = 1, 2, . . . and then extend the functions to the whole space Ω by continu-
ity. Then for k ≥ 2 we recover the initial definition, while for k = 1 we get
the constant 1.

Formulas (3.7) and (3.8) extend by multiplicativity to arbitrary elements
of the basis {pρ} in Sym indexed by arbitrary partitions ρ = (ρ1, . . . , ρ`): we
simply have

p◦ρ(ω) = p◦ρ1(ω) . . . p◦ρ`(ω), ω ∈ Ω. (3.10)

Then, by virtue of Frobenius’ formula (more precisely, see its inversion (2.3)),
we get

s◦λ(ω) =
∑
ρ`n

z−1
ρ χλρp

◦
ρ(ω), λ ∈ Y, n := |λ|, ω ∈ Ω. (3.11)
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Note also that
s◦∅(ω) ≡ s◦(1)(ω) ≡ 1. (3.12)

Equivalently, the function s◦λ(ω) can be written without use of the char-
acters of S(n) if instead of the Frobenius formula we apply the Jacobi–Trudi
formula (Proposition 2.14):

s◦λ(ω) = det
[
h◦λi−i+j

]N
i,j=1

, ω ∈ Ω, (3.13)

where, as in Proposition 2.14, N is an arbitrary integer ≥ `(λ), h0(ω) ≡ 1,
and h−k(ω) ≡ 0 for k > 0. In turn, the functions h◦n(ω) are defined through
a generating series in a formal variable t:

1 +
∞∑
k=1

h◦k(ω)tk = eγt
∞∏
i=1

1 + βit

1− αit
, ω = (α, β) ∈ Ω. (3.14)

We recall that

γ = 1−
∞∑
i=1

(αi + βi).

The proof of (3.14) is easy and is left as an exercise, see Exercise 3.4.

Integral representation of coherent systems and charac-
ters

Here we state the main results of Part I. Recall that the group S(∞) is
introduced in Definition 3.1, its characters are understood in accordance
with general Definition 1.7, the notion of a coherent system is explained
in Definition 3.4, the Thoma simplex is introduced in Definition 3.8, and
the functions s◦λ(ω) on Ω, indexed by arbitrary Young diagrams λ, can be
defined by equivalent formulas (3.11) and (3.8), which come from the general
definition of the map Sym→ C(Ω) introduced in Proposition 3.9.

Theorem 3.12 (Integral representation of coherent systems). There is a
bijective correspondence {M (n)} ↔ P between the coherent systems of dis-
tributions on the Young graph Y and the probability Borel measures on the
Thoma simplex Ω, determined by the formula

M (n)(λ) = dimλ

∫
Ω

s◦λ(ω)P (dω), n = 0, 1, 2, . . . , λ ∈ Yn. (3.15)
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Dropping the prefactor dimλ we get the integral representation for non-
negative normalized harmonic functions on Y (Definition 3.6):

ψ(λ) =

∫
Ω

s◦λ(ω)P (dω), λ ∈ Y. (3.16)

The proof of Theorem 3.12 is postponed to Section 6.
Let us introduce a definition which will be used later on.

Definition 3.13. We call P the boundary measure of the corresponding
coherent system {M (n)}.

Now, we aim to restate the assertion of the theorem in terms of characters.
To do this we need a parameterization of conjugacy classes in S(∞), which
is easily obtained by analogy with the case of finite symmetric groups S(n):

Proposition 3.14. The conjugacy classes in S(∞) can be parameterized by
partitions ρ without parts equal to 1.

Proof. Using the fact that any finite number of elements of S(∞) is con-
tained in the subgroup S(n) for n large enough, one easily shows that two
given elements of S(∞) are in the same conjugacy class if and only if the
(unordered) collections of lengths of their nontrivial cycles coincide. (A cycle
is said to nontrivial if its length is ≥ 2.)

The collection of lengths of nontrivial cycles of σ ∈ S(∞) forms a partition
without 1’s, which will be called the cycle structure of σ.

Theorem 3.15 (Integral representation of characters). There is a bijective
correspondence χ ↔ P between the characters of the group S(∞) and the
probability Borel measures on the Thoma simplex Ω, determined by formula

χ(σ) =

∫
Ω

p◦ρ(ω)P (dω), σ ∈ S(∞), (3.17)

where partition ρ stands for the cycle structure of σ.

Equivalence of Theorems 3.12 and 3.15. This is an easy consequence of the
definitions and Frobenius’ formula. However, because of the importance of
the fact, we present a detailed argument.

By Proposition 3.5, the characters admit an integral representation par-
allel to (3.15), we only have to check that its exact form is given by (3.17).
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Obviously, it suffices to do this for the extreme elements. Then we have to
prove the following assertion: Given ω ∈ Ω, the values of the extreme charac-
ter χω corresponding to the extreme coherent system {M (n,ω)}n≥0 are given
by formula

χω(σ) = p◦ρ(ω), σ ∈ S(∞),

which is the particular case of (3.17) when P is the delta-measure at ω.
Choose an arbitrary n, so large that σ is contained in the subgroup S(n) ⊂

S(∞), and let partition ρ̃ ` n describe the cycle structure of σ viewed as an
element of S(n); denote this element by σn. Observe that ρ̃ coincides with ρ
within a few parts equal to 1. By the very definition (see (3.8)), the function
p◦1( · ) is identically equal to 1. Therefore,

p◦ρ(ω) = p◦ρ̃(ω).

Consequently, the desired equality can be equivalently written as

χωn(σn) = p◦ρ̃(ω).

Next, by the definition of the correspondence between characters and
coherent systems, the left-hand side is

χωn(σn) =
∑
λ∈Yn

M (n,ω)(λ)
χλρ̃

dimλ
.

But
M (n,ω)(λ)

dimλ
= s◦λ(ω).

Therefore, we finally reduce the desired relation to

p◦ρ̃(ω) =
∑
λ∈Yn

χλρ̃ s
◦
λ(ω),

which in turn immediately follows from Frobenius’ formula, because f 7→ f ◦

is an algebra morphism.

Exercises

3.1. Prove the following properties of the Young graph:
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(a) Given a vertex λ ∈ Yn, the number of adjacent vertices on the next
level n+ 1 is equal to the number of those on the preceding level n− 1 plus
1.

(b) Let κ and λ be two distinct vertices on the same level Yn, n ≥ 2.
Then there exists at most one vertex µ ∈ Yn−1 adjacent to both κ and λ,
and at most one vertex ν ∈ Yn+1 with the same property. Moreover, µ exists
if and only if ν exists.

3.2. Prove that a Hausdorff topology in a linear vector space defined by a
countable set of semi-norms is always metrizable. Conclude that the topol-
ogy of pointwise convergence in the space of functions on a countable set is
metrizable.

3.3. (a) Show that Thoma’s simplex with the topology induced from [0, 1]∞×
[0, 1]∞ ⊂ R∞ × R∞ is a compact metrizable topological space.

(b) Show that the subset

Ω0 =
{

(α, β) ∈ Ω |
∑
i≥1

(αi + βi) = 1
}

is dense in Ω. Conclude that the function γ = 1−
∑

i≥1(αi + βi) on Ω is not
continuous.

3.4. Prove formula (3.14).

3.5. Show that the statement of the Stone-Weierstrass theorem (Theorem
3.10) becomes false if one removes the assumption 1 ∈ A.

4 Extreme characters and Thoma’s theorem

Thoma’s theorem

Recall that a point of a convex set is said to be extreme if it cannot be
represented as a nontrivial convex combination of two distinct points of the
same set. If a convex set consists of all probability measures on a space, then
it is clear that the extreme points are precisely the delta-measures.

Observe now that the bijection stated in Theorem 3.12 is an isomorphism
of convex sets. Therefore, the theorem implies the following corollary.
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Corollary 4.1. The extreme coherent systems of distributions on the Young
graph are parameterized by points ω ∈ Ω. Given ω, the corresponding extreme
coherent system {M (n,ω)}n≥0 is defined by

M (n,ω)(λ) = dimλ · s◦λ(ω), n = 0, 1, 2, . . . , λ ∈ Yn. (4.1)

Equivalently, the extreme nonnegative normalized harmonic functions on
Y are exactly the functions of the form

ψ(ω)(λ) = s◦λ(ω), ω ∈ Ω, . . . , λ ∈ Y. (4.2)

Likewise, Theorem 3.15 implies the following corollary.

Corollary 4.2 (Thoma’s theorem). The extreme characters of the group
S(∞) are parameterized by points of the Thoma simplex Ω. Given ω =
(α, β) ∈ Ω, the values of the corresponding extreme character χω on elements
σ ∈ S(∞) are given by the formula

χω(σ) = p◦ρ(ω), (4.3)

where ρ is the partition without parts equal to 1, representing the cycle struc-
ture of σ.

In more detail, write ρ in the so-called multiplicative form ρ = (2m23m3 . . . ),
meaning that σ has m2 cycles of length 2, m3 cycles of length 3, etc. Then

χω(σ) =
∞∏
k=2

(
∞∑
i=1

αki + (−1)k−1

∞∑
i=1

βki

)mk

. (4.4)

The product in the right-hand side of (4.4) is actually finite because
mk = 0 for all k large enough. Let us emphasize that the product starts
from k = 2 and not k = 1, because we ignore trivial cycles of length 1. (In
formula (4.3), however, we could painlessly include in the index of the p◦

function any number of 1’s, because p◦1 ≡ 1 by the very definition; we just
did this in the above proof of equivalence of Theorems 3.12 and 3.15 when
we replaced ρ by ρ̃.)

Given an extreme character χ = χω, we call the coordinates αi and βi
of the point ω ∈ Ω the Thoma parameters of χ. If we adopt the viewpoint
that the extreme characters χω of S(∞) are analogs of the irreducible char-
acters χλ of the finite symmetric groups S(n), then it is natural to look for
a connection between points ω ∈ Ω assembling the Thoma parameters, and
Young diagrams λ. Such a connection does exist, see Section 6. In particular,
Theorem 6.16 explains the asymptotic meaning of the Thoma parameters.
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Multiplicativity

Denote by Cl(S(∞)) the set of conjugacy classes in the group S(∞). As was
explained above, the conjugacy classes can be parameterized by partitions ρ
without parts equal to 1. Given two such partitions, ρ′ and ρ′′, the disjoint
union ρ′tρ′′ of their parts is another partition of the same kind. This opera-
tion is commutative and associative, and it equips Cl(S(∞)) with a structure
of commutative semigroup with a unit element (the one corresponding to the
empty partition, or the class of the unit element in S(∞)).

All characters of S(∞) can be viewed as functions on this semigroup.
A remarkable feature of formula (4.4) is that the extreme characters are
multiplicative functions on the semigroup Cl(S(∞)). Moreover, this is their
characteristic property. The goal of this subsection is to prove this fact
independently of the classification of characters:

Theorem 4.3. A character of S(∞) is extreme if and only if it is multi-
plicative as a function on the semigroup Cl(S(∞)).

First of all, let us state a simple but useful proposition which provides
one more interpretation of characters (cf. Proposition 3.5):

Proposition 4.4. There is a bijective correspondence χ↔ F between char-
acters of the group S(∞) and linear functionals F : Sym→ R satisfying the
following three conditions :

(a) F (sλ) ≥ 0 for every λ ∈ Y;

(b) F vanishes on (p1 − 1), the principal ideal generated by p1 − 1;

(c) F (1) = 1.

The correspondence is determined in the following way. Given χ, let ρ, as
above, range over the set of partitions without parts equal to 1, and let χ(ρ)
means the value of χ on the corresponding conjugacy class. Then, for every
m = 0, 1, 2 . . . ,

F (pm1 pρ) = χ(ρ). (4.5)

Equivalently, denoting by {M (n)} the coherent system of distributions corre-
sponding to χ,

F (sλ) =
M (n)(λ)

dimλ
, λ ∈ Y, n := |λ|. (4.6)
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The proof is left as an exercise (see Exercise 4.1).
We also need the following classical result.

Theorem 4.5 (Choquet’s Theorem, see e.g. Phelps [101]). Assume that X
is a metrizable compact convex set in a locally convex topological space, and
let x0 be an element of X. Then there exists a (Borel ) probability measure
P on X supported by the set of extreme points E(X) of X, which represents
x0. In other words, for any continuous linear functional f

f(x0) =

∫
E(X)

f(x)P (dx).

(E(X) is a Gδ-set, hence it inherits the Borel structure from X.)

Proof of Theorem 4.3. We apply Proposition 4.4 to switch from the language
of characters to that of functionals on Sym. Let X stand for the set of func-
tionals F satisfying the three conditions of that proposition. It is a convex
set, and the correspondence χ↔ F obviously preserves the convex structure.
Next, as is seen from (4.5), χ is a multiplicative function on the semigroup
Cl(S(∞)) if and only if the corresponding functional F is multiplicative,
that is to say, F (fg) = F (f)F (g) for any f, g ∈ Sym. Therefore, the asser-
tion of Theorem 4.3 is equivalent to the following one: A functional F ∈ X
is extreme if and only if it is multiplicative. Now we will prove the latter
assertion.

Step 1 . Let Sym+ be the cone in Sym formed by linear combinations of
the basis elements sλ with nonnegative coefficients. Observe that this cone
is closed under multiplication, because the coefficients of decomposition of
sλsµ in the basis of Schur functions are nonnegative (see Exercise 2.13(b)).

Step 2 . For any λ ∈ Y one has

pn1 − dimλ · sλ ∈ Sym+, n := |λ|.

Indeed, this follows from the equality (see Exercise 2.11)

pn1 =
∑
λ∈Yn

dimλ sλ.

Step 3 . Let F ∈ X and f ∈ Sym+ be such that F (f) > 0. Assign to f
another functional defined by

Ff (g) =
F (fg)

F (f)
, g ∈ Sym
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(the definition makes sense because F (f) 6= 0). We claim that Ff also belongs
to X. Indeed, property (a) follows from Step 1, and properties (b) and (c)
are obvious.

Step 4 . Assume F ∈ X is extreme and show that it is multiplicative. It
suffices to prove that for any nonempty diagram µ,

F (sµg) = F (sµ)F (g), g ∈ Sym . (4.7)

There are two possible cases: either F (sµ) = 0 or F (sλ) > 0.
In the first case (4.7) is equivalent to saying that F (sµsλ) = 0 for every

λ ∈ Y. But we have, setting n = |λ|,

0 ≤ F (sµsλ) ≤ F (sµp
n
1 ) = F (sµ) = 0,

where the first inequality follows from step 1, the second one follows from step
2, and the equality holds by virtue of property (b). Therefore, F (sµsλ) = 0,
as desired.

In the second case we may form the functional Fsµ , and then (4.7) is
equivalent to saying that it coincides with F . Let m = |µ| and set

f1 =
1

2
dimµ sµ, f2 = pm1 − f1.

Observe that F is strictly positive both on f1 and on f2, so that both Ff1
and Ff2 exist. On the other hand, for any g ∈ Sym one has

F (g) = F (pm1 g) = F (f1g) + F (f2g), F (f1) + F (f2) = 1,

which entails that F is a convex combination of Ff1 and Ff2 with strictly
positive coefficients:

F = F (f1)Ff1 + F (f2)Ff2 .

Since F is extreme, we conclude that Ff1 = F , as desired.
Step 5 . Conversely, assume that F ∈ X is multiplicative and let us show

that it is extreme.
Observe that X satisfies the assumptions of Choquet’s theorem (Theorem

4.5). Indeed, we may regard X as a subset of the vector space dual to Sym
and equipped with the topology of simple convergence.

Let P be the probability measure on E(X) representing F in accordance
with Choquet’s theorem. This implies that

F (f) =

∫
G∈E(X)

G(f)P (dG), f ∈ Sym . (4.8)
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We are going to prove that P is actually the delta-measure at a point of
E(X), which just means that F is extreme.

Write ξf for the function G→ G(f) viewed as a random variable defined
on the probability space (E(X), P ). Equality (4.8) says that the mean of ξf
equals F (f).

By virtue of step 4, every G ∈ E(X) is multiplicative. On the other hand,
F is multiplicative by the assumption. Using this we get from (4.8)(∫

G∈E(X)

G(f)P (dG)

)2

= (F (f))2 = F (f 2) =

∫
G∈E(X)

G(f 2)P (dG)

=

∫
G∈E(X)

(G(f))2P (dG).

Comparing the leftmost and the rightmost expressions we conclude that ξf
has zero variance. Hence G(f) = F (f) for all G ∈ E(X) outside a P -null
subset depending on f .

It follows that G(sλ) = F (sλ) for all λ ∈ Y and all G ∈ E(X) outside a
P -null subset, which is only possible when P is a delta-measure.

This completes the proof.

Exercises

4.1. Prove Proposition 4.4. (Hint: Use the special case of Exercise 2.9 cor-
responding to r = 1.)

4.2. (a) Assume that:
(i) A is a commutative unital algebra A over R and K ⊂ A is a convex cone
defining a partial order in A (below we write a ≥ b if a− b ∈ K);
(ii) the cone is generating (that is, K −K = A) and stable under multipli-
cation (that is, K ·K ∈ K);
(iii) the unit element 1 ∈ A belongs to the cone (that is, 1 ≥ 0) and for any
a ∈ K there exists an ε > 0 such that ε · a ≤ 1;
(iv) the cone K is generated by a countable set of elements.

Next, let A′ be the dual space to A and K ′1 ⊂ A′ be the set of all linear
functionals F : A → R which are nonnegative on K and normalized by
F (1) = 1. Observe that K ′1 is a convex set.

Under these assumptions, prove that a functional F ∈ K ′1 is an extreme
point of K ′1 if and only if F is multiplicative, that is, F (ab) = F (a)F (b) for
any a, b ∈ A. (Hint: Adapt the proof of Theorem 4.3.)
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The above claim is the so-called ring theorem due to Vershik and Kerov
[69], [63]; see also a more detailed exposition in Gnedin and Olshanski [45].

(b) Show that Theorem 4.3 is a special case of the ring theorem with A
being the quotient of the algebra Sym of symmetric functions by the principal
ideal (p1 − 1), and K being the image of the convex cone Sym+ ⊂ Sym
generated by the Schur functions under the projection Sym→ Sym /(p1−1).

4.3. Let χ be a class function on S(∞), that is, χ is constant on conju-
gacy classes. Prove that χ is multiplicative as a function on the semigroup
Cl(S(∞)) of conjugacy classes (=cycle structures) if and only if the following
analog of the functional equation holds (cf. Exercise 1.5):

lim
n→∞

1

n!

∑
h∈S(n)

χ(g1hg2h
−1) = χ(g1)χ(g2), g1, g2 ∈ S(∞).

Equivalently, as n→∞, the structure constants in the algebra of conjugacy
classes of the group S(n) tend to the structure constants of a semigroup.
Details can be found in Olshanski [89].

4.4. Without referring to Thoma’s theorem, prove that the pointwise product
of two extreme characters is extreme. Thus, the set of extreme characters is
a semigroup. Describe the product in terms of Thoma’s parameters (α, β).

4.5. Let, as above, Sym+ ⊂ Sym denote the convex cone generated by the
Schur functions and let Sym′+ be the dual cone in the dual space to Sym.
By virtue of Theorem 4.3 and Proposition 4.4, extreme characters of S(∞)
correspond to those multiplicative linear functionals F : Sym→ R which are
contained in the cone Sym′+ and satisfy F (p1) = 1. Then Thoma’s theorem
(Corollary 4.2 to Theorem 3.12) is equivalent to the statement that these
functionals are precisely those of the form

Fω : f 7→ f ◦(ω), f ∈ Sym, ω ∈ Ω

(recall that f 7→ f ◦ is defined in Proposition 3.9).
Here we sketch a proof of the fact that Fω possesses the required properties

for any ω ∈ Ω, which is independent of the proof of Theorem 3.12 presented in
Section 6. However, the argument below does not prove the completeness of
the list {Fω : ω ∈ Ω}. Thus, this argument will only show that the functions
χω on S(∞) are extreme characters but not the fact that they exhaust all
such ones.
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(a) The idea is to use the comultiplication map ∆ (see Exercise 2.16) to
define an operation in Sym′+, which produces a variety of elements of Sym′+
starting from two “elementary” ones.

Let F1 and F2 be two elements of Sym′+ and let u and v be two nonnegative
real numbers with sum 1. Define the mixing of F1 and F2 in proportion u : v
as follows: Given a homogeneous element f ∈ Sym, take a finite expansion

∆(f) =
∑
i

g
(1)
i ⊗ g

(2)
i

with homogeneous elements g
(1)
i , g

(2)
i and set

F (f) =
∑
i

udeg g
(1)
i vdeg g

(2)
2 F1(g

(1)
i )F2(g

(2)
i ).

Show that this definition does not depend on the choice of the expansion
above. (Hint: Let ru : Sym→ Sym be the algebra endomorphism reducing to
multiplication by uk on the homogeneous component Symk ⊂ Sym. Observe
that F is obtained from F1 ⊗ F2 by superposition of two maps: First, the
dual to ru ⊗ rv, and, next, the dual to ∆.)

(b) Show that F , as defined above, belongs to Sym′+. (Hint: Use the non-
negativity of the structure constants of ∆ in the basis {sλ}, see Exercise 2.16,
item (d).)

(c) Show that F is multiplicative if F1 and F2 are multiplicative. (Hint:
Use the fact that ∆, ru, and rv are multiplicative.)

(d) Show that F (p1) = 1 if F1(p1) = F2(p1) = 1.
(e) Generalize the construction to the case when there are n = 2, 3, . . .

functionals F1, . . . , Fn and n nonnegative reals number u1, . . . , un with sum
1.

(f) Let F and G be the multiplicative functionals corresponding to param-
eters (α, β) with α1 = 1 and β1 = 1, respectively (the remaining coordinates
in each of the two cases are automatically equal to 0). Show that both F
and G are in Sym′+. Let us call these functionals elementary ones.

(g) Check that Fω belongs to Sym′+ under the assumption that there are
only finitely many nonzero coordinates αi and βj in ω and their total sum
equals 1. (Hint: Apply (e) taking as the numbers u1, u2, . . . the collection
of nonzero coordinates in α and β and choosing as F1, F2, . . . one of the two
elementary functionals from (f).)

(h) Finish the proof using a continuity argument.
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Figure 2: The Pascal graph.

5 A toy model (the Pascal graph) and de

Finetti’s theorem

Instead of going into the proof of Theorem 3.12 right away, we start with a
similar assertion for a much simpler object – the Pascal graph P.

By definition, P is a Z≥0-graded graph whose nth level consists of all pairs
(k, l) ∈ Z2

≥0 subject to the condition k+ l = n. The edges of P correspond to
shifts of one of coordinates by 1. Note that this is a subgraph of Y made of
all hook Young diagrams (that is, diagrams with exactly one diagonal box);
to (k, l) one assigns the partition (k+ 1, 1l). The symmetry (k, l)→ (l, k) of
P agrees with the symmetry of the Young graph induced by transposition of
diagrams. Note that the nth level of P is embedded into the (n + 1)st level
of the Young graph.

We will use the language of harmonic functions (cf. Definition 3.6). These
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are real-valued functions ψ(k, l) on Z2
≥0 satisfying

ψ(k, l) = ψ(k + 1, l) + ψ(k, l + 1), k, l ≥ 0.

As above, we are interested in nonnegative harmonic functions normalized
by the condition ψ(0, 0) = 1.

Theorem 5.1. The nonnegative harmonic normalized functions ψ on the
Pascal graph P are in one-to-one correspondence with the probability measures
P on [0, 1]; the bijection has the form

ψ(k, l) =

∫ 1

0

αk(1− α)lP (dα). (5.1)

In particular, the extreme functions are precisely those of the form ψα(k, l) =
αk(1− α)l, α ∈ [0, 1].

Before proving Theorem 5.1 we will discuss its equivalent formulation.
Consider the infinite product space

{0, 1}∞ = {(x1, x2, . . . ) | xi = 0 or 1}.

Denote by να, where α ∈ [0, 1], the probability measure on {0, 1} assigning
weights α and 1− α to the points 1 and 0, respectively, and let ν⊗∞α denote
the product of infinitely many copies of να. This is a probability measure on
{0, 1}∞ called the (stationary) Bernoulli measure with parameter α. Note
that the group S(∞) acts on the space {0, 1}∞ by permuting the coordinates
xi, and every Bernoulli measure ν⊗∞α is invariant with respect to this action.

Theorem 5.2 (de Finetti’s theorem). The S(∞)–invariant probability mea-
sures ν on {0, 1}∞ are in one-to-one correspondence with probability measures
P on [0, 1]; the bijection has the form

ν =

∫ 1

0

ν⊗∞α P (dα).

That is, invariant probability measures are precisely mixtures of stationary
Bernoulli measures. In particular, the latter measures are the extreme points
in the convex set of all invariant probability measures.

Proposition 5.3. The convex sets {ψ} and {ν} appearing in Theorem 5.1
and Theorem 5.2, respectively, are naturally isomorphic, and under this iso-
morphism, ψα ↔ ν⊗∞α . Thus, the two theorems are equivalent.
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Proof. Given (k, l) ∈ Z2
≥0, let Ck,l denote the cylindric subset in {0, 1}∞

formed by all sequences (xi) ∈ {0, 1}∞ such that x1 = · · · = xk = 1 and
xk+1 = · · · = xk+l = 0. Note that for every fixed n = 1, 2, . . . , the space
{0, 1} can be represented as a disjoint union of 2n cylindric subsets,

{0, 1}∞ =
⊔

k+l=n

⊔
σ∈S(n)/S(k)×S(l)

σ(Ck,l),

where, given (k, l) with k + l = n, σ ranges over a set of representatives in
S(n) of the cosets modulo S(k)× S(l).

Let ν be an invariant probability measure on {0, 1}∞. Then we set
ψ(k, l) = ν(Ck,l), which also equals ν(σ(Ck,l)) for any σ ∈ S(k + l). Ob-
serve that Ck,l is the disjoint union of Ck,l+1 and a shift of Ck+1,l under an
appropriate permutation σ ∈ S(k + l + 1). This implies that ψ is harmonic.
Clearly, ψ is nonnegative. It is normalized, because C0,0 coincides with the
whole space {0, 1}∞.

Conversely, let ψ be harmonic, nonnegative, and normalized. We define
nonnegative function ν on cylindric sets by setting

ν(σ(Ck,l)) = ψ(k, l), (k, l) ∈ Z2
≥0, σ ∈ S(k + l).

Then harmonicity of ψ implies that ν can be interpreted as a consistent
system of probability measures on the finite product spaces {0, 1}n, n =
1, 2, 3, . . . . By the Kolmogorov extension theorem (see Theorem 7.9 be-
low) this system determines a probability measure on {0, 1}∞. It is S(∞)-
invariant, because for every n, the corresponding measure on {0, 1}n is S(n)-
invariant.

The last assertion, concerning the correspondence ψα ↔ ν⊗∞α , is readily
verified.

By virtue of Proposition 5.3, Theorem 5.1 follows from de Finetti’s the-
orem. However, we will prove Theorem 5.1 independently, in two different
ways.

First proof of Theorem 5.1. Arguing as in the case of the Young graph (see
the end of Section 4), using Choquet’s theorem we prove that any nonnegative
normalized harmonic function is a convex combination of the extreme ones.
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Lemma 5.4. Extreme nonnegative normalized harmonic functions on the
Pascal graph are in one-to-one correspondence with algebra homomorphisms
F : R[x, y]→ R such that F (x+ y) = 1 and

F (xkyl) ≥ 0, k, l = 0, 1, 2, . . . .

The bijection is given by ψ(k, l) = F (xkyl).

Proof. The argument is exactly the same as for the Young graph, see the
proof of Theorem 4.3. The role of p1 and Pieri’s rule p1sλ =

∑
ν:ν↘λ sν is

played by x+ y and the formula

(x+ y)xkyl = xk+1yl + xkyl+1.

One can also apply the ring theorem (see Exercise 4.2 above).

From this lemma it is easily seen that the extreme normalized nonnegative
harmonic functions are precisely those of the form ψ(k, l) = αk(1−α)l, where
α ∈ [0, 1] (here parameter α arises as the image of x under F ). Therefore,
arbitrary nonnegative normalized harmonic functions are given by formula
(5.1).

It remains to prove that the correspondence P 7→ ψ determined by (5.1)
is injective. That is, a harmonic function ψ uniquely determines the measure
P on [0, 1] that represents it. This immediately follows from the fact that
the linear span of functions {αk(1− α)l | k, l ≥ 0} is dense in C([0, 1]).

We were lucky that for the Pascal graph we could classify all needed
algebra homomorphisms explicitly. This is a much harder problem for Y.
That is why we will give a different proof of de Finetti’s theorem that will
be generalized to the case of Y in Section 6.

Second proof of Theorem 5.1. Let P be a probability measure on [0, 1]. Then
it is easily seen that the function ψ defined by (5.1) is a nonnegative harmonic
function normalized at the root vertex (0, 0). Moreover, as was pointed above,
the map P 7→ ψ is injective. The nontrivial part of the theorem consists in
proving that the map is surjective. We need two preliminary statements.

Lemma 5.5. Let K be a compact topological space. The space of Borel
probability measures on K is compact in the weak topology.



5 PASCAL GRAPH AND DE FINETTI’S THEOREM 59

Proof. The unit ball in the dual space to a normed space is compact in the
weak-star topology (this is classical Banach-Alaoglu theorem, see, e.g. Reed
and Simon [105, Theorem IV.21]). Take the normed space to be C(K), the
space of continuous functions on K with the sup-norm. Its dual consists of all
signed measures on K, and the weak-star topology is the weak topology on
measures (this is Riesz’s theorem; see, e.g., Bogachev [5, Theorem 7.10.4]).
Finally, observe that probability measures form a closed subset of the unit
ball.

Let dim((k0, l0), (k, l)) denote the number of paths in the Pascal graph
going from (k0, l0) to (k, l) and increasing the level number by one on every
step. Clearly,

dim((k0, l0), (k, l)) =

(
k + l − k0 − l0

k − k0

)
=

(k + l − k0 − l0)!

(k − k0)!(l − l0)!
.

By the very definition, the quantity dim((k0, l0), (k, l)) vanishes unless k0 ≤ k
and l0 ≤ l; note the above formula agrees with this fact.

Lemma 5.6. We have

dim((k0, l0), (k, l))

dim((0, 0), (k, l))
=

(
k

k + l

)k0 ( l

k + l

)l0
+O

(
1

k + l

)
,

where the estimate is uniform on {(k, l) ∈ Z2
≥0 | k + l > k0 + l0}.

Proof. Denote n↓m = n(n−1) . . . (n−m+1). Observe that if m is fixed then
n↓m is a polynomial in n with highest degree term nm. The needed ratio of
numbers of paths equals

k↓k0l↓l0

(k + l)↓(k0+l0)
=

(kk0 + . . . )(ll0 + . . . )

(k + l)k0+l0 + . . .
,

where dots mean lower degree terms, which implies the claim of the lemma.

We continue the proof of Theorem 5.1. In what follows we use the notation

dim(k, l) := dim((0, 0), (k, l)) =
(k + l)!

k! l!
.
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Let ψ be a nonnegative normalized harmonic function on the Pascal
graph. Our aim is construct a probability measure P such that (5.1) holds
true. Observe that for any n = 0, 1, 2, . . . , the numbers

M (n)(k, l) = dim(k, l) · ψ(k, l) =
(k + l)!

k! l!
· ψ(k, l), k + l = n,

determine a probability distribution on the nth level of the graph. (Indeed,
summing up these weights over the nth level is equivalent to computing the
total measure of {0, 1}∞ by adding up measures of cylindric subsets with
fixed first n coordinates.)

The M (n)’s are analogs of coherent systems of distributions on Y consid-
ered in Section 3.

The harmonicity condition and Lemma 5.6 imply

ψ(k0, l0) =
∑
k+l=n

dim((k0, l0), (k, l)) · ψ(k, l)

=
∑
k+l=n

dim((k0, l0), (k, l))

dim(k, l)
M (n)(k, l)

=
∑
k+l=n

(
k

k + l

)k0 ( l

k + l

)l0
M (n)(k, l) +O(n−1).

For an arbitrary point p ∈ [0, 1], let 〈p〉 denote the Dirac delta-measure
concentrated at p. Consider the sequence of probability measures

P (n) =
∑
k+l=n

M (n)(k, l)

〈
k

k + l

〉
on [0,1]. By Lemma 5.5, it has a convergent subsequence. Denoting the limit
measure by P , we obtain

ψ(k0, l0) =

∫ 1

0

pk0(1− p)l0µ(dp)

for any (k0, l0) ∈ Z2
≥0. This completes the proof of the theorem.

Exercises

5.1. (Pascal pyramides) A natural generalization of the Pascal graph can be
obtained by replacing Z2

≥0 by ZN≥0, where N = 3, 4, . . . . Thus, the vertices are
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the points of ZN≥0, and the edges correspond to shifts of one of the coordinates
by 1. Generalize Theorem 5.1 to this graph, and find an appropriate version
of Theorem 5.2.

5.2. Extreme invariant measures that appear in Theorem 5.2 can be charac-
terized as follows. Consider a general setting: X is a measurable space (that
is, a set with a distinguished sigma–algebra of subsets) and G is a group
acting on X by measurable transformations (in the context of Theorem 5.2,
X = {0, 1}∞ and G = S(∞)). Consider the convex set of all G–invariant
probability measures on X. Prove that for a measure ν from this set the
following conditions are equivalent:

(1) ν is extreme.
(2) Any invariant modulo 0 measurable set in X has ν–measure 0 or 1. 5

(3) The subspace of G–invariant vectors in L2(X, ν) is one–dimensional,
that is, it consists of the constant functions.

Condition (2) is usually taken as the definition of ergodic measures. If
G is a countable group, then the words “modulo 0” in condition (2) can be
omitted.

For more detail, see Phelps [101, Section 10].

5.3. Prove, without using de Finetti’s theorem, that every S(∞)-invariant
probability measure on {0, 1}∞ is also invariant under the larger group of all
(not necessarily finite) permutations of the coordinates.

6 Asymptotics of relative dimension in the

Young graph

Here we prove Theorem 3.12 (integral representation of coherent systems)
and Theorem 6.16 (Vershik–Kerov’s theorem about asymptotics of irreducible
characters).

Relative dimension and shifted Schur polynomials

Definition 6.1. The relative dimension in the Young graph is the function
dim(µ, λ) on Y × Y whose value at a couple of two diagrams µ, λ is the

5A set A ⊂ X is called invariant modulo 0 if for any g ∈ G, the symmetric difference
between A and g(A) has ν–measure 0.
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number of paths in Y going from µ to λ and increasing the level number by
one on every step. This means that dim(µ, λ) vanishes unless µ is contained
in λ. We also agree that dim(µ, µ) = 1.

In particular, dim(µ, λ) vanishes if |µ| > |λ|. Note that if µ is contained
in λ then dim(µ, λ) is a nonzero number equal to the number of standard
tableaux of the skew shape λ/µ. Evidently,

dim(∅, λ) = dimλ.

The importance of the notion of relative dimension will become clear later
on.

Proposition 6.2. For any integers n > m ≥ 0 and any µ ∈ Ym

pn−m1 · sµ =
∑
λ∈Yn

dim(µ, λ)sλ. (6.1)

Proof. Assume first n = m+ 1. Then (6.1) means

p1 · sµ =
∑
λ:µ↗λ

sλ, (6.2)

which is a particular case of Proposition 2.17 or Pieri’s formula (see Ex. 2.9).
For n ≥ m the desired result is obtained by iterating (6.12) and using the
fact that dim(µ, λ) equals the number of monotone paths in Y going from µ
to λ.

The next proposition is a generalization of (1.2).

Proposition 6.3 (Aitken’s theorem). For any two Young diagrams µ and
λ, and for any N ≥ `(λ), we have

dim(µ, λ)

(|λ| − |µ|)!
= det

[
1

(λi − µj − i+ j)!

]N
i,j=1

(6.3)

When µ = ∅, this reduces to (1.2).

Proof. If µ is not contained in λ then both sides of (6.3) vanish. Indeed,
the left-hand side vanishes because dim(µ, λ) = 0 by the very definition. As
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for the right-hand side, because µ is not contained in λ, there exists index k
such that λk < µk. Then

λi − µj − i+ j < 0 for all i, j ∈ {1, . . . , N} such that i ≥ k ≥ j.

Since 1/p! = 0 for p < 0, for all such (i, j) the corresponding entries of the
matrix in the right-hand side vanish, which implies that the determinant
equals 0.

Next, if µ = λ then the both sides of (6.3) equal 1. Indeed, for the left-
hand side this is evident, and for the right-hand side this holds because the
matrix is upper triangular with 1’s on the diagonal.

Thus, we may assume µ ⊂ λ, which also implies |µ| < |λ| and `(µ) ≤ `(λ).
Fix any N ≥ `(λ); then we also have N ≥ `(µ). Therefore, the N -variate
Schur polynomials indexed by µ and λ are not vanishing.

Now specialize identity (6.1) to N variables x1, . . . , xN . Multiplying both
sides by aδ (see (2.1) for the definition), we see that dim(µ, λ) is equal to the
coefficient of xλ1+N−1

1 xλ2+N−2
2 · · ·xλNN in aµ+δ · (x1 + · · ·+ xN)n−m, where we

set n = |λ|, m = |µ|. Hence, setting

li = λi +N − i, mi = µi +N − i

and noting that
∑N

i=1(li −mi) = n−m we get

dim(µ, λ) =
∑

σ∈S(N)

sgn(σ)

(
n−m

l1 −mσ(1), . . . , lN −mσ(N)

)

= (n−m)! det

[
1

(li −mj)!

]N
i,j=1

= (n−m)! det

[
1

(λi − i− µj + j)!

]N
i,j=1

,

which is the desired result.

As before, we use the notation

x↓m =

{
x(x− 1) · · · (x−m+ 1), m = 1, 2, . . . ,

1, m = 0.

Definition 6.4. For any partitions µ, we define the shifted Schur polynomial
in N variables x1, . . . , xN , indexed by µ, by

s∗µ(x1, . . . , xN) =


det
[
(xi +N − i)↓(µj+N−j)

]N
i,j=1

det [(xi +N − i)↓(N−j)]Ni,j=1

, N ≥ `(µ),

0, N < `(µ).
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This definition is quite similar to that of the conventional Schur polyno-
mial given in Section 2. One easily shows that
• The denominator in the definition of s∗µ is equal to the shifted Vander-
monde determinant

∏
1≤i<j≤N((xi − i)− (xj − j)).

• The shifted Schur polynomial s∗µ(x1, . . . , xN) is an element of R[x1, . . . , xN ]
whose highest homogeneous component is equal to the conventional Schur
polynomial sµ(x1, . . . , xN).
• s∗µ(x1, . . . , xN , 0) = s∗µ(x1, . . . , xN). Thus, we can correctly define the
value of s∗µ on infinite sequences (x1, x2, . . . ) with finitely many nonzero en-
tries.

In particular, the quantity

s∗µ(λ) := s∗µ(λ1, λ2, . . . )

is well defined for λ ∈ Y.
Note that

s∗∅(λ) ≡ 1.

Proposition 6.5. For any partitions µ and λ

dim(µ, λ)

dimλ
=
s∗µ(λ)

n↓m
, m = |µ|, n = |λ|.

Proof. Fix N large enough. Applying Proposition 6.3 together with Ex. 1.1
we get

dimλ = n! det

[
1

(λi − i+ j)!

]N
i,j=1

= n!

∏
1≤i<j≤N(λi − i− λj + j)∏N

i=1(λi +N − i)!
.

Then, applying Proposition 6.3 again, we have

dim(µ, λ)

dimλ
=

1

n↓m
det

[
1

(λi − i+ µj + j)!

]N
i,j=1

∏N
i=1(λi +N − i)!∏

1≤i<j≤N(λi − i− λj + j)
.

Since
(λi +N − i)!

(λi − i− µj + j)!
= (λi +N − i)↓(µj+N−j),

we are done.
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The algebra of shifted symmetric functions

Observe that the shifted Schur polynomials s∗µ(x1, . . . , xN) are symmetric
with respect to permutations of shifted variables x1 − 1, . . . , xN − N (thus
the name). Similarly to the construction of the algebra Sym of symmetric
functions in the beginning of Section 2, one can carry out the construction
of the algebra Sym∗ of shifted symmetric functions.

More precisely, let Sym∗N be the subalgebra in R[x1, . . . , xN ] formed by
polynomials that are symmetric in shifted variables xj− j, j = 1, . . . , N . For
N ′ > N , define the projection map πN ′,N : Sym∗N ′ → Sym∗N by setting the
variables xN+1, . . . , xN ′ to 0.

The algebra Sym∗N has an ascending filtration

Sym∗N
0 ⊂ Sym∗N

1 ⊂ · · · ⊂ Sym∗N
k ⊂ . . . , Sym∗N =

⋃
k≥0

Sym∗N
k,

where Sym∗N
k is formed by polynomials from Sym∗N of degree ≤ k. We set

Sym∗k = lim←− Sym∗N
k, Sym∗ =

⋃
k≥0

Sym∗k.

In other words, an element of Sym∗ is a sequence f ∗ = (f ∗0 , f
∗
1 , . . . ) such that

for some k

f ∗N ∈ Sym∗N
k, πN ′,N(f ∗N ′) = f ∗N (N ′ > N), N = 0, 1, 2, . . . , N ′ > N.

In particular, the shifted Schur polynomials s∗µ(x1, . . . , xN) ∈ Sym∗N
k with

k = |µ| and N = 0, 1, 2, . . . define an element of Sym∗ that we call the shifted
Schur function and denote by the same symbol s∗µ.

If f ∗ = (f ∗0 , f
∗
1 , . . . ) is an element of Sym∗k, then for every N = 1, 2, . . . ,

the degree k homogeneous component fN of f ∗N is a symmetric polynomial
in N variables, and these polynomials are consistent with projections πN ′,N .
Thus, the sequence f = (f0, f1, . . . ) determines a symmetric function, which
is called the highest term of f ∗ and denoted as f = [f ∗]. 6 One easily shows
that the operation of taking the highest term is a vector space isomorphism
of Sym∗k/Sym∗k−1 and Symk (see Section 2 for the definition of the latter).

6This notation is a little bit ambiguous because the highest term [f∗] also depends on
the choice of index k such that f∗ is contained in the kth term of the filtration. However,
the choice of k will be always clear from the context.
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Since the highest term of the product of two shifted symmetric functions
is the product of the highest terms of the factors, Sym coincides with the
graded algebra associated to the filtered algebra Sym∗.

One immediate corollary of the above observations is that the shifted
Schur functions {s∗µ}µ∈Y form a linear basis in Sym∗. Indeed, [s∗µ] = sµ, and
the Schur functions form a basis in Sym (see Section 2).

Another corollary is the following fact: For an arbitrary constant c and
any k = 1, 2, . . . , the sequence of polynomials

p∗k,c;N(x1, . . . , xN) =
N∑
i=1

(
(xi − i+ c)k − (−i+ c)k

)
, N = 1, 2, . . . ,

determines an element p∗k,c ∈ Sym∗k. Note also that [p∗k,c] = pk. We consider
the elements p∗k,c as shifted analogs of the power sums pk ∈ Sym. Proposi-
tion 2.9 implies that the elements p∗1,c, p

∗
2,c, . . . are algebraically independent

generators of the algebra Sym∗, so that Sym∗ = R[p∗1,c, p
∗
2,c, . . . ].

Note that if (x1, x2, . . . ) is an infinite vector with finitely many nonzero
coordinates then we may write

p∗k,c(x1, x2, . . . ) =
∞∑
i=1

(
(xi − i+ c)k − (−i+ c)k

)
,

because the sum is actually finite. More generally, we may define the value
at (x1, x2, . . . ) for any element of Sym∗.

Modified Frobenius coordinates

Recall that in Section 1 we introduced the Frobenius notation λ = (p1, . . . , pd |
q1, . . . , qd) for a Young diagram λ. Now it will be convenient for us to intro-
duce the modified Frobenius coordinates which differ from the conventional
ones by adding 1

2
:

ai = pi + 1
2

= λi − i+ 1
2
, bi = qi + 1

2
= λ′i − i+ 1

2
, i = 1, . . . , d,

where, as before, d denotes the number of diagonal boxes in λ. Thus, the
modified Frobenius coordinates are positive half–integers. Note that their
sum equals |λ|, the number of boxes in λ. From now on we will change the
Frobenius notation and write λ = (a1, . . . , ad | b1, . . . , bd).
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Proposition 6.6. Let u be a formal variable. For any Young diagram λ =
(a1, . . . , ad | b1, . . . , bd) the following identity holds

∏̀
i=1

u+ i− 1
2

u− λi + i− 1
2

=
d∏
i=1

u+ bi
u− ai

for any ` ≥ `(λ). (6.4)

Proof. Let � range over the boxes of λ and let c(�) denote the content of
�, i.e., c(�) = j − i, where i and j are the row and column coordinates of
�. We have∏̀

i=1

u+ i− 1
2

u− λi + i− 1
2

=
l∏

i=1

u+ i− 1
2

u+ i− 3
2

u+ i− 3
2

u+ i− 5
2

. . .
u+ i− λi + 1

2

u+ i− λi − 1
2

=
∏
�∈λ

u− c(�) + 1
2

u− c(�)− 1
2

=
d∏
i=1

∏
�∈hooki

u− c(�) + 1
2

u− c(�)− 1
2

,

where hooki stands for the ith diagonal hook in λ. As � ranges over hooki,
the quantity c(�) − 1

2
ranges from −bi to ai − 1. From this we conclude

that the product over hooki equals (u + bi)/(u − ai), which completes the
proof.

Let us set

p∗k(x1, x2, . . . ) = p∗
k, 1

2
(x1, x2, . . . ) =

∞∑
i=1

(
(xi − i+ 1

2
)k − (−i+ 1

2
)k
)
, (6.5)

where k = 1, 2, . . . .

Proposition 6.7. For any Young diagram λ = (a1, . . . , ad | b1, . . . , bd)

p∗k(λ1, λ2, . . . ) =
d∑
i=1

(
aki − (−bi)k

)
, k = 1, 2, . . . .

Proof. Write identity (6.4) as L(u) = R(u). Here L(u) and R(u) are rational
functions in variable u, which are regular at the point u = ∞ and take the
value 1 at this point. Therefore, their logarithms are well defined about
u =∞. Expand both sides of the identity logL(u) = logR(u) into a Taylor
series with respect to variable u−1. On one hand,

logL(u) =
∞∑
k=1

p∗k(λ1, λ2, . . . )

k
u−k,
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and on the other hand

logR(u) =
∞∑
k=1

∑d
i=1

(
aki − (−bi)k

)
)

k
u−k.

Equating the corresponding coefficients gives us the desired equality.

The embedding Yn → Ω and asymptotic bounds

Definition 6.8. Given a Young diagram λ = (a1, . . . , ad | b1, . . . , bd) ∈ Yn,
n ≥ 1, set

1
n
ωλ :=

(
a1

n
, . . . ,

ad
n
, 0, 0, . . . ;

b1

n
, . . . ,

bd
n
, 0, 0, . . .

)
(6.6)

Note that this is an element of Ω. Therefore, we get, for every n = 1, 2, . . . ,
a map Yn → Ω, which is evidently injective.

Note that 1
n
ωλ lies in the dense subset Ω0 ⊂ Ω and, as n → ∞, the

image of the finite set Yn becomes more and more dense in Ω (see Ex. 6.1).
The embeddings Yn → Ω will play the role similar to that of the maps
(k, l) 7→ k/(k + l) ∈ [0, 1] in the context of the Pascal graph.

Recall that in Proposition 3.9 we defined an algebra morphism turning
every element f ∈ Sym into a continuous function f ◦(ω) on Ω.

Proposition 6.9. Let f ∗ ∈ Sym∗m be an arbitrary shifted symmetric func-
tion of degree ≤ m, f = [f ∗] ∈ Symm be its highest term, and f ◦ be the
corresponding function on Ω. For any λ ∈ Yn, we have

1

nm
f ∗(λ1, λ2, . . . ) = f ◦( 1

n
ωλ) +O( 1

n
), n := |λ|, (6.7)

where the O( 1
n
) bound for the remainder depends only on f ∗ and it is uniform

in λ ∈ Y.

Proof. Assume first f ∗ = p∗k with k = 1, 2, 3, . . . . Then f = pk, and Propo-
sition 6.7 says that

1

nk
p∗k(λ1, λ2, . . . ) =

1

nk

d∑
i=1

(
aki − (−bi)k

)
.
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On the other hand, comparing (3.7) and (6.6) we see that

p◦k(
1
n
ωλ) =

1

nk

d∑
i=1

(
aki − (−bi)k

)
, k = 2, 3, . . . .

The same also holds for k = 1, because
∑

(ai + bi) = n. Therefore,

1

nk
p∗k(λ1, λ2, . . . ) = p◦k(

1
n
ωλ), k = 1, 2, . . . .

It follows that if f ∗ is a monomial in generators p∗1, p
∗
2, . . . and deg f ∗ = m,

then we again get an exact equality

1

nm
f ∗(λ1, λ2, . . . ) = f ◦( 1

n
ωλ).

Finally, an arbitrary element f ∗ ∈ Sym∗ of degree ≤ m can be written as
a linear combination of monomials f ∗1 , f

∗
2 , . . . in the generators:

f ∗ = c1f
∗
1 + c2f

∗
2 + . . . ,

where c1, c2, . . . are some coefficients. Hence,

1

nm
f ∗(λ1, λ2, . . . ) =

∑
j

cj
ndeg f∗j

nm
f ◦j ( 1

n
ωλ)

= f ◦( 1
n
ωλ) +

∑
j: deg f∗j <m

cj
ndeg f∗j

nm
f ◦j ( 1

n
ωλ).

The latter sum representing the remainder in (6.7) is O( 1
n
), because every

function f ◦j is bounded on Ω.

Recall that dim(µ, λ) denotes the number of paths in the Young graph
going from µ to λ and increasing the level number by one on each step
(Definition 6.1).

Theorem 6.10. For any fixed µ ∈ Y and varying λ ∈ Y, we have

dim(µ, λ)

dimλ
= s◦µ( 1

n
ωλ) +O( 1

n
), n := |λ|, (6.8)

where the bound of the remainder depends only on µ and is uniform in λ ∈ Y.
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Proof. Indeed, Proposition 6.5 says that

dim(µ, λ)

dimλ
=
s∗µ(λ1, λ2, . . . )

n↓m

and Proposition 6.9 applied to f ∗ = s∗µ gives

s∗µ(λ1, λ2, . . . )

nm
= s◦µ( 1

n
ωλ) +O( 1

n
).

Therefore,

dim(µ, λ)

dimλ
=

nm

n↓m
(
s◦µ( 1

n
ωλ) +O( 1

n
)
)

= s◦µ( 1
n
ωλ) +O( 1

n
),

because
nm

n↓m
= 1 +O( 1

n
)

and the function s◦µ is bounded on Ω.

Let us sum up the mechanism of the proof of Theorem 6.10: We fix µ and
consider the ratio dim(µ, λ)/ dimλ as a function in λ. It turns out that after
an appropriate normalization (multiplication by n↓m) we get a sufficiently
“regular” function on Y (we mean the function s∗µ(λ) = s∗µ(λ1, λ2, . . . )).
Moreover, the linear span A of all such functions indexed by µ’s turns out
to be an algebra (it is isomorphic to algebra Sym∗), and we are able to un-
derstand rather well its structure. This finally enables us to get the required
estimate for the asymptotics of our functions as λ goes to infinity.

Let us give a formal definition of A:

Definition 6.11. Set

H(u;λ) =
∞∏
i=1

u+ i− 1
2

u− λi + i− 1
2

, u ∈ C, λ ∈ Y.

The product is actually finite, because λi = 0 provided that i > `(λ), and it
is a rational function in u ∈ C taking value 1 at u =∞. Consider the Taylor
expansion of H(u;λ) at the point u = ∞ with respect to variable u−1. The
algebra A of regular functions on Y is defined as the unital algebra over R
generated by the coefficients of that expansion.
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Obviously, instead of H(u;λ), we can equally well deal with the Taylor
expansion at u =∞ of logH(u;λ). Introduce the functions p1(λ), p2(λ), . . .
on Y from the expansion

logH(u;λ) =
∞∑
k=1

pk(λ)

k
u−k .

Then, by virtue of Propositions 6.6 and 6.7,

pk(λ) =
∞∑
i=1

[(λi − i+ 1
2
)k − (−i+ 1

2
)k] =

d∑
j=1

(
akj − (−bj)k

)
.

This means that regular functions on Y are both shifted symmetric functions
in the row coordinates λ1, λ2, . . . of a Young diagram λ ∈ Y and supersym-
metric functions (see Ex. 2.17 above) in its modified Frobenius coordinates.

Remark 6.12. By the very definition of Sym∗, it is a filtered algebra such
that the associated graded algebra gr Sym∗ is canonically isomorphic to Sym.
As pointed out in [80, Remark 1.7], Sym∗ can be viewed as a deformation of
Sym. On the other hand, there are natural isomorphisms

Sym∗ → A← Sym

which make it possible to choose a natural algebra isomorphism between
Sym∗ and Sym, consistent with the identification gr Sym∗ = Sym.

Indeed, it is easily seen that the functions p1(λ), p2(λ), . . . on Y are alge-
braically independent. This implies that the correspondence

Sym∗ 3 p∗k → pk( · ) ∈ A

is an algebra isomorphism Sym∗ → A. Next, the algebra of supersymmetric
functions is simply an incarnation of the algebra of symmetric functions Sym
(see Ex. 2.17), so that we get an isomorphism Sym→ A turning the power-
sum generators pk ∈ Sym into the super-power-sums pk(λ).

For more detail see Olshanski, Regev, and Vershik [97], [98].

Integral representation of coherent systems: proof

Here we deduce Theorem 3.12 from Theorem 6.10. Recall the statement of
Theorem 3.12: the relation

M (n)(λ) = dimλ

∫
Ω

s◦λ(ω)P (dω), n = 0, 1, 2, . . . , λ ∈ Yn, (6.9)
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determines a bijective correspondence {M (n)} ↔ P between coherent systems
of distributions on Y and probability measures on Ω.

Proof. Step 1 . We start with a generalization of Definition 3.3:

Definition 6.13. With every couple n > m of nonnegative integers we as-
sociate the Yn × Yn-matrix Λn

m with entries

Λn
m(λ, µ) =

dimµ · dim(µ, λ)

dimλ
, λ ∈ Yn, µ ∈ Ym. (6.10)

By the definition of the relative dimension (Definition 6.1), Λn
m(λ, µ) van-

ishes unless λ contains µ. Note also that when m = n−1, the above definition
agrees with the definition of the matrix Λn

n−1 given above (see Definition 3.3).
More generally, for n−m ≥ 2 the matrix Λn

m factorizes into a product of
n−m matrices of the form Λi

i−1, where i ranges from n to m+ 1:

Λn
m = Λn

n−1Λn−1
n−2 . . .Λ

m+1
n . (6.11)

Indeed, this easily follows from the interpretation of the relative dimension
in terms of monotone paths in the Young graph.

The first consequence of (6.11) is that Λn
m is a stochastic matrix, for it is

a product of stochastic matrices.
Next, applying (6.11) and iterating the coherence relation (3.2) we get

the equality
M (n)Λn

m = M (m), n > m, (6.12)

which holds for any coherent system {M (n)}.
Step 2 . We are going to extend the definition of the stochastic matrix

Λn
m to the case “n = ∞”. The corresponding object, denoted as Λ∞m , is no

longer a matrix, but it can be defined as a kernel of format Ω×Ym. We set

Λ∞m (ω, µ) := dimµ · s◦µ(ω), µ ∈ Ym. (6.13)

Obviously, the kernel is continuous in the first variable, for s◦µ(ω) is a con-
tinuous function on Ω.

In the above notation, Theorem 6.10 can be restated as the asymptotic
relation

Λn
m(λ, µ) = Λ∞m ( 1

n
ωλ, µ) +O( 1

n
), λ ∈ Yn. (6.14)

If we agree to identify λ with 1
n
ωλ, then (6.14) shows that the kernel Λ∞m may

be viewed as a large-n limit of the matrices Λn
m.
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Let us develop this claim further. Every point ω ∈ Ω can be approxi-
mated by points of the form 1

n
ωλ(n) with λ(n) ∈ Yn, as n → ∞ (Ex. 6.1).

Combining this fact with continuity of the kernel we get from (6.14) the
following conclusions:

First, Λ∞m is a stochastic kernel, meaning that for every ω ∈ Ω and every
m = 0, 1, 2, . . . ,

Λ∞m (ω, µ) ≥ 0,
∑
µ∈Ym

Λ∞m (ω, µ) = 1.

Second, for any n > m,

Λ∞n Λn
m = Λ∞m . (6.15)

To see this, observe that, for n′ > n > m,

Λn′

n Λn
m = Λn′

m (by virtue of (6.11))

and then pass to the limit as n′ →∞.
Step 3 . Given a probability measure P on Ω, set

M (n) := PΛ∞n , n = 0, 1, 2, . . . .

The correspondence P 7→ {M (n)} thus defined is just a reformulation of (6.9).
Since Λ∞n is a stochastic kernel for every n, the M (n)’s are probability

measures.
Next, the sequence {M (n)} is coherent. Indeed, (6.15) implies thatM (n)Λn

m =
M (m) for any n > m.

Finally, the map P 7→ {M (n)} is injective. Indeed, assume that PΛ∞n =
P ′Λ∞n for all n. This means that∫

Ω

s◦λ(ω)P (dω) =

∫
Ω

s◦λ(ω)P ′(dω)

for all λ. But the functions s◦λ span a dense subspace in C(Ω), whence
P = P ′.

Step 4 . It remains to prove that the map P 7→ {M (n)} is surjective. To
do this, let us fix a coherent system {M (n)} and show that it comes from a
probability measure P .
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Let P (n) be the pushforward of M (n) under the embedding Yn → Ω. This
is a probability measure on Ω. In more detail,

P (n) =
∑
λ∈Yn

M (n)(λ)〈 1
n
ωλ〉, (6.16)

where 〈ω〉 stands for the delta-measure at a point ω ∈ Ω.
Since the space Ω is compact and metrizable, any sequence of probability

measures has partial weak limits, which also are probability measures. Let
P be any such partial limit. We claim that

PΛ∞m = M (m)

for every m. Indeed, fix m and write the coherence relation in the form

(M (n)Λn
m)(µ) = M (m)(µ), n > m, µ ∈ Ym.

By virtue of (6.14) this implies

(P (n)Λ∞m )(µ) = M (m)(µ) +O( 1
n
).

Passing to a limit as n goes to infinity along a suitable subsequence of indices
n we get the desired relation PΛ∞m = M (m).

This completes the proof.

The following result is a direct consequence of the above argument:

Theorem 6.14 (Approximation Theorem). Let P be a probability measure
on Ω and {M (n)} be the corresponding coherent system. As n → ∞, the
measures M (n) approximate P in the sense that their pushforwards P (n) de-
termined by (6.16) weakly converge to P .

The Vershik–Kerov theorem

Definition 6.15. Assume we are given a sequence {λ(n) ∈ Yn} of Young
diagrams, n = 1, 2, . . . .

(i) Let us say that the corresponding normalized irreducible characters
converge if for any fixed g ∈ S(∞) there exists a limit

lim
n→∞

χλ(n)(g)

dimλ(n)
= χ(g). (6.17)
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(Note that the quantity χλ(n)(g) makes sense for n large enough: so large
that g is contained in S(n).)

(ii) Let us write λ(n)→ ω ∈ Ω (in words, the sequence {λ(n)} converges
to a point ω ∈ Ω) if the points 1

n
ωλ(n) converge to ω in the topology of Ω.

By the very definition of the map λ 7→ 1
n
ωλ (Definition 6.8), the conver-

gence λ(n) → ω means that the normalized modified Frobenius coordinates
of λ(n) completed by 0’s converge to the respective coordinates αi, βi of ω.
Equivalently,

lim
n→∞

λ(n)i
n

= αi, lim
n→∞

(λ(n))′i
n

= βi, i = 1, 2, . . . . (6.18)

We are going to prove the following result.

Theorem 6.16 (Vershik–Kerov’s theorem). Normalized irreducible charac-
ters indexed by a sequence {λ(n) ∈ Yn} converge if and only if the sequence
{λ(n)} converges to a point ω ∈ Ω. Then the limit function χ coincides with
the extreme character χω indexed by ω.

We argued in the Introduction that the irreducible characters χλ of fi-
nite symmetric groups are “special functions”, while the characters χω of
S(∞) are “elementary” ones. Theorem 6.16 makes this fact less surprising,
for it often happens that asymptotics of special functions are described by
elementary functions.

Proof. By the Young branching rule (Proposition 1.4, item (i)), the restric-
tion of the irreducible character χλ(n) to the subgroup S(m) ⊂ S(n), where
m < n, can be written as

Res
S(n)
S(m) χ

λ(n) =
∑
µ∈Ym

dim(µ, λ(n))χµ.

Equivalently,

Res
S(n)
S(m)

χλ(n)

dimλ(n)
=
∑
µ∈Ym

dim(µ, λ(n))

dimλ(n)
χµ.

It follows that the existence of a limit (6.17) is equivalent to the existence of
the limits

lim
n→∞

dim(µ, λ(n))

dimλ(n)
, ∀µ ∈ Y. (6.19)
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Therefore, it suffices to show that the latter condition is equivalent to con-
vergence of the sequence { 1

n
ωλ(n)} in Ω.

Assume that 1
n
ωλ(n) → ω ∈ Ω as n→∞. By Theorem 6.10,

dim(µ, λ(n))

dimλ(n)
= s◦µ( 1

n
ωλ(n)) +O( 1

n
).

Since the function s◦µ(ω) is continuous, the limit in (6.19) exists and equals
s◦µ(ω).

Conversely, assume that the limits in (6.19) exist. By compactness of Ω,
we can choose a subsequence of {λ(n)} such that the corresponding points in
Ω converge to some point ω ∈ Ω. Then, by the first part of the proof, (6.19)
holds along this subsequence.

Since the linear span of the functions s◦µ(ω) separates points of Ω (see
claim (ii) of Proposition 3.9), all limit points of the sequence { 1

n
ωλ(n)} must

coincide.

Exercises

6.1. Show that for any point ω ∈ Ω there exists a sequence {λ(n) ∈ Yn} of
Young diagrams such that 1

n
ωλ(n) → ω as n→∞.

6.2. To any point ω ∈ Ω one assigns an atomic probability measure νω on
[−1, 1], called the Thoma measure associated to ω, by setting

νω =
∞∑
i=1

αiδαi +
∞∑
i=1

βiδ−βi + γδ0 ,

where, as usual, α = (α1, α2, . . . ) and β = (β1, β2, . . . ) are the Thoma pa-
rameters corresponding to ω, γ is given by (3.9), and δx stands for the Dirac
delta–measure at a point x ∈ R.

(a) Let

qk = qk(ω) =

∫
xkνω(dx), k = 0, 1, 2, . . . ,

denote the moments of the Thoma measure. Check the equality

p◦i (ω) = qi−1(ω), i = 1, 2, . . .

Since q0 ≡ 1, this provides one more justification of the agreement p◦1 ≡ 1.
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(b) Show that the correspondence ω 7→ νω gives a homeomorphism of Ω
onto a closed subspace of M1[−1, 1], the space of probability measures on
[−1, 1] equipped with the weak topology.

Thus, we obtain a nice interpretation of the subalgebra Sym◦ ⊂ C(Ω) and
of its generators p◦i (ω): This is simply the algebra generated by the moments
q0 = 1, q1, q2, . . . .

6.3. (a) Show that the algebra A of regular functions on Y is stable under
the change of variable λ 7→ λ′ (transposition of diagram λ). Deduce from this
that elements of A are shifted symmetric functions in the “dual variables”,
the column lengths λ′i.

(b) On the contrary, the algebra of conventional symmetric functions in
variables λ1, λ2, . . . does not possess this property; it is not consistent with
transposition λ→ λ′.

6.4. Besides H(u;λ) (see Definition 6.11), there is one more “reasonable”
function in variables u and λ with obvious shifted symmetry property in λ.
It is given by the infinite series

∞∑
i=1

e(λi−i+ 1
2

)u.

(a) Show that the series converges in the right half–plane <u > 0.
(b) Show that

∞∑
i=1

e(λi−i+ 1
2

)u =
1

u
+
∞∑
k=1

p̂k(λ)u−k , λ ∈ Y, <u > 0,

where
p̂k(λ) = pk(λ) + (1− 2−k)ζ(−k)

and ζ( · ) is Riemann’s zeta–function.

6.5. Define the content power sums as the following functions on Y:

πk(λ) :=
∑
�∈λ

(c(�))k, k = 0, 1, 2, . . . ,

in particular,
π0(λ) := |λ|.
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Notice that, unlike the ordinary power sums, these functions are enumerated
from k = 0.

(a) Show that the content power sums belong to the algebra A and form a
system of its algebraically independent generators. Thus, A can be identified
with R[π0, π1, π2, . . . ].

(b) Show that πk has degree k + 1. More precisely,

πk =
pk+1

k + 1
+ lower degree terms, k = 0, 1, 2, . . .

6.6. The identification of partitions λ = (λ1, λ2, . . . ) with Young diagrams
makes it possible to introduce various encodings of λ’s. First of all, one may
pass from the row lengths λi to the column lengths λ′i. Next, one can consider
the classical or modified Frobenius coordinates, which are consistent with the
symmetry λ → λ′. In a number of cases they turn out to be more effective
than the row or column lengths. Here we discuss one more useful encoding
of Young diagrams, invented by Kerov [62].

(a) Recall that we draw Young diagrams in a quarter plane according to
the so–called “English picture” (Macdonald [72]), which means that the first
coordinate axis is directed downwards and the second axis is directed to the
right. Denote the coordinates along these axes as r and s, respectively. The
boundary of a diagram λ is a broken line, which we imagine as a directed path
coming from +∞ along the s–axis, next turning several times alternatingly
down and to the left, and finally going away to +∞ along the r–axis. The
turning points, called the corners of λ, are of two types: the inner corners
where the path switches from the horizontal direction to the vertical one, and
the outer corners where the direction is switched from vertical to horizontal.
Observe that the corners of both types interlace and that the number of inner
corners always exceeds by 1 that of the outer corners. Let 2k−1 be the total
number of the corners, (ri, si), 1 ≤ i ≤ k, be the coordinates of the inner
corners, and (r′j, s

′
j), 1 ≤ j ≤ k − 1, be the coordinates of the outer corners.

Set
xi = si − ri, 1 ≤ i ≤ k, yi = s′j − r′j, 1 ≤ j ≤ k − 1.

By the very construction these are interlacing integers

x1 > y1 > x2 > · · · > · · · > xk−1 > yk−1 > xk. (6.20)

We call these numbers the Kerov interlacing coordinates of λ. Obviously,
these coordinates determine the initial diagram λ uniquely.
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(b) We will use the notation λ = (X;Y ), where X = {xi} and Y = {yj}.
Observe that there is a natural bijective correspondence between the inner
corners of λ (and thus the points xi ∈ X) and the boxes that can be appended
to λ. Likewise, the outer corners (and thus the points yj ∈ Y ) correspond to
the boxes that can be removed from λ.

Describe the transformation of (X;Y ) when a box is appended or re-
moved. A useful device to prove various statements involving the Kerov
interlacing coordinates of λ is to argue by induction on |λ| using these trans-
formations.

(c) Show that two interlacing sequences of integers (6.20) come from a
Young diagram if and only if

k∑
i=1

xi −
k−1∑
j=1

yj = 0.

Hint: Use the device mentioned in item (b) above.
(d) Prove the formula

|λ| =
∑

1≤i≤j≤k−1

(xi − yi)(yj − xj+1)

6.7. Here we aim to demonstrate an alternative approach to the algebra A
using Kerov’s interlacing coordinates (X;Y ) of a diagram λ ∈ Y introduced
above.

(a) Let S̃ym stand for a copy of the algebra of symmetric functions. De-

note by p̃n and h̃n the power sums and the complete homogeneous functions
viewed as elements of S̃ym. We are going to define an algebra morphism of
S̃ym into the algebra of functions on Y. To do this it suffices to specify the
functions h̃n(λ) that will serve as the images of the generators h̃n ∈ S̃ym.
We define them by setting

1 +
∞∑
n=1

h̃n(λ)u−n = the expansion of H̃(u;λ) about u =∞, λ ∈ Y,

where

H̃(u;λ) =

u
k−1∏
j=1

(u− yj)

k∏
i=1

(u− xi)
, λ ∈ Y.
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Observe that H̃(u;λ) is a rational function in u such that H̃(u;λ) = 1 +
O(u−1) about u =∞, so that the definition is correct.

Show that the functions p̃n(λ) corresponding to the generators p̃n ∈ S̃ym
are given by

p̃n(λ) =
k∑
i=1

xni −
k−1∑
j=1

ynj , n = 1, 2, . . . , λ ∈ Y.

It follows that the function f̃(λ) on Y corresponding to an arbitrary

element f̃ ∈ S̃ym is obtained by evaluating the supersymmetric function
f̃( · , · ) at (X;−Y ). Here we mean the definition of supersymmetric functions
given in Ex. 2.17 above.

Observe that
p̃1(λ) ≡ 0,

by virtue of Ex. 6.5(c).
(b) Prove the formula

H̃(u;λ) =
H(u− 1;λ)

H(u;λ)
, λ ∈ Y,

relating the definition of item (a) above to Definition 6.11.
(c) Deduce from (b) that the functions p̃2(λ), p̃3(λ), . . . belong to the

algebra A and are related to the functions p1(λ), p2(λ) by (n = 2, 3, . . . )

p̃n =

[n−1
2

]∑
j=0

(
n

2j + 1

)
2−2j pn−1−2j = npn−1 + lower degree terms

(recall that p̃1 ≡ 0).

It follows that the algebra A coincides with image of algebra S̃ym under
the morphism defined in (a). The kernel of this morphism is the principal

ideal generated by p̃1 ∈ S̃ym, so that the A can be viewed as the quotient
S̃ym/p̃1S̃ym.

6.8. Summing up, the functions f(λ) on Y belonging to the algebra A can
be described in 4 different ways:

(1) As shifted symmetric functions in λ1, λ2, . . . .
(2) As supersymmetric functions in (a; b), the modified Frobenius coor-

dinates of λ.
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(3) As symmetric functions in the box contents of λ (one should also add
as an additional generator the function π0(λ) = |λ|).

(4) As supersymmetric functions in (X;−Y ), where X = (x1, . . . , xk) and
Y = (y1, . . . , yk−1) are Kerov’s interlacing coordinates of λ.

6.9. Consider the algebra isomorphism Sym∗ → Sym defined in Remark
6.12. The image under this isomorphism of the shifted Schur function s∗µ is
called the Frobenius–Schur function and denoted as FSµ.

Below we will freely pass from Sym to A and vice versa, using the iso-
morphism between these two algebras. For any f ∈ Sym we will denote by
f(λ) the corresponding function from A.

(a) The Frobenius–Schur functions can be characterized by the property

FSµ(λ) = n↓m
dim(µ, λ)

dimλ
, λ ∈ Y, n = |λ|, m = |µ|.

(b) Show that the highest homogeneous component of FSµ is the Schur
symmetric function sµ.

(c) Prove the symmetry relation FSµ(λ′) = FSµ′(λ).

6.10. Recall the notation χλρ for the symmetric group characters, see Section
2.

(a) Show that for any partition ρ there exists a unique element p#
ρ ∈

Sym = A such that for any λ ∈ Y with n := |λ| ≥ |ρ| =: m

n↓m
χλρ∪1n−m

dimλ
= p#

ρ (λ).

Moreover,
p#
ρ = pρ + lower degree terms.

(b) Show that the elements p#
ρ are related to the Frobenius–Schur func-

tions FSλ exactly as the elements pρ are related to the conventional Schur
functions sλ:

p#
ρ =

∑
λ: |λ|=|ρ|

χλρFSλ .

(c) Prove the asymptotic relation

χλ
ρ∪1|λ|−|ρ|

dimλ
= p◦ρ(

1
n
ωλ) +O(|λ|−

1
2 ).
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7 Boundaries and Gibbs measures on paths

Thoma’s theorem and de Finetti’s theorem can be placed in the context of
a much more general formalism of finding the boundary of a graded graph.
Let us briefly describe the general setting.

The category B
About the notions used in this subsection see Parthasarathy [100] and Meyer
[74]. A measurable space (also called Borel space) is a set with a distinguished
sigma-algebra of subsets. Denote by B the category whose objects are stan-
dard measurable spaces 7 and morphisms are Markov kernels. A morphism
between two objects will be denoted by a dashed arrow, X 99K Y , in order to
emphasize that it is not an ordinary map. Recall that a (stochastic) Markov
kernel Λ : X 99K Y between two measurable spaces X and Y is a function
Λ(a,A), where a ranges over X and A ranges over measurable subsets of Y ,
such that Λ(a, · ) is a probability measure on Y for any fixed a and Λ( · , A)
is a measurable function on X for any fixed A.

Below we use the short term link as a synonym of “Markov kernel”. The
composition of two links will be read from left to right: Given Λ : X 99K Y
and Λ′ : Y 99K Z, their composition ΛΛ′ : X 99K Z is defined as

(ΛΛ′)(x, dz) =

∫
Y

Λ(x, dy)Λ′(y, dz),

where Λ(x, dy) and Λ′(y, dz) symbolize the measures Λ(x, · ) and Λ′(y, · ),
respectively.

A projective system in B is a family {Vi,Λj
i} consisting of objects Vi

indexed by elements of a linearly ordered set I (not necessarily discrete),
together with links Λj

i : Vj 99K Vi defined for any couple i < j of indices,
such that for any triple i < j < k of indices, one has Λk

jΛ
j
i = Λk

i .
A limit object of a projective system is understood in the categorical sense:

This is an object X = lim←−Vi together with links Λ∞i : X 99K Vi defined for
all i ∈ I, such that:

7Standard measurable spaces are, up to isomorphism, of two types: (1) the finite
set {1, . . . , n} or the countably infinite set {1, 2, . . . } with the sigma-algebra formed by
arbitrary subsets; (2) the interval [0, 1] with the sigma-algebra of Borel subsets. For more
detail, see Parthasarathy [100, Chapter V].
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• Λ∞j Λj
i = Λ∞i for all i < j;

• if an object Y and links Λ̃∞i : Y 99K Vi satisfy the similar condition,

then there exists a unique link ΛY
X : Y 99K X such that Λ̃∞i = ΛY

XΛ∞i .

General results concerning existence and uniqueness of limit objects in B
can be found in Winkler [134, Chapter 4]. See also Dynkin [34], [35], Kerov
and Orevkova [68]. When the index set I is a subset of R and all spaces Vi
are copies of one and the same space X, our definition of projective system
turns into the classical notion of transition function on X (within inversion
of order on I).

For a measurable space X we denote by M(X) the set of probability
measures on X. It is itself a measurable space — the corresponding sigma-
algebra is generated by sets of the form {µ ∈ M(X) : µ(A) ∈ B}, where
A ⊆ X is a measurable and B ⊆ R is Borel. Equivalently, the measurable
structure of M(X) is determined by the requirement that for any bounded
measurable function on X, its coupling with M should be a measurable
function in M . If X is standard, then M(X) is standard, too.

Observe that any link Λ : X 99K Y gives rise to a measurable map
M(X)→M(Y ), which we write as M 7→MΛ. Consequently, any projective
system {Vi,Λj

i} in B gives rise to the conventional projective limit of sets

M∞ := lim←−
I

M(Vi).

An element of M∞ is called a coherent family of measures . By the very
definition, it is a family of probability measures {Mi ∈ M(Vi) : i ∈ I} such
that for any couple i < j one has MjΛ

j
i = Mi. (In the case of a transition

function, Dynkin [35] calls elements of M∞ entrance laws .)
If a limit object X exists then there is a canonical map

M(X)→M∞.

From now on we will gradually narrow the setting of the formalism and
will finally focus on the study of some concrete examples.

Projective chains

Consider a particular case of a projective system, where all spaces are discrete
(finite or countably infinite) and the indices range over the set {1, 2, . . . } of
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natural numbers. Such a system is uniquely determined by the links ΛN+1
N ,

N = 1, 2, . . . :

V1 L99 V2 L99 · · · L99 VN L99 VN+1 L99 · · · . (7.1)

Note that a link between two discrete spaces is simply a stochastic matrix, so
that ΛN+1

N : VN+1 99K VN is a stochastic matrix whose rows are parameterized
by points of VN+1 and columns are parameterized by points of VN :

ΛN+1
N = [ΛN+1

N (x, y)], x ∈ VN+1, y ∈ VN ,

ΛN+1
N (x, y) ≥ 0 for every x, y,

∑
y∈VN

ΛN+1
N (x, y) = 1 for every x.

For arbitrary N ′ > N , the corresponding link ΛN ′
N : VN ′ 99K VN is a VN ′ ×

VN stochastic matrix, which factorizes into a product of stochastic matrices
corresponding to couples of adjacent indices:

ΛN ′

N = ΛN ′

N ′−1 . . .Λ
N+1
N .

We call such a projective system a projective chain. It gives rise to a
chain of ordinary maps

M(V1)←M(V2)← · · · ←M(VN)←M(VN+1)← · · · (7.2)

Note thatM(VN) is a simplex whose vertices can be identified with the points
of VN , and the arrows are affine maps of simplices. In this situation a coherent
family (element of M∞) is a sequence {MN ∈ M(VN) : N = 1, 2, . . . } such
that

MN+1ΛN+1
N = MN , N = 1, 2, . . . .

Here we can interpret measures as row vectors, so that the left-hand side is
the product of a row vector by a matrix. In more detail, the equation can be
written as ∑

x∈VN+1

MN+1(x)ΛN+1
N (x, y) = MN(y), ∀y ∈ VN .

Note that the set M∞ may be empty, as the following simple example
shows: Take VN = {N,N + 1, N + 2, . . . } and define ΛN+1

N as the natural
embedding VN+1 ⊂ VN . In what follows we tacitly assume that M∞ is
nonempty. This holds automatically if all VN are finite sets.



7 BOUNDARIES AND GIBBS MEASURES ON PATHS 85

We may view M∞ as a subset of the real vector space

L := RV1tV2tV3t....

Here the set V1 t V2 t V3 t . . . is the disjoint union of VN ’s. Since this set is
countable, the space L equipped with the product topology is locally convex
and metrizable. Clearly,M∞ is a convex Borel subset of L, hence a standard
measurable space.

Let V∞ be the set of extreme points ofM∞. We call V∞ the boundary of
the chain {VN ,ΛN+1

N }.

Theorem 7.1. If M∞ is nonempty then the boundary V∞ ⊂ M∞ is a
nonempty measurable subset (actually, a subset of type Gδ) of M∞, and
there is a natural bijection M∞ ↔ M(V∞), which is an isomorphism of
measurable spaces.

A proof based on Choquet’s theorem is given in Olshanski [91, §9], a much
more general result is contained in Winkler [134, Chapter 4].

By the very definition of the boundary V∞, it comes with canonical links

Λ∞N : V∞ 99K VN , N = 1, 2, . . . .

Namely, given a point ω ∈ V∞ ⊂M∞, let {MN} stand for the corresponding
sequence of measures; then, by definition,

Λ∞N (ω, x) = MN(x), x ∈ VN , N = 1, 2, . . . .

Here, to simplify the notation, we write Λ∞N (ω, x) instead of Λ∞N (ω, {x}).
From the definition of Λ∞N it follows that

Λ∞N+1ΛN+1
N = Λ∞N , N = 1, 2, . . . .

Now it is easy to see that the boundary V∞ coincides with the categorical
projective limit of the initial chain (7.1).

Remark 7.2. In the context of Theorem 7.1, assume we are given a standard
measurable space X and links ΛX

N : X 99K VN , N = 1, 2, . . . , such that:

• ΛX
N+1ΛN+1

N = ΛX
N for all N ;

• the induced map M(X)→M∞ = lim←−M(VN) is a bijection.
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Then X coincides with the boundary V∞. Indeed, the maps M(X) →MN

are measurable, whence the map M(X) → M∞ is measurable, too. Since
M(X) is standard (because X is standard), the latter map is an isomorphism
of measurable spaces (see e.g. Parthasarathy [100, Chapter V, Theorem 2.4
]) and the claim becomes obvious.

Remark 7.3. Theorem 7.1 immediately extends to the case of a projective
system {Vi,Λj

i}, where all Vi’s are discrete spaces (finite or countable) and
the directed index set I is countably generated, that is, contains a sequence
i(1) < i(2) < . . . such that any i ∈ I is majorated by indices i(N) with
N large enough. Indeed, it suffices to observe that the space lim←−M(Vi(N))
does not depend on the choice of {i(N)}. Such a situation is examined in
Borodin–Olshanski [23], where the index set I is the halfline R>0.

Graded graphs

Definition 7.4. By a graded graph we mean a graph Γ with countably many
vertices partitioned into levels enumerated by numbers 1, 2, . . . , and such that
(below |v| denotes the level of a vertex v)

• if two vertices v, v′ are joined by an edge then |v| − |v′| = ±1;

• multiple edges between v and v′ are allowed;

• each vertex v is joined with a least one vertex of level |v| + 1 (that is,
there are no suspended vertices);

• if |v| ≥ 2, then the set of vertices of level |v| − 1 joined with v is finite
and nonempty.

This is a natural extension of the well-known notion of a Bratteli diagram
(Bratteli [27]); the difference between the two notions is that a Bratteli di-
agram has finitely many vertices at each level, whereas our definition allows
countable levels.

Sometimes it is convenient to slightly modify the above definition by
adding to Γ a single vertex of level 0 joined by edges with all vertices of level
1.

The simplest nontrivial example of a graded graph is the Pascal graph
P that we discussed in Section 5. A number of other examples are can be
found in Kerov’s book [63] and also in Gnedin [43], Gnedin and Olshanski
[46], Kingman [70].
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Definition 7.5. Given a chain of finite or, more generally, compact groups
embedded into each other,

G(1) ⊂ G(2) ⊂ · · · ⊂ G(N − 1) ⊂ G(N) ⊂ . . . , (7.3)

one constructs a graded graph Γ = Γ({G(N)}), called the branching graph
of the group chain (7.3), as follows. The vertices of level N are the labels
of the equivalence classes of irreducible representations of G(N). Choose a
representation πv for each vertex v. Two vertices u and v of levels N and
N − 1, respectively, are joined by m edges if πu enters the decomposition of
πv ↓ G(N − 1) with multiplicity m, with the understanding that there are
no edges if m = 0.

Of particular importance are the Young graph Y that we studied above,
and the Gelfand–Tsetlin graph GT; they are obtained from the chains of
symmetric groups (G(N) = S(N)) and unitary groups (G(N) = U(N)),
respectively.

Definition 7.6. By a monotone path in a graded graph Γ we mean a finite
or infinite collection

v1, e12, v2, e23, v3, . . .

where v1, v2, . . . are vertices of Γ such that |vi+1| = |vi| + 1 and ei,i+1 is an
edge between vi and vi+1. Since we do not consider more general paths, the
adjective “monotone” will be often omitted. If the graph is simple then every
path is uniquely determined by its vertices, but when multiple edges occur
it is necessary to specify which of the edges between every two consecutive
vertices is selected.

Definition 7.7. Given a graded graph Γ, the dimension of a vertex v, de-
noted by dim v, is defined as the number of all paths in Γ of length |v| − 1
starting at some vertex of level 1 and ending at v. Further, for an arbitrary
vertex u with |u| < |v|, the relative dimension dim(u, v) is the number of
monotone paths of length |v|−|u| joining u to v. In particular, if |u| = |v|−1,
then dim(u, v) is the number of edges between u and v.

For instance, in the case of the Pascal graph Γ = P the dimensions are
binomial coefficients, see Section 5 above.

If Γ is the branching graph of a group chain, then dim v is the dimension
of the corresponding representation πv and dim(u, v) is the multiplicity of
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πu in the decomposition of the representation πv restricted to the subgroup
G(|u|) ⊂ G(|v|).

Obviously, for an arbitrary graded graph Γ one has

dim v =
∑

u: |u|=|v|−1

dimu dim(u, v).

Using this relation we assign to Γ a projective chain {VN ,ΛN+1
N }, where

VN = ΓN consists of the vertices of level N and

ΛN+1
N (v, u) =

dimu dim(u, v)

dim v
, v ∈ ΓN+1, u ∈ ΓN . (7.4)

The boundary V∞ of this chain is also referred to as the boundary of the
graph Γ and denoted as ∂Γ.

More generally, for N < N ′ we set

ΛN ′

N := ΛN ′

N ′−1 . . .Λ
N+1
N .

Then

ΛN ′

N (v, u) =
dimu dim(u, v)

dim v
, u ∈ ΓN , v ∈ VN ′ . (7.5)

Given a chain {G(N)} of finite or compact groups, see (7.3), denote by G
their union. Characters of G are defined according to Definition 1.7. (If G is
a compact topological group, then we additionally require that the characters
should be continuous functions on G, that is, restriction to every subgroup
G(N) is continuous.) As before, extreme characters are extreme points of
the convex set of all characters.

Proposition 7.8. If Γ is the branching graph of a chain (7.3) of finite or
compact groups, then there is a natural bijection between the boundary ∂Γ
and the set of extreme characters of the group G.

This is a generalization of Proposition 3.5, and the proof is the same.

Gibbs measures

LetX1, X2, . . . be an infinite sequence of nonempty sets each of which is either
finite or countable, and let ϕn,n+1 : Xn+1 → Xn be some surjective maps,
n = 1, 2, . . . . Then we may form the projective limit set X := lim←−Xn, which
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is nonempty, because the maps are surjective. By the the very definition
of projective limit, for every n, there is a natural projection ϕn : X →
Xn. The inverse image ϕ−1

n (Y ) ⊂ X of an arbitrary subset Y ⊂ Xn under
this projection is called a cylinder set of level n. We endow X with the
sigma-algebra Σ generated by the cylinder sets of all levels. Next, let {µn ∈
M(Xn) : n = 1, 2, . . . } be a sequence of probability measures, which are
consistent with the maps ϕn,n+1 in the sense that ϕn,n+1(µn+1) = µn for
every n = 1, 2, . . . . We will need the following assertion.

Theorem 7.9. Let Xn, ϕn,n+1, X, ϕn, Σ, and µn be as above. Then there
exists a unique probability measure µ ∈ M(X) defined on the sigma-algebra
Σ, such that ϕn(µ) = µn for every n = 1, 2, . . .

The measure µ is called the projective limit of the sequence {µn}.
Below we give a proof for the case when all sets Xn are finite, which

suffices for our purposes. The case of countable sets is left to the reader as
an exercise, see Ex. 7.10. Theorem 7.9 is a very particular case of Bochner’s
theorem (on projective systems of measures), which in turn is a generalization
of the Kolmogorov extension theorem. References are given in the Notes to
the present section.

Proof for the case of finite sets Xn. For any given n, because the projection
ϕn : X → Xn is surjective, the cylinder sets of level n form a sigma-algebra
Σn, isomorphic to the sigma-algebra 2Xn of all subsets of Xn. This makes it
possible to interpret µn as a measure µ̃n on (X,Σn).

Next, observe that Σ1 ⊆ Σ2 ⊆ . . . and denote by Σ0 the set-theoretic
union

⋃
Σn. This is an algebra of sets, but, generally speaking, not a sigma-

algebra. The consistency property of the sequence {µn : n = 1, 2, . . . } means
that, for each n, the restriction of µ̃n+1 to Σn coincides with µ̃n. There-
fore, the sequence {µ̃n} gives rise to a finitely-additive set function µ̃ on Σ0.
We want to show that µ̃ admits a (unique) sigma-additive extension to Σ.
According to a well-known criterion from the abstract measure theory (the
Carathéodory theorem), to do this we have to prove that if A1 ⊇ A2 ⊇ . . .
is a sequence of cylinder sets such that limi µ̃(Ai) > 0, then the intersection⋂
Ai is nonempty.
Finally, observe that the space X has a natural topology in which the

open sets are precisely the cylinder sets and their unions (Ex. 7.9). It is
readily seen that X is a compact space and all cylinder sets are closed; hence
they are compact, too. It follows that the intersection

⋂
Ai is nonempty for
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any decreasing sequence of cylinder sets; we do not even need to use the
assumption limi µ̃(Ai) > 0.

Now let, as above, Γ be a graded graph. Its path space T = T (Γ) is
defined as the set of all infinite paths starting at the first level. Likewise,
denote by Tn the set of finite paths starting at the first level and ending
at level n. Then we may write T = lim←−Tn. This enables one to introduce
cylinder subsets of T and the corresponding sigma-algebra Σ, making T into
a measurable space.

Definition 7.10. A probability measure on T is said to be a Gibbs mea-
sure if any two initial finite paths with the same endpoint are equiprobable.
Equivalently, the measure of any cylinder set of the form ϕ−1

n (τ) ⊂ T , where
τ ∈ Tn, depends only on the endpoint of τ .

(In works of Vershik and Kerov such measures were called central mea-
sures.)

As above, consider the projective chain {ΓN ,ΛN+1
N } associated with the

graph Γ, so that ΓN is the set of vertices of level N = 1, 2, . . . .

Proposition 7.11. There is a natural bijective correspondence {MN} ↔ M̃
between coherent systems of measures on Γ and Gibbs measures on T .

Proof. Indeed, given a Gibbs measure M̃ , define for each N a probability
measure MN ∈ M(VN) as follows: For any v ∈ VN , MN(v) equals the
probability that the infinite random path distributed according to P passes
through v. The measures MN are compatible with the links ΛN+1

N by the
very construction of these links. Therefore, the sequence (MN) determines
an element of M∞. The inverse map, from M∞ to Gibbs measures, is
obtained by making use of Theorem 7.9.

Together with Theorem 7.1 this implies

Corollary 7.12. There is a bijection between the Gibbs measures on the path
space of Γ and the probability measures on the boundary ∂Γ.

Note that the random paths distributed according to a Gibbs measure
can be viewed as trajectories of a “Markov chain” with discrete time N that
flows backwards from +∞ to 0 and transition probabilities ΛN+1

N . (It should
be noted, however, that this is not a conventional Markov chain, because its
state space varies with time.) Then probability measures on ∂Γ turn into
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what can be called the entrance laws for that “Markov chain”; cf. Dynkin
[34]. Thus, ∂Γ plays the role of the entrance boundary, which is a justification
of our use of the term “boundary”. More generally, a similar interpretation
can be given to the boundary of an arbitrary projective chain.

Examples of path spaces for branching graphs

For the Pascal graph Γ = P, the path space can be identified with the space
{0, 1}∞ of infinite binary sequences. Under this identification, the Gibbs
measures are just the exchangeable measures on {0, 1}∞, and the claim of
Corollary 7.12 turns into the classical de Finetti theorem: Exchangeable
probability measures on {0, 1}∞ are parameterized by probability measures
on [0, 1].

Consider the Young graph Γ = Y. Recall that for a Young diagram λ ∈ Y,
a standard Young tableau of shape λ is a filling of the boxes of λ by numbers
1, 2, . . . , |λ| in such a way that the numbers increase along each row from left
to right and along each column from top to bottom.

Let us also define an infinite Young diagram as an infinite subset λ̃ ⊆
Z>0 × Z>0 such that if (i, j) ∈ λ̃, then λ̃ contains all pairs (i′, j′) with i′ ≤ i,

j′ ≤ j. An infinite standard tableau of shape λ̃ is an assignment of a positive
integer to any pair (i, j) ∈ λ̃ in a such a way that all positive integers are
used, and they increase in both i and j. If we only pay attention to where
the integers 1, 2, . . . , n are located, we will observe a Young tableau whose
shape is a Young diagram λ ⊂ λ̃ with n boxes. Let us call this finite tableau
the n-truncation of the original infinite one.

Clearly, the infinite paths in the Young graph are in one-to-one corre-
spondence with the infinite Young tableaux. The initial finite parts of such a
path are described by the various truncations of the corresponding tableau.
The condition of a measure on infinite Young tableaux being Gibbs consists
in the requirement that the probability of observing a prescribed truncation
depends only on the shape of the truncation (and not on its filling).

The bijective correspondence between coherent systems on the Young
graph Y and Gibbs measures on the path space of Y is employed in Section
12.
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The Martin boundary and Vershik–Kerov’s ergodic the-
orem

Let {VN ,ΛN+1
N } be a projective chain and assume for simplicity that all sets

VN are finite. Let V be the disjoint union of the sets VN and F denote the
space of real-valued functions on V . To every v ∈ VN we assign a function
fv ∈ F as follows:

fv(v
′) =


ΛN
N ′(v, v

′), if v′ ∈ VN ′ with N ′ < N,

1, if v′ = v,

0, otherwise.

In this way we get an embedding V → F , and to simplify the notation let us
identify V with its image in F . Next, equip F with the topology of pointwise
convergence and take the closure of V in this topology. Denote this closure
by V̄ .

Definition 7.13. By the Martin boundary VMartin of the chain {VN ,ΛN+1
N }

we mean the set difference V̄ \ V .

It is not hard to verify that V̄ is a compact set. Thus, it is a compactifi-
cation of V , which may be called the Martin compactification.

Observe that for every element f ∈ VMartin its restrictions to various sets
VN form a coherent system of distributions: Indeed, this is easy to verify
from the fact that f is a pointwise limit of a sequence {fvi} where vi ∈ VNi
and N1 < N2 < . . . . (Note that here we substantially use the assumption
of finiteness of VN ’s.) Thus, we may view VMartin as a subset of M∞ of all
coherent systems.

Theorem 7.14. Let {VN ,ΛN+1
N } be a projective chain with finite sets VN .

As a subset of M∞, the Martin boundary VMartin contains the boundary V∞.

For a proof, see Kerov, Okounkov, and Olshanski [64].
The assertion of the theorem means that for any extreme coherent system

{MN} there exists a sequence of points {vi ∈ VNi} with Ni →∞, such that
for every N and every v ∈ VN one has

lim
i→∞

ΛNi
N (vi, v) = MN(v).

In particular, the above definitions and results are applicable to any
graded graph Γ with finite levels, so that we may speak about its Martin
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boundary ∂MartinΓ and Martin compactification. In the rest of the subsection
we assume that Γ is such a graph.

Definition 7.15. Let Γ be a graded graph with finite levels.
(i) Given a sequence {vi ∈ ΓNi} of vertices with Ni →∞, let us say that

{vi ∈ ΓNi} is regular if it converges to a point ω ∈ ∂MartinΓ of the Martin
boundary in the Martin compactification of the graph. By the very definition
of the Martin compactification, this means that for any fixed vertex v ∈ ΓN ,
there exists a limit

lim
i→∞

dim(v, vi)

dim vi
.

(ii) Likewise, a path τ ∈ T (Γ) is said to regular if the sequence of its
vertices is regular. Then we say that the path converges to the corresponding
boundary point ω ∈ ∂MartinΓ.

Remark 7.16. For the Young graph, the Martin boundary coincides with
the boundary ∂Y = Ω, and the above definition of convergence to boundary
points coincides with Definition 6.15; that is, a sequence λ(n) ∈ Yn is regular
if and only the corresponding sequence 1

n
ωλ(n) converges to a point of Ω.

Indeed, this fact was established in the proof of Theorem 6.16.

Theorem 7.17 (Vershik–Kerov’s ergodic theorem). Let Γ be a graded graph
with finite levels, ω ∈ ∂Γ ⊆ ∂MartinΓ be an arbitrary point of the boundary,
and M̃ω be the corresponding measure on the path space T (Γ).

With respect to measure M̃ω, almost all paths converge to ω.

For a proof we refer to Kerov [63, Chapter 1, Section 1].
It is easy to see that the set of regular paths is a Borel subset of the path

space.

Corollary 7.18. Let Γ be a graded graph with finite levels. Every Gibbs
measure on the path space T (Γ) is concentrated on the subset of regular paths.

This is a direct consequence of Theorems 7.17 and 7.1.

Corollary 7.19 (Strong law of large numbers for the Young graph). Let

ω ∈ Ω be an arbitrary point and M̃ω be the corresponding Gibbs measure on
the path space T (Y). For M̃ω-almost every path τ = (λ(n) ∈ Yn), the scaled
row and column lengths of diagrams λ(n) have limits (6.18), where αi and βi
are the coordinates of ω.

Indeed, this follows from Theorem 7.17 and Remark 7.16.
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Exercises

7.1. Recall that the Pascal graph can be embedded into the Young graph: a
vertex (k, l) of the former graph is identified with the hook Young diagram
λk,l := (k+ 1

2
| l+ 1

2
). Check that this embedding agrees with the description

of the boundaries, so that the boundary ∂P becomes a subset of the boundary
∂Y.

7.2. Let Γ be a graded graph. For n = 0, 1, 2, . . . , let Tn denote the set of
monotone paths in Γ starting at the root ∅ ∈ Γ0 and ending somewhere in
the nth level. There are natural projections πn,n−1 : Tn → Tn−1 which consist
in removing the last edge. On the other hand, each Tn is equipped with an
equivalence relation: for two paths τ, τ ′ ∈ Tn we write τ ∼n τ ′ if they have
the same endpoint.

(a) The collection of the sets Tn together with projections Tn → Tn−1

and equivalence relations ∼n allows one to reconstruct γ. In particular, the
vertices in Γn are identified with the equivalence classes in Tn.

(b) Conversely, assume we are given a collection {Tn}n≥0 of sets together
with projections πn,n−1 : Tn → Tn−1 and an equivalence relation “∼n” in each
Tn. Assume also that T0 is a singleton. Show that these data come from a
graded graph Γ if and only if the following conditions holds:
• All equivalence classes are finite.
• For any equivalence classes u ⊂ Tn−1 and v ⊂ Tn, and any element

τ ∈ u, the number of elements in the intersection π−1
n,n−1(τ)∪ v depends only

on u and v but not on the choice of τ in u. (Specifically, the number above
is equal to the number of edges between u and v in the future graph.)
• The projections πn,n−1 are surjective. (This guarantees the absence of

suspended vertices.)
(c) The set of infinite paths in Γ started at ∅ can be identified with the

projective limit lim←−Tn.
(d) For the Young graph, the set Tn of paths is the set of Young tableaux

with n boxes, the projection Tn → Tn−1 consists in removing the box occupied
by n, and equivalence τ ∼n τ ′ means that the tableaux τ and τ ′ have the
same shape.

7.3. Recall that a partition of a set A is defined as a splitting of A into
nonempty disjoint subsets called the blocks . It should be emphasized that
in definition, the blocks are assumed to be unordered. For n = 1, 2, . . . , let
Tn be set of all partitions of the set [n] := {1, . . . , n}, and agree that T0 is a
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singleton. Observe that if A is a subset of B then any partition of B induces
by restriction a partition of A. Applying this to A = [n− 1], B = [n] we get
projections Tn → Tn−1. Two partitions of a set are said to be equivalent if
they can be transformed to each other by a permutation of the underlying
set. In particular, this defines an equivalence relation in each of the sets Tn.

(a) Check that the data specified above obey the conditions of Ex. 7.2,
so that they determine a branching graph. This graph is called the Kingman
graph, we will denote it as K or, in more detail, as (K,κK).

(b) The vertices of K can be identified with those of the Young graph
Y. Specifically, to a partition of the set [n] one assigns the collection of the
block lengths, which is a partition of the number n. Moreover, the edges in
both graphs are the same, too. The difference is in the multiplicity function:

Show that for any couple µ ↗ λ of Young diagrams, the “Kingman
multiplicity” κK(µ, λ) equals the number of rows in λ having the same length
as that of the row containing the box λ \ µ.

(c) Show that the set lim←−Tn of infinite increasing paths in the King-
man graph can be identified with the set of all partitions of the infinite set
{1, 2, . . . }.

(d) Show that the “Kingman dimension” is given by monomial coeffi-
cients:

dimK λ =
|λ|!

λ1!λ2! . . .
.

7.4. Let us say that two graded graphs, (Γ,κ) and (Γ′,κ′) are similar if
they have the same vertices and edges, and the multiplicity functions are
conjugated by an appropriate strictly positive function ψ on the vertices:

κ′(µ, λ) =
ψ(µ)

ψ(λ)
κ(µ, λ).

Show that for similar graded graphs, the respective sets H (nonnegative
normalized harmonic functions) are isomorphic as convex sets. Furthermore,
the respective boundaries (E or Emin) are also essentially the same.

7.5. Show that each of the following two modifications of κK(µ, λ) leads to
a graded graph similar to the Kingman graph:
• κ(µ, λ) equals the length of the row in λ containing the box λ \ µ;
• κ(µ, λ) equals the product mk, where k denotes the length of the row

in λ containing the box λ\µ while m is the number of all rows in λ of length
k.
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7.6. Show that the graphs K and Y are not similar.

7.7. A graded graph Γ is called multiplicative if there exists a unital Z+–
graded R–algebraA = ⊕An together with a distinguished homogeneous basis
{aλ} in A indexed by vertices λ ∈ Γ such that the following conditions holds:

(1) If λ ∈ Γn then the degree of the corresponding element aλ equals n,
so that dimAn = |Γn|.

(2) The element a∅ is the unit element of A.
(3) dimA1 = |Γ1| = 1. We will denote the unique vertex in Γ1 as (1).
(4) For any n ∈ Z+ and any λ ∈ Γn,

aλ · a(1) =
∑
ν

κ(λ, ν)aν ,

summed over the vertices ν ∈ Γn+1 connected to λ by an edge, with coeffi-
cients equal to the formal edge multiplicities.

(a) Show that the Pascal graph is multiplicative. (Hint: take as A the
subalgebra in R[x, y] formed by polynomials divisible by a(1) := x+ y.)

(b) Show that the Young graph Y is multiplicative — here A the algebra
Sym of symmetric functions with the distinguished formed by the Schur
functions sλ.

(c) Show that the Kingman graph K is multiplicative: here again A =
Sym but as the basis one has to take the monomial symmetric functions mλ,
see Section 1.

7.8. The combinatorial notion of composition is similar to that of partition;
the difference is that partitions are unordered collections while compositions
are ordered ones. Again, there are two parallel notions: composition of a
natural number n and composition of a set A. The former is defined as
an ordered collection of strictly positive integers with sum n, and the latter
is a splitting of A into disjoint nonempty blocks together with an ordering
of the blocks. Repeating the definition of the graph K (see Ex. 7.3) with
partitions replaced by compositions one gets a branching graph called the
graph of compositions .

Show that the dimension of vertices of this graph is given by the same
expression as in the case of the Kingman graph (monomial coefficients), and
compute the multiplicity function.

7.9. Let X = lim←−Xn be a projective limit of nonempty finite sets. Show
that X is nonempty, too. Equip it with the topology in which the open sets
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are precisely the cylinder sets and their unions. Show that X is a compact
Hausdorff space in this topology.

7.10. Extend the proof of Theorem 7.9 given in the text to the case when
the sets Xn are countable. (Hint: Again, by the Carathéodory theorem, it
suffices to show that if A1 ⊇ A2 ⊇ . . . is a sequence of sets from Σ0 such
that limn µ̃

0(An) > 0, then
⋂
An 6= ∅. Passing to a subsequence of indices

one may assume that An ∈ Σn. Show that there exists another sequence
{Bn ∈ Σn : n = 1, 2, . . . } such that Bn ⊆ An, the base ϕn(Bn) of the
cylinder Bn is a nonempty finite subset of Xn, and B1 ⊇ B2 ⊇ . . . .)
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Part II

Unitary representations

8 Preliminaries and Gelfand pairs

We start with a few well–known general definitions and facts concerning
unitary representations.

Let G be an abstract group. A unitary representation of G in a complex
Hilbert space H is a homomorphism of G into the group U(H) of unitary
operators in H. If T stands for the symbol of a representation, we denote by
T (g) the unitary operator corresponding to a group element g, and we often
write H(T ) for the Hilbert space of T .

Two unitary representations T and T ′ of the same group are equivalent
if there exists a surjective isometric map H(T )→ H(T ′) transforming oper-
ators T (g) to operators T ′(g). Equivalent representations are usually viewed
as indistinguishable ones.

The commutant of T is the set of all bounded operators on H(T ) com-
muting with all operators T (g), g ∈ G. The commutant is an algebra closed
under passage to adjoint operator.

An invariant subspace of a unitary representation T is a closed subspace
H ′ ⊂ H(T ) which is invariant under the action of all operators T (g). Then
the orthogonal complement to H ′ is an invariant subspace, too. The re-
striction of T to an invariant subspace H ′, denoted as T

∣∣
H′

, gives rise to a
subrepresentation of T . If T does not admit proper invariant subspaces then
T is said to be irreducible.

Given a vector ξ ∈ H(T ), there exists a smallest invariant subspace in
H(T ) containing ξ — this is the closure of the linear span of the orbit {T (g)ξ :
g ∈ G}. This subspace is called the cyclic hull of ξ. If it coincides with the
whole space H(T ) (that is, the orbit is a total set) then ξ is called a cyclic
vector . For a countable group G, if T is a unitary representation admitting
a cyclic vector then H(T ) is separable. If T is irreducible then any nonzero
vector is cyclic.

Proposition 8.1 (Analog of Schur’s lemma). A unitary representation T is
irreducible if and only if its commutant reduces to scalar operators.

Proof. Assume T is reducible and let H ′ ⊂ H(T ) be a proper invariant sub-
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space. The orthogonal projection onto H ′ is a nonscalar projection operator
belonging to the commutant of T .

Conversely, if the commutant contains a nonscalar operator A then the
commutant also contains the Hermitian operators A+A∗ and i(A−A∗). At
least one them is nonscalar; let us denote it as B. Since B is nonscalar, its
spectrum does not reduce to a singleton, therefore there exists a nontrivial
spectral projection operator associated with B. This projection operator is
contained in the commutant, too, because the spectral decomposition of B
is invariant under conjugation by unitary operators T (g), g ∈ G.

Thus, we have proved that T is reducible if and only if its commutant is
not reduced to scalar operators, which is equivalent to the claim.

Proposition 8.2 (Analog of Burnside’s theorem). Let T be a unitary repre-
sentation of G, EndH be the algebra of all bounded operators on H = H(T ),
and A ⊂ EndH be the subalgebra generated by the operators T (g), g ∈ G.

If T is irreducible then A is dense in EndH in the strong operator topol-
ogy.

Proof. Fix an arbitrary k = 1, 2, . . . and consider the unitary representation
Tk of the same group acting on the Hilbert space H ⊗ Ck; by definition,
Tk(g) = T (g)⊗ 1.

Step 1. We claim that the commutant of Tk coincides with 1 ⊗ EndCk.
Indeed, let e1, . . . , ek be the canonical orthonormal basis of Ck and P1, . . . , Pk
denote the one–dimensional projections onto Ce1, . . . ,Cek, respectively. Let
A be an operator from the commutant of Tk. Then all operators of the
form PiAPj also belong to the commutant of Tk. On the other hand, these
operators can be viewed as operators in H, and in such an interpretation
they should belong to the commutant of T , hence should be scalar operators,
by virtue of Proposition 8.1. This just means that A ∈ 1⊗ EndCk.

Step 2. We may identify H⊗Ck with the direct sum of k copies of H. Let
ξ1, . . . , ξk be linearly independent vectors in H and ξ be their direct sum, so
that ξ may be viewed as a vector from H⊗Ck . Denote by Hξ the closure of
the subspace (A⊗1)ξ in H⊗Ck. We claim that Hξ coincides with the whole
space H ⊗Ck. Indeed, Hξ is an invariant subspace of the representation Tk.
By virtue of Step 1, the projection on Hξ has the form 1 ⊗ P where P is a
projection in Ck. Since ξ belongs to Hξ and the vectors ξ1, . . . , ξk are linearly
independent we conclude that P = 1.

Step 3. Finally, we observe that, by the very definition of the strong
operator topology, Step 2 entails that A is dense in EndH.
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One of the fundamental ideas in representation theory is that many ques-
tions about unitary representations can be reduced to those about positive
definite functions.

Recall the definition of a positive definite function on a group G (it has
been already given in Section 1): A function ϕ(g) on G is said to be positive
definite if ϕ(g−1) = ϕ(g) and for any finite collection g1, . . . , gn ∈ G, the
n× n matrix [ϕ(g−1

j gi)] is nonnegative definite.

Proposition 8.3. (i) Let T be a unitary representation of a group G and
ξ ∈ H(T ) be a nonzero vector. Then the matrix element ϕ(g) = (T (g)ξ, ξ) is
a positive definite function.

(ii) Conversely, if ϕ(g) is a nonzero positive definite function on G then
there exists a unitary representation T with a cyclic vector ξ such that the
corresponding matrix element coincides with ϕ. Moreover, such a couple
(T, ξ) is unique within a natural equivalence: If (T ′, ξ′) is another couple
with the same property then there exists a surjective isometry H(T )→ H(T ′)
sending ξ to ξ′ and transforming operators T (g) to operators T ′(g).

Thus, if ξ is a cyclic vector of T , then all the information about T is
hidden in the positive definite function ϕ(g) = (T (g)ξ, ξ).

Proof. Step 1. Let X be an arbitrary set. A positive definite kernel on X is
a complex–valued function ψ(x, y) on X ×X such that for any finite subset
X ′ ⊆ X, the matrix [ψ(x, y)]x,y∈X′ with rows and columns indexed by points
of X ′ (enumerated in any order) is Hermitian and nonnegative definite. In
particular, this implies that ψ(x, y) = ψ(y, x) for any x, y ∈ X.

We claim that a function ψ(x, y) on X × X is a positive definite kernel
if and only if there exists a map x 7→ ξx of the set X into a complex Hilbert
space H such that ψ coincides with the Gram matrix of the family {ξx}:

(ξx, ξy) = ψ(x, y), ∀x, y ∈ X.

Indeed, one implication is easy — any Gram matrix is readily seen to be
a positive definite kernel. Conversely, assuming ψ to be a positive definite
kernel we construct the required Hilbert space H as follows:

Take the vector space V of formal finite linear combinations of the symbols
vx, x ∈ X, and equip it with the inner product(∑

x

axvx,
∑
y

byvy

)
=
∑
x,y

axb̄yψ(x, y), ax, by ∈ C.
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Since ψ is positive definite, this inner product is nonnegative definite. Let
V0 ⊂ V be its null space, then V/V0 is a pre–Hilbert space, and we take as H
its completion. The vectors ξx defined as the images of the vectors vx under
the composition of maps V → V/V0 → H have the desired property.

Step 2. If (H ′, {ξ′x}) is another Hilbert space together with a system of
vectors satisfying the same condition (ξ′x, ξ

′
y) = ψ(x, y), then it is readily

checked that the assignment ξx 7→ ξ′x extends to an isometry H → H ′.
Moreover, if the family {ξ′x} is total in H ′ then this isometry is surjective.

Step 3. Let us prove claim (i). Take X = G and write g, h instead of x, y.
By the very definition, a function ϕ(g) on G is positive definite if and only
if the associated function in two variables, ψ(g, h) = ϕ(h−1g), is a positive
definite kernel. If ϕ is a matrix element, ϕ(g) = (T (g)ξ, ξ), then ψ is the
Gram matrix of the vectors ξg := T (g)ξ. Therefore, by virtue of Step 1, ϕ is
positive definite.

Step 4. Finally, let us prove claim (ii). Given a positive definite function
ϕ(g), pass to the associated positive definite kernel ψ(g, h). According to
Step 1, we can realize ψ as the Gram matrix of a total system of vectors
ξg ∈ H, g ∈ G. Observe that for any g′ ∈ G, we have ψ(g′g, g′h) = ψ(g, h).
Applying Step 2, we see that there exists a unitary operator T (g′) in H such
that T (g′)ξg = ξg′g for all g ∈ G. Moreover, such an operator is unique, which
implies that the assignment g′ 7→ T (g′) is a representation. Obviously, the
representation T together with the vector ξ := ξe have the desired property.
The uniqueness claim in (ii) also follows from Step 2.

The argument used in Steps 1–2 above is called the Gelfand–Naimark–
Segal construction or GNS construction, for short.

Denote by Φ(G) the set of all positive definite functions on G. This is a
convex cone in the linear space of functions on G. For ϕ ′, ϕ ∈ Φ(G), write
ϕ ′ 4 ϕ (in words, ϕ ′ is dominated by ϕ) if ϕ− ϕ ′ ∈ Φ(G).

Proposition 8.4. Let T be a unitary representation of G with a cyclic vector
ξ and ϕ ∈ Φ(G) be the corresponding matrix element. There is a bijective
correspondence between functions ϕ ′ ∈ Φ(G) dominated by ϕ and Hermitian
operators A in the commutant of T , such that 0 ≤ A ≤ 1. This bijection is
established by the relation

ϕ ′(g) = (AT (g)ξ, ξ), g ∈ G.

Proof. The correspondence A 7→ ϕ ′ is immediate. Indeed, assume A is in the
commutant and 0 ≤ A ≤ 1. Observe that the operator A1/2 also lies in the
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commutant and the function ϕ ′ as defined above coincides with the matrix
element associated with the vector ξ′ = A1/2ξ. Therefore, ϕ ′ is positive
definite. Since ϕ equals the sum of ϕ ′ and a similar function built from
1− A, we see that ϕ ′ 4 ϕ.

To establish the converse correspondence, ϕ ′ 7→ A, let us apply the GNS
construction both to ϕ and ϕ ′, or rather to the associated positive definite
kernels ψ and ψ′, and denote by (H, {ξg}) and (H ′, {ξ′g}) the resulting couples.
Let V be the space introduced in Step 1 of the proof of Proposition 8.3. The
two spaces H and H ′ arise from two different inner products, ( · , · ) and
( · , · )′, on one and the same space V . The assumption ϕ ′ 4 ϕ precisely
means that (v, v)′ ≤ (v, v) for any v ∈ V . It follows that the assignment
ξg 7→ ξ′g extends to a contractive linear map B : H → H ′. Moreover, B
is equivariant with respect to transformations of the systems {ξg} and {ξ′g}
resulting from the left shifts g 7→ g′g. Consequently, the operator A = B∗B
acting in H has the desired property.

Set
Φ1(G) = {ϕ ∈ Φ(G) : ϕ(e) = 1}.

This is a convex set which serves as a base of the cone Φ(G).

Corollary 8.5. Let T be a unitary representation of G with a cyclic unit
vector ξ, and ϕ ∈ Φ1(G) be the corresponding matrix element. Then T is
irreducible if and only if ϕ is an extreme point of the convex set Φ1(G).

Let K be a subgroup of G. If T is a unitary representation of G, we will
denote by H(T )K the subspace of K–invariant vectors in H(T ). Obviously,
if ξ ∈ H(T )K then the corresponding matrix element is a K–biinvariant
function, that is, it is invariant with respect to the two–sided action of the
subgroup K on the group G. Conversely, we have

Proposition 8.6. Let ϕ be a nonzero K–biinvariant function from Φ(G)
and (T, ξ) be the corresponding unitary representation with a cyclic vector.
Then this vector is K–invariant.

Proof. Indeed, we have to prove that T (k)ξ = ξ for any k ∈ K. Since ξ is a
cyclic vector, it suffices to check that, for any g ∈ G, (T (k)ξ, T (g−1)ξ) does
not depend on k, which is obvious:

(T (k)ξ, T (g−1)ξ) = (T (gk)ξ, ξ) = ϕ(gk) = ϕ(g).
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(At first glance, it might seem strange that we have used only the right
K-invariance of ϕ ∈ Φ(G) and not the two-sided invariance, but due to the
relation ϕ(g−1) = ϕ(g) these two properties are equivalent.)

We will denote by Φ(G//K) the subset in Φ(G) formed by K–biinvariant
functions.

Proposition 8.7. Let ϕ and ϕ ′ be two functions from Φ(G) such that ϕ ′ 4
ϕ. Then ϕ ∈ Φ(G//K) entails ϕ ′ ∈ Φ(G//K).

Proof. Take the cyclic representation (T, ξ) corresponding to ϕ. By Propo-
sition 8.6, ξ is K–invariant. Then apply Proposition 8.4.

Set Φ1(G//K) = Φ(G//K) ∩ Φ1(G). Obviously, Φ1(G//K) is a convex
set.

Corollary 8.8. A function ϕ ∈ Φ1(G//K) is an extreme point in Φ(G) if
and only if it is an extreme point in Φ1(G//K).

The connection between unitary representations and positive definite
functions becomes especially nice for a special class of representations to
be discussed now.

We consider first the case of finite groups G and finite–dimensional rep-
resentations. Recall that all such representations are unitarizable, and in the
sequel we will consider unitary representations only.

Definition 8.9. Let G be a finite group and K be its subgroup. The pair
(G,K) is called a Gelfand pair if the algebra C[G//K] of K–biinvariant
functions on G (with multiplication given by convolution) is commutative.

Proposition 8.10. Let K be a subgroup in a finite group G.
(G,K) is a Gelfand pair if and only if for any irreducible representation

T of the group G, the subspace H(T )K has dimension 0 or 1.

Proof. Let T be a unitary representation of G with H(T )K 6= {0}. Let us
extend T from the group G to the group algebra C[G]. Denote by P the
orthogonal projection in H(T ) with range H(T )K ; then P = T (p), where p
is an idempotent in C[G]:

p =
1

|K|
∑
k∈K

k.
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Therefore, for any f ∈ C[G], PT (f)P = T (p ∗ f ∗ p). It follows that

PT (C[G])P = T (C[G//K]).

Assume now that T is irreducible. Then, by Burnside’s theorem, T (C[G])
coincides with the algebra End(H(T ) of all operators in H(T ). Consequently,
the operators from PT (C[G])P = T (C[G//K]) restricted to H(T )K exhaust
the whole algebra End(H(T )K).

If (G,K) is a Gelfand pair then, by commutativity of C[G//K]), End(H(T )K)
is commutative, whence dim(H(T )K) = 1.

Conversely, if dim(H(T )K) is at most 1 for any irreducible T then the
above argument shows that T (C[G//K]) is commutative. Since the direct
sum of all irreducible T ’s is a faithful representation of C[G], we see that the
algebra C[G//K] is commutative, whence (G,K) is a Gelfand pair.

Here is a convenient way of checking the commutativity property for
C[G//K]).

Proposition 8.11. Let K be a subgroup in a finite group G and let σ :
G → G be an anti-automorphism of G (i.e, σ(gh) = σ(h)σ(g)) such that
σ(K) = K. Assume that for any g ∈ G, the elements g and σ(g) belong to
the same double (K,K)-coset of G. Then (G,K) is a Gelfand pair.

Proof. Since σ(K) = K, the map σ induces an anti-automorphism of C[G//K].
On the other hand, σ leaves any element of C[G//K] invariant because
Kσ(g)K = KgK. Hence, C[G//K] is commutative.

Corollary 8.12. For any finite group K, the pair (K ×K, diagK), where

diagK = {(k, k) | k ∈ K} ⊂ K ×K,

is a Gelfand pair.

Proof. The map σ(k1, k2) = (k−1
2 , k−1

1 ) satisfies the hypotheses of Proposition
8.11.

To handle infinite groups we adopt the following modification of Definition
8.9:
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Definition 8.13. Let G be an arbitrary group (not necessarily finite), and
let K be its subgroup. Then we say that (G,K) is a Gelfand pair if for any
unitary representation T the operators PT (g)P , where P is the orthogonal
projection on H(T )K and g ranges over G, commute with each other. That
is,

PT (g1)PT (g2)P = PT (g2)PT (g1)P ∀g1, g2 ∈ G.

As follows from the proof of Proposition 8.10, when G is finite, Definition
8.13 is equivalent to Definition 8.9. From now on the notion of Gelfand pair
will be understood according to Definition 8.13.

Proposition 8.14. Let (G,K) be a Gelfand pair. Then for any irreducible
unitary representation T of G, the dimension of H(T )K is at most 1.

Proof. The argument is similar to that used in the proof of Proposition 8.10.
The only difference is that instead of Burnside’s theorem we apply its gen-
eralization stated in Proposition 8.2.

As we will see now, to check the condition of Definition 8.13 it is not
necessary to know the representations of G.

Proposition 8.15. Let G be a group and K be its subgroup. Assume that
G is the union of an ascending chain of subgroups G(n) and K is the union
of ascending chain of subgroups K(n). Furthermore, assume that for any n,
K(n) is contained in G(n) and (G(n), K(n)) is a Gelfand pair. Then (G,K)
is a Gelfand pair, too.

Proof. Let T be a unitary representation of G and P be the orthogonal
projection on H(T )K . Let us take arbitrary g1, g2 ∈ G and check the relation
of Definition 8.13.

By assumption, there exists n such that g1, g2 ∈ G(n). Since (G(n), K(n))
is assumed to be a Gelfand pair, we have

PnT (g1)PnT (g2)Pn = PnT (g2)PnT (g1)Pn,

where Pn is the orthogonal projection on H(T )K(n). As n→∞, Pn converge
to P in the strong operator topology (i.e., Pnv → Pv for any v ∈ H(T )),
because H(T )K =

⋂
n≥1H(T )K(n). Since the multiplication of operators is

jointly continuous in the strong operator topology on the bounded subsets of
End(H(T )), the commutation relation above yields in the limit n → ∞ the
same relation with Pn replaced by P .
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Corollary 8.16. If a group K is the union of an ascending chain of finite
subgroups K(n) then (K ×K, diagK) is a Gelfand pair.

Proof. By Corollary 8.12, (K(n)×K(n), diagK(n)) are Gelfand pairs, hence
we may apply Proposition 8.15.

Definition 8.17. By a spherical representation of a Gelfand pair (G,K) we
mean a unitary representation T of G possessing a cyclic K–invariant vector
ξ. Such a vector will be called a spherical vector , and the corresponding
matrix element ϕ(g) = (T (g)ξ, ξ) will be called a spherical function of T .

From now on we assume that the spherical vectors ξ are normalized by
‖ξ‖ = 1, then the corresponding spherical functions take value 1 at e ∈ G
and hence are elements of Φ1(G//K).

By virtue of Proposition 8.14, if T is an irreducible spherical represen-
tation then it possesses a unique (within a scalar factor ζ ∈ C, |ζ| = 1)
spherical vector. It is worth noting that the arbitrariness in the choice of
the scalar factor ζ does not affect the spherical function. Thus, for any irre-
ducible spherical representation T we dispose with a canonically determined
matrix element ϕ ∈ Φ1(G//K) — the spherical function. By virtue of Propo-
sition 8.3, ϕ is a complete invariant of T . According to Corollaries 8.5 and
8.8, the spherical functions of irreducible spherical representations can be
characterized as the extreme points of the convex set Φ1(G//K).

Here is a case when irreducible spherical representations are easily de-
scribed:

Proposition 8.18. Let K be a finite group. The irreducible spherical rep-
resentations for the Gelfand pair (K × K, diagK) are exactly those of the
form π ⊗ π̄, where π is an arbitrary irreducible representation of K and
π̄ denotes the conjugate representation. Under the canonical isomorphism
H(π⊗ π̄) = End(H(π)), the spherical vector ξ for such a representation is a
scalar operator in End(H(π)).

Proof. The irreducible representations of K × K are of the form π ⊗ π′,
where π and π′ are arbitrary irreducible representations of K. Any vector ξ
in H(π⊗π′) = H(π)⊗H(π′) may be viewed as a linear operator from H(π′)
to H(π). Such a vector ξ is diagK–invariant if and only if the corresponding
operator commutes with the action of K or intertwines π′ and π. Schur’s
lemma says that ξ must vanish unless π′ is equivalent to π, in which case
(setting π′ = π) the intertwining operator is a scalar operator.
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We conclude this section by relating the above results to the material of
the previous sections.

Proposition 8.19. Let K be an arbitrary group. There is an isomorphism of
convex sets, χ↔ ϕ, between the characters of K (in the sense of Definition
1.7) and the spherical functions ϕ ∈ Φ1((K ×K)// diagK).

Proof. The correspondence χ↔ ϕ is established by

ϕ(g1, g2) = χ(g−1
2 g1), g1, g2 ∈ K.

Centrality of χ is equivalent to diagK–biinvariance, as is seen from the
formula

ϕ(h1g1h2, h1g2h2) = χ(h−1
2 g−1

2 g1h2), h1, h2 ∈ K.

Finally, assuming χ to be central, the positive–definiteness of ϕ is equiv-
alent to the positive–definiteness of χ. Indeed, this is seen from the relation
ϕ(h−1g) = χ(l−1k), where g = (g1, g2) and h = (h1, h2) are arbitrary elements
of K ×K and k = g−1

2 g1 ∈ K, l = h−1
2 h1 ∈ K.

Let us now apply the above results to a concrete example that is important
for us — the infinite symmetric group S(∞) introduced in Definition 3.1.
Consider the group S(∞)×S(∞) which we will call the infinite bisymmetric
group.

Theorem 8.20. (i) The pair (G,K), where G is the infinite bisymmetric
group S(∞)× S(∞) and K = diagS(∞), is a Gelfand pair.

(ii) There is a natural bijective correspondence ω ↔ T ω between points
ω of the Thoma simplex Ω and (equivalence classes of ) irreducible spherical
representations of (G,K).

(iii) The spherical function ϕ ω of T ω has the form

ϕ ω(g) = χω(g−1
2 g1), g = (g1, g2) ∈ G,

where χω is the extreme character of S(∞) labeled by ω ∈ Ω.
(iv) Let (T, ξ) be an arbitrary, not necessarily irreducible, spherical rep-

resentation of (G,K) and ϕ ∈ Φ1(G//K) be its spherical function. There
exists a unique probability Borel measure P on Ω such that

ϕ(g) =

∫
Ω

ϕ ω(g)P (dω), ∀g ∈ G. (8.1)
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Proof. (i) This follows from Corollary 8.16.
(ii) We know that the irreducible spherical representations are parame-

terized by extreme points of the convex set Φ1(G//K). By Proposition 8.19,
this convex set is isomorphic to the convex set of characters of S(∞) which
is described by Thoma’s theorem.

(iii) This follows from the proof of Proposition 8.19.
(iv) In view of the correspondence

spherical functions ↔ characters ↔ coherent systems,

this is simply a reformulation of the integral representation of coherent sys-
tems, see Theorem 3.12.

Exercises

8.1. Show that any irreducible unitary representation of a commutative
group is one–dimensional.

8.2. Let G be a finite group and T be its finite–dimensional representation.
Show that T admits a cyclic vector if and only if the multiplicities of the
irreducible subrepresentations in T do not exhaust their dimensions.

8.3. Consider the group G = Z, which is the simplest infinite group. Let
T ⊂ C be the unit circle with center at the origin, equipped with the Lebesgue
measure, and let T be the unitary representation of Z in the Hilbert space
L2(T) defined by

(T (n)f)(ζ) = einζf(ζ), n ∈ Z, ζ ∈ T, f ∈ L2(T).

(a) Show that T is equivalent to the regular representation of Z in `2(Z).
(b) The commutant of T consists of operators of multiplication by func-

tions from L∞(T).
(c) There is a 1–1 correspondence between invariant subspaces of T and

measurable subsets of the unit circle considered modulo null subsets. Thus, T
is highly reducible but does not admit nonzero irreducible subrepresentations.

8.4. Let T be a unitary representation of a group G.
(a) If T is irreducible then the matrix elements corresponding to given

two unit vectors, ξ1 and ξ2, coincide if and only if ξ1 = ζξ2 where ζ ∈ C,
|ζ| = 1.

(b) Show by example that this claim may fail for reducible representa-
tions.
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8.5. Let ϕ ∈ Φ(G).
(a) Prove directly (without use of the associated representation) the in-

equality |ϕ(g)| ≤ ϕ(e).
(b) Prove directly the inequality

|ϕ(g)− ϕ(h)|2 ≤ 2ϕ(2)
(
ϕ(e)−<ϕ(gh−1)

)
, g ∈ G, h ∈ G.

(c) Prove directly the claim of Proposition 8.7.

8.6. Assume (G,K) is a finite Gelfand pair.
(a) Let T be an irreducible spherical representation of (G,K) and χ be

its character in the conventional sense, i.e., χ(g) = Tr(T (g)), g ∈ G. Prove
that the spherical function of T can be written as

ϕ(g) =
1

|K|
∑
k∈K

χ(gk) =
1

|K|
∑
k∈K

χ(kg).

(b) Prove that the number of (equivalence classes of) irreducible spherical
representations of (G,K) is equal to |G//K|, the number of double cosets
modulo K.

(c) Prove that the algebra C[G//K] is isomorphic to the direct sum of
|G//K| copies of C.

8.7. Let K be a finite group. For any π ∈ K̂, the spherical function ϕ
corresponding to the representation π⊗π̄ of the Gelfand pair (K×K, diagK)
has the form

ϕ(g1, g2) =
Tr
(
π(g−1

2 g1)
)

dim π
.

8.8. Prove that the groups G = S(k+ l) and K = S(k)×S(l) form a Gelfand
pair. (Here we realize G as the group of permutations of {1, 2, . . . , k+ l} and
K as the subgroup in G preserving the partition {1, . . . , k}∪{k+1, . . . , k+l}.)
What is |G//K| in this case?

8.9. (a) Prove thatG = S(2n) realized as the group permutations of {±1, . . . ,±n},
and its hyperoctahedral subgroup

K = {g ∈ G | g(−i) = −g(i), i = 1, . . . , n}

form a Gelfand pair.
(b) Let G and K be as in (a). Establish a one–to–one correspondence

between double cosets modulo K and conjugacy classes in S(n).
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8.10. RealizeG = S(2n+1) as the group of permutations of the set {0,±1, . . . ,±n}
and let K ⊂ S(2n) ⊂ S(2n+ 1) be the same subgroup as in (a). Prove that
(G,K) is a Gelfand pair.

8.11. Let L be a finite group and K its subgroup.
(a) Consider the following condition on L and K:
(*) The restriction of any irreducible representation π of the group L to

the subgroup K is multiplicity free, that is, no irreducible representation of
K enters π

∣∣
K

more than once.
For instance, (*) holds for L = S(n + 1) and K = S(n) by virtue of

Young’s branching rule, see Proposition 1.4.
Prove that (*) if satisfied if and only if the pair (L × K, diagK) is a

Gelfand pair. This is a generalization of Corollary 8.12.
(b) Define a K–conjugacy class in L as a subset in L of the form {klk−1}

where l ∈ L is fixed while k ranges over K. Let us say that f ∈ C[L] is a
K–central element if f is constant on the K–conjugacy classes.

Observe that the subspace in the group algebra C[L] formed by the K–
central elements is a subalgebra. Prove that Condition (*) in (a) is equivalent
to commutativity of this subalgebra.

(c) Prove directly that the subalgebra of S(n)–central elements in C[S(n+
1)] is commutative. (Hint: Apply Proposition 8.11.)

(d) Assume L and K satisfy Condition (*). Prove that the irreducible
spherical representations of (L ×K, diagK) are precisely those of the form

π ⊗ σ̄, where π ∈ L̂ and σ ∈ K̂ are such that σ enters π
∣∣
K

. Prove also that
the spherical function of π ⊗ σ̄ has the form

ϕ(l, k) = ψπ,σ(lk−1), l ∈ L, k ∈ K,

with
ψπ,σ(l) :=

∑
k∈K

χπ(lk)χσ(k−1), l ∈ L,

where χπ and χσ denote, respectively, the characters of π and σ in the con-
ventional sense. Verify that in the case K = L the result is the same as in
Ex. 8.7.

(e) Assume L and K satisfy Condition (*). Prove that the number of
irreducible spherical representations of (L×K, diagK) equals the number of
K–conjugacy classes in L.
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(f) Check directly the equality in (e) for L = S(n + 1), K = S(n). (An
explicit computation of the spherical functions in this case is a nontrivial
problem; it was solved in Strahov [114]).

9 Classification of general spherical type rep-

resentations

The main result of the section is Theorem 9.2. It is substantially employed
in Section 12 below; there we apply it to reduce Theorem 12.1 to Theorem
12.2.

Let (G,K) be a Gelfand pair. Recall that we have defined general
spherical representations of (G,K) as couples (T, ξ), where ξ is a cyclic K-
invariant unit vector (Definition 8.17). With this understanding of spherical
representations, their classification is reduced to that of spherical functions
ϕ ∈ Φ1(G//K), and in the concrete case of interest for us it is afforded by
Theorem 8.20 (iv).

However, the situation changes if one defines a spherical representation
in a slightly different way:

Definition 9.1. Let (G,K) be a Gelfand pair and T be a unitary represen-
tation of G. Let us say that T is a spherical type representation if it possesses
a cyclic K-invariant vector.

(Warning: “spherical type representation” is a not a conventional term;
we have invented it just to avoid confusion with Definition 8.17.)

The difference between this definition and Definition 8.17 is that now we
do not fix a cyclic K-invariant vector, we only require its existence. The
main consequence is that the notion of equivalence changes: Equivalence of
couples (T, ξ) is not the same as equivalence of simply representations T .
Of course, for irreducible representations there is essentially no difference,
because then the vector ξ is unique within a scalar factor. But this is not
the case for reducible spherical type representations. If we want to classify
them within usual equivalence, we are led to the following problem: Un-
der which condition two functions from Φ1(G//K) determine (via the GNS
construction) equivalent unitary representations?

In the present section we solve the problem in the concrete case of the
bisymmetric group.
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Let us recall a few necessary notions. First of all, it is worth noting that
all measures on Thoma’s simplex Ω under consideration are assumed to be
Borel measures. Here we have in mind the measurable (Borel) structure in
the space Ω generated by its topology. Recall that Ω is a nice topological
space (metrizable and separable).
• Two measures are equivalent if they have the same null sets (that is,

subsets of measure 0).
• A measure P ′ is said to be absolutely continuous with respect to another

measure P if each null set for P is also a null set for P ′. This definition
depends on the respective equivalence classes only, which gives meaning to
the expression that one class is absolutely continuous with respect to another
one.
• Two measures P and P ′ are disjoint if there is no nonzero measure P ′′

which is absolutely continuous with respect to both P and P ′. Equivalently,
there exist two disjoint Borel subsets supporting P and P ′, respectively.
• Likewise, two unitary representations T and T ′ of one and the same

group are called disjoint if they do not have equivalent subrepresentations.
Recall also an important fact called the Radon–Nikodým theorem:
• A measure P ′ is absolutely continuous with respect to a measure P if

and only P ′ can be written as a product fP where f is a nonnegative Borel
function. This function f is called the Radon–Nikodym derivative of P ′ with
respect to P ; it is unique within adding a function concentrated on a P–null
subset. In particular, P and P ′ are equivalent if the above function f can be
chosen to be nonvanishing.

Finally, in the context of Theorem 8.20 (iv), let us say that formula (8.1)
gives the spectral decomposition of ϕ and P is the spectral measure of ϕ.

Theorem 9.2. Consider the Gelfand pair

G = S(∞)× S(∞), K = diagS(∞).

Let T and T ′ be two spherical type representations of (G,K) in the sense of
Definition 9.1, ϕ be a spherical function of T , ϕ ′ be a spherical function of
T ′, and P and P ′ be the corresponding spectral measures.

(i) T is equivalent to T ′ if and only if P is equivalent to P ′. Thus, equiva-
lence classes of spherical type unitary representations of our pair (G,K) are
in a one-to-one correspondence with equivalence classes of probability mea-
sures on Thoma’s simplex Ω.



9 SPHERICAL TYPE REPRESENTATIONS 113

(ii) T ′ can be realized as a subrepresentation of T if and only if P ′ is
absolutely continuous with respect to P .

(iii) In particular, T and T ′ are disjoint if and only if P and P ′ are
disjoint.

Our basic instrument for proving Theorem 9.2 is decomposition of a re-
ducible spherical type representation into a direct integral of irreducible ones,
which is parallel to the spectral decomposition of spherical functions. We
proceed to a description of this construction.

It is easily verified that there exist precisely two one–dimensional spherical
representations of G, the trivial and the sign ones, which send an element
g = (g1, g2) ∈ G respectively to 1 and to ±1 (according to parity of the
permutation g1g

−1
2 ). Denote by ω1 and ωsgn the corresponding points in

Thoma’s simplex

ω1 = ((1, 0, 0, . . . ), (0, 0, . . . )), ωsgn = ((0, 0, . . . ), (1, 0, 0, . . . )).

For all ω ∈ Ω\{ω1, ωsgn} the representations T ω are infinite–dimensional and
hence can be realized in one and the same separable Hilbert space (separa-
bility follows from the fact that G is a countable group).

Proposition 9.3. Fix a separable Hilbert space E with a distinguished or-
thonormal basis e1, e2, . . . . Assume ω ranges over Ω \ {ω1, ωsgn}.

It is possible to realize all representations T ω together in the space E
in such a way that e1 be the spherical vector and for any fixed g ∈ G, the
operator–valued function ω 7→ T ω(g) be a Borel map.

By definition, the last property means that for any fixed vectors e, f ∈ E,
the matrix element (T (g)e, f) is a Borel function in ω.

Proof. We assume ω ranges over Ω \ {ω1, ωsgn}. Let Hω = H(T ω) and
ξω ∈ Hω be the spherical vector, ‖ξω‖ = 1. The argument relies only on
the following two facts: First, the spherical function ϕ ω(g) = (T ω(g)ξω, ξω)
depends continuously on the parameter ω (actually, Borel dependence would
also suffice) and, second, ξω is a cyclic vector in Hω for any ω.

Using these two properties we will describe now a procedure of identifi-
cation of the representation space Hω with the model space E.

Let us enumerate the elements of the group G into a sequence g1, g2, . . .
such that g1 = e. For any ω, the vectors ξωi := T ω(gi)ξ

ω form a total system
of vectors in Hω. Applying the Gram–Schmidt orthogonalization process to
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this system we obtain an orthonormal basis in Hω, say, eω1 , e
ω
2 , . . . . Then

we identify Hω with E by setting eωi → ei, i = 1, 2, . . . . We claim that the
resulting realization of T ω in E has the required properties.

Obviously, e1 ∈ E becomes the spherical vector, because g1 = e implies
eω1 = ξω.

To prove the Borel dependence on ω it suffices to check that for any fixed
g ∈ G and any fixed indices k, l, the matrix element (T ω(g)eωk , e

ω
l ) is a Borel

function in ω.
If we were guaranteed that the vectors ξω1 , ξ

ω
2 , . . . are linearly independent,

we could conclude that they are transformed to the vectors eω1 , e
ω
2 , . . . by a

triangular linear transformation,

eωn = cωn1ξ
ω
1 + · · ·+ cωnnξ

ω
n , cωnn > 0, (9.1)

where the coefficients cωn1, . . . , c
ω
nn are uniquely determined by the n×n Gram

matrix Gωn = [(ξωi , ξ
ω
j )]1≤i,j≤n and depend continuously on its entries. Since

(ξωi , ξ
ω
j ) = ϕ ω(g−1

j gi), this would imply that these coefficients depend contin-
uously on ω and hence any matrix coefficient (T ω(g)eωk , e

ω
l ) is a continuous

function in ω.
Actually, the situation may be slightly more involved due to possible lin-

ear dependence of the initial vectors — it may well happen that for some
indices n, the vector ξωn is linearly expressed through ξω1 , . . . , ξ

ω
n−1, which

holds precisely when the rank of the Gram matrix Gωn equals the rank of the
matrix Gωn−1. Such redundant vectors should be removed from the orthog-
onalization process. Denoting by ν(1) = 1 < ν(2) < . . . the indices of the
remaining vectors we still can claim the validity of (9.1), where we only have
to substitute ξων(i) instead of ξωi .

For any fixed N , we can split Ω\{ω1, ωsgn} into a disjoint union of subsets,

Ω \ {ω1, ωsgn} =
⋃

n1<···<nN

X(n1, . . . , nN)

where
X(n1, . . . , nN) = {ω : ν(1) = n1, . . . , ν(N) = nN}.

This makes sense because the subsequence ν(1), ν(2), . . . depends on ω. Ob-
serve that each subset X(n1, . . . , nN) is singled out by a finite system of
equalities of the form f(ω) = 0 and inequalities of the form g(ω) 6= 0 with
certain continuous functions f or g, hence X(n1, . . . , nN) are Borel sets. On
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every such subset, the first N vectors eω1 , . . . , e
ω
N are expressed through a finite

number of initial vectors ξω1 , ξ
ω
2 , . . . with coefficients depending continuously

on ω.
Finally, we choose N = max(k, l). Then, according to what has been

said above, on each of the Borel subsets X(n1, . . . , nN), the matrix element
(T ω(g)eωk , e

ω
l ) is a continuous function in ω for any fixed g ∈ G, which com-

pletes the proof.

We have shown that one can attach to any point ω distinct from ω1 and
ωsgn a concrete realization of the representation T ω in the “model space”
E, with sufficiently good (“non–pathological”) dependence on ω. We can
complete the picture by attaching to each of the excluded points ω1 and ωsgn

the one–dimensional space E1 := Ce1 ⊂ E, where we realize the trivial and
sign representations, respectively.

Let E denote the vector space of all Borel vector–valued functions f : Ω→
E such that f(ω1) ∈ E1 and f(ωsgn) ∈ E1. For any f ∈ E , the scalar-valued
function ‖f(ω)‖ is also Borel. We define a natural linear action of the group
G in E by setting

(T (g)f)(ω) = T ω(g)f(ω), g ∈ G, ω ∈ Ω.

Assume we are given a Borel probability measure P on Ω. Let us say
that two functions from E are equivalent if they differ from each other on a
P–null subset only. Let L2(P, E) stand for the set of equivalence classes of
functions f ∈ E such that

‖f‖2
P :=

∫
Ω

‖f(ω)‖2P (dω) <∞.

This is a separable Hilbert space with the inner product

(f, f ′)P =

∫
Ω

(f(ω), f ′(ω))P (dω).

The linear operators T (g) : E → E defined above induce a unitary represen-
tation of the group G in L2(P, E). This representation, which we will denote
as TP , is called the direct integral of the representations T ω with respect to
the measure P . If P is a purely atomic measure, the direct integral is reduced
to a direct sum decomposition.

Let L∞(P ) denote the space of equivalence classes of essentially bounded
complex-valued Borel functions on Ω; again, we do not distinguish functions
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which differ from each other on a P–null subset. The operator of multipli-
cation by a function from L∞(P ) is clearly a bounded operator in L2(P, E)
commuting with the representation TP .

Proposition 9.4. The operators of multiplication by functions from L∞(P )
exhaust the whole commutant of TP .

Proof. Let us abbreviate HP = L2(P, E) and denote, as usual, by HK
P the

subspace of K–invariant vectors. Obviously, HK
P ⊂ HP consists of functions

with values in the one–dimensional subspace E1. Thus, HK
P can be identified

with the Hilbert space L2(P ) of square integrable complex-valued functions.
Let Q be the projection HP → HK

P . For any g ∈ G, the operator QTP (g)Q,
which we regard as an operator in L2(P ), is the operator of multiplication
by the function Fg(ω) := ϕ ω(g).

Step 1. Observe that the functions Fg(ω) just defined are precisely the
products of the functions of the form p◦k(ω) that have been introduced in
Lemma 5.4. Indeed, write g = (g1, g2) and denote by ρ = (ρ1 ≥ ρ2 ≥ · · · ≥
ρ` ≥ 2) the cycle structure of g−1

2 g1; then

Fg(ω) = χωρ = p◦ρ1(ω) . . . p◦ρ`(ω).

We know that the functions p◦k(ω) are continuous functions separating points
of the compact space Ω (Proposition 3.9). This implies that any operator
in L2(P ) commuting with multiplications by these functions must be itself
multiplication by a function from L∞(P ).

Step 2. On the other hand, we claim that the closed linear span of
the subspaces TP (g)HK

P is the whole space HP . Indeed, let f ∈ HP be
an arbitrary vector orthogonal to all these subspaces. That is, TP (g)f is
orthogonal to HK

P for all g ∈ G. This is equivalent to saying that for any
g, the vector T ω(g)f(ω) ∈ E is orthogonal to e1 for all ω outside a P–null
subset. Since the group G is countable, such a negligible subset can be chosen
simultaneously for all g ∈ G. Since T ω are irreducible representations, we
conclude that f(ω) vanishes P–almost everywhere, which proves the above
claim.

Step 3. Let A ∈ EndHP be in the commutant of TP . It is an easy
abstract fact that A must commute with Q. Consequently, QAQ commutes
with the operators of the form QTP (g)Q, g ∈ G. Regard all these operators
as operators in the space HK

P = L2(Ω, P ). Recall that QTP (g)Q acts in this
space as multiplication by Fg(ω). By virtue of Step 1, QAQ must coincide
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with the operator of multiplication by a certain function from L∞(P ). Denote
the latter operator by M . Since both A and M commute with Q, this can
be written as (A−M)Q = 0. Multiplying by TP (g) on the left we get

(A−M)TP (g)Q = TP (g)(A−M)Q = 0 ∀g ∈ G.

By virtue of Step 2, this implies A = M .

Corollary 9.5. Each invariant subspace of the representation TP consists
precisely of functions supported by a fixed Borel subset in Ω, which is deter-
mined uniquely, within a P–null subset.

Let ξP (ω) be the function identically equal to e1. Obviously, it is a unit
vector from HK

P .

Corollary 9.6. ξP is a cyclic vector, so that TP is a spherical representation.

Proof. Indeed, since ξP (ω) is a nonvanishing function, it is not contained in
any proper invariant subspace, as follows from the previous corollary.

Let ϕP (g) denote the spherical function corresponding to ξP . Obviously,
we have

ϕP (g) = (TP (g)ξP , ξP ) =

∫
Ω

ϕ ω(g)P (dω), g ∈ G.

Proof of Theorem 9.2. (i) Any spherical function can be written as ϕP with
an appropriate probability measure P (Theorem 8.20). It follows that any
spherical representation is equivalent to one of the representations TP . The
question about equivalence of spherical representations is thus reduced to
equivalence of representations of the form TP . This in turn is reduced to the
following question: Given P , what spherical functions can be obtained from
cyclic vectors in HK

P ?
Recall that the generic form of a vector from HK

P is η(ω) = f(ω)e1 where
f ∈ L2(P ). The corresponding spherical function is ϕP ′ where P ′ = |f |2P .
By Corollary 9.5, η is a cyclic vector if and only if η(ω) 6= 0 almost everywhere
with respect to P , which is precisely the same as saying that P ′ is equivalent
to P .

(ii) The argument is similar. Given two probability measures P and P ′,
we have to decide when TP ′ can be realized as a subreprepresentation of TP .
This is reduced to the question of when there exists a unit vector in HK

P with
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the matrix element equal to ϕP ′ . As above, we conclude that this happens
precisely when P ′ can be written in the form |f |2P which means that P ′ is
absolutely continuous with respect to P .

(iii) The argument is similar.

10 Realization of irreducible spherical repre-

sentations of (S(∞)× S(∞), diagS(∞))

By virtue of Theorem 8.20, irreducible unitary spherical representations of
the Gelfand pair (S(∞) × S(∞), diagS(∞)) are parameterized by points
ω = (α, β) of the Thoma simplex Ω. Let us denote these representations as
T ω or Tα,β. Let 0 stand for the infinite sequence of 0’s.

Proposition 10.1. The biregular representation T of S(∞)×S(∞) in `2(S(∞))
defined by

(T (g, h)f)(x) = f(g−1xh), g, h, x ∈ S(∞), f ∈ `2(S(∞)),

is the irreducible spherical representation T 0,0 that corresponds to the point
(α, β) = (0, 0) of Ω.

Proof. Taking ξ ∈ `2(S(∞)) to be the delta-function at the the unit element
we immediately see that ξ is diagS(∞)-invariant, and that the character
corresponding to the spherical function associated with ξ is also the delta-
function at the unit element of S(∞). Since by Thoma’s theorem this is
exactly the extreme character corresponding to α = β = 0, it remains to
show that ξ is cyclic, which is obvious.

In fact, on irreducibility of biregular representations the following more
general statement is true.

Proposition 10.2. Let K be a discrete group all of whose conjugacy classes,
except for the trivial one consisting of the unit element, are infinite. Then
the biregular representation of K ×K in `2(K) is irreducible.

Proof. If the biregular representation is a direct sum of two other ones, then
the projection of the cyclic vector ξ = δe on either invariant subspace must be
an element of `2(K) invariant with respect to diagK-action. But ξ is the only
such vector because the nontrivial conjugacy classes of K are infinite.
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The main goal of this section is to construct the irreducible spherical
representations of (S(∞) × S(∞), diagS(∞)) that correspond to arbitrary
(α, β) ∈ Ω.

In what follows we will need the notion of tensor product of an infinite
number of Hilbert spaces.

Recall first the definition of a finite tensor product of Hilbert spaces. Let
H1, H2, . . . , Hn be Hilbert spaces. Take first the algebraic tensor product of
these spaces. It is a pre-Hilbert space with the inner product defined on
polyvectors by

(e1 ⊗ · · · ⊗ en, f1 ⊗ · · · ⊗ fn) = (e1, f1)H1
· · · (en, fn)Hn .

By definition the Hilbert tensor product H1⊗H2⊗· · ·⊗Hn is the completion
of the algebraic tensor product with respect to this inner product.

Definition 10.3. Let H1, H2, . . . be an infinite sequence of Hilbert spaces
with distinguished unit vectors ξn ∈ Hn for all n = 1, 2, . . . . Define an
embedding of H1⊗H2⊗· · ·⊗Hn into H1⊗H2⊗· · ·⊗Hn+1 by η 7→ η⊗ ξn+1.
Then the union

⋃
n≥1H1 ⊗ H2 ⊗ · · · ⊗ Hn is a pre–Hilbert space, and we

denote by
⊗∞

n=1Hn its completion. The latter Hilbert space is called the
infinite tensor product of Hilbert spaces Hn with stabilizing system {ξn}. Let
us emphasize that the construction substantially depends on the choice of
the stabilizing system of vectors ξn.

By the very construction, a finite tensor product space H1⊗H2⊗· · ·⊗Hn

is canonically embedded into the infinite tensor product space
⊗∞

k=1 Hk. The
image of a vector η ∈ H1 ⊗H2 ⊗ · · · ⊗Hn under that embedding is denoted
as η ⊗ ξn+1 ⊗ ξn+2 ⊗ . . . . In particular, in the infinite tensor product space,
there is a distinguished vector ξ = ξ1 ⊗ ξ2 ⊗ . . . .

Example 10.4. Infinite tensor products of Hilbert spaces naturally arise in
the following situation. Let (X1, P1), (X2, P2), . . . be a sequence of proba-
bility spaces (that is, Xn is a measurable space equipped with a probability
measure Pn). Set Hn = L2(Xn, Pn). The finite tensor product H1⊗ · · · ⊗Hn

can be identified with the Hilbert space L2(X1 × · · · × Xn, P1 ⊗ · · · ⊗ Pn).
Now consider the infinite product space X = X1×X2× . . . with the product
measure P = P1 ⊗ P2 ⊗ . . . . Then the Hilbert space H = L2(X,P ) can be
identified, in a natural way, with the infinite tensor product of the Hilbert
spaces Hn = L2(Xn, Pn) with the stabilizing system {ξn ≡ 1} (constant func-
tions on Xn’s). The image of H1⊗· · ·⊗Hn in H coincides with the subspace
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of the cylinder functions f(x1, x2, . . . ) depending on the first n arguments
only. The distinguished vector ξ =

⊗∞
n=1 ξn is the constant function ξ ≡ 1

on the infinite product space.

After these preliminaries we turn to the construction of the irreducible
spherical representations. Let us start with the case when β = 0 and

∑
αi =

1.
Denote by I the set of indices i = 1, 2, . . . for which αi is nonzero; thus,

I may be finite or countable. Fix a Hilbert space with an orthonormal basis
{ei} indexed by the set I, and let Ē be the dual Hilbert space with the dual
basis {ēi}. 8 For all n = 1, 2, . . . we take as Hn the space E ⊗ Ē with the
distinguished unit vector

ξn = v =
∑
i∈I

√
αi · ei ⊗ ēi.

Note that ‖v‖ = 1 because of the assumption
∑
αi = 1.

Define a representation T of S(∞) × S(∞) in
⊗∞

n=1Hn by letting the
first factor S(∞) × {e} permute the copies of E, while the second factor
{e} × S(∞) permutes the copies of Ē. In terms of basis vectors: If n is so
large that (σ, τ) ∈ S(n)× S(n) then for any basis vector η ∈

⊗∞
k=n+1 Hk

T (σ−1, τ−1)
(
(ei1 ⊗ ēj1)⊗ · · · ⊗ (ein ⊗ ējn)⊗ η

)
=
(
(eiσ(1) ⊗ ējτ(1))⊗ · · · ⊗ (eiσ(n) ⊗ ējτ(n))⊗ η

)
(we inverted σ and τ in the left–hand side to avoid triple indices in the
right–hand side). Clearly, the distinguished vector

ξ :=
∞⊗
n=1

v =

(∑
i∈I

√
αi · ei ⊗ ēi

)
⊗

(∑
i∈I

√
αi · ei ⊗ ēi

)
⊗ · · ·

is invariant with respect to the action of the diagonal subgroup diagS(∞).

Proposition 10.5. Let (α, 0) ∈ Ω be a point with
∑
αi = 1 and T be the

unitary representation of the group S(∞) × S(∞) constructed above. The
subrepresentation of T realized in the closed cyclic hull of the distinguished
vector ξ is equivalent to the irreducible spherical representation of Tα,0 with
parameters (α, 0).

8One may think that Ē is obtained from E by replacing the complex structure by the
conjugate one.
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Proof. We have to prove that the matrix element (T (σ, e)ξ, ξ) coincides with
χα,0ρ , where ρ stands for the cycle structure of σ ∈ S(∞), that is, ρ is a finite
sequence of numbers ρ = (ρ1 ≥ ρ2 ≥ · · · ≥ 2) such that σ is the product of
disjoint cycles of lengths ρ1, ρ2, . . . . Since

∑
i αi = 1 by assumption, we have

to prove that

(T (σ, e)ξ, ξ) =
∏
k≥1

∑
i∈I

αρki .

Without loss of generality we may assume that σ is contained in S(n)
with n = ρ1 + ρ2 + . . . . Replace σ by σ−1, which does not affect the matrix
element. We have

T (σ−1, e)ξ =
∑

i1,...,in∈I

√
αi1 · · ·αin (eiσ(1) ⊗ ēi1)⊗ · · · ⊗ (eiσ(n) ⊗ ēin)⊗ v ⊗ v ⊗ · · ·

ξ =
∑

i1,...,ir∈I

√
αi1 · · ·αin (ei1 ⊗ ēi1)⊗ · · · ⊗ (ein ⊗ ēin)⊗ v ⊗ v ⊗ · · · ,

whence

(T (σ−1, e)ξ, ξ) =
∑

i1,...,in∈I

αi1 · · ·αin (eiσ(1) , ei1) . . . (eiσ(n) , ein)

=
∑

i1,...,in∈I

αi1 · · ·αin δiσ(1),i1 . . . δiσ(n),in ,

which gives the desired result.

In order to include nonzero β = (β1 ≥ β2 ≥ . . . ) into this construction,
we need to add orthonormal basis vectors fj, corresponding to nonzero βj’s,
to the Hilbert space E. Of course, the dual vectors {f̄j} are added to Ē.
The corresponding index set will be denoted as J .

We are about to define the action of S(∞) × S(∞) in
⊗∞

n=1Hn, where,
as before, Hn = E ⊗ Ē for all n, and the distinguished vectors ξn ∈ Hn are
all equal to

v =
∑
i∈I

√
αi · ei ⊗ ēi +

∑
j∈J

√
βj · fj ⊗ f̄j.

In contrast with the case considered above, this action involves a supplemen-
tary factor — a “cocycle” taking values ±1.

To define this “cocycle” we introduce a Z2–grading in E and Ē:

E = E(0) ⊕ E(1), E(0) = Span{ei}i∈I , E(1) = Span{fj}j∈J
Ē = Ē(0) ⊕ Ē(1), Ē(0) = Span{ēi}i∈I , Ē(1) = Span{f̄j}j∈J
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where Span denotes the closed linear span. The vectors from E(0) or Ē(0) are
called even, and the vectors from E(1) or Ē(1) are called odd .

To define the symmetric group action on tensor products of Z2–graded
vector spaces we use the general sign rule: For each pair of odd vectors that
pass through each other, the result is multiplied by (−1).

For example, if V1, V2, and V3 are three Z2–graded vector spaces then
under the canonical isomorphism

V1 ⊗ V2 ⊗ V3 → V2 ⊗ V3 ⊗ V1

we have
v1 ⊗ v2 ⊗ v3 → (−1)p(v1)p(v2)+p(v1)p(v3) v2 ⊗ v3 ⊗ v1

where v1 ∈ V1, v2 ∈ V2, and v3 ∈ V3 are assumed to be homogeneous vectors
and p( · ) stands for the parity function taking value 0 for even vectors and
value 1 for odd vectors.

More generally, if V1, . . . , Vk are Z2–graded vector spaces and s is a per-
mutation of 1, . . . , k then under the canonical isomorphism

V1 ⊗ · · · ⊗ Vk → Vs−1(1) ⊗ . . . Vs−1(k)

we have for homogeneous vectors vi ∈ Vi

v1 ⊗ · · · ⊗ vk → (−1)m vs−1(1) ⊗ · · · ⊗ vs−1(k)

where the integer m is computed as follows: Write down the indices i1 <
· · · < il corresponding to odd vectors and then take the number of inversions
in the subsequence s−1(i1), . . . , s−1(il).

Now, we apply the sign rule to define the action of the group S(n)×S(n)
on the 2n–fold tensor product

(E ⊗ Ē)⊗n = E ⊗ Ē ⊗ · · · ⊗ E ⊗ Ē.

The resulting action is consistent with the embedding (E ⊗ Ē)⊗n → (E ⊗
Ē)⊗(n+1) given by tensoring with v. 9 This makes it possible to define, as
before, a unitary representation T of the group S(∞)× S(∞) in the infinite
product space. Note that, as before, the vector ξ = v ⊗ v ⊗ v ⊗ · · · is
diagS(∞)-invariant.

The following claim is a generalization of Proposition 10.5:

9The crucial point here is that v is an even vector with respect to the natural Z2–grading
of H = E ⊗ Ē.
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Proposition 10.6. Let (α, β) ∈ Ω be a point with
∑
αi+

∑
βj = 1 and T be

the unitary representation of the group S(∞)×S(∞) constructed above. The
subrepresentation of T realized in the closed cyclic hull of the distinguished
vector ξ is equivalent to the irreducible spherical representation Tα,β with
parameters (α, β).

Proof. The argument is similar to that in the proof of Proposition 10.5.
To simplify the control of signs while computing the matrix element it is
convenient to rearrange the factors in (E⊗ Ē)⊗n and pass from this space to
E⊗n ⊗ Ē⊗n. Due to the sign rule, instead of the ordinary power sums

∑
αri

we will get
∑
αri + (−1)r−1

∑
βrj : Specifically, the sign (−1)r−1 appears as a

result of a length r cycle acting on the tensor product of r odd vectors.

Finally, let us discuss the case when 0 <
∑
αi +

∑
βj < 1. The simplest

example is that of

α = (p, 0, 0, . . . ), β = 0 = (0, 0, . . . ), 0 < p < 1.

Denote the corresponding irreducible spherical representation as T [p].

Proposition 10.7. Let (α, β) ∈ Ω be an arbitrary point and 0 < p < 1.
Consider the tensor product representation T = T [p] ⊗ Tα,β and denote by ξ
its vector obtained as the tensor product of the spherical vectors of the factors.
The subrepresentation of T realized in the closed cyclic hull of ξ is equivalent
to the irreducible spherical representation Tα

′,β′ with parameters

α′ = pα = (pα1, pα2, . . . ), β′ = pβ = (pβ1, pβ2, . . . ).

Proof. Clearly, ξ is an invariant vector with respect to diagS(∞). Its matrix
element equals the product of the spherical functions of the representations
T [p] and Tα,β. This immediately implies the desired result. (cf. Ex. 4.4.)

Thus, to construct an arbitrary irreducible spherical representation it
remains to exhibit a realization of the representations T [p]. Such a realization
is proposed in Ex. 10.2.

Exercises

10.1. Let H be the infinite tensor product of Hilbert spaces H1, H2, . . . with
a stabilizing sequence of unit vectors {ξi}. Denote by N the set of positive
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integers. Given a collection of vectors η1 ∈ H1, η2 ∈ H2, . . . and a finite
subset S ⊂ N, we define a vector ηS ∈ H in the following way:

ηS := η̃1 ⊗ η̃2 ⊗ . . . ,

where

η̃i :=

{
ηi, i ∈ S
ξi, i ∈ N \ S.

Let {S} be the directed set of finite subsets of N ordered by inclusion. We
define the infinite tensor product vector η =

⊗
i∈N ηi ∈ H as a limit taken

over {S},
η =

⊗
i∈N

ηi := lim
{S}

ηS, (10.1)

provided this limit exists.
(a) Show that η exists if and only if

∞∑
k=1

∣∣ ‖ηk‖ − 1
∣∣ <∞ and

∞∑
k=1

∣∣(ηk, ξk)− 1
∣∣ <∞.

(b) Show that if two infinite products η =
⊗

i∈N ηi and η′ =
⊗

i∈N η
′
i exist,

then the inner product (η, η′) is given by the absolutely converging product∏∞
k=1(ηk, η

′
k).

(c) Let H ′ be the infinite tensor product of the same spaces but built
with a different stabilizing system {ξ′i}. Let us say that {ξ′i} is equivalent to
the initial stabilizing system {ξi} if the collections {ηi} for which the limit
(10.1) exists are the same for H and for H ′.

Show that {ξi} and {ξ′i} are equivalent if and only if
∑
|(ξi, ξ′i)− 1| <∞.

Deduce from this that equivalence implies existence of a (unique) isometry
H → H ′ preserving the set of infinite tensor products of the form (10.1). In
this sense, the infinite tensor product of Hilbert spaces depends only on the
equivalence class of the stabilizing system.

10.2. Here we describe a realization of the representation T [p], see the end
of Section 10. We need the values p ∈ (0, 1) but below we assume, slightly
more generally, that 0 ≤ p ≤ 1.

A matrix with entries in the two–point set {0, 1} is said to be monomial
if it contains at most one 1 in each row and each column. Let X denote the
set of all monomial 0–1 matrices ε = [εij] of infinite size, containing finitely
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many 1’s outside the diagonal. This set can be written as the union
⋃
n≥0 Xn

of ascending subsets Xn, where Xn consists of the matrices ε ∈ X such that
εij = 0 for all i 6= j with max(i, j) > n. In particular, X0 ⊂ X is the subset
formed by the diagonal 0–1 matrices.

The set X0 can be identified with {0, 1}∞, the set of all infinite binary
sequences. Let us equip it with the Bernoulli probability measure ν0

p such
that for any i, the value of εii equals 0 or 1 with probabilities p and 1 − p,
respectively.

For any n, we extend this measure to a measure νnp on Xn as follows.

Denote by X(n) the finite set of monomial 0–1 matrices of size n×n. We equip
it with the measure ν

(n)
p such that the weight ν

(n)
p (η) of a matrix η ∈ X(n)

equals (1−p)mpn−m, where m stands for the number of 1’s in η (if p equals 0
or 1 we have to define the meaning of the symbol 00: we agree that it equals
1).

There is a natural bijection between Xn and the product space X(n) ×
{0, 1}∞:

Xn 3 ε↔
(
[εij]

n
i,j=1, {εkk}∞k=n+1

)
∈ X(n) × {0, 1}∞.

By definition, νnp is the image, under this bijection, of the product of the

measure ν
(n)
p on X(n) with the same Bernoulli measure on {0, 1}∞ as before.

(a) Check that the measures νnp are pairwise consistent in the sense that
the restriction of νn+1

p to the subset Xn ⊂ Xn+1 coincides with the measure
νnp . Deduce from this that there exists an (infinite) measure νp on the set X
such that for any n = 0, 1, 2, . . . , the restriction of νp to Xn coincides with
νnp . In particular, the restriction to X0 is the Bernoulli measure.

(b) Show that ν1 is the delta measure concentrated at the null matrix (all
entries equal 0).

(c) Show that ν0 is the counting measure on the subset S(∞) ⊂ X.
Here we employ the natural embedding of S(∞) into X which assigns to a
permutation σ ∈ S(∞) the matrix εij such that εij takes value 1 precisely
when σ(j) = i.

(d) Observe that the group G = S(∞) × S(∞) acts on the set X by
permutations of rows and columns. Prove that νp is an invariant measure for
this action. Use this to define a unitary representation T of this group in the
Hilbert space L2(X, νp).

(e) Observe that for p = 1 this representation is the trivial one while for
p = 0 it is the biregular representation.
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(f) Assume 0 < p < 1. Let ξ0 be the characteristic function of the subset
X0. Show that ξ0 is a K–invariant vector and that the corresponding matrix
coefficient is the spherical function of the representation T [p]. Thus, the cyclic
hull of ξ0 is equivalent to T [p].

11 Generalized regular representations Tz

In Proposition 10.1 we saw that the biregular representation of S(∞)×S(∞)
in `2(S(∞)) is irreducible. This is in sharp contrast with the situation
in representation theory of finite groups, where decomposing the biregular
representation is essentially equivalent to finding all irreducible representa-
tions of the corresponding group. The objective of this section is to con-
struct a (unitary spherical) deformation of the biregular representation of
(S(∞) × S(∞), diagS(∞)) for which the above mentioned problem of har-
monic analysis is meaningful.

As before, we fix a sequence of embeddings

S(1) ⊂ S(2) ⊂ · · · ⊂ S(n) ⊂ · · · ⊂ S(∞),

where S(n) is viewed as the subgroup of S(n + 1) that permutes only the
first n symbols.

For any n = 1, 2, . . . define a map pn,n+1 : S(n+ 1)→ S(n) by

pn,n+1(σ)(i) =

{
σ(i), σ(i) ≤ n,

σ(n+ 1), σ(i) = n+ 1,

for all i = 1, . . . , n. In other words, pn,n+1 acts by striking out n+ 1 from the
corresponding cycle (· · · → n+ 1→ . . . ) of the permutation σ.

The maps pn,n+1 are called canonical projections .

Proposition 11.1. The canonical projection pn,n+1 commutes with the ac-
tion of S(n)×S(n) on S(n+ 1) and S(n) by left and right shifts. For n ≥ 4,
pn,n+1 is the only map S(n+ 1)→ S(n) with this property.

Proof. It is convenient to represent permutations σ ∈ S(n + 1) as bipartite
graphs with vertices {1, . . . , n + 1} and {1′, . . . , (n + 1)′} and edges joining
i and σ(i)′. Then the application of pn,n+1 is equivalent to adding an extra
edge joining (n+ 1) and (n+ 1)′ and contracting the resulting sequence of 3
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edges (if σ /∈ S(n)) or 2 edges (if σ ∈ S(n)) to a single one. Multiplying σ on
the left or on the right by an element of S(n) is equivalent to adding edges
that connect {1, . . . , n} and {1′, . . . , n′} to some new vertices and contracting
the intermediate edges. One easily sees that this procedure commutes with
adding the extra edge joining (n+ 1) and (n+ 1)′.

Let us prove the uniqueness. Assume p : S(n+ 1)→ S(n) is a map with
the desired property. Then σ−1p(e)σ = p(e) for any σ ∈ S(n). Since for
n ≥ 3, e is the only central element of S(n), we have p(e) = e = pn,n+1(e).
Similarly, τ−1p((n, n+1))τ = p((n, n+1)) for any τ ∈ S(n−1). If n ≥ 4 then
e is the only element of S(n) commuting with S(n−1). Thus, p((n, n+1)) =
e = pn,n+1((n, n + 1)). But the group S(n + 1) is made of just two double
S(n)× S(n)–cosets, and e and (n, n+ 1) lie in different cosets.

Denote by S the projective limit of S(n)’s with respect to the system of
canonical projections: S = lim←−S(n). In other words, the elements of S are
the sequences {xn}∞n=1 with xn ∈ S(n) such that pn,n+1(xn+1) = xn for any
n ≥ 1. The space S is equipped with the projective limit topology: The
base of the topology at the point {xn} ∈ S contains cylindric sets in S that
coincide with {xn} on first few coordinates.

One of the exercises at the end of this section is to show that S is compact;
this also follows from Proposition 11.2 below.

The group S(∞) is embedded in S as an everywhere dense discrete sub-
set of stabilizing sequences. Thus, S can be viewed as a compactification
of S(∞). Of course, this is only a set compactification, not a group com-
pactification: S is no longer a group. The elements of S are called virtual
permutations of {1, 2, . . . }.

Proposition 11.2. There exists a natural homeomorphism between the space
S and the infinite product space

I = I1 × I2 × · · · , In = {0, 1, . . . , n− 1}.

Proof. Take a sequence {xn} ∈ S and let {in} ∈ I be its image in I to
be described. Then the coordinate in+1 serves to specify the choice of xn+1

among the n + 1 elements in p−1
n,n+1(xn) ⊂ S(n + 1). Specifically, in+1 = 0

means that xn+1 coincides with xn (which is equivalent to saying that n+ 1
forms in xn+1 a new trivial cycle), and in+1 = j ∈ {1, . . . , n} means that in
order to get xn+1 from xn one inserts n + 1 into the cycle of xn containing
the point j and immediately before it. One readily checks that this is a
homeomorphism.
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Clearly, under this homeomorphism the canonical projection pn,n+1 sim-
ply turns into the operation of ignoring the last coordinate of an element in
I1 × · · · × In+1.

As before, we are going to use the notation

G(n) = S(n)×S(n), K(n) = diag S(n), G = S(∞)×S(∞), K = diagS(∞).

The group G acts on S by homeomorphisms generated by left and right
shifts of G on itself: For any {xn} ∈ S and g = (g1, g2) ∈ G we pick N so
large that g ∈ G(N) and for n ≥ N define

(x · g)n = g−1
2 xng1.

This automatically defines all the coordinates of x · g with smaller indices.
In what follows we denote by [σ] the number of cycles of a permutation

σ ∈ S(n). Let us also denote by pn : S → S(n) the natural projection that
maps the sequence {xk}∞k=1 ∈ S to xn ∈ S(n).

Proposition 11.3. Let x ∈ S and g ∈ G. The quantity [pn(x · g)]− [pn(x)]
stabilizes for large n. Specifically, if n is so large that g ∈ G(n), then [pn(x ·
g)]− [pn(x)] does not depend on n.

Proof. It suffices to consider g = (σ, e) and g = (e, σ) with σ = (ij) (trans-
position of i and j). Assume n ≥ max(i, j). If i and j are in the same cycle
of xn ∈ S(n) then the multiplication of xn by (ij) on the left or on the right
splits this cycle into two, otherwise the two cycles containing i and j merge.
In either case, [xn · g]− [xn] = ±1, and the result does not depend on n.

We set

c(x, g) = stable value of [pn(x · g)]− [pn(x)], x ∈ S, g ∈ G,

and call c(x, g) the fundamental cocycle. It is immediate to see that it satisfies
the additive 1–cocycle relation:

c(x, g1g2) = c(x, g1) + c(x · g1, g2), x ∈ S, g1, g2 ∈ G. (11.1)

Clearly, c( · , g) ≡ 0 for any g ∈ K.
We use the fundamental cocycle below in Proposition 11.6.

Proposition 11.4. There exists a unique G–invariant probability measure
on S.
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This measure serves as an analog of the Haar measure; we denote it by
µ1.

Proof. Let µn1 denote the uniform (Haar) probability measure on S(n). Clearly,
µn1 coincides with the pushforward of µn+1

1 under the canonical projection
pn,n+1. Thus, by virtue of Theorem 7.9, the sequence {µn1}n≥1 correctly
defines a probability measure µ1 on S, and one readily sees that it is G-
invariant.

Conversely, let µ be a G–invariant probability measure on S. Its push-
forward under the projection pn : S→ S(n) must coincide with µn1 , which is
the only G(n)-invariant probability measure on S(n). Hence, µ = µ1.

We now construct a one-parameter family {µt}t>0 of probability measures
on S that are quasi–invariant with respect to the G–action.

For t > 0 and n = 1, 2, . . . , we define a measure µnt on S(n) by

µnt ({σ}) =
t[σ]

t(t+ 1) · · · (t+ n− 1)
, σ ∈ S(n).

Note that the encoding of Proposition 11.2 also determines a bijection
S(n)↔ I1 × · · · × In, for any n = 1, 2, . . . .

Proposition 11.5. Under the above bijection, µnt turns into a product mea-
sure µ̃1

t ⊗· · ·⊗ µ̃nt , where µ̃mt is the measure on Im = {0, 1, . . . ,m−1} defined
by

µ̃kt ({m}) =

{
1

t+m−1
, k = 1, . . . ,m− 1,

t
t+m−1

, k = 0.

Proof. Follows from the fact that the number of cycles of any σ ∈ S(n)
coincides with the number of 0’s in its image in I1 × · · · × In.

Proposition 11.5 implies that µnt is a probability measure (since all µ̃mt
are), and that µnt ’s are consistent with canonical projections. By virtue of
Theorem 7.9, the sequence {µnt } defines a probability measure on S that we
denote by µt and call the Ewens measure. Under the homeomorphism of
Proposition 11.2, µt is simply the product measure µ̃1

t ⊗ µ̃2
t ⊗ · · · on I. One

readily sees that µt is K–invariant. A few other interesting properties of the
Ewens measures can be found in the exercises to this section.

Recall that two measures ν1 and ν2 defined on the same space are called
equivalent if they have the same set of null subsets. Then, by virtue of the
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Radon–Nikodým theorem, ν2 = fν1, where f is a function, called the Radon–
Nikodým derivative and denoted as ν2/ν1. This function is defined uniquely
within a null set (with respect to ν1). A measure is called quasi–invariant
with respect to a group action if its shifts by elements of the group remain
in the same equivalence class of measures.

Proposition 11.6. Each of the Ewens measures µt, 0 < t < ∞, is quasi–
invariant with respect to the G–action on S. More precisely, the Radon–
Nikodým derivative is given by

µt(dx · g)

µt(dx)
= tc(x,g), x ∈ S, g ∈ G,

where c(x, g) is the fundamental cocycle.

Proof. It suffices to check that

µt(V · g) =

∫
V

tc(x,g)µt(dx)

for every Borel subset V ⊂ S and any g ∈ G.
Fix g ∈ G and choose m so large that g ∈ G(m). For arbitrary n ≥ m

and y ∈ S(n), let Vn(y) ⊂ S denote the set of elements {xn} ∈ S with
xn = y. This is a cylinder set, and any cylinder set is a disjoint union of sets
of the form Vn(y), n ≥ m. Since Borel sets of S are generated by cylinder
sets, it suffices to check the above formula for V = Vn(y).

Note that Vn(y) · g = Vn(y · g) and µt(Vn(y)) = µnt ({y}), hence

µt(Vn(y) · g) = µnt ({y · g}).

On the other hand, the definition of µnt implies

µnt ({y · g}) = t[y·g]−[y] µnt ({y}),

and this is exactly what we need, because c(x, g) = [y · g] − [y] for any
x ∈ Vn(y).

We are finally ready to introduce new representations of (G,K). In what
follows we fix t > 0 and z ∈ C such that |z|2 = t. The formula of Proposition
11.6 then can be written as

µt(dx · g)

µt(dx)
=
∣∣zc(x,g)∣∣2 .
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The fact that c(x, g) satisfies the additive cocycle relation, see (11.1)
above, implies that the formula

(Tz(g)f)(x) = f(x · g) zc(x,g), g ∈ G, x ∈ S,

correctly defines an action of the group G on functions on the space S. More-
over, Proposition 11.6 implies that the operators Tz(g) are unitary operators
in the Hilbert space L2(S, µt), t = |z|2. Thus, we get a unitary representa-
tion Tz in L2(S, µt). We call it the generalized regular representation of G
with parameter z. One explanation for the name comes from the fact that Tz
can be realized as an inductive limit of the regular representations of G(n)
as follows.

For every n = 1, 2, . . . denote byHn the finite dimensional space L2(S(n), µn1 ),
and denote by Regn the biregular representation of the group G(n) = S(n)×
S(n) in this space:

(Regn(g) f)(x) = f(g−1
2 x g1), g = (g1, g2) ∈ G(n), x ∈ S(n), f ∈ Hn.

Define the operators Lnz : Hn → Hn+1 as follows: For f ∈ Hn and x ∈
S(n+ 1),

(Lnzf)(x) =

z
√

n+1
t+n

f(x), x ∈ S(n) ⊂ S(n+ 1),√
n+1
t+n

f(pn,n+1(x)), x ∈ S(n+ 1) \ S(n).

Proposition 11.7. For any z ∈ C∗ the operator Lnz provides an isomet-
ric embedding Hn → Hn+1 which intertwines the representations Regn and
Regn+1

∣∣
G(n)

of the group G(n). The generalized regular representation Tz is

equivalent to the inductive limit of the representations Regn with respect to
these embeddings.

Proof. For every n = 1, 2, . . . the subspace Cyln ⊂ H = L2(S, µt) of cylinder
functions of level n (that is, functions f(x) depending on pn(x) only) is
invariant with respect to the operators Tz(g), g ∈ G(n). Indeed, for all
g ∈ G(n) the function x 7→ c(x, g) is a cylinder function of level n. Thus, we
can identify the Hilbert spaces Cyln ⊂ H and L2(S(n), µnt ). The operators
Tz(g)

∣∣
Cyln

take the form

(Tz(g) f)(x) = f(x·g) z[x·g]−[x], g ∈ G(n), x ∈ S(n), f ∈ L2(S(n), µnt ).
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Define a function F n
z on the group S(n) by the formula

F n
z (x) =

(
n!

t(t+ 1) . . . (t+ n− 1)

) 1
2

z[x], x ∈ S(n).

Observe that

(Tz(g) f)(x) = f(x · g)
F n
z (x · g)

F n
z (x)

.

Further, the function |F n
z (x)|2 coincides with the density of the measure µnt

with respect to the uniform measure µn1 . It follows that the operator of
multiplication by the function F n

z defines an isometry

Cyln = L2(S(n), µnt ) −→ L2(S(n), µn1 ) = Hn

which commutes with the action of the group G(n).
Consider now the commutative diagram

L2(S(n), µnt ) = Cyln −−−→ Cyln+1 = L2(S(n+ 1), µn+1
t )y y

Hn L̃nz−−−→ Hn+1

where the top arrow denotes the natural embedding (lifting of functions via
the projection pn,n+1), the vertical arrows correspond to multiplication by

F n
z and F n+1

z , respectively, and the bottom arrow L̃nz is defined by the com-
mutativity requirement. Hence, for f ∈ Hn and x ∈ S(n+ 1) we obtain

(L̃nz f)(x) = F n+1
z (x)

(
F n
z (pn,n+1(x))

)−1
f(pn,n+1(x))

=

√
n+ 1

t+ n
z[x]−[pn,n+1(x)] f(pn,n+1(x)).

This implies that the operators L̃nz are isometric embeddings. Next, this also
shows that the representation Tz is equivalent to the inductive limit of the
representations Regn corresponding to the embeddings L̃nz .

Finally, we observe that the above expression for L̃nz coincides with that
for Lnz . Indeed, this follows from the fact that

[x] =

{
[pn,n+1(x)] + 1, if x ∈ S(n) ⊂ S(n+ 1),

[pn,n+1(x)], if x ∈ S(n+ 1) \ S(n).
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Note that the above construction can be extended to the limit points z = 0
and z =∞; in particular, at z =∞ one obtains the biregular representation
of S(∞) × S(∞) in `2(S(∞)) (see Ex. 11.7). This is a justification of the
term “generalized regular representations” that we use for Tz.

Observe that the representation Tz comes with a distinguished vector
ξ0 ∈ L2(S, µt), which is the function identically equal to 1. Clearly, ξ0 is
K–invariant and ‖ξ0‖ = 1.

The closed cyclic hull of this vector under the action of G is the space of a
spherical representation of the Gelfand pair (G,K). According to the general
formalism, the corresponding spherical function gives rise to a character χz
of S(∞) (Proposition 8.19) that in its turn leads to a coherent system of

distributions {M (n)
z }n≥0 on {Yn}n≥0, see Definition 3.4. Let us compute

these distributions.
Recall the notation c(�) = j− i for a box � = (i, j) of a Young diagram.

Proposition 11.8. Let z ∈ C∗ and t = |z|2. For any λ ∈ Yn,

M (n)
z (λ) =

∏
�∈λ |z + c(�)|2

t(t+ 1) . . . (t+ n− 1)

dim2 λ

n!
, (11.2)

where the product is taken over all boxes of the Young diagram λ.

Proof. We use the realization of Tz as the inductive limit of representations
Regn as described in Proposition 11.7. The distinguished vector ξ0 belongs
to H1, hence to all of Hn. As an element of Hn it coincides with the function
F n
z . Therefore, for σ ∈ S(n)

χz|S(n) (σ) =
(

Regn(σ, e)F n
z , F

n
z

)
=

1

n!

∑
τ∈S(n)

F n
z (τσ)F n

z (τ)

or, in other words, χz|S(n) = (F n
z )∗ ∗ F n

z (recall that f ∗(τ) = f(τ−1) denotes
the involution in the group algebra).

Note that F n
z is a central function on S(n), hence it can be written as a

linear combination of irreducible characters χλ (here we use the term “char-
acter” in the conventional sense),

F n
z =

∑
λ∈Yn

aλ χ
λ,

with some coefficients aλ ∈ C. The orthogonality relations for irreducible
characters (see Proposition 1.5) immediately imply that M

(n)
z (λ) = |aλ|2. It
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remains to find aλ’s. This is done in the following statement, which implies
the proposition.

Lemma 11.9. For any n = 1, 2, . . . and z ∈ C∗, the expansion of the central
function x 7→ z[x] on the group S(n) in the basis of the irreducible characters
{χλ}λ∈Yn has the form

z[x] =
∑
λ∈Yn

∏
�∈λ

(z + c(�)) · dimλ

n!
χλ(x) =

∑
λ∈Yn

∏
�∈λ

z + c(�)

h(�)
χλ(x).

Here h(�) is the length of the hook associated to �, see Section 1.

Proof. The argument is based on the characteristic map described at the end
of Section 2. Applying this map we see that our claim is equivalent to the
formula

ch(z[·]) =
∑
λ∈Yn

∏
�∈λ

z + c(�)

h(�)
· sλ,

where sλ are the Schur functions.
Denote by y1, y2, . . . a sequence of formal variables of symmetric func-

tions, and let u be an additional formal variable. Recall (see 2.14) the formula
for the number of elements in the conjugacy class Cρ of S(n):

|Cρ| =
n!

1m1m1!2m2m2! · · ·
,

where ρ = 1m12m2 · · · (i.e., ρ has m1 parts equal to 1, m2 parts equal to 2
etc.). Using it we obtain

1 +
∑
n≥1

ch(z[·])un =
∑

ρ=(1m12m2 ··· )

zm1+m2+ ... u1m1+2m2+ ...

1m1 2m2 · · · m1!m2! · · ·
pm1

1 pm2
2 · · · =

=
∞∏
n=1

∞∑
k=0

zk pk unk

nkk!
= exp z

(
up1

1
+
u2p2

2
+ . . .

)
=

= exp z
∞∑
i=1

(
uyi
1

+
(uyi)

2

2
+ . . .

)
=

= exp

(
−z

∞∑
i=1

log(1− uyi)

)
=
∞∏
i=1

(1− uyi)−z.
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The desired formula then takes the form

∞∏
i=1

(1− uyi)−z =
∑
λ∈Y

∏
�∈λ

z + c(�)

h(�)
· sλ(uy1, uy2, . . .).

Replacing uyi with yi, we arrive at the identity

∞∏
i=1

(1− yi)−z =
∑
λ∈Y

∏
�∈λ

z + c(�)

h(�)
· sλ(y1, y2, . . .).

The coefficients of the Schur functions in the right hand side are the
polynomials in z, hence it suffices to prove this identity for z = N = 1, 2, . . ..

It is well known (see e.g. [72, Chapter I, Section 3, Example 4]) that∏
�∈λ

N + c(�)

h(�)
= sλ(1, . . . , 1︸ ︷︷ ︸

N

)

(this is the dimension of the irreducible representation of the group GL(N,C)
with the highest weight (λ1, . . . , λN) if λN+1 = λN+2 = . . . = 0, and 0
otherwise). Our identity takes the form

∞∏
i=1

(1− yi)−N =
∑
λ∈Y

sλ(1, . . . , 1︸ ︷︷ ︸
N

) sλ(y1, y2, . . .).

But this is a special case of Cauchy’s identity, see Proposition 2.12. This
completes the proof of the lemma.

Proposition 11.10. For every z ∈ C \ Z, the distinguished vector ξ0 of the
representation Tz is a cyclic vector.

Proof. Once again we use the fact that Tz is an inductive limit of the represen-
tations Regn. It implies that it is enough to show that ξ0 is cyclic in Regn for
every n = 1, 2, . . . . The biregular representation Regn of G(n) = S(n)×S(n)
is equivalent to

⊕
λ∈Yn πλ⊗ πλ, where πλ denotes the irreducible representa-

tion of S(n) corresponding to λ.10 A vector of Regn is G(n)-cyclic if and only

10For a finite group G the biregular representation decomposes as ⊕π∈Ĝπ ⊗ π̄, but for
the symmetric group πλ = πλ (the symmetric group characters are real-valued because
this group is ambivalent, i.e. every group element and its inverse lie in the same conjugacy
class).
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if its projections on all components πλ ⊗ πλ are nonzero, because the repre-
sentations πλ ⊗ πλ of the group G(n) are irreducible and pairwise distinct.
Therefore, to prove that ξ0 is cyclic in Regn it suffices to check that all coef-
ficients in the expansion of ξ0 in the basis {χλ} are nonzero, i.e., all numbers

M
(n)
z (λ) are nonzero. For z /∈ Z this obviously follows from (11.2).

Denote by ϕz the matrix element of Tz corresponding to the distinguished
vector. Recall that the corresponding character of S(∞) is denoted by χz.
It was described in Proposition 11.8 in terms of the corresponding coherent
system of distributions.

If z /∈ Z then Proposition 11.10 says that Tz is a spherical type representa-
tion in the sense of Definition 9.1. Therefore, in this case, all the information
about representation Tz is contained in the spherical function ϕz.

Corollary 11.11. For every z ∈ C, the representations Tz and Tz̄ are equiv-
alent.

Proof. The key observation is that formula (11.2) is obviously invariant under
conjugation z → z̄. It follows that χz = χz̄ and consequently ϕz = ϕz̄.

If z ∈ R then z̄ = z and there is nothing to prove, so that we may assume
z ∈ C \ R. Then, by virtue of Proposition 11.10, the distinguished vectors
of both representations are cyclic. As we have just pointed out, their matrix
coefficients coincide. Therefore, the representations are equivalent.

Exercises

11.1. Find all maps p : S(n + 1) → S(n) that commute with the two-sided
action of S(n) for n = 2 and 3.

11.2. Using the definition of the projective limit topology, prove that the
space of virtual permutations S is compact.

11.3. Prove that if the homeomorphism of Proposition 11.2 takes {xn} ∈ S
to {in} ∈ I then xn = (n, in)(n− 1, in−1) · · · (1, i1).

11.4. The fact that the measure µnt (see the definition just before Proposition
11.5) is a probability measure is equivalent to the identity

n∑
k=0

c(n, k)tk = t(t+ 1) . . . (t+ n− 1),
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where c(n, k) denotes the number of permutations σ ∈ S(n) with k cycles,
called the signless Stirling number of the first kind. Prove this identity di-
rectly (or find two proofs in Stanley [112, Proposition 1.3.4]).

11.5. The Ewens measures µt, t > 0, and their limits µ0 and µ∞ obtained by
limit transitions t→ 0 and t→∞, are precisely those K-invariant probabil-
ity measures on S that are also product measures under the identification S
and the product space I of Proposition 11.2.

11.6. The Ewens measures µt, 0 ≤ t ≤ ∞, are mutually singular.

11.7. (a) Show that for every n = 1, 2, . . ., the isometry Lnz : Hn → Hn+1

admits a continuous continuation, with respect to the parameter z ∈ C∗, to
the points z = 0 and z =∞ of the Riemann sphere C∪{∞}. Conclude that
the definition of the inductive limit representation of Proposition 11.7 also
makes sense for the values z = 0 and z =∞.

(b) Prove that the representation thus obtained for z =∞ is equivalent to
the natural two–sided regular representation of the group G = S(∞)×S(∞)
on the Hilbert space `2(S(∞)).

11.8. Denote by sgn the (one-dimensional) sign representation of S(∞).
Show that for every z ∈ C, T−z is equivalent to Tz ⊗ (sgn× sgn).

11.9. Prove directly that in accordance with Ex. 11.7, item (b),

lim
z→∞

M (n)
z (λ) =

dim2 λ

n!
, λ ∈ Yn.

12 Disjointness of representations Tz

Preliminaries

Recall (Definition 9.1) that two unitary representations T1 and T2 of a group
are said to be disjoint if T1 and T2 do not have equivalent nontrivial sub-
representations. Equivalently, there are no nonzero intertwining operators
between T1 and T2, that is, operators H(T1) → H(T2) commuting with the
action of the group.

Our aim is to prove the following result.

Theorem 12.1. Assume that parameter z ranges over the set {z ∈ C : =z ≥
0, z /∈ Z}. Then the representations Tz corresponding to distinct values of z
are pairwise disjoint.
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Comments . (a) The assumption =z ≥ 0 is introduced here because Tz ∼ Tz̄
(Corollary 11.11).

(b) The assumption z /∈ Z can be dropped, see [67].
(c) The assertion of the theorem is important because it shows that the

parameter z is a substantial element of the construction. This is not at all
evident, especially because the biregular representations Regn from which
every Tz is built do not depend on z; only the embeddings Regn → Regn+1

do. So, a priori one could imagine that there are some intertwining operators
between representations Tz with distinct values of parameter z.

Denote by Pz the spectral measure of the spherical function ϕz. Applying
Theorem 9.2, we reduce Theorem 12.1 to the following assertion:

Theorem 12.2. Assume that parameter z ranges over the set {z ∈ C : =z ≥
0, z /∈ Z}. Then the measures Pz corresponding to distinct values of z are
pairwise disjoint.

The proof is given in the last subsection.
We already know that Pz is the boundary measure for the coherent system

{M (n)
z } described in Proposition 11.8.
Our argument relies on the possibility to interpret coherent systems as

Gibbs measures on the path space of the Young graph; see Section 7. Let us
describe now this interpretation in more detail.

Recall that a (monotone) path in the Young graph Y is a (finite or infinite)
sequence of vertices

τ = (τk ↗ τk+1 ↗ . . . ), τi ∈ Yi.

Let T be the set of all infinite paths starting at ∅. This is a subset of the
infinite product set

∏∞
n=0 Yn. We endow T with the induced topology. Since∏∞

n=0 Yn is a compact space and T is a closed subset, it is a compact space,
too.

Given a finite path starting at ∅, σ = (σ0 = ∅ ↗ σ1 ↗ · · · ↗ σn), we
denote by C(σ) the cylinder subset in T formed by all paths τ ∈ T coinciding
with σ up to level n: τi = σi for 0 ≤ i ≤ n. Notice that C(σ) is an open
and closed subset of T . Any probability Borel measure on T is uniquely
determined by its values on the subsets of the form C(σ).

According to Definition 7.10, a probability measure on the path space T
is said to be a Gibbs measure if its value on an arbitrary cylinder subset of
the form C(σ) depends on the endpoint of σ only.
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Recall also (Proposition 7.11) that there exists a 1–1 correspondence

{M (n)} ↔ M̃ between coherent systems of distributions on the Young graph
Y and probability Gibbs measures on the path space T . The correspondence
is determined in the following way: For any cylinder set of the form C(σ),

M̃(C(σ)) = M (n)(λ)/ dimλ, λ := endpoint of σ, n = |λ|.

Equivalently,

M̃(C(σ)) = ψ(λ), λ := endpoint of σ, n = |λ|,

where ψ stands for the harmonic function on the vertices of Y, associated
with {M (n)} (see Definition 3.6).

Given a probability measure on the path space T , we may speak about
random infinite paths. Then the above relation says that ψ(λ) equals the

probability that the M̃–random path goes along a fixed finite path joining
∅ with λ.

Note that there is a useful characterization of Gibbs measures as invariant
measures with respect to a countable group of transformations of T . This
group is defined as follows. First, for each n we let G(n) be the group of
the transformations g : T → T such that for any path τ = (τn) ∈ T , we
have τm = (g(τ))m for all m ≥ n. Clearly, this is a finite group and we have
G(n) ⊂ G(n + 1). Next, we define the group G as the union of the groups
G(n).

Proposition 12.3. A measure on T is Gibbs if and only if it is invariant
under the action of G.

The proof is an easy exercise.
Define the support of a coherent system M = {M (n)} as the subset

supp(M) = {λ ∈ Y : M |λ|(λ) 6= 0} ⊂ Y.

The measure M̃ is concentrated on the subspace of paths entirely contained
in supp(M). We may view M̃ as the law of a Markov growth process of Young
diagrams, with the state set supp(M), discrete time n = 0, 1, 2, . . . , and the
transition probabilities

p(λ, ν) = Prob{τn+1 = ν | τn = λ}, λ ∈ Yn, ν ∈ Yn+1,
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where τ = (τn) is the random path. The transition probabilities p(λ, ν) are
unambiguously defined for all λ ∈ supp(M) by

p(λ, ν) =
M (n+1)(ν)

M (n)(λ)
· dimλ

dim ν
, λ ∈ supp(M) ∩ Yn.

The system of transition probabilities uniquely determines the initial
Gibbs measure, so that distinct Gibbs measures have distinct transition prob-
abilities. On the other hand, all Gibbs measures have one and the same
system of cotransition probabilities , which are nothing but the quantities
Λn
n−1(λ, µ) introduced in (7.4). That is, we have

Λn
n−1(λ, µ) = Prob{τn−1 = µ | τn = λ}, µ ∈ Yn−1, λ ∈ Yn.

Reduction to Gibbs measures

Since the boundary of the Young graph is the Thoma simplex Ω, Corollary
7.12 says us that there is a one–to–one correspondence P ↔ M̃ between
probability measures P on Ω and probability Gibbs measures M̃ on the path
space T .

Proposition 12.4. Let P1 and P2 be two probability measures on Ω, and let
M̃1 and M̃2 be the corresponding Gibbs measures on T . Then P1 and P2 are
disjoint if and only if M̃1 and M̃2 are disjoint.

Proof. First, introduce a notation. Given two finite (not necessarily normal-
ized) measures ν1, ν2 on measurable space, let us denote by ν1 ∧ ν2 their
greatest lower bound. Its existence can be verified as follows. Let f1 and f2

be the Radon–Nikodým derivatives of ν1 and ν2 with respect to ν1 + ν2, then
we set ν1 ∧ ν2 = min(f1, f2)(ν1 + ν2). Observe that ν1 and ν2 are disjoint if
and only if ν1 ∧ ν2 = 0.

Next, observe that the correspondence P ↔ M̃ can be extended to finite,
not necessarily normalized measures.

Now we can proceed to the proof. In one direction the implication is
trivial. Namely, if P1 and P2 are not disjoint, then P1 ∧ P2 is a nonzero
measure. Let M̃ be the corresponding Gibbs measure; it is nonzero because
so is P1∧P2. From the integral representation of coherent systems (Theorem

3.12) it follows that M̃ ≤ M̃1 and M̃ ≤ M̃2, so that M̃1 ∧ M̃2 6= 0, whence

M̃1 and M̃2 are not disjoint.
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In the opposite direction, assume that M̃1 and M̃2 are not disjoint, so that
M̃1∧M̃2 is nonzero. We claim that M̃1∧M̃2 is a Gibbs measure. Indeed, this
follows from the characterization of Gibbs measures as invariant measures
with respect to a countable group action, as explained in Proposition 12.3.
Now, let P be the measure on Ω corresponding to M̃1 ∧ M̃2. It is a nonzero
measure. Next, since M̃1 ∧ M̃2 ≤ M̃1 and M̃1 ∧ M̃2 ≤ M̃2, we also have
P ≤ P1, P ≤ P2. (Indeed, this claim can be restated as follows: if M̃ , M̃ ′

are two Gibbs probability measures such that M̃ ≤ const M̃ ′ then the same
inequality holds for the corresponding spectral measures on Ω, and the latter
claim follows from the Approximation Theorem 6.14.) Therefore, P1 and P2

are not disjoint.

Exclusion of degenerate paths

Let p, q be two nonnegative integers, not equal to 0 simultaneously. The fat
hook with parameters (p, q) is the set

Γ(p, q) := {(i, j) | 1 ≤ i ≤ p, j = 1, 2, . . . }∪{(i, j) | 1 ≤ j ≤ q, i = 1, 2, . . . }.

(Note that Γ(p, 0) is actually not a hook but the horizontal strip of width p.
Likewise, Γ(0, q) is the vertical strip of width q.)

Denote by T (p, q) the set of paths τ = (τn) ∈ T such that τn ⊂ Γ(p, q)
for all n. (Equivalently, τn does not contain the box (p + 1, q + 1).) Let us
say that a path τ ∈ T is degenerate if it is contained in some set T (p, q).

We are going to prove the following proposition.

Proposition 12.5. Assume z ∈ C \ Z and let M̃z be the Gibbs measure on
T corresponding to the spectral measure Pz. The set of degenerate paths is a
null set with respect to measure M̃z.

Proof. Step 1 . Let pz(λ, ν) be the transition probabilities of M̃z. We claim
that for any fixed p, q ∈ Z≥0 with p+ q > 0 there exists ε > 0 depending on
z, p, q only, with the following property. If λ ⊂ Γ(p, q) is an arbitrary Young
diagram such that the set ν = λ ∪ {(p + 1, q + 1)} is also a diagram (this is
equivalent to saying that λ contains the boxes (p + 1, q) and (p, q + 1) but
not the box (p+ 1, q + 1)). Then

pz(λ, ν) ≥ ε/n, n = |λ|.
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Indeed, since the content of the box ν/λ is q − p, we have

pz(λ, ν) =
|z + q − p|2

|z|2 + n
· dim ν

(n+ 1) dimλ
.

The first factor can be easily estimated from below: since z /∈ Z, there exists
ε1 > 0 depending on z only, such that

|z + q − p|2

|z|2 + n
≥ ε1

n
.

Now consider the second factor. It follows from the hook formula that

dim ν

(n+ 1) dimλ
=
∏
b

h(b)

h(b) + 1
,

where the product is taken over the boxes b ∈ λ such that either the arm
or the leg of b (with respect to ν) contains the box (p + 1, q + 1), and h(b)
denotes the hook-length of b in λ. There are exactly p + q such boxes b,
namely

(p+ 1, j), 1 ≤ j ≤ q; (i, q + 1), 1 ≤ i ≤ p.

Therefore, there is a product of p + q factors of the form k/(k + 1), where
k = 1, 2, . . .. Each of the factors is greater or equal to 1/2, and the entire
product is not less than 2−(p+q). This provides the required estimate.

Step 2 . Let us prove that M̃z(T (p, q)) = 0 for every fixed p, q ∈ Z≥0 with
p+ q > 0. Denote by T ′(p, q) the set of those paths τ ∈ T (p, q) that are not
contained in the smaller set T (p−1, q)∪T (p, q−1). It suffices to prove that

T ′(p, q) has measure 0 with respect to M̃z.
Let µ be an arbitrary diagram in Γ(p, q) that contains the boxes (p+1, q)

and (p, q + 1), set m = |µ|, and denote by T (p, q;µ) the set of paths τ ∈
T (p, q) with τm = µ. By the very definition ofT ′(p, q), for any path τ =
(τn) ∈ T ′(p, q) there exists a number n such that the diagram τn contains the
boxes (p + 1, q) and (p, q + 1). Consequently the set T ′(p, q) coincides with
the union of the sets of the form T (p, q;µ). Since there are countably many
such sets, it remains to prove that each of them has measure 0.

It will be convenient to look at the measure M̃z as describing a growth
Markov process with the transition function pz(λ, ν). Set

pn = Prob{τn+1 ⊂ Γ(p, q) | µ ⊆ τn ⊂ Γ(p, q)}.
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The measure of the set T (p, q;µ) coincides with the probability of the event
τm = µ, multiplied by the product of the conditional probabilities

∏
n≥m pn.

By virtue of step 1, we have

pn ≤ 1− ε

n

so that
∏

n≥m pn = 0.

Proof of disjointness

Fix two distinct numbers z1, z2 in the upper half–plane =z ≥ 0, which are not
integers. We will prove that the spectral measures Pz1 and Pz2 are disjoint
— this is the claim of Theorem 12.2.

By virtue of Proposition 12.4, it suffices to prove that the corresponding
Gibbs measures M̃z1 and M̃z2 are disjoint. To simplify the notation, we

set M̃1 = M̃z1 , M̃2 = M̃z2 . We also denote by {M (n)
1 } and {M (n)

2 } the
corresponding coherent systems.

Recall that if z ∈ C \ Z, then the measure M
(n)
z has nonzero weights

M
(n)
z (λ) for all λ ∈ Yn, and we have an explicit formula for M

(n)
z (λ), see

(11.2). Our arguments substantially rely on this formula.
Introduce a sequence gn(τ) of functions on T ,

gn(τ) =
M

(n)
2 (τn)

M
(n)
1 (τn)

, n = 1, 2, . . . , τ = (τn) ∈ T .

Let X be the set of paths τ ∈ T such that the sequence (gn(τ))n≥1 converges,
as n→∞, to a finite nonzero limit. This is a Borel subset of T .

Lemma 12.6. We have M̃1(X) = M̃2(X) = 0.

Proof. We shall show that X is contained in the union of the sets T (p, q), so
that the claim will follow from Proposition 12.5.

Denote by ck(τ) the content of the kth box τk \ τk−1. From (11.2) we get

gn(τ) =
n∏
k=1

∣∣∣∣z2 + ck(τ)

z1 + ck(τ)

∣∣∣∣2 |z1|2 + k − 1

|z2|2 + k − 1
.

Therefore, X consists of those paths τ for which the infinite product

g∞(τ) =
∞∏
k=1

∣∣∣∣z2 + ck(τ)

z1 + ck(τ)

∣∣∣∣2 |z1|2 + k − 1

|z2|2 + k − 1
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converges. In particular, the kth factor in the product should go to 1. Since
the second fraction in right–hand side converges to 1, as k →∞, we conclude
that

lim
k→∞

∣∣∣∣z2 + ck(τ)

z1 + ck(τ)

∣∣∣∣2 = 1, τ ∈ X.

It follows from our assumptions on z1, z2 that the equality |z2 + c|2 =
|z1 + c|2 may hold for at most one real number c. Indeed, this equation on
c describes the set of points c that are equidistant from −z1 and −z2. Since
z1 6= z2, this set is a line in the complex plane C, which cannot coincide with
the real axis R, because z1, z2 are both in the upper half–plane. Thus, the
line is either parallel to R (then there is no real c at all) or intersects R at a
single point.

Now, we fix an arbitrary integer c such that∣∣∣∣z2 + c

z1 + c

∣∣∣∣2 6= 1.

For any τ ∈ X, the existence of the limit above implies that there is only a
finite number of integers k such that ck(τ) = c. This means that any path
τ ∈ X may contain only a finite number of boxes (p, q) on the diagonal
q − p = c. Therefore, τ is contained in some subset of type T (p, q), which
completes the proof.

Lemma 12.7. Let Ã and B̃ be two Gibbs probability measures on T and
{A(n)}, {B(n)} be the corresponding coherent systems. Assume Ã ≤ const B̃

and let f(τ) denote the Radon–Nikodým derivative of Ã with respect to B̃.
Assume further that B(n)(λ) 6= 0 for all n and all λ ∈ Yn. Then

lim
n→∞

A(n)(τn)

B(n)(τn)
= f(τ)

for almost all paths τ = (τn) ∈ T with respect to B̃.

Proof. Let T [n] denote the set of finite paths in Y going from ∅ to a vertex
in Yn. There is a natural projection T → T [n] assigning to a path τ its
finite part τ [n] = (τ0, . . . , τn). Notice that the infinite path space T can be
identified with the projective limit space lim←−T

[n].

Denote by Σ[n] the finite algebra of cylinder subsets with the bases in
T [n]. The algebras Σ[n], n = 1, 2, . . . , form an increasing family generating
the sigma-algebra Σ of Borel sets in T .
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Consider the probability space (T ,Σ, B̃). The function f is bounded and

B̃–measurable. Hence, by the martingale theorem (cf., e.g., Shiryaev [110,
Ch. VII, Section 4, Theorem 3],

lim
n→∞

E(f | Σ[n]) = f.

almost everywhere.
On the other hand, let A[n] and B[n] be the push–forwards of the measures

Ã and B̃ taken with respect to the projection T → T [n]. The conditional
expectation E(f | Σ[n]) is nothing but the function

fn(τ) =
A[n](τ [n])

B[n](τ [n])
.

Since Ã is a Gibbs measure, we have

A[n](τ [n]) =
1

dim τn
A(n)(τn),

and similarly

B[n](τ [n]) =
1

dim τn
B(n)(τn) .

It follows

fn(τ) =
A(n)(τn)

B(n)(τn)
,

and the proof is completed.

Now we are in a position to show that the measures M̃1 and M̃2 are
disjoint. Set Ã = M̃1, B̃ = (M̃1 + M̃2)/2. Then Ã ≤ 2B̃ and hence the

Radon–Nikodým derivative of Ã with respect to B̃ is well defined. Denote
it by f(τ). We have 0 ≤ f(τ) ≤ 2. The measures M̃1 and M̃2 are disjoint if
and only if f(τ) takes only two values 0 and 2, almost surely with respect to

the measure B̃.
On the other hand, by virtue of Lemma 12.7, f(τ) is B̃–almost surely the

limit of the functions fn(τ). Let Y be the set of those paths τ for which the
limit of fn(τ) exists and is distinct from 0 and 2. Observe that

fn(τ) =
A(n)(τn)

B(n)(τn)
= 2

M
(n)
1 (τn)

M
(n)
1 (τn) +M

(n)
2 (τn)

= 2

(
1 +

M
(n)
2 (τn)

M
(n)
1 (τn)

)−1

=
2

1 + gn(τ)
.
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Consequently, Y coincides with the set of those paths τ for which gn(τ) has

a finite nonzero limit, that is, Y = X. But M̃1(X) = M̃2(X) = 0 by virtue

of Lemma 12.6. Hence, B̃(Y ) = B̃(X) = 0, so that f(τ) is 0 or 2 almost

surely with respect to B̃.
This completes the proof.

Exercises

12.1. Let us say that a path τ = (τn) ∈ T is regular if the sequence of its
vertices τn converges to a point of Ω in the sense of Definition 6.15. That is,
1
n
ωτn → ω ∈ Ω or, equivalently, the limits (6.18) exist.

Prove that the regular paths form a Borel subset in T .
Prove that any Gibbs measure on T is concentrated on the subset of

regular paths.

13 Notes

Section 1. Symmetric group representations

Almost all the material of this section is standard (the only exception is Defi-
nition 1.7). We have chosen as the main reference Sagan’s book [107], but the
reader may also consult other textbooks and monographs, e.g., Ceccherini-
Silberstein, Scarabotti, and Tolli [29], Fulton and Harris [42], James and
Kerber [57], Simon [111], Vinberg [129], Zelevinsky [135].

Section 2. Theory of symmetric functions

There are several excellent treatments of symmetric functions available in the
literature, see e.g. Macdonald [72], Stanley [113], Sagan [107]. We mostly
followed Macdonald [72] in our brief exposition.

Section 3. Coherent systems on the Young graph

The notions discussed here originated in the works of Thoma [117] and Ver-
shik and Kerov [121], [122], [124], [125], [126], [63]. In the papers of Vershik
and Kerov, the entries of the stochastic matrices Λn

n−1 are called cotransition
probabilities. In combinatorics, the Young graph is often called the Young
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lattice. The properties of the Young graph Y indicated in Exercise 3.1 are
related to the fact that Y is a differential poset (see comments in Stanley
[113, p. 499]).

Section 4. Extreme characters and Thoma’s theorem

The description of extreme characters given in Corollary 4.2 is due to Thoma
[117]. The idea to establish first the integral representation theorem for gen-
eral characters and then obtain Thoma’s theorem as a corollary was realized
in the paper [64] by Kerov, Okounkov and Olshanski.

The multiplicativity property of the extreme characters of S(∞) was dis-
covered by Thoma, but the proof that we give is due to Kerov and Vershik
[69]. Some details (omitted in that paper) were communicated to one of us
by Kerov and were later included in the paper of Gnedin–Olshanski [45].

The multiplicativity property for extreme characters and extreme spheri-
cal functions of “big groups” is a general phenomenon, which can be explained
in various ways. See the survey paper Olshanski [89].

The construction described in Exercise 4.5 (generation of extreme char-
acters by making use of the comultiplication in Sym) is due to Kerov [59];
his idea was exploited in [45].

Section 5. A toy model (the Pascal graph) and de
Finetti’s theorem

A different approach to de Finetti’s theorem 5.2 can be found in Feller’s
textbook [39, Chapter VII]. Feller also explains a close connection between de
Finetti’s theorem, the Hausdorff moment problem, and classical Bernstein’s
polynomials. In our view, this connection can be best explained via the
Pascal graph.

What we called de Finetti’s theorem is actually its simplest version. In
its full generality, de Finetti’s theorem deals with general product spaces X∞

(for instance, X is R or an arbitrary Borel subset of R), and it establishes
a bijection between S(∞)–invariant probability measures and arbitrary ran-
dom probability measures on X. See, e.g. Hewitt and Savage [56], Aldous
[3].

One way of generalizing Theorem 5.1 is to keep Z2
≥0 as the vertex set

but equip the edges with (possibly formal) multiplicities, which results in a
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deformation of the harmonicity equation. Examples can be found in Kerov
[63, Chapter 1, Section 2], Gnedin–Pitman [50], Gnedin–Olshanski [46]. The
boundary of such graphs substantially depends on the concrete choice of
multiplicities.

One of Kerov’s examples in [63, Chapter 1, Section 2] is the q-Pascal
graph. As explained in Gnedin-Olshanski [47], it is related to a q-version of de
Finetti’s theorem. This subject was further developed in Gnedin-Olshanski
[48], [49].

Section 6. Asymptotics of relative dimension in the
Young graph

The material related to the shifted Schur functions and the algebra Sym∗

of shifted symmetric functions is taken from Okounkov–Olshanski [80] (for
further development of the subject see Olshanski–Regev–Vershik [97], [98]).

Shifted symmetric functions in the row coordinates λ1, λ2, . . . of Young
diagrams λ ∈ Y appeared in Olshanski [83] and [88], while supersymmetic
functions in the modified Frobenius coordinates of λ originated in Vershik–
Kerov [122]. The remarkable fact that both kind of functions are actually
the same was observed in the note Kerov-Olshanski [65]. That note also
contained the definition of the algebra A.

Note that in [65], shifted symmetric functions were called quasi-symmetric
functions; unfortunately, at that time the authors did not know that this term
was introduced earlier by Gessel and had a different meaning.

In the classical representation theory of finite groups, irreducible char-
acters are usually regarded as functions on a group or, which is essentially
equivalent, on the set of its conjugacy classes. In the asymptotic approach of
Vershik–Kerov [122], the picture is reverted, and the normalized irreducible
characters are regarded as functions on the set Y of Young diagrams λ (the
representation labels). This approach is at the heart of our proof of Thoma’s
theorem; only we prefer to deal with the relative dimension instead of the
normalized character. The two quantities are closely related, see Okounkov–
Olshanski [80].

Quite different proofs of Thoma’s theorem were given in Okounkov’s dis-
sertation (see [78] and [79]) and in recent paper [26] by Bufetov and Gorin.

The idea of reverting the character table of symmetric groups was pushed
further by Kerov and led to a series of works devoted to the study of the so-
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called Kerov character polynomials, see Féray [40] and references therein.

Section 7. Boundaries and Gibbs measures on paths

A number of references have already been given in Section 7; here are some
additional comments.

The key ideas of the general formalism discussed in Section 7 can be traced
back to Dynkin’s work on the entrance and exit boundaries of Markov pro-
cesses, see [35] and references therein. Other important sources are Diaconis–
Freedman [32] and Kerov’s dissertation [63], which contains a survey of earlier
works by him and Vershik. In our presentation we follow our papers [21],
[24], where this formalism is applied to constructing Markov processes on
limit objects.

About the Martin boundary for Markov chains, see e.g. Sawyer’s survey
paper [108] and references therein; note, however, that Sawyer writes about
the exit boundary while we are dealing with the entrance boundary.

The original version of the Kolmogorov extension theorem [71, Chapter
III, Section 4] deals with probability measures on product spaces of the form
RN , where N is an arbitrary index set. This theorem and its refined ver-
sions are presented in many textbooks, see e.g. Bogachev [5, Section 7.7] or
Parthasarathy [100, Chapter V]. In Bochner’s theorem (Bochner [6, Theorem
5.1.1], Parthasarathy [100, Chapter V]), product spaces are replaced by more
general projective limit spaces.

Exercises 7.2 – 7.5 are taken from Kerov [63, Chapter 1, §§2–3]. The
graph of compositions (Exercise 7.8) is studied in Gnedin [43]. The notion
of multiplicative graph (Exercise 7.7) is due to Vershik and Kerov, see their
paper [126].

Here is a list of works containing the computation of the boundaries of
various graded graphs, which are somewhat related to our main examples
(Pascal, Kingman, Young):

(a) Kerov [63, Chapter 1, §4] and Gnedin–Pitman [50] (Stirling triangles);
Gnedin–Olshanski [46] (Euler triangle); Gnedin–Olshanski [47] (q-Pascal);

(b) Kingman [70] (the Kingman graph); Gnedin [43] (the graph of com-
positions, a suspension over the Kingman graph);

(c) Goodman–Kerov [51] and Gnedin–Kerov [44] (Young–Fibonacci, a
curious relative of the Young graph); Gnedin–Olshanski [45] (the graph of
zigzags, also known as subword order; its boundary is a suspension over that
of the Young graph); Kerov–Okounkov–Olshanski [64] (the Young graph with
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formal Jack edge multiplicities); Borodin–Olshanski [23] (a graded poset with
a continuous scale of levels, which serves as an intermediary between the
Young graph and the Gelfand–Tsetlin graph).

A new formalism related to boundaries of graded graphs is developed in
Vershik’s papers [118], [119], [120].

Section 8. Preliminaries and Gelfand pairs

About generalities on unitary representations see e.g. Dixmier [33]. The
literature on Gelfand pairs is immense; finite Gelfand pairs are considered in
the monograph [28] by Ceccherini-Silberstein, Scarabotti and Tolli. Defini-
tion 8.13 is taken from Olshanski [87]. Recent Neretin’s paper [76] provides
a surprising example of a Gelfand pair (G,K) in which G is an infinite-
dimensional group and K is a finite-dimensional noncompact Lie group. The
observation stated as Proposition 8.19 was made in Olshanski [84]. In a
wider context, a correspondence between certain factor representations of
S(∞) and certain irreducible representations of S(∞)× S(∞) is established
in Vershik–Nessonov [127].

Section 9. Classification of general spherical type rep-
resentations

About general facts regarding direct integral decomposition of unitary rep-
resentations see Dixmier [33].

Section 10. Realization of irreducible spherical repre-
sentations of (S(∞)× S(∞), diag(S(∞))

Our exposition in this section follows Olshanski’s paper [85]. We have al-
ready pointed out in the Introduction that our realization of the irreducible
spherical representations T ω was obtained by a modification of a construction
due to Vershik and Kerov [121]. The same construction with infinite tensor
products was sketched in Wassermann’s dissertation [132] (it is not cited in
[85] because Olshanski received a copy of [132] from Robert Boyer in 1991,
after the paper [85] was published).

As explained in [85], one can define a reasonable category of unitary rep-
resentations of the group S(∞)×S(∞), which are well behaved with respect
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to restriction to the subgroup diag S(∞); they are called admissible represen-
tations of the pair S(∞) × S(∞), diagS(∞)). All spherical representations
are admissible. Irreducible admissible representations admit a complete clas-
sification, see Olshanski [85] and Okounkov [78], [79]. A refinement of the
infinite tensor product construction provides an explicit realization of the
irreducible admissible representations (see [85]) and so does Okounkov’s con-
struction (see [78], [79]).

The notion of infinite tensor product of Hilbert spaces with a distin-
guished stabilizing sequence of vectors is due to von Neumann [77]. We used
an obvious extension of the conventional definition to Z2-graded (=super)
Hilbert spaces. About the basics of linear super algebra see e.g. Manin [73,
ch. 3].

The construction of Exercise 10.2 is due to Vershik and Kerov.

Section 11. Generalized regular representations Tz

Our exposition follows the paper [67] by Kerov, Olshanski, and Vershik (its
announcement was published much earlier as [66]).

Section 12. Disjointness of representations Tz

Here again we closely follow Kerov–Okounkov–Olshanski [67]. As we pointed
out in the end of the Introduction, the spectral decomposition of represen-
tations Tz was described in Borodin–Olshanski [9] (for z ∈ C \ Z — the
nondegenerate case) and in [67] (for z ∈ Z — the degenerate case).
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