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7. Unitary representations of infinite-
‘dimensional pairs (G, K) and the
formalism of R. Howe

G. 1. OL'SHANSKII

Introduction

In this article we study the unitary representations of infinite-
dimensional classical groups. The following problems are examined:
the construction of unitary representations, proof of their
irreducibility, pairwise non-equivalence, decomposition of tensor
products, continuity of the representations in appropriate group
topology, calculation of spherical functions, approximation of
irreducible unitary representations 7 of a given infinite-dimensional

group G by irreducible unitary representation 7, of the

corresponding finite-dimensional classical groups G(n). The main
ideas and results were briefly given in the notes [22], [24].

1. (G, K)-PAIRS

At present it is not clear whether there exists a unique “correct”
answer to the question: “What are infinite-dimensional classical
groups?” It is not excluded that different problems require different
definitions. In this article we have adopted the following approach.
By an infinite-dimensional classical group G we mean simply the
inductive limit

D G{n)

n= |

of finite-dimensional classical groups G{n) and discuss the possibility
of a transition to a wider topological group only after a definite stock
of representations has been obtained.

269
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A second, more important idea consists of the fact that we are
studying not simply some group G or other, but the pair (G, K ) where
K< G. The subgroup

T K= G K{n)

=

is distinguished by an involution and is destined to play the role of
the maximal compact subgroup. It plays an important part in the
definition of the “reasonable” representations of the group G, and
hence there is some sense in talking about the representations of the
pair (G, K ).

The (G, K )-pairs enumerated in the Tables 7.1 and 7.2 are
obtained as follows from the list of classical Riemannian symmetric
spaces. It is assumed that {G(n)/K(n}} is one of the classical series of
symmetric spaces of compact or non-compact type while the
embeddings G(n)— G(n+1) and K{n)— K(n+1) are similar to the
embeddings GL(n,R)~> GL{n+1,R) and SO(n)—SO(n+1).
Embeddings of the type SO(2")— SO(2"*") are not examined in this
article.

TABLE 7.1. Pairs (G, K) of finite rank p=1,2,...

G (non-compact type) G {compact type) K

SO, p, ) SO(p+ =)= 80() SO(p) % SO}
U(p,) U(p+ o)= U(w) U{p)x U{=)
Sp{p,®) Spip+ o) =5p(«) Spip)x Sp{=)

The symbols of the groups G and K are selected in such a way that
after formal replacement of the sigh « by n, we get G(n) and K(n).
For example

SO4p, ©)= U S0(p, n), SO(=)= U SO(n), U(2x)=U U(2n).
"= | N=| =1

In each row of the tables there are two pairs (G, K ) with the common
subgroup K. Naturally they are called pairs of non-compact and
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compact type, since the corresponding spaces G(n)/K(n) are
symmetric spaces dual to one another of non-compact and compact
type. In Table 7.1 are given those pairs for which the rank of the
symmetric space G(n)/K(n) does not change as n— ©, and in Table
7.2 those pairs for which rank (G(n)/K(n))—~ .

TABLE 7.2. Pairs (G, K) of infinite rank

Symbol G (non-compact type} G (compact type) K

(R) GL' (=, R) U(w) SO()

(C) GL(»,C) U(e0) x U(0) U(=)

(H) GL(%, H) U{2) Sp(e)

(R} SO, ) $O(200) SO(0) X $O(=0)
(R,) Spi=, R) Sp(e) U(w)

{C,) SO(e, C) SO(0) x SO{») SO(e0)

(C.) Sp(w, C) Splee) X Sp(e0) Sple)

{Cy) U{e, o) U(2w) U(ee) x U{w)
(H,} Sp(eo, o) Sp{2e0) Sp{oo) x Sp(eo)
(H.) $0%2x) SO(2x) Ufe)

2. THE LANGUAGE OF ADMISSIBLE REPRESENTATIONS

DEFINITION, A unitary representation of the group SO(%), U{) or
Sp(e) is called tame f it is continuous in the group topology in which
the descending sequence of subgroups of the type

E

constitutes a fundamental system of neighbourhoods of the identity.
Any tame representation is a discrete direct sum of irreducible
representations, the set (of equivalence classes) of irreducible tame
representations is countable and all of them may be realized in tensor
spaces. These properties of tame representations make them similar
to the representations of the compact groups SO(n), U(n) and Sp(n).
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The definition of tame representations easily extends to all groups
K from the Tables 7.1 and 7.2. The following definition separates
from the vast category of all unitary representations of a group G a
certain “reasonable” subcategory.

DeriNiTiON.  Any unitary representation of the group G whose
restriction to K is a tame representation is called an admissible
representation of the pair (G, K ).

Admissible representations of pairs of finite rank were investigated
in the articles [20], [25]. It was found that there exists a continuum of
irreducible admissible representations and all of them may be
explicitly constructed. The restriction of any irreducible admissible
representation to K has a finitely multiple discrete spectrum. An
arbitrary admissible representation generates a von Neumann algebra
of type I and decomposes, in essence, uniquely into irreducible
admissible representations.

This article is devoted to the more difficult case of pairs of infinite
rank. Here it is also possible to say a lot about the admissible
representations, but the problem of their complete classification
remains open. In connection with the definitions given above we
observe the following:

(1) If (G, K} is one of the pairs of compact type {(of infinite rank),
then any tame representation of the group G is obviously an
admissible representation of the pair. However, only a very small part
of all admissible representations is obtained in this way.

{2) The categories of admissible representations for the pairs
(G, K) of compact type with one and the same group G but different
subgroups Kt intersect only in tame representations (section 20.17).

(3) On the contrary, if we compare the pairs (G, K) with the
common subgroup K (i.e., dual pairs occurring in one and the same
row of Table 7.2), then a definite similarity is observed in the
behaviour of their admissible representations.

$1f{G, K) is a pair of compact type from Table 1, then its admissible representations
are exhausted by the tame representations of the group G. In this situation K is needed
only for the theory of spherical functions; hence, while discussing pairs of finite rank,
we shall have in view only pairs of non-compact type.

$For example, it is possible to distinguish three subgroups K:5O(=), U(=0)x U/(e0}
and Sp(%), in one and the same group G= U(w)=U(2® ).



INTRODUCTION 273

(4) There are other pairs (G, K) for which there exists an
interesting theory of admissible representations: (a) pairs where G/K
is a symmetric space of zero curvature (the case of finite rank is
discussed in [20], but the case of infinite rank is equally interesting);
(b) two “non-symmetric pairs” (SO(2 + 1), U(e)) and (U(2% + 1),
Sp(=0)); (c) certain pairs connected with the infinite symmetric group
S(0) (see [24], [46]).

3. THE POSSIBILITY OF COMPLETION OF INDUCTIVE
LIMITS

Any tame representation of the group SO(e), U() or Sp(e0) admits
a continuous extension to the group of all unitary operators
(respectively, real, complex or quaternion) endowed with the weak or,
what is the same thing, strong operator topology. Conversely, any
continuous unitary representation of this topological group arises
from a tame representation of the corresponding inductive limit. An
analogous fact is true also for admissible representations of groups of
pseudounitary operators SO, p,), U(p,®), Sp(p,)[25].

‘In the case of (G, K }-pairs of infinite rank, the situation is more
delicate: it turns out that all admissible representations (constructed
in this amcle) may be extended to a certain complete topological
group G. The group G contains G (or its appropriate covering} as a
dense subgroup; it contains also the completion K of the group K
according to the weak-strong operator topology; topology in G/K is
given by the Hilbert-Schmidt norm. For example, in the case
(G, K)=(U(0), SO(=0)), it is necessary to take the group of all
complex unitary operators gsuch that g(g)~' — 1 is a Hilbert-Schmidt
operator; in the appropriate topology this group possesses a universal
covering with the fibre Z; this covering is just G

4, HOLOMORPHIC EXTENSIONS OF TAME
REPRESENTATIONS

A peculiar analogue of H. Weyl’s unitary trick is effective for all tame
representations of the groups K from Table 7.2. A certain group
K*> K, which is isomorphic to U{) or to a product of some copies
of it, acts as a complexification of the group K. For example, if K is
SO{), U(0) or Sp(=0), then K*is respectively U(w), U{e)x U()
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or U(2e0)= [J(x). In the class of tame representations of the group
K* a certain subclass of representations called holomorphic is
distinguished. The “unitary trick” consists of the fact that any tame
representation p of the group K coincides with a restriction of the
uniquely defined holomorphic representation o* of the group K * the
latter generates the same von Neumann algebra and is called the
holomorphic extension of the representation p. Thus the category of
tame representations of the group K is equivalent to the category of
holomorphic tame representations of the group K *

We observe that an analogous result is true also for the admissible
representations of the groups SO,(p, ), U(p,) and Sp{p,){25].

5. MAINMETHOD

Let (G, K) be one of the pairs of infinite rank and 7T be one of its
admissible representations in Hilbert space H. Let us study the group
G of unitary operators in H generated by the representation T and
the holomorphic extension o* of the tame representation o= T}K,
and let us denote by T*its identical representation in H; then T and
T* generate identical von Neumann algebras. Any time when it is
necessary to prove the irreducibility of a certain concrete
representation T or to decompose it into irreducible components, we
may replace it by T* This method is extremely effective, since in
many respects the structure of 7*is more simple than that of T. For
example, if T is irreducible, then T* will in a specific sense be the
representation with the highest weight. Here it is also important that
in concrete situations it is possible to describe the group G,*
explicitly. For example, for the irreducible representations T of the
pair {GL*(o0,R), SO(e0)) given in this article, it is the product of a
finite number of copies of the group Sp(e,R). (The method
described works also for pairs of finite rank; see [25).)

An important role in our theory is played by the Weil
representation W of the group Sp{e, R), the spinor representation §
of the group SO(2) and allied representations of some other
classical groups; the representations 7* are described in terms of
these. For our purposes, it is necessary to be able to decompose
tensor powers W®* and §®*, This problem is solved by the method
suggested by R. Howe [9}.
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6. CURRENT GROUPS

Although G,* depends considerably on 7, for each pair (G, K) it is
possible to define a certain universal group G* serving dll the
admissible representations T constructed in this article, in the sense
that T*may always be considered a representation of this group. It
turns out that G*is a certain group of currents on the real line. For
example, for the pair (GL*(%,R), SO(x)), we get a group of
functions on R with values in Sp(«,R), and for the pair (U{),
SO(=)) we get a group of functions on R which within the segment
[—1, 1] take values in the group Sp(®), outside it, in the group
Sp(e0, R), and at the end points * 1, in their common subgroup U{<o)
{see sections 12.5 and 20.13).

We again get a kind of unitary trick: the category of admissible
representations of any of the pairs (G, K ) constructed in this article is
equivalent to the category of “holomorphic representations” (it is
possible to say further: “representations with the highest weight™) of
the corresponding group G *

7. -THE LINK WITH THE THEORY OF FACTOR
REPRESENTATIONS

The programme of study of the representations of inductive limits
given in this article is not the only one possible. There is another
approach conceptually linked with the theory of operator algebras,
which has already led to a series of important results (see [2},[5],[31],
[32], [36-40]). In this approach, the main objects are not irreducible
representations, but factor representations.

There is a remarkably close relation between both theories. It is
based on the following simple observations: whatever be the group ¥,
the set of the quasi-equivalence classes of its factor representations of
type II, is in natural bijection with the set of equivalence classes of
the infinite-dimensional spherical representations of the pair
(¢x ¥, %)% In particular, to any character x(g) on ¥ corresponds the
spherical function @(g,, 8&)=x(8& 'jon¥x 4.

tWe keep in mind the irreducible unitary representations of the group ¥x¥
possessing a nonzero vector invariant with respect to the diagonal subgroup ¥; such a
vector is unique to within a factor.
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It is evident from here that II,-representations of the groups
SO(), U{x), Sp() (or of the group S§(w)) and spherical
representations of the corresponding pairs (K X K, K ) are, in essence,
one and the same; it is important also to emphasize that the spherical
representations are automatically admissible. More than that, even
some other (semifinite) factor representations may be interpreted as
irreducible admissible representations.

This link between the two theories is very useful. It may be used in
two ways: the classification of characters obtained in [2] and [37]
provides a classification of spherical functions; conversely, our results
help in making more precise the realization of factor representations.

8. STRUCTURE OF THE ARTICLE

The first two Parts give the preliminary material. In Part I, the
properties of tame representations are given and explicit
decomposition of certain representations connected with Gaussian
measure are obtained. Weil representations of the groups Sp(«,R)",
U(o0,00}™ and SO *2 ) are constructed in Part II. They are realized
it boson Fock spaces. The decomposition of their tensor powers is
obtained with the help of R. Howe’s formalism.

Part 111, devoted to (G, K )-pairs of non-compact type, occupies a
central place in the article. A one-parameter family {T} of
“fundamental” admissible representations is constructed for each
such pair. The representations 7, are very simply realized in the
spaces [(FXFx ..., u), where Fis R, C or H, and u indicates a
Gaussian product-measure. A decomposition of tensor products of
the type T5,® ... ®T;, is found with the help of the method
described above. As a result we get a continuum family of irreducible
admissible representations. Among them there are many spherical
representations; the corresponding spherical functions are explicitly
calculated. For the constructed irreducible representations,
irreducible unitary representations of the groups G(n) approximating
them are found; these are the representations from the degenerate
principal unitary series in the sense of Gelfand~Naimark.

In Part IV these results (except the last) are transferred to (G, K -
pairs of compact type, where considerations of analogy play a
decisive role. In the compact case, the theory becomes more
complicated and interesting: already there is no simple realization of
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representations in terms of Gaussian measure; spinor representations
are used along with Weil representations; it is possible to construct
not only finite but also infinite tensor products of fundamental
representations.

Part V gives a few constructions for general inductive limits
G= U G(n): an analogue of the functional equation for spherical
functions; the existence of approximations 7,— T for any T€G
(where T,€G(n)); a certain correspondence between the factor
representations and irreducible representations.

The section “Commentaries” gives bibliographic notes.t

9. CERTAIN PROBLEMS

ProBLeM 1. Is it true that in this article all the irreducible admissible
representations of (G, K }-pairs of infinite rank have been found?

For certain (G, K }-pairs, the affirmative answer is obtained in the
particular case of spherical representations, see [2],[37],[15], [44].

ProsLEM 2. Is it true that any admissible representation generates a
von Neumann algebra of Type I?

This is proved for SO, (o, ®), U(w, ), Sp(wo, ) [44] and for
certain (G, K )-pairs associated to the infinite symmetric group (o)
[24],[46].

ProsLem 3. To construct an approximation of representations of the
pairs of compact type in analogy with the non-compact case (§14).

For the characters of the group U(e0) (or, which is the same, for the
spherical representations of the pair [U(w)x U(w), U(®)]), the
problem of approximation was solved by A. M. Vershik and S. V.
Kerov {37].
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PART I

TAME REPRESENTATIONS OF THE GROUPS
$0(0), U(=0)}, Sp()

§1. Basic definitions and notations
1.1

We always denote by F any of the fields R, C or the skew field H of
quaternions.

x+ X is the standard involution {conjugation}in F.

We write the skew field H as C®Cj, where j is taken from the
standard R-basis {1, j, X} in H. We observe that jzj~!'=7 for all
7€C.If x=x' + x¥); EH where x', x*€C, then X= &' — x?j.

1.2

The space of all matrices over F with k rows and » columns 1s
denoted by F* " In particular, F'-" and F" ' are spaces of row vectors
and column vectors respectively.

For x€ F*" we define x€ F**, x’€ F**and x *&€ F"* as follows:

(f)ij = ff,as (x’):}' =Xji» (x *):‘j = Xji-

The mapping x—x* is an involutory antiautomorphism of the ring
F.H'. H.

We denote by F** the space of all matrices over F with k rows and
a countable number of columns,

1.3

We often use the following embeddings:

»

Rex Im x}

. CL. n_*RZk.Zn, =
N alx) [—Im x Rex

1 2
I 2k, In X X
ﬁ: Hk. _....C k, , ﬁ(x):[ .2 fIJ

x=x'+xjel”, x'ec*’, x'ec"").
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If k= n, then a and 8 are morphisms of involutory rings.

1.4

The unit matnix of order # is denoted by 1,; the unit matrix of infinite
order is denoted by 1,. E, denotes the matrix with coefficients
(Ejj)k;‘= ‘5;‘&6;‘:-

1.5
We define the mapping D:F"-"~R, as follows:

_du(xg)
d(&)

{here u is Lebesgue measure on F* '), Then

D{x)

Where ge FH. l’ xe Fn. n’

D(x)=|det x} for F=R,

D{x)=det a{x)=|det x| for F=C,

-

D(x}=det a{B(x)}=(detx) for F=H

(the last det denotes the Dieudonné determinant).

1.6

[*(F ) will denote the coordinate separable Hilbert space over F with
canonical basis e, e,..., F" denotes the subspace spanned by
€iyuenn .

The elements of the space /*(F) will be regarded as column
vectors. We shall denote the conjugate Hilbert space of row vectors
by L{F). In the case F=H, we assume that scalar quantities act in
[*(F ) on the right and in 4(F ) on the left.

1.7

The mark ~ indicates usually either a two-sheeted covering over a
certain group or the equivalence of unitary representations.
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1.8

If Tis a unitary representation of a certain group, then H(7T) always
denotes the corresponding Hilbert space. All unitary representations
act in separable complex Hilbert spaces.

We_ shall denote by T the conjugate unitary representation. If
H= H(T), then H(T) may be identified with H where H is obtained
from H by the automorphism z~ Z of the field of scalars C.

1.9

If Tis a unitary representation of a certain group G, then T{G) and
T(G) denote its commutant and bicommutant respectively. The
latter coincides with the von Neumann algebra generated by the
representation T.

1.10

If Uis a compact group, then U* denotes the set {of equivalence
classes) of its irreducible unitary representations.

1.11

Let T be a unitary representation of a certain group G. Let us
assume that in H(T) unitary representation R of a certain compact
group Uis given, and also that R and 7 commute. We shall say that U

is a symmetry groupfor Tif T(G)=R{UY.

1.12

Let 7 be a unitary representation of a group G with symmetry group
U. We denote by X the set of those m€ UA which occur in the
decomposition of the representation R of the group U. With any
7€ X, we associate the irreducible unitary representation T, of the
group G, which is realized in the space H(T,)=Hom(H(x), H(T)).
We have

R®T~ @ a®T,,

TEX

T~ @ (dim n)7,,

JtEX
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where R® T denotes the natural representation of the group UX Gin
H(T).

It is important to note that different representations s lead to
different {(non-equivalent) representations 7.

113

If T'is a unitary representation of a group G and H= H(T ), then we
denote by 7®* and H®* the k-th tensor power of the representation
T and the Hilbert space Hrespectively; H®*= H(T®*k=1,2,...).

1.14

Let T be a unitary representation of a group G. We assume that, for
any k=1, 2,. ., the representation 7®* possesses a symmetry group
U,. We denote by R, the corresponding unitary representation of the
group U, and by X, S U" the set of irreducible representations
occurring in its decomposition. Further, we assume that, for Kk,
{=1, 2,... there exists an embedding U, x U,—~ U,,, such that
the representation R,®R, of the group U, XU, in
H(T®Y )@ H(T® )= H(T®**%) coincides with the restriction of the
representation R, ,to the subgroup U, X U,.
Then, for all € X, 0€ X, we obviously have

L®L~ @ Nmol,

& Ak+

where N{t; 7, o) is the multiplicity of entry of the representation
a®oin (U, x U,)).

1.15

We shall constantly have to examine groups G that are inductive
limits of their subgroups G{n). This means that

G=U G(n), where Gu)SGn+1).

n=|

As G(n), we will have certain locally compact groups; G(n} will
always be a closed subgroup in G(n+ 1). The group G is endowed
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with the topology of the inductive limit. All unitary representations of
the group (; will always be assumed to be continuous in this topology.

1.16

Let G be the inductive limit of the groups G(n). We assume that for
each n a unitary representation 7T, of the group G(n) is given and an
isometric embedding H(T,)— H{T,, ,) commuting with the action of
G{n)are given.

Then in the Hilbert completion of the space

Y H(T))

there arises a unitary representation T of the group G uniquely
defined by

T(g)é=T1,(g)&, if g€ G(n) and £€ H(T,).

In this situation we shall call 7 the inductive limit of the sequence
(T4

If 7, enters T,,,|G(n) exactly once, then the only arbitrariness in
the selection of the embeddings H(7,)—~ H(T,. ) is the possibility of
multiplication by a scalar. The representation T does not depend on
this arbitrariness.

1.17

If the representations T, are irreducible, then even their inductive
limit 7 is also an irreducible representation. Let us prove this simple
assertion, following | 12].

We denote by P, the projector on H(T,)C H(T). Let A€ T(GY.
Then the operator P, A H(T)) lies in T,(G(n)) for ali n and, hence, is
a scalar. So A is a scalar operator.

Yet another proof is also possible. Let us select

g€ UH(T,

with €] = | and examine the function ¢(g)=(7T(g)§, &) on G. For any
n, the function @|G(n) is a non-decomposable positive definite
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function on G{n). So, @ possesses the same properties. As & is a
cyclic vector, T'is irreducible.

§2. Construction of irreducible tame representations of the
groups $O(), U(x), Sp(«)

2.1

We shall define the groups SO(e), U{), Sp(«) as inductive limits
of the groups SO(n), U(n), Sp(n) respectively (see section 1.15).
Unless otherwise stipulated, the letter K always indicates one of the
groups SO(), U(), Sp(w) and K(n) is its subgroup SO(n), U(n),
Sp(n) respectively.

2.2

Let us give a more accurate definition. First we realize K(n) as a
group of F-linear isometric operators in F"C [*(F ) {see section 1.6). If
F=C, H, then K(n) consists of all such operators; if F=R, it consists
of operators with det{- )= 1.

Then we regard K(n) as a certain group of operators in /*(F),
assuming that K(n) leaves invariant the basis vectors e,, |, €,,s,- ...
The embedding K(n)— K(n+ 1) is given by this. Finally, we shall get
K as the union of the groups K(n), n=1,2,....

Thus Kis a certain group of unitary operators in /*(F ).

23

The elements w&€ K can conveniently be considered as infinite
matrices: u=|u,|, 1<i, j<o. It is clear that u,=0, if i or jis
sufficiently large. Thus, the matrices u— 1, are, in essence, finite.

2.4

For n=1, 2,..., we shall examine a subgroup “complementary” to
K(n).

1, 0O
e . = . = 1 = -
K”{u K. Uue, €y, ’ ue, = ¢ } H:() *:”
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For m> n, we put K, (m)= K, N K{m). It is clear that

K.‘i'= U Kﬂ(m)9 Kﬂ(m)zK(m“n)’

wm>

Occasionally, instead of K, we shall write in more detail SO, (0},
U”(OO), ‘S‘pn(w)'

25

If T is a unitary representation of the group K, then H, (T) will
denote the subspace of all K -invariant vectors in H(T). It is clear
that H,(T)S H, . , (T ); we shall put

This is an algebraically invariant subspace in H(T).

2.6

Derinrrion.  The unitary representation 7 of the group K= S0(),
U(0), Sp(c0)is called tame, if H (T )is dense in H{T ).t
If Tis irreducible, then it is sufficient to demand that H, (T} # {0}.

2.7

Let V(4,,..., 4,) denote the irreducible unitary representation of the
group U(n) with the highest weight (4,,..., 4,).

Let A denote the set of all infinite sequences A={4,, 4,,...), for
which 4,, 4,,... are non-negative integers 4,24.2 ... and the
numbers A, are equal to 0 if {is sufficiently large.

For any A=(4,, 4,,...)€A, we define the irreducible unitary
representation o, of the group U(e) as the inductive limit of the
representations V(4,,..., 4,) of the groups U(n) (see sections 1.16,
1.17}). The correctness of the definition follows from the fact that, for
any n, the representation V(4,,..., 4,} enters V(4,,..., 4,, )U(n)
with multiplicity one.

+The definition given in the Introduction is equivalent to this. The proof is based on
the following fact: if the unitary representation of a group only slightly shifts a certain
vector £, then there is a fixed vector close to & (see the proof of theorem 20.17).
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2.8

We denote by o the identical unitary representation of the group
U{e0) in Hilbert space /*(C). For any m=1, 2, ..., there is a natural
action of the symmetric group S(m) in H{oc®")= H{0)®" s !
£®...®5,~8,® ..., (s€5(m)).

Lemma. For any m=1, 2,.. ., the group S(m) is a symmetry group
(see section 1.11) for the representation o®™ of the group {/().

Proor. The validity of the analogous statement for the identical
representation of the group U{n) in C"C/3C) is well known. To
derive our lemma from this, it is sufficient to prove that H (g®")
coincides with (C")®",

It is clear that the second space is contained in the first. To check
the inverse inclusion, it is necessary to observe that any basis vector
€,®...®¢ from H{o)®" is an eigenvector for the subgroup

DC U{oo) of diagonal matrices and that it is invariant with respect to
DNU, (w)ifand onlyif i, <n,..., i, <n

29

Corourary, Foranym=1,2,... we have
Sm .
g ~ ®) Aj+idz+ =m dlm[ll’*'-slm].pis
AEA

where [4,, .. ., 4] denotes the irreducible representation of the group
S{m) associated with the partition m=24,+ ... +4,,.

2.10

Corouiary, Let AEA. If nis so large that 4, ,=24,,.= ... =0,

then the subspace H,(0;) is nontrivial and coincides with
H(V(A,,....4,)).

2.11

COROLIARY. o, is a tame representation for all A& A. If 1# u, then
p; and p, are not equivalent.
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2.12

Sometimes it will be convenient to examine the group U(e) as an
inductive limit of the groups U(2n); in that case we shall denote it by
U(2). Similarly, the space [*(C) will be represented then as
I*(C)® I*(C); the group U{2<0) will act in it. For definiteness, it may
be assumed that /*{C)® /5{C) is identified with /*(C) by the mapping;:

(e, O)= e, (0, e)—er; (i=1,2,...)

The elements of the group U{200) will be written in the form of 2 X 2

matrices
a b
¢ dl’

where «, b, ¢, d are infinite matrices (or operators in /*(C)).

213

For K=S80(0), U(e), Sp(e), let us define the group K™ as U(o0)},
U{oo) X U(), U(2), respectively. Let us define an embedding
K= K *as follows,

In the case F=R, it is the identical mapping SO(e0)—~ U().

In the case F=C, it is the mapping g—(g, §).

In the case F=H, it is the mapping f (see section 1.3).

We observe that the automorphism g—g of the group U{®) (see
section 1.2) transforms any po,(A€A) into the conjugate
representation o;.

2.14

Let us define the representation p=p¥ o, ,, 0" of the group
K=S0(o), Uf{ew), Sp(w) as the restriction of the representation
4= p;, 0,®p,, p, of the group K™ respectively (here A, uEA). We
observe that p, ,=p,®0, and recall that U{20) is identified with
U() (see section 2.12), and hence p, may be considered as its
representation.

Let us define the subgroup KT K* as respectively U, (),
U (e0yx U, (), U, () (see the end of section 2.4). We denote by
H,(0*) the subspace of all K Finvariant vectors in H{o*).

It is obvious that H,(0)2 H,(0*). Hence p s a tame representation.
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2.15

Theorem.  The tame representations o of the groups SO(e}, U{o0),
Sp(e0), constructed in section 2.14, are irreducible. Moreover, the
different values of the parameter 4 (or the different pairs (4, u}) yield
nonequivalent representations.

This follows at once from theorem 2.17 (see below).

2.16

Dermnimion. A unitary  representation  of the group U{),
(U(o0) x U(eo) respectively), is called Aolomorphicif it is a direct sum
of any number of representations of the type p,, A€A (0,®p,
respectively, where A, uEA).

2.17

Turorem.  Let T*be an arbitrary holomorphic representation of the
group K* (see sections 2.16 and 2.13) and T=T*K. Then (see
section 1.9)

TIKy=THK*, TIKy=THK®Y.
In particular, if T*is irreducible, then Tis also irreducible.

Proor.  We examine only the case F=R, since for F=C, H the proof
is identical. Thus, K=S50(»), K*=U(®). We denote by T
(respectively I'*) the set of all operators in /-{R)(/*{C)) with norm <1
{see section }1.6).

I" and I'* are semigroups under multiplication. In addition, they are
involutory semigroups (i.¢., semigroups provided with an involution;
conjugation of the operators is such an involution). We shall consider
I" as a subsemigroup in I'*,

Let us topologize I and I'* by the weak operator topology and let
us note that Kis dense in I and K *is dense in ['™,

Let H=H(T* and T'(H) be the involutory semigroup of all
operators in H with norm < | topologized by the weak topology.

We observe that 7* can be uniquely extended to a continuous
morphism 1*: I'*—~1(H) preserving the involution. In fact, if this
assertion holds for a certain set of representations 7% then it holds
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also for their direct sum. Hence it is sufficient to examine the case
T*= %" where m=1,2,.... But for this case our statement can be
verified in a trivial way.

Similarly, 7 extends to a continuous morphism 7:I" = T'(H).

It is clear that T(K) ={I')",THK* = 1*I'*)". Hence it is
sufficient to check that (I") = r*{I'*).

We observe that I'* may be considered to be the unit sphere in the
Banach space B of all bounded operators in /*(C). Hence the
following definition makes sense. We shall say that a continuous
function f on T™ is holomorphic if, for any finite dimensional
subspace MC B, the function fis holomorphic (in the usual sense) in
the open unit sphere of the space M. It is evident that the space of
holomorphic functions on I'* is complete with respect to uniform
convergence.

We now observe that for any & n€H the function
fo () =(y)&, 1) is holomorphic on I'(y&Tl*). In fact this is
obvious if T*=0®" and & and » are basis vectors of the type
e,-l,® .. €. After this, it remains to use the completeness of the
space of holomorphic functions and the fact that | 7% y)|| < 1.

Let us assume now that H=H,@H, is a certain orthogonal
decomposition, invariant with respect to 7(I'). Then, for any §€ H,,
nE€ H,, we have f; Il =0. But as is easily verified, I" is a set of
uniqueness for holomorphic functions on I'*, It means f; ,=0. This
discussion shows that our decomposition is invariant with respect to
™(I'™). Hence 7{I") = *{I"*). which proves the theorem.

2.18

CoroLLARY. In the notations of theorem 2.17 and section 2.14, we
have: H (T)=H,(T*foralln=1,2, ....

In fact, K K* is isomorphic to the group K* and THKis its
holomorphic representation.

2.19

Remark. We shall denote by K the group of all Flinear unitary
operators in /% F). K is a topological group with respect to the weak
operator topology (which coincides on K with the strong operator
topology). The group Kis dense in K.
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It is evident that all the irreducible representations of the group X,
constructed in section 2.14 (just like the direct sums of such
representations) may be extended to continuous unitary
representations of the group K.

2.20

THeOREM. As usual, let K= SO(c0), U{o0), Sp(o).

(i) The irreducible representations of the group K, constructed in
section 2.14, exhaust all its irreducible tame representations.

(i) An arbitrary tame representation of the group K is a discrete
direct sum of irreducible tame representations.

(iii) The tame representations of the group K are precisely the
restrictions of the continuous unitary representations of the group X.

In fact, we shall not use these results. (i} and (ii) are proved in [20],
[25]; (ili) is easily proved by the methods given in [20] {see, in
particular, lemma 3.5 in [20]).

2.21

Derinmion.  We shall say that the unitary representation T* of the
group K*is a holomorphic extension of the tame representation T of
the group K if 7™ is holomorphic in the sense of definition 2.16 and
THK=T

The existence of the holomorphic extension follows from
statements (i) and (i) of theorem 2.20; however, for the
representations constructed in section 2.14, this is obvious. The
uniqueness of the holomorphic extension follows easily from theorem
2.17.

2.22

Remark. We see that the category of tame representations of the
group K and the category of holomorphic representations of the
group K *are equivalent.

We observe the following remarkable property of the holomorphic
representations. If T* is a holomorphic representation of the group
U{e), P, is the projector on H,(T*)C H(T* and T}is the natural
representation of the group U(n) in H,(T*, then
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P.THU()|H(T*=TXU(n) (n=1,2,...). (An analogous fact is
true also for the group U(e) X U(0).)

This shows that it is easier to solve the problem of the
decomposition of a given tame representation T of the group K if we
turn to the holomorphic extension T* For an example of such an
approach, see §4 (sections 4.6 and 4.7).

223

As in section 2.14, let p denote one of the representations of, 0,
generally speaking, is strictly less than H (o).

TueoreM. The representation o can be represented as the inductive
limit of irreducible representations o' of the groups K(n). The
representations 0" are uniquely defined to within a finite number of
the integers n. If n is sufficiently large, then the highest weight of the
representation o' is

(1112'2,""0) or (Als 129-"!09‘--90!—”2‘1—”1)

for F=R, H or for F=C respectively; moreover, 0’ enters into
p| K (n) exactly once.

This theorem is proved in [20]. In fact, we shall not use it.
2.24

Remark. The subspace H(o") lies in H,(p), but, generally
speaking, does not coincide with it. Moreover, the subspace

U H(p"),

H

generally speaking, is strictly less than H.(o).

§3. Fock space (boson case)

3.1

Let H be a complex Hilbert space; H be the conjugate Hilbert space
(section 1.8), U(H )= U(H ) be the group of all unitary operators in H,
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S™H) be the pre-Hilbert space which is an algebraic symmetric
tensor power of the space H, the scalar product in S”™(H ) is given by
~ the condition

IE® ... @I =(m)&|™ (€ H).

DerintmioN. By the Boson Fock space #F{H)=%*(H) over H we
mean the completion of the space C® H® S¥(H)® ...

A natural unitary representation of the group U{H) is defined in
FH)If H=H ® H,, then ¥ (H )=F (H,)®F(H,).

32

Let H be finite-dimensional. The #{H) may be identified with the
space of all entire functions f(§) on Hsuch that
2 def

IFl = 2 " "[IA(E) exp(— |EII")dE < + o,

where d§ is Lebesgue measure on H=[R?4mH,

Let us identify H with C*! (n=dim H) by using any orthonormal
basis. Then H=C'" and the identification map H— H is &~ &*. Let
2y, - - » 2, be canonical coordinates in C'”, Then the elements of the
space F(H) are entire functions f(z,,...,2,. The subspace
Clz;,... 2,] of polynomials is dense in F{H)=Z(C*') and the
monomials

-1/2 m, M,

(m,! - m,,!) Zy .y

form an orthonormal basis in F{C"'). The space F{C"') in this
concrete realization will be called the Bargmann-Segal space of the
variables z,, . . ., 7, and will be denoted by #(z,, . . ., 2,) or ¥ (C' ).

We shall denote the Bargmann-Segal space of the variables z,, ;
where 1 Sa<K,1<i<n by (C"or#(z, },ask i<n)

3.3

A canonical unitary representation T, of the group U(n) in
H(C!-"}is given as follows:

Tralu)f(z)= flzu),
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where
Z=(Zl, .o ouy ZH)ECL ”, = U(n), fe%(cl_u)=g-(q:n. ])-

This representation is the direct sum of the irreducible
representations V{(m, 0, ..., 0), m=0,1,...(seesection 2.7).

3.4

The Fock space #{/%(C)) may be identified with the compietion of
the space

U‘W(Zla ALY Zu);

n=|

the embedding #(z,, .. ., z,) > ¥#(z,,.. ., 2,.,) Is given by the fact that
any function of the variables z,,..., z, can be considered as a
function of the variables z,, . . ., z,, ;, not depending explicitly on z,,, .
The space of polynomials

Clzy, z,...J= U Clzy, .. ., 2]
= |

is dense in F{/%(C)).
Another important subspace in F{/*{C})is

U gt )= YU#(z, ... 2,)

n=| n=|

We shall call its elements cylindrical functions.

We observe further that #{/*(C)) may be identified with the tensor
product (in the sense of von Neumann [16]) of a denumerable
number of copies of the space F{C''). The function f,=1 is taken to
be the distinguished vector fj,€eF(C").

3.5

We shall call the space F(/%C)) the Bargmann-Segal space of the
variables 7,, Z,, . ... We shall denote it by #(z,, z,, ...}, F{L{C)) or
H(C'®). We shall denote the natural unitary representation of the
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group U() in #(z,, 2,,...) by T,.,. It is a tame representation,
equivalent to the direct sum of the representations o0, 4.0
{m=0,1,...). T,,, may be considered also as the inductive limit of the
representations T, " of the groups U(n). We observe that H, (T,,)
coincides with#(z,, . . ., Z,).

3.6

Let us introduce the operators M, and D;(1 <i< ) in the space
Clzy, 25, . . JTH(2,, 25, - . .) as foOllOws:

7
M f=zf, Dsf=3z'_f (fecl.zh Zayee))
It is easy to check that

(Mfﬁ! fi)=(f;s Diﬁ)a (l= 15 29 .. °; fla ﬁeC[ZI, 229 .. J)
[D,', M]=C§,),l (i,]=l, 2,...).
3.7
Consider the Lie algebra

8((, C)= Y glin, C).

n=|

There is a canonical basis {E,} (see section 1.4) in it. Let us define a
representation of the Lie algebra gl(, C}in C(z,, 2,, . . .| as follows:

E/~MD; (ij=1,2,...).

This representation is the differential of the representation T,
restricted to C[z;, 2, . . .)

3.8

The space F{(IHC)®I*C)) will be identified with the
Bargmann-Segal space of the varables z,2,..., Z;,2,.. and
denoted by (23,23, ... 21> 2 - - .))- The representation 7, of the
group U(2) (see section 2.12) acts in it. The operators M;, Dy, M,,
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D, (i=1, 2,...) are defined (with respect to the coordinates z;, z,) as
in section 3.6.

39 -

The space H(T,2%) is F{I}C))®* We shall identify it with the
Bargmann-Segal space of the variables z,,(1<a<k i=1,2,...)and
denote it by #({z,;}) or #{C**). The operators M,;, Dm have an
obvious meaning. The representation of the Lie algebra gl{«, C}) in
the subspace of polynomials C[{z,,}] is given as follows:

k
E;~ 2 M,D, (ij=1,2,...)
a=1

We observe that H, (T, ,®*)} may be identified with

H(C" = (z,), a<k i<n).

3.10
Let us define in H(T, 2*)=2#({z,}) the representation R; of the
group U(k) as follows:

Ri(v)f(z)=flv " '2fvEU(K), 2= |z.; | €C* ")

(here fis an arbitrary cylindrical function fromJ3#4{z,;}).
The corresponding representation of the Lie algebra gl k,C) in the
space of polynomials has the following form:

aﬁ ZMﬁf i a ﬁ l k)

= |

3.11

Lemma.  U(k) is a symmetry group for the representation T,,%* of
the group U(). The irreducible components of the representation
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R, are precisely all representations of the form V(—4,,.... —4,),
where 4,2 0; the corresponding irreducible representations of the

group U(oo)are o,.....2;.0.0..... We have
.. ) _
hol ~ ® dim V()n, sie lk)'p{l;..‘. 1,00
Ay ... .. Al A2

Proor. It is well known that an analogous statement is true for the
group U(n) (n2k); see [43). Since H, (T, ,®*) coincides with .24{z_},
i< n), the assertion of the lemma follows at once.

§4. The space [*(F"~)

4.1
Let us examine the following Gaussian probability measure on
F=R,C,H:

dv(x)=(27)""" exp( ~|x|*/2)dx

(here dxis Lebesgue measure on F, d=dim,F).

Let us provide the space F*" {see section 1.2} with the Gaussian
product-measure u=v® ... ® v {kn times}); here we are identifying
F*nwith FX ... X F{kntimes). We have

_ k2 1& .
dv(x)=(27) *"** exp( -3 > xaxa)dx,
a={

where x, denotes the a-th row of the matrix x& F*,
Similarly, the space F*® (see section 1.2) is provided with a Gauss
product-measure v&® v® . . ., which we again denote by u.

4,2
Let
LE(FJ..H) — LZ(FL.JJ’ u ), LJ(FA. o ) = LZ(FI\.m, ﬂ).

We shall identify [*(F*") with the subspace of those functions
fe [X{ F*=)which depend only on the coordinates x,,; with i< a.
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Subspace

o0

U Lz( FLH)

n=1

will be called the subspace of cylindrical functions in L F*®); it is
dense in I>(F*=),

4.3

We note that [(F*') may be identified with L*(F)®*". Similarly,
I?(F**) may be identified with the infinite tensor product of a
denumerable number of the spaces L*(F) corresponding to the
coordinates x,, where | Sa<k 1<i/<, The function f,=1 is
selected as the distinguished vector.

4.4
For k=1, 2, ..., we shall define in 12(F*~) the unitary representation
T% of the group K= SO(o0), U{0), §p(e0) as follows:

T (u) f(x)=f(xu), where x€ F*° ue K, fe I}(F**).

We put T,= T,!. It is clear that TX= T,®*

4.5

Lemma. T% is a tame representation and thus (see theorem 2.20 (iii)})
admits a continuous extension to the group K of all unitary operators
in /4F).

Proor. H,(T%) obviously contains the space of cylindrical functions
(in fact, it coincides with it, see 4.17). Hence it is dense in H(T%).

4.6

By virtue of lemma 4.5, the representation 7% possesses a
holomorphic extension (T} ) * to the group K *= U(e0}, U{o0)x U{c0),
U(2 ) (see section 2.21).
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THeoreM.  The representation (7% ) * of the group K*is equivalent to
the representation

T vt> Tt ® T, Tt
for F=R, C, H respectively.

The representation 7, ts defined in sections 3.5, 3.8. The proof is
given in sections 4.10, 4.1 3, and 4.16 for F=R, C, H respectively.

4.7

CoroLrLary. For k=12, ... wehave

k .
Iy~ N2 dim V(4,,.., lk)'put[ﬁ.A...i,...u.n..,.h
Ay o dgh 420
'~ @  dim V(A,...A)dim V(u, ... u)
Ay oL A 420
Tfye oo figh iy 21

X Oy g 00, bty o i U0

Té - ® dim V(4,,..., 4x) P{AT. S (N T

1j.| Sha 412*,}. 12*3“

This follows immediately from theorem 4.6 and lemma 3.11.

4.8

For k&, n=1, 2,..., let us consider the following integral transform
which sends functions on R*" into entire functions on C**;

(p)z)= exp( - % tr z z” @{x) exp(tr(zx"))du(x),

Rk.n

where u is a Gaussian measure (see section 4.1},
Let P(R*") and P(C*") denote the spaces of polynomials in the
coordinates x_,ER, z,,£C respectively (1 Sa <k 1<i<n)
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4.9
LEMMA.

(i) The integral giving I, converges for all g€ P(R*").

(ii) I, carries out a bijection of the space P(R*") onto the space
P(Ck.n).

(iii) Let us examine P(R*") as a subspace in L*(R*") and P{C*") as a
subspace in ¥ (C*") =3z}, i< n). I, preserves scalar products and
can thus be extended to the isometry

IR: Lz(RAl”}""'%(CL”)
of Hilbert spaces.

(iv) I, is compatible with the decompositions (into a tensor
product) of [AR*")= [XR)®%" 3 (Ck")=37(C)®* ie., it is a tensor
product of one-dimensional transformations.

Proor. First let k=n=1. Let us consider the slightly modified
Hermite polynomials

"
- 172 a2 d ~x/2

@ulx)=27"(mt) T H, (x2) = (= 1)"(mt) " e e

and the monomials
@ (2)=(m)" "7 " (m=0,1,2,..., xER, zEC).

They constitute an orthonormal basis in Lz(R) and 7 (C) respectively.
It is easy to verify that L, ¢, = ¢, This proves the lemma in the case
of k= n= 1. The general case easily follows from this.

4.10
Proof of theorem 4.6 (the cuse F=R). Let us define the isometry

Iy CRY)~32(C*")= H(To!)

as the inductive limit of the isometries constructed in section 4.8, or,
what is the same thing, as infinite tensor products of integral
transforms with respect to each coordinate x,;{1 S a <k, | €i< ),
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It is evident that [, commutes with the action of the group SO().
Thus £, allows the identification of 7;* with 7,84 SO().

o

4.11

Let us examine the following integral transform, which sends
functions on C*” into entire functions on C*2"= C* x Ck:

(Lo)Z, z)=exp(—itr(Z 2'))
J cp(x)exp[J% tr{Z x'+izx*))dy(x),

where Z, 2& C*" and u is a Gaussian measure (section 4.1),
Let us identify C*" with R*?"=R**XR*" by means of mapping
x{Re x,Im x).

4.12

LEMMA.
{i) In this identification, we have

(ILQ?)(Z-, Z) = (IRCP)((ia Z) ' U,,),

where

11 i
"=_- .ﬂ " EUZ X
“ Jz[:l,, 1,,] (2n)

(ii) I- carries out a bijection of the space of polynomials in the real
coordinates Re x,;, Im x,; of the matrix x€C*" onto the space of
polynomials in the coordinates Z,;, z,; of the matrices Z, z& C*".

(iii) I carries out an isometry of the space L*(C**) onto the
Bargmann-Segal space

y(c’\.zﬂ) =”(Ch,i:)®y(ck.n).

Proor. (i} is verified by a simple calculation; (ii) and (iii) follow from
(i}and lemma 4.9.



300 LIE GROUPS AND RELATED TOPICS

4.13

Proof of theorem 4.6 (the case F=C). Let us define the isometry

L: C(CY*)~3(CH )@ (C' )= H(Tiy ® Try)

as the inductive limit of the isometries constructed in sections 4.11,
412, ,

We observe that tr(7z’) and tr{Zx’ + izx*) from section 4.11 do not
change under the transformation

(2, z, x)~{Zu, zu, xu)u< Uln)).
This shows that the isometry
Lﬁ(q-:k.n) -—v.}?,”(@"‘”)@.}?/(ﬁ:"‘”)

commutes with the action of the group U(n); we assume that U(n)
acts in the second space like the subgroup of the pairs of the type
(4, u)in the group U(n)x U(n).

Hence, I, allows the identification of T * with the representation
(T.8*® T,8%)|{(d, u); u€ U(o)}, which proves the theorem.

4.14

Let us examine the following integral transform, sending functions on
H* into entire functions on C?*>*, Let us put

C]] CI:
§=[C:, ng], where ¢™eC*"and p, g=1,2;

Aot o(u

x=x'+xjEH"" where x', ¥’ €C

Then, by the definition,

du(x),

(@) E)=exp( ~ iA(L) J glxlexp (J% B(& x)

where u 1s a Gaussian measure on H*" (section 4.1) and
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AL =t (T - HET)),
B(E, x)=tr(Z " (x7y — EX(x Y +ig (x4 i5 (7 ).
Let us identify H** with C*?"=C*" x C*" by the mapping x~(x' x2).

4.15
LeMMA

(1) Let us make the transformation I from section 4.11 on the
variables x', x*’€C*" and let us agree that to the variable x'
corresponds the pair (Z', z') and to the variable x* corresponds the
pair {#, z2). Then

4
Z

um([j D =(Lg)(Z, £)w,. (2. 2))

where

0 1,
= E X
, [_1” 0} U(2n)

(ii) I, carries out a bijection of the space of polynomials in the real
coordinates Re x!, Im x!, Re x2, Im x; of the matrix x&H** onto

(i iy an

the space of polynomials in the coordinates £ of the matrix

C” CD 2h.2n
=(", - Cc
C [C'l c__] =

(iii) 4, carries out an isometry of the space L*{H*") onto the
Bargmann-Segal space #(C*>"),

Proor. (i) is verified by simple calculation; (ii} and (iii} follow from
(i) and from lemma 4.12.
4.16

Proof of theorem 4.6 (the case F=H). Let us recall that we must
regard T,, as a representation of the group U(2) and not U().
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Thus, H(T,%**) may be identified with .3?(C>**®), the inductive limit
of the spaces.#(C***") as n— . Let us define the isometry

Ly C{H") =22 (C*")
as the inductive limit of the isometries constructed in section 4,14,

We must now show that J, commutes with the action of the group
Sp{o). For this, it is necessary to check that the isometry defined in
4.14 commutes with the action of Sp(#n) (let us recali that Sp(n) acts in
H(Ck21) as the subgroup B Sp(n))C U(2n). This may be done by
two methods.

The first method consists of an explicit check that A({) and B(¢, x)
from section 4.14 do not change under the transformations

(&, x)=(& Blu), xu) (u€ Sp(n)).

The second method requires less calculation: it is based on lemma
4.15 (i). Let us identify H** with C**"=C*"x C*" (see section 4.14).
Then the transformation x~ xu becomes the transformation

-

(x', ) (2, X)B(u)

By virtue of what is proved in section 4.13, I. changes this
transformation into the transformations

(2, )=, £)Bu), (', )~ (2, ) Blu)

After this it remains to note that

4.17

CoroLLary. Forall n, k=1, 2, ..., the space H,(T} ) coincides with
LY F*"). So H,(T% ) coincides with the space of cylindrical functions.

Proor. Let F=R. We identify H(7*) with 3#(C**) by means of the
isometry J. Then the subspace I¥R*") coincides with the subspace
H(Ck"). On the other hand, the latter subspace coincides with the
subspace of all U, (co)-invariants in H(T,5%)=27(C**), which is at the
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same time a subspace of all $O,(co}-invariants (corollary 2.18), i.e.
Hn(T‘}I" ]'
For F=C, H, the argument is similar.

"

418 _

Let v be a certain element of the group SO(k), U(k) or Sp(k) for
F=R, C,H respectively.

Tueorem. The transform I, converts the substitution of the
variables x~vx(x€ F**)into the following substitution of variables:

if F=R, then z+ vx, where z€CA;

if F=C, then(Z, z)~(9Z, vz), where £, z&C*~,

if F=H, then {~B(v,vv,”'){, where LECH**, v, =(i"%j) 1, € Sp(k).
Proor. For F=R, C, the assertion of the theorem follows easily from
the formulae given in sections 4.8, 4.11.

In the case F=H, we start from the definition given in section 4.14
and we check that

(1) A(B(v)E) = A(L);
(2) B(L, Blv)x)=B(C(v)L, x),
where

. v, —iv
C(U)=C(U1+U:])=|:__h;, ﬁ,:l;
2 I

(3) Clv)™ ' = Blywy, ).

The assertion of the theorem for F=H follows from this.

4.19

Let us examine the space F~* of all matrices over F of dimension
o X and provide it with the Gaussian product-measure
u=v®v® ....Let us define in I*(F~-*) the unitary representation

I, of the group K X K as follows:

(v, u) flx)=flv" 'xu) (4, vEK).
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THeorem. II; is equivalent to the multiplicity free sum of
irreducible representations of the type o® o, where o runs through
the set {of classes) of irreducible tame representations of the group K
constructed in section 2.14.

We observe that 6~ ofor F=R, H.

Proor. It is obvious that I1, is a tame representation. We shall now
construct explicitly its holomorphic extension IT} to the group
K*X K*the definition of a tame representation and its holomorphic
extension for the group KX K is exactly analogous to the
corresponding definitions for the group K ).

Let, for example, F=R. Consider the Bargmann-Segal space
H(C==) of variables z,;, where 1 € a, i< . It may be represented
as the inductive limit of the spaces #(C*") as k, n— . Let us define
the representation I1% of the group U(e)Xx U(o} in H(C®>) as
tollows:

Ne*v, u) flz)=flo™ ') (4, vEU(w), zEC™T)

(here fis an arbitrary cylindrical function).

It is evident that IT¥ decomposes into the multiplicity free sum of
representations 0*® o* where p©* runs through the set of
representations of the type p, (AEA).

On the other hand, we define the isometry

I LR )= (C™")

as the inductive limit of the isometries IHR%")—=.2(C*"). It follows
from theorems 4.6 and 4.18 that {4, 'TI*[)|(SO(0) X $O(e))=TI1,.
Thus the holomorphic extension of the representation II, is
equivalent to 1.

In the cases F=C, H, the argument is similar.

4.20

Remark. Theorem 4.19 may be considered as an analogue of the
Peter-Weyl theorem for the groups SO{=}), U{e0), Sp(0).
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4.21

Remark. In the case F=R, theorem 4.18 remains in force if it is
assumed that v& O{k). This fact will be used later.

§5. Approximation of Gaussian measure on F** by invariant
measures on Stiefel manifolds Q ~"

5.1
Lemma, For fixed M> 0, £> 0, the limit

/{A)= lim J”t'” (1 -i}mdt (A>0)

A n

nos 4 o

existsand [(A)—~ (0 as A~ + o,
Proor. Itis evident that

A { 1 A
lim | M1-—| ar=| Me "ar.
nee + o)) h 0

On the other hand

YHD(M+ 1T (en+ 1)
MM+1+en+1)

M f N .
[t‘”(l—;) di=n" 'B(M+1,en+1)="
{)

=

n’”“r(M+1)( (1)) o
= — {1+ 0]=|| = e™'TM+1)=] Y a,
(£n+1)M ! nij, ( 0

where Band I are the beta-function and the gamma-function. So

I(A) =J tYe “dt,

A

which proves the lemma.
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52
Let us recall that K{n) denotes SO{n ) U(n), Sp(n) for F=R, C, H
respectively. Let us put d=dim,F(d=1, 2, 4).

Let us fix k and m where &, m=l 2,.... For n2max(k,m), we

define the mapping ©,,: K(n)— F*" as follows:
(@, (W) u=Jnduy; (a=1,..,ki=1,..,n)

Here K (n)is considered as a group of matrices from F"”",
Let %, be the normalized Haar measure on K(n) and let 4, denote
its image with respect to @,,. u, is a probability measure on F* km

Let u be the standard Gaussian measure on F*" (see section 4.1).

5.3

LEMMA.

him g, = p

- o

in the sense that, for any measurable bounded function fon F*" (or
even a function of polynomial growth at infinity), we have

Hm deﬂ = [fd#-

H—= oo

Proor. Without loss of generality, it is possible to assume k= m. Let

0 —
K(m; n)=H:‘(x) y:le K(n); xe Fm.m’ ye Fn HiHt m}

= $§(0O(m)x O(n—m)), Ulm)x U{n—m), Sp(m)x Sp(n—m).

Let n>2m. It is easy to check that any matrix ¥€ K(n) may be
written as follows:

v,, where v,, 1.,€ K(m; n),

i
i

a b O
Ylle 4 0
0 0

1ﬂ-2m



APPROXIMATION OF GAUSSIAN MEASURE ON F*= 307

a=d= r[ . 0 , b:—-c= \(l—.r'[ . 0

0 S ™ 0 Jl_r;ﬂ

and r,20....,r,20.

Here, the numbers r,..., r,, are uniquely defined to within a
permutation.

Let us examine the image x, of the Haar measure y, under the
mapping u~(r,,... r,). This is a certain probability measure on
[0, 1]X ... x[0, 1} (m times); for the sake of definiteness it may be
considered that r, 2 ... 2 r,, or that the measure y, is invariant with
respect to permutations. The measure y, is naturally called the radial
part of the measure y,,.

The measure ¥, has the following form:

nt

di=a, 1 1A= 1A (1-7)

l€i<jam fm |

n=2m+1d _

i
dr| ,

where a,> 0 is a certain constant. This formula is a specialization of
the formula for the radial part of the invariant measure on an
arbitrary compact symmetric space (see [8], chapter X, §1, number
5); it may also be proved directly.

Putting /nd r,= p,, we get the following probability measure on

[0,Jnd]x ... x[0,{nd]
an’q)n (ph v uy pm)dpl LA dpms

where

" 2\ (= 2+ N2}~ 1
f,‘ﬂ,,(p,,...,pm)= l—[ lpzi_pild' n(pﬂ:_](l—&) )

Igi<f€m i=| nd

On the other hand, we observe that any matrix x& F£™" may be
represented as
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where
Pis .- w20 and 3, 6.€0(m), U(m), Sp(m).

The _constructed measure coincides with the radial part of the
measure 4, in the coordinates o, . . ., 0,
It is obvious that

hm q)"(pl, P p"l)= (p(pl‘! v e oy pm))

N=r 0O

where

@01 s o= 1 1oi=0]1% (o1 .00

| €i<jg&m

(o1 +.*tpom) |

B |

cexp | -
and that the convergence is uniform on all sets of the type
{1 - » P)ERY: m?x p;< AL
On the other hand, it follows from lemma 5.1 that

A—=+w g~

]im limJ 99,: (pls ey pm)dpl‘ .. dpm"'_"O-
Asmax, 1, € Jlad)

Finally, it is easy to verify that the radial part of the measure u in
the coordinates p,, .. ., p,,is

ap(p,, ... Pmdo, . ..dp,, where a> 0.

Putting all these results together, we get a, —~a, u,~u (we make
considerable use of the fact that u,, and u are probability measures!).
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54
For n> k, we put

QY ={xe F*: xx*=1,}.

Q*n s a Stiefel manifold. The group K(n) acts on Q*” on the right
(the element u€ K(n) transforms a matrix @€ Q*" into the matrix
wu) and Q%" may be identified with K, (n)\K(n} (the group K,{(n) is
defined in section 2.4).

We shall fix m and assume that n>max{k, m), just as in section 5.2.
The mapping @, is constant on the orbits of left action of the
subgroup K, (n). Thus ©, gives a mapping

@fn: QL”_" F‘\JH.
Let x', be the normalized invariant measure on Q. We observe that

&', (x,)=0,(x,) As a result, we get a corollary of the following type.

CorouLary, ©,(x,)— uin the sense given in lemma 5.3.

55

Let us define a unitary representation 7,*" of the group K{n) in
L Q%) = [{QM ' )as follows:

T, "(u) fiw)=flwu), where f& L{Q""), weQ"" ue K(n).

Tueorem. For any k=1, 2,..., the representations T,*" of the
group K{n)approximate as n— o the representation T,* of the group
Kin [2(F*=),

The representation T,* is defined in §4. The definition of the
concept of approximation is given in §22.

For a proof of the theorem see section 5.9.

5.6

Let fbe a bounded cylindrical function from LY F**). The function f
in fact depends on a finite number of coefficients of the matrix
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x€ F**, Hence, if n is sufficiently large, then fmay be considered as
a function on F*", Let us put

") =f(/nd ), where wEQ""C F*"

This function lies in LX F*)as it is bounded.

57

Lemma. In the notation of section 5.6, let n be so large that fi"' is
defined. Then

(Te() "= T7"w) £ (u€ K(n))

This follows at once from the definitions of £ and T, *",

58

Lemma. Forany f,, f;, just as in section 5.6,

lim ( i“”s fé“”):}m*-";=(ﬁafé)f}u-'k“;-

=

This follows at once from lemma 5.3.

5.9

Proof of theorem 5.5. 1t follows at once from lemmas 5.7 and 5.8
that

(T"(u) fi" £2") = (T} S, FVUE K.

fi—~ o0

Moreover the convergence is uniform on compact sets in K (see 22.1
and 22.2): to verify this assertion it is convenient to assume f, to be
continuous. Now it remains to apply lemma 22.6.
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5.10

Remark. The structure of the decomposition of the representations
T.* and T,*" is one and the same. We obtain this from the following
observations: if we write

T ~ ©® N(p)o,

f2l

where o runs through the set (of classes) of irreducible
representations of the group K that enter into T,* and N{,0) denotes
the multiplicity, then we get

T;\.u - @ N(p)p m;,

Fi

where {0"} is the sequence of irreducible representations of the
groups K{(n)defined for each pin section 2.23.

In fact, the irreducible representation of the group K(n) enters into
T.*" if and only if it contains non-zero K, (n)-invariant vectors. The
highest weights of such representations have precisely the following
form:

A1y v, 0,...,0) (in the case F=R)
Ay oo iy Oy O, — 0y o — 1) (in the case F=C)
(Ary v Ari, 0,...,0) (in the case F=H).

The corresponding multiplicities are found from the “ramification
rules™ for chains of subgroups

K{n\DK(n=1)D...DK{n—k),

where K(n— i) is identified with K;(n) (i=1,..., k); see [43], §§129,
66, 130, for the groups SU(n), U(n), Sp(n), respectively. It is easy to
check that, for weights of the given type, these rules lead to the same
result, as do also the ramification rules for chains of subgroups
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Un)oUn—-1)2...0U(n-k) (F=R)
UnyxUn)DUn-1)xUn—-1)D.. DUn-k)x Un—k)(F=C)
U2n)2U(2n—-1)D ... DU(Zn—Zk) (F=H).
and the weights
(Aly oo w4 0,...,0) (F=R),
Ao A, 0,00, 0) (uyy .o 0, 0, 0)) (F=C)
(Aly v A240 0, ..., 0} {(F=H).
respectively.
The result does not depend on n (if n is sufficiently large) and
coincides with
dim V(4,,..., 4) (F=R),
dim V(4,,..., 4)-dim V(u,, ... ) (F=C),
dim V(4,,...45) (F=H).

Comparing this with corollary 4.7, we get the assertion formulated
above.

PART II

WEIL'S REPRESENTATIONS OF THE GROUPS
Sp(o,R)~, U(0,)~ and SO*(2 =)

§6. The formalism of R. Howe for Weil’s representations of the
groups Sp(n,R) ", U(n, n)~ and SO*(2n)

6.1

We shall use the notation given in the following table.
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Table 7.3

=R F=C F=H
k) sp(n, R) u(n, n) s0*%2n)
misn) u(n) u(n)®uin) nin)
L{n) sp(n, C) al(2n,C) so{2n,C)
Lin) Spin, R)” Uin, n)” SO%2n)
Mn) Uin)- (Uin)x Uln)” Uin)
L Sp(oo, R)” U(0, o) SO%2)
M U{e)” (U(o0) x U(e0}}” U(=)
Ulk, F) Ok) Utk) Splk)

The sign ~ indicates a two-sheeted covering over the
corresponding group. {(n) and m(n) are the Lie algebras of the groups
L{n) and M(n) respectively. [.(n)=1(n)®,C. M(n) is the maximal

compact subgroup in L(n) (see section 7.3).

o0

L=U L{n)and M= U M(n)

= | n=i

(for more details, see sections 7.9, 7.11), U(k, F) is a symmetry
group for certain representations of the groups L{n) and L (see
sections 6.12,7.13),

6.2

We shall give an explicit realization of the Lie groups and algebras
shown in Table 7.1 (the first two groups are necessary for the
realization of Sp(n, R}and SO ¥2n).

2nln f 0 lu 0 ln
Sp(n,C)=[gGC‘ =g[_1 0 ]g=!_1 0 ”
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50(2n,a:)={gec3"'2":g' [0 L, g= 0 1“

nin '—ln ' 0 ] [ -—ln 0
Uln, n)=[gECZ' 23*[ g= H

Sp{n.R)= U{n, n)N Sp(n, C),

SO¥2n)=U{n, n)N SO(2n, C).

sp(n, C)= ~4B eCc™". B=R", C=C}.
P CA ,

_AB T
]EC“"‘“": B=F,C= C’}.

so(2n, C)= [[ CA

A B P T
u = ec-ﬂ.sﬂ: A= - 3 - * = *® .
{(n, n) [CD] A* D D C B]
[ _'A’B_ L
sp(n, R) = B*Aj eC"™" A= — A% B=B’}.
* | _A’B-‘ 2nln * ’
so™2n)= B*4 €C™:A=—-A% B=-P5'|.

The group Uln, n)~ is the two-sheeted covering over U(n, n) for
which the function g-(det g)'”? becomes single-valued.
(U{n)x U(n))~ is the two-sheeted covering over U(n)x U{n) for
which the function (g, g,)~{(det g, g)"’? becomes single-valued (here
g, &€ U(n)). In all the remaining cases the two-sheeted covering
over the group is determined uniquely.
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6.3
Each of the three Lie algebras

[ (n)=8p(n,C), ¢l(2n,C), 80(2nC)
possesses the decomposition

[ {n)=1. |(”)®[u(n)®[l(”)s

o[t o Py 1

[,{(n) and I_ (n) are abelian subspaces invariant with respect to the
subalgebra [ (n); we observe further that

where

(- (), L{mIE L(n).

M(n) is the subgroup in L{n) corresponding to the Lie algebra
m(n)={(n) 1 (n).
111, 0O
Z==1" .
o2

Letus put
This element lies in the centre of the algebra (,(n). We observe that

ad Z|{_,(n)= —id, ad Z|{,(n)=id.

6.4

We shall consider the infinite-dimensional / (n)}-modules V satisfying
the following conditions:

i) V=V,@V,@V,® .., dim V,<+, ad z|]V;=(a—i)id (a is a
certain constant).

(ii) V is provided with the structure of a pre-Hilbert space; the
elements of the algebra [{(n) act as anti-Hermitian operators.

(iii) All irreducible {(n)-submodules in V' come from (finite-
dimensional) unitary representations of the group M(n).
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6.5
We shall give simple corollaries of these conditions:

(a) Vis a semisimple /(n)-module with finite multiplicities.
(b) Vis a semisimple / (#)-module with finite multiplicities.
(c) f,(n)acts in Vin a locally nilpotent way.

{(d) The subspace of /,(n)-invariants generates the module V.

(e) If V is irreducible, then the subspace of /(n)-invariants is
irreducible as an /(n)}-module; the latter uniquely defines the module
V.

(f) The tensor product of a finite number of modules, satisfying
conditions (i)-(iii), again satisfies these conditions.

{g) V coincides with the module of M(n)-finite vectors of a certain
unitary representation of the group L(n).

6.6

We shall define now a certain remarkable [(n)-module satisfying
conditions (i}-(iii). This module and the corresponding unitary
representation of the group L(n) will be denoted by W or W,
The representation W,*' of the group L(n)=Sp(n, R}~ is usually
called the Weil representation. We shall use the same term for W'™
and W,

6.7

Let F=R; then [(n)=sp(n, C). The module W, is realized in the
space C[z,,.... z,] and the corresponding unitary representation of
the group L(n)=Sp(n, R)™ in ﬂz,, .. 2,] {see §3). The action of the
Lie algebra [{n) in C[z,..., z,) is seen as follows on its generators
{for notation, see sections 1.4, and 3.5):

-E, 0O
[ Iy :IHM_, D‘,

Z o, i——[M,,DJ
0 E,

2

0 E,+E, I
Eu Ef-’ HDE D{_:- I.D,,’ D;'J+s
0 0 2
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0 0__MM__1lM M)
E,+E; 0 R

Here i, j=1,....nand[A, B], = AB+ BA.

It is"easy to verify that the given formulae do indeed give a certain
sp(n, C}module and that this module possesses properties (i)-(iii)
from section 6.4. The graduation in our module coincides with the
graduation in C[z,, . . ., 2, in degree of polynomials.

We observe that it is precisely the presence of the factor 1/2 on the
right-hand side of the first formula that causes the representation
W,"' to be not one-valued on the group Sp(n, R).

6.8

The module W/Y®* (k=12,...) is realised in the space of
polynomialsin z;(a=1, ...k i=1, ..., n) by the following formulae:

- Ej,' 0 £ k
- . = 0. i ,
[ 0 E':| Z Mm ‘Du_l 2 al,’

u=]

0 (

[0 Ev*'Eﬁ}H " DD
wti & ef e
a=1

A
0 0 - 2 Mm'Mu,f"
E,+E; O

u=1

The corresponding unitary representation is realized in#(C*").

6.9
We shall define an embedding gl(2n, C)— 8p(2n, C) as follows

—

A 0 0 B
ABllo - B 0
cpllo o -A o0
C 0 0 D
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This mapping embeds u(n, #) in 8p(2n, R) and gives an embedding of
the group U(n, n)~ into the group Sp(2n,R)".

6.10

By -definition the g{(2n, C)}-module W, "' is the restriction of the
8p(2n, Clmodule W,>" to the subalgebra gl(2n, C). This module is
realized in the space of polynomials C[z,...,2; 2;,... 2, and the
corresponding unitary representation in the space 23, . . ., Z4 2 - -
Z,); for this notation see section 3.8.

We immediately derive explicit formulae for the module W, '"®*
k=1,2,...{for the notation, see sections 3.8, 3.9):

(-E, 0] ¢ k
! = M -’D,’+_6;" l..
0 0 z. i Ty i
[0 o] & k
= Mm'Dn + - ér".-le
_() Elj_ ugl ' 2 I
0 E| ¢
s Dfu"Da;'a
0o o 2
[0 0] .
- MM,
__Efj ()_ ugi !

Herei j=1,..., n
The unitary representation W '"'®% is realized in the space
‘%ﬂ(ck.ln) =y(ck.n)®’_#(q:k.u).

6.11

By definition, the 80(2n, C}-module W' is the restriction of the
module W' to the subalgebra §0{2n, C}Cgl(2n, C). The module
W, /m®t is realized in the same space of polynomials in
i Zgla=1,...,k i=1,...,n) as the module W, '"'®* However, it will
be convenient for us to write here z;, instead of z,;. This corresponds
to the fact that we are changing from C**” to C**". In other words,
from the matrices

i=|2, 2=2,/€C",
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C = ’:f] HC'_’A.H’

whose rows are numbered by the indices 1,....&k1,.. ..k
With this notation, W, "'®* is given by the following formulae:

we compile the matrix

[ A
~-E. O
' le 2 (Mg Dyt My D)+ kb 1,

L 0 Ei' a=l
[ 1 k
0 E;—E;
H DD '-Dri'Dru',
_0 0 ] at]( afr = ay ! )
r . '
0 0
- M My— M ;M)
_Ei)-"" Eﬂ (}_ ugl( rt ] } )

6.12

Consider the group U(kF), {see the last row in Table 7.3 from
section 6.1), and define its unitary representation R, in H( W)
as follows:

F=R: R}(v)flz)=fv"'z) (z€C*" veO(k))
F=C: RV(v) fiz, 2) flv's, v '2) (£ z&€CH, vEUK)).

F=H: RY(v) f(5)=f(Bv)7') (€C™, ve Sp(k)).

Let us recall that 8(v)€ U{2k) was defined in section 1.3.

6.13

Lemma. The representation R of the group U(k, F) commutes
with the action of the group L(n)in H{ W,"®¥),

Proor. It is sufficient to prove that R/"' commutes with the action of
the Lie algebra / (n), and this is easily verified.
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6.14

Theorem ofF R. Howe. The group U(k, F)=O(k), U(k), Sp(k) is a
symmetry group for the representation W,"®* of the group
L{n)=8p(n,R)", Uln, n)~, SO *X2n)(see section 1.12).

This remarkable result is proved in {9]; see also {30].

6.15

CoroLiary. For any w€ Uk, F)* occurring in the representation
R,*, an irreducible unitary representation W,"" of the group L(n) is
determined (see section 1.12).

§7. Generalization to infinite-dimensional groups

7.1

Lemma. Let n2zk for F=R, C and n22k for F=H. Then the
representation R, of the group Ulk, F) (see section 6.12) contains
all re Uk, FY. |

Proor. Let, for example, F=R. It is sufficient to prove the statement
of the lemma for n=k Let us examine the restriction mapping
f=flO{k). 1t transforms the algebra of polynomials P(C**) into a
certain algebra of functions on O(k). If fis a polynomial in {z,}, then
the function z~ f{Z) is also a polynomial. On the other hand, 7=z for
z€ O(k). Hence the algebra of functions on O(k) that is obtained is
stable with respect to conjugation. By the Stone-Weierstrass
theorem, it is dense in [*(O(k)). Our statement easily follows from
this.

In the case F=C, H, the reasoning is similar.

7.2

Corourary, With the assumptions of lemma 7.1, we have: the
representations W, from section 6.15 are determined for all
ne Uk, FY.
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7.3
Let us examine the following Lie algebra mapping for F=R, C, H:

A0 -A 0
u(n)SAH[O A]—[ 0 AJ(F=R,H),

A 0 —A, 0
&) D4, @A~ " = ' =C).
u(n)@u(n)>A4,® A, [0 AJ [ 0 AJ(F C)

This mapping allows us to identify m(n) with u(n), u(n)® u{n) or
u(n) and gives an isomorphism of the group M{n) with U{n)~,
(U(n)x U(n))~ or U(n) respectively.

7.4

Lxmma. Taking into consideration the identification given in section
7.3, the representation W,"'®*|M(n) has the following form:

f(z)~fzw)det u) (F=R, us U(n)~)
& 2)= f(Zu, 2K det(u 1)) {F=C, (,, w) E(U(n)x Uln))~),
f(&)= flEu)det u){(F=H, ue U(n)),
where z, 2€C™, teC™”".
This follows directly from the definition of the modules W, "'®%,

1.5

Lemma.  Let &, # k, and n be sufficiently large, (n>max (k,, &,) for
F#H;, n>max (2k,, 2k,) for F=MH). Then the representations
W mekiM(n) and W e |M(n) are disjunct, ie. do not have
equivalent irreducible subrepresentations.

Proor. Let, for example, F=R, If n>k, then the highest weight of
any irreducible subrepresentation occurring in W, ®4U(#n)~ has the
form

k k
(y,,...,,u,,)=(l,,...,/lk,0,...,0)+(5,...,5].
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From this, u,=k/2. Now the assertion of the lemma becomes
obvious.
For F=C, H, the proof is analogous.

76 -

Turorem. Let m €Uk, F)Y*, m,€Ulk,, FY*. Let us assume that
one of the following two cases occurs:

{a) k; =k, and 7, ~ my;
(b) k, # k, and the conditions of lemma 7.5 are fulfilled.

Then the representations W, and W' of the group L{n),
constructed in section 6.15, are not equivalent to one another.

Proor. In the case (a), this follows from the definition of the
representations W, (see section 1.12); in the case (b}—from lemma
7.5.

7.7

Let us consider the outer automorphism of the Lie algebra [(n).
A B

A B here A B 1)
X - Jow .
“le b D c o]V
The corresponding automorphism of the group L(n) will also be
denoted by @.

Tueorem. For any zm€ Uk, FY*, the representations W}" and
W."o @ of the group L{n)are conjugate to one another.

Notice that, for F=R, H, it is possible to replace 7 by 7 since all
unitary representations of the groups O(k) and Sp(k) are self-
conjugate.

Prook. Let, for example, F=R. Let us write for brevity W= W, &4,
Let us define an antilinear involution [/ of the Hilbert space
X (CH)= H(W) as follows:

If (z)=F(2) (z&C"", few(C*").
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Ireduces to a conjugation of the coordinates in the basis consisting of
monomials in the variables z,.. The form

o 2=, I dwicrn

gives a non-degenerate bilinear form on .*?(C*") which allows the

identification of H{W)with the space H{W)= H(W) conjugate to it.
The representation W of the Lie algebra 6p(n, C) in the subspace of
polynomials in H(W)= H(Wis given by the condition

(fis WXy = —(W(X)f,, f,), where x& 8p(n, C)).

From this,

WX )=~ 1 WX)*I{xE8p(n, C)).
We observe that
- I WX )*= W(p(X)),

where @ denotes the C-linear extension of the automorphism ¢ to

8p(n, C):
M 5] [ fome

B =D C D
In fact, for this it is necessary to use the fact that I commutes with
real linear combinations of operators M,;,D,; and the definition of
the representation W (see section 6.8).
It now remains to observe that / commutes with the representation
R of the group O(k).
In the cases F=C, H, the reasoning is similar.

@

7.8

Remark. Let us investigate the group of all automorphisms of the
Lie algebra /(n), factorized with respect to the subgroup of inner
automorphisms. When F# C, this group is Z, and for F=C this group
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is Z,®Z,. In the second case our group consists of the
automorphisms id, @, ¥, @y, where

ABl bl [-p B A Bl
H__= u
col|ls al”| ¢ -alllc p|=4"™"

.

It 1s easy to check that ¥ does not change the equivalence class of
representaticn W.""' (since ¥ is sent into id by an appropriate inner
automorphism of the Lie algebra 8p{(2#x R)D u(n, n)). Hence in the
case F=C, itis possible, instead of @, to take equally successfully

ABHDC
C D| |B Al
7.9

We shall define an embedding L(n)~ L(n+ 1) as follows. According
to its definition, L(n) is a group of operators in C"®@C". Let {e,, ...,
€i+1> €5 - €., be the canonical basis in C"*'®C"*!. Let us
identify C*@C" with the subspace in C"*'®@C"* ! spanned by ¢, ...,
€., €'5..., €. We can now identify L(n) with the subgroup in
L{n+ 1}thatleavesinvariant e,, ,and e, ,".

Thus we can define the group

Qy:

oo

L=U L(n)

n=]

which is Sp(e0, R)™, U(e0,0)~ or SO *2 ) (see section 6.1).

7.10

In section 3.4, we have defined the canonical embeddings
HC)=H (2, 2) = C ) =H (2w 2n) (1=1,2,.00)

Let us recall that

#(C"), if F=R,

W)=
H( ! ) %(CIJI)I ®%(CI.H) ,if F=C,[H].
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Thus, the given canonical embeddings determine the embeddingé
HW )= HW" " (n=1,2,.., F=R,C,H),

which .obviously commutes with the action of the groups L(n). This
makes possible the following definition.

Derinimion.  The Weil representation W, of the group L is the

inductive limit of the representations W{" of the groups L(n) as
n—co,

We observe that the representation W, 24 k=1, 2, ...)is realized in
-.%?(Ck-m), y(cl\.l‘n)=‘W(Ck.w)®y(cl.°ﬂ)’ %(Clk.m)

respectively, for F=R, C, H. The corresponding representation of the
Lie algebra

acts in the subspace of polynomials.

7.11

Let us examine the group

M=U M),

n=|

which is
U(w)", (U(eo)x U{®))", U()

for F=R, C, H respectively. The embeddings M(n)— L(n) defined in
section 7.3 give an embedding M— L.

Lemma. Fork=1,2,...,wehave
(T, 2 ®@det(+ )", if F=R,
W24 | M~ (T, ®det(+)*)®(To ®det(+)”), if F=C,

(T, 2 ®det(-)", if F=H.

h
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This follows directly from lemma 7.4 and the definition of the
representation Ty, of the group U(e)(see sections 3.3 and 3.5).

7.12

CoroLLaRy. For any n=1, 2,..., the subspace H{WekC
H(W,®*) may be characterized in an intrinsic manner as a subspace
of invariants of an appropriate subgroup M, C M.

Proor. Consider the subgroup U,(e0)C U() defined in section 2.4,
The subspace H(CF)CH(C*®) may be characterized as the
subspace of U, (w)-invariants for the representation 7,.8f. Further,
U,(0) can be replaced by its subgroup SU,{®)=[U, (), U, (),
which is dense in it with respect to the weak operator topology. This
subgroup is convenient, as the character det{«) on it is trivial. Now
lemma 7.11 shows that it is possible to take SU (o) (if F=R,H) or
SU, ()X SU, () (if F=C)as M,.

7.13

By analogy with section 6.12, we shall define in H{W,®%) the
representation R, of the group U(k, F)= O(k), U(k), Sp(k). On the
subspace H( W{"®*), the representation R, reduces to R,".

Tueorem. U(k, F)is a symmetry group for W25k=1, 2,...), while
all the irreducible representations a€ Uk, F)* enter into the
decomposition of the representation R, .

Proor. The first statement follows from R. Howe’s theorem (section
6.14) and corollary 7.12. The second assertion follows from lemma
7.1.

7.14

COROLLARY

(i) In conformity with the general principle (section 1.12), to any
ae Uk, F)* corresponds a certain irreducible unitary
representation W, of the group L.

(ii) W_ is the inductive limit of the irreducible representations W,
of the groups L(n) defined in section 6.15. The subspace H(W,*")) in
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H(W,) may be characterized as the subspace of invariants of the
subgroup M, , see corollary 7.12.

(ili) Two representations Wz, and Wx, of the group L are
equivalent if and only if &, and 7, are equivalent representations of
one and the same group U(k, F).

{iv) The representation conjugate to W, is equivalent to Wog,
where @ is the outer automorphism from section 7.7.

Proor. The statements (i) and (ii) are obvious. Assertion (iii) follows
from (ii) and theorem 7.6; it may be derived also from the fact that
for different k the representations W,®4[M, M] do not have
equivalent irreducible components; the latter may be derived from
lemma 7.11. Statement (iv) follows from theorem 7.7.

7.15

Remark. When F=C (and only in this case), the groups
L{n)=U(n, n)” and L= U(%,)~ are not semisimple. All results in
§§6~7 remain in force if these groups are replaced by SU(n, n) and
SU(%,) respectively. Then the group M(n)=(U(n}x U(n)}~ must
be replaced by its subgroup.

Huy, u)E U{n)x Uln): det u, = det u,}.

7.16

Remark. The assertion of corollary 7.12 makes sense even for
n=0, It indicates then that the one-dimensional subspace in #{C*~)
generated by the function f,= | may be characterized as the subspace
of M,-invariants, where M,=[M, M].

7.17

Remark. Let us assume that F=R, C. Then the group M coincides
with a 2-covering over the group K * and the canonical embedding
K— K * (see section 2.13) may be lifted into M. Lemma 7.11 shows
that the representation W,®*|M differs from the holomorphic
extension of the representation W,®*{K only by a scalar factor.
Hence it is evident that as M, one may take equally successfully the
subgroup K, (see section 2.4).
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These assertions cover also the case F=H, if the group
L=80%2c0)} is realized as SO*4), L(n) and M are taken as
SO *X4n)and U{2®) respectively, and W,*" is understood as the Weil
representation of the group SO™4n). We act just in this manner,
starting in §9.

§8. Spherical functions and properties of continuity for Weil
representations

8.1

By the remark 7.16, the function f,=1 from H(WS2*) is unique to
within a factor, [M, M}-invariant vector. We shall denote by ¢, the
corresponding spherical function:

P8 =W (g fin fi) (g€ L)

Let us assign to an element g€ L the matrix

!

which either coincides with g& SO X2 ) (in the case F=H) or is the
image of the element g in the groups Sp(e, R), U(%, ) (in the cases
F=R,C).

THEOREM.
@i lg)=(det @) " =(det @)™** (F=R),
@, (g)=det(a d)”** =(det g}*(det a)™* (F=C),
@i(g)=(det a)” " =(det d)™"* (F=H).

(In the case when F=R, C and k is odd, it is easy to check that the
right-hand side correctly defines a function on the group L.)

Proor. It is sufficient to prove the analogous proposition for the
representation W/"'®* of the group L(n). The function f, (like any
polynomial) is an analytic vector of the representation, hence ¢, is a
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real analytic function on the group L(n). Hence it is possible, without
loss of generality, to restrict ourselves to elements gclose to e.

Let us extend ¢, to the holomorphic function ¢, defined in the
local compilexification of the group L{n). As £, is annihilated by the
subalgebra [{n)C /L' (see section 6.3), the function ¢, is left
(respectively right) invariant with respect to the local complex Lie
subgroup corresponding to the subalgebra /_,(n) (respectively /,(n)).
The function on the right-hand side of our formulae also possesses
the same properties.

Hence it is possible to assume that g lies in the local group
corresponding to the subalgebra [(n). But [(n) is the
complexification of the subalgebra m(n). Hence it is sufficient to
check our formulae for g€ M(n). But in this case they quickly foliow
from lemma 7 4.

8.2

We shall denote by Sp(®, R) the complete symplectic group, i.e., the
group of all operators in /*(C)® /*C) preserving the indefinite scalar
product and symplectic form given respectively by the operator
matrices

L)

Let Sp,(e0, R} be the subgroup consisting of those g€ S, R) for
which g— 1 is a nuclear operator. We endow it with the topology
induced by the nuclear norm. The group Sp(e, R) is dense in it.

Just as Sp(eo,R), the group Sp,(0,R) possesses a unique two-
sheeted covering which we shall denote by Sp, (0, R)".

8.3

Theorem. The Weil representation W, of the group Sp(e,R)”
extends to a continuous representation of the group Sp (o, R)".

ProoF (beginning). W, possesses the symmetry group O(1)={% 1}
and this means it is the direct sum of two irreducible representations
W,, W., which are realized in the subspaces of even and odd
functions respectively.
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The spherical vector f,= 1 lies in H({W,). It is easy to check that the
corresponding spherical function ¢,(g) (see section 8.1) possesses a
continuous extension to Sp (0, R)~. This proves the assertion of the
theorem for the subrepresentation W,.

Forthe final part of the proof, see section 8.9.

8.4

DerFnimion.  Let H be a complex Hilbert space. We call the space
R X H with the following multiplication:

(x, &), m)=(x+y—Im(§, n)y, £+ 7} (here x, yER, &, n<E H)

the Heisenberg group Heis (H).

8.5

Treorem. In Fock space # (H)=C® HD SYH)® ... there exists a
unitary representation V of the group Heis (H), for whichTis a cyclic
vector and

(V(x, &)+ 1, 1)=explix— |E]/2).

This representation is irreducible.

Proor. First let H be finite-dimensional. Let us identify it with C',
Let us define V as the representation in# (C!") given by the formula

Vix, & )f(z)=explix— EE*/2 — 2&%f (2 + &),

where

z, EEC]'”, XER, fE}W(C]'”).

The spherical function of this representation has the necessary form.
It is easy also to check its irreducibility.

Now let H be infinite-dimensional. Let us identify it with L{C). We
shall examine the subgroup

U] Heis (C"")C Heis {{,(C)).

n=
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On this subgroup the representation V may be defined as the
inductive limit of the corresponding representations of the groups
Heis {C'). This representation admits a continuous extension for the
whole group Heis {4(C}), since its spherical function admits such an
extension.

8.6

Let heis (C'") be the Lie algebra of the group Heis (C'). Its elements
are the pairs (x, §)ER® C!" with the law of composition

[(x, &), (v, 7)]=(=21Im(&, 1), 0).
All polynomials from Clz,,...z,] are analytic vectors for the
representation Y of the group Heis (C'") in J#(C'"). The

representation of the Lie algebra heis (C'*) in C|z,,..., 2,] has the
following form:

(1,0)~i-1,

(0, e~ — M+ D,, (0, ie)~ iM,+iD,

(here ¢,, . . ., e, 1s the canonical basis in C').

8.7
For
g=[a ﬂ € Sp (0o, R) and (x, £)€ Heis(/,(C))
c
let us put

(x &)=lx, Ea' - § V).

Lemma. The given formula defines the action of the group Sp(eo, R)
by means of automorphisms on Heis (5(C)).
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Proor. 1t is easy to check that, for any g& Sp(, R), we have a=4d,
b= ¢. It follows from this that the representation

E@n—(EDn)g

of the group Sp{c,R) in L{C)®/L(C) preserves the subspace of
vectors of the type E@(— &). It is easy to check that here £ is sent
into £a’— &b". This means that our formula actually defines a certain
action of the group Sp(co,R). It is easy to check that this action
preserves the multiplication in Heis (4{C)).

8.8

Lemma. For any g€ Sp{, R)™ and any h€ Heis(/(C)), we have
Welg) V() Welg)™" = V(*'h),

where [g] is the image of the element gin Sp(«, R).

Proor. Without loss of generality, we may suppose that # lies in the
dense subgroup

UI Heis(C'").

n=

Hence it is sufficient to prove the analogous proposition for the
groups Sp(n, R)~ and Heis(C'-"). This is easily done at the level of the
Lie algebras.

8.9

The final part of the proof of theorem 8.3. The vector fy€ H(W,)is a
cyclic vector for the representation V of the group Heis(/(C)). Hence
it is sufficient to show that any function of the type

g—{Wilg)V(h)fi, V(l)f), where h,, h,€ Heis(/{C))

admits a continuous extension to Sp (e, R)".
By virtue of lemma 8.8, the right-hand side is

(Welg)fe V(*R, ) VIR,
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It remains to observe that the vector-function

g~ Walglh = Wilghfy

admits a.continuous extension to Sp,{,R)” (see section 8.3) and
that */4, also depends continuously on g.

8.10

CoroLLary, The representations W, of the group Sp(eo,R)~,
defined in section 7.14, admit a continuous extension to the group
Sp ](CO » R)H .

8.11

Remark. By analogy with section 8.2, we may define the topological
groups U,(e0,)” and SOf20). They may be defined also as the
closure of the groups U{o0,)” and SO*(2¢0) respectively in
Sp,(2o,R)”. After this, theorem 8.3 and corollary 8.10 are
immediately transferred to the groups U,(%0,%)~ and SO{2).

8.12

The group Sp(eo, R} acts by conjugations on its normal subgroup
Sp,(=, R} and this action is lifted to Sp,(e, R)~. We shall denote this
action thus:

g—"g where g€ Sp(o,R), he Sp(, R).

Let us denote by U(e) the group of all unitary operators in /*(C)
topologized by the strong (=weak) operator topology (this is the
group K from section 2.19 for the case F=C). We embed it in
Sp(eo, R) by means of the mapping

u»[g g] (ue U())

We shall denote the extension of the representations 7y, and W, of
the groups U{%) and Sp(o,R)” to U(x) and Sp,(o,R)
respectively by the same letters.
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8.13

Lemma. For any u€ U(0) and for any g€ Sp,(«, R)~ we have:

WR(“g) = 7Iiml(u) wﬂ(g) Il()l(u)— l‘

Proor. For fixed g, the mapping u—“g from U{0) into Sp,(, R}~ is
continuous (we omit a simple verification of this fact). As U{0)} is
dense in U{®), we may assume u€ U{w), Further, it may be
supposed that g€ Sp(e, R)™. But then the assertion of the lemma

follows from the fact that 7; (u) differs from W,(u) only by a scalar
factor (see lemma 7.11).

8.14

CoroLLary. Let u be a certain element from U(e) and ¥ a certain
subgroup in Sp(e,R)~ such that “g€ Sp(eo, R)~ for all gE¥. Then
the representations

g~ W,(g)and g~ W,("g) (n€Ok)*, k=1,2... )
of the group ¥ are equivalent.

This result will be repeatedly used in what follows; it is easily
transferred to the groups U{e0,0}™ and SO *2 ).

PART IlI
ADMISSIBLE REPRESENTATIONS OF THE PAIRS (G, K) OF
NON-COMPACT TYPE
§9. Two constructions of fundamental representations of the

groups GL(«, F), F=R,C,H

9.1

For F=R, C, H, we shall use the notation given in the following table.
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Table 7.4
F=R =C F=H
G GL* (%0, R} GL(w, C) GL{e, H}
Gln) GL* (n,R) GL{n, ) GL(n, H)
K SO0} U(e0) Sp(<0)
K(n) SO(n) Uln) Spln)
L Sp(eo, R)" U(e, o) SO*400)
L{n) Spin, R)" Uln, n)- $O*dn)
M Ule)” (U{e0) x U(e0))” U(2)
M(n) Uln) (U(n) X Uln))" U(2n)
Ulk, F) O(k) Ulk) Splk)

Here GL*(n, R) denotes the component of unity in GL(n, R). As
usual,

G=U G(n),

n={
etc. We observe a small divergence from Table 7.3 in the definition of
the groups L and M for F=H: instead of SO*2) it is more
convenient for us to investigate the group

S0*4w)= U SO%4n)

= |

isomorphic to it. We need also the Lie algebras corresponding to the
groups from Table 7.4; for example,

oo

gl{ee, F)= U gl(n, F). etc.

n=|

9.2

Let us define an embedding K- M by the following mapping of the
corresponding Lie algebras.
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In the case F=R: the identical mapping 80{c0) — u().

In the case F=C: the mapping A—(A4, A) from u(®) to
u(o0)® u(). (Let us recall that the last algebra is embedded in
u(e0,) by means of the mapping defined in section 7.3; to sum up,
the embedding u({o)— (0, ) has the form

A0

A~ .
0 A

In the case F=H: the mapping 8 from 8p() to u(2 ),

9.3

Let us examine the space F®=F'-* with the Gaussian measure u
(section 4.1). The measure u is quasiinvariant with respect to the
natural right action of the group Gon F*:

du(xg)
du{x)

= o(x, g) D{g),
where

1 w
a(x,g)=exp(-5x(gg*-1)x*), x€F, gE€QG,

(D(-)is defined in section 1.5).

94

For s€R we define the unitary representation 7T, of the group G in
L*(F~) as follows:

T(g)f(x)=olx, &) D(g)'"flxg),
(fe LIF"), x€F", g&G.
We shall call the representations 7, fundamental A second

construction of the fundamental representations is given below
{section 9.6).
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We observe that 7,|K does not depend on s&R and coincides with
the representation 7T, of the group K (section 4.4). Hence T, is an
admissible representation in the sense of the following definition.

9.5

Derinrmion.  The unitary representation T of the group G is called
admissible if the representation T'|K is tame.

We observe that the subspace H_(7T|K) is algebraically invariant
with respect to G. Hence for an irreducible 7 the admissibility
condition is equivalent to the fact that H {7 |K)#{0}.

9.6

THeOREM. There exist the embeddings t.:G— L such that ({for each
s€R) the representations W,otf and 7, of the group G are
equivalent.

By definition, W,o1,” denotes the representation g— W,(z/(g}). A
detailed proof of this theorem is given in §10. In section 9.7 we shall
outline the idea of the proof. The remaining part of this paragraph is
devoted to the structure of the embeddings 7,* and to discussion.

9.7

The idea of the proof of theorem 9.6. Let, for example, F=R. We
shall examine the representation of the Lie algebra

o3

gl{0,R)= U gl(n, R)

He |

in H(T,) corresponding to the representation of the group G and
denote it again by T,. For any A€gl(c, R), the operator T,(A) is a
finite linear combination of operators in L*{R”) of the type

a1 d 2
x1, o lxl, 2| =xZe 2
i ax;0x;” 2 [x 6x}+ g ax,

’

But these operators form exactly the Weil representation W, of the
Lie algebra 6p(co, R), which becomes clear if we move from L¥R*) to
H#(C'*) with the help of the transform J, (see section 4.10),
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9.8

The embedding t/:G— L(s€R) is conveniently given by the
corresponding mapping of the Lie algebra which we again denote by
T\

™ gl(eo, R)~ sp(e0, R),
£’ gl{co, C)~ u(e, o),

7,: gl(o0, H) > so ¥4 ).
The elements A€ gl{e0, F) are conveniently written in the form

A- A¥* A+ A*
, Y= .

A=X+Y, where X=
2 2

(We observe that X lies in the Lie algebra of the group X.) In this
notation, 7,/ is given as follows:

e N
2 Xt Yo X+isY (1 zs)Y},

(1+i5)Y X—-isY

T X+ Y~

(X+isY —(i+s)Y
(i-8)Y X-isY|’

& XH[wﬁ(X)w_' 0 :l
0 BXx)]”

” YH[ is wB(Y Jw™! -(:+s)wﬁ(y)]
. (i—s)B(Y)w ' —is B(Y) ’

where
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In a more detailed manner, if X=X, + X, jand Y=Y, + Y, j, then

X X 0 0]

9.9

In the case F=R, we have

(A) = ha(An,

where

_(1-5}1.” B,
2 2 _

This shows that ¥ is in fact a morphism of the Lie algebras, because
for the mapping

X Y
D Gl (e
e X Y[Y X]

this is obvious. It is clear that £¥gl(e, R))C8p(«, R).
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9.10

Analogously, in the case F=C, we have

where

.| =il 0 -
= * he U, o),
h [ 0 lw] ' ( )

This shows that 7" is in fact a morphism of the Lie algebras, because
for the mapping

X —nf]

T X+ YH['Y ¥
i

this is obvious. It is clear that t-(gl(e0, C))C u(e0, ).

9.11

Finally, in the case F=H, we have

r\(A)=hT,(BANK,

where

h=" Ve 0w, 2)
0 1

This shows that 7" is in fact a morphism of the Lie algebras. From
the definition of X'and Y'it follows that

Xi=-X\, X,;=X,, ,=%% Y,=-V.
From this it is easy to deduce that z"(gl{c0, H})C 50 (4 o).

9.12

Lemma. 1K does not depend on s€ER and coincides with the
embedding K— M defined in 9.2.
This is easily checked.
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9,13

Lemma. tf(G(n))C L{n).
This 1s obvious.

914

Remark. From the definition of 7, it can be seen that, for any n=1,
2,.. .

%1G(n)=¢" o (% |Gn) (s&R),

where @ is a certain inner automorphism of the group L(n}); for
example, in the case F=R, it is given by the matrix

B is is n
( l - _] 1 [l - l "
11 2
h'= € Sp(n, R).
is Is
- ln 1+— ln
_ 5] "

However, this does not mean that the representation W01,/ does not
depend on s: in §12 we shall see that the representations W,ot, for
different s are pair-wise not equivalent; the simplest way of seeing this
is to observe that the spherical function ¢,ot, depends substantially
on s(the function ¢, on L was defined in section 8.1).

The fact is that the “inductive limit” of the inner automorphisms
@." as n—~ < is already an outer automorphism of the group L.

9.15
Remark. We now try to explain the “natural origin” of the family of
embeddings {7,/ }.

For simplicity, let F=R. We could examine more general
embeddings

2 GL* (w0, R)~ Sp,(=,R)" of the type g~"(74(g)),
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where % is an arbitrary element from Sp(o, R). We require that
7,%|SO(0) coincide with 7,%|SO(); this requirement is natural as it
ensures the admissibility of the representation.

But then A should have the form

'h=[a-1m b1,

- la b
h = =SU(1,1).
cla d-1.,,]’w ereL d] Sp(1. &)= SU(1, 1)

In view of corollary 8.14, the equivalence class of the
representation W0 7,* of the group GL*(%, R) does not change if the
matrix

[‘C’ z]ESp(l,R)

!

where 8€C, |6 = 1. On the other hand,

Y

may be multiplied on the right by a matrix of the type

is multiplied on the left by

[coshr sinh t] eR,

sinh 7 cosh ¢\

as this does not change the embedding t,*.
We now observe that any matrix from Sp(1, R) may be represented
in the form

o8 5]

!a b]_[é 0] 2 2 !coshr sinhf]
c df |0 6 is is |Lsinh ¢t cosh ¢
=2 1+2
| 5 7
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(this is simply the Iwasawa decomposition). Thus, we return to the
embeddings X,

§10. "Equivalence of constructions

10.1

Let us recall that in §4 we constructed a certain isometry I, of the
space L*( F**) on the Bargmann-Segal space

#(C'7), #(CH7), #(C)

for F=R, C, H, respectively. Let us note now that the last space is
precisely the space of the representation W,®* of the group L, and
that 12(F**) coincides with H(T®*) for any s€R. We use below the
notation of §9.

10.2
Tueorem. For any s€R and all k=1, 2,.., LT®Xg), 1=
W,241(g)) (g€ G).

For k=1, theorem 9.6 follows from this.
To prove theorem 10.2, it is possible, without loss of generality, to
consider k= 1. We shall study separately the cases F=R, C, H.

10.3

Proor oF Tueorem 10.2 (F=R). Let us move away from the group
GL* (%, R) to its Lie algebra gl{~, R) and prove that

RT{AN G = W7(A)) (sER, AE gl(, R)),

where both sides are considered as operators on the subspace
Clz,, 2o, . . JCH(C=).
This equality is evident for A=X in view of lemma 9.12. Let now
A= Y. It is sufficient to study the case Y=E;+ E; where i, j=1,2,...
It follows from the definition of the representation 7 that
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| F o
T(E;+ E;) f=(—{is+ 1)x,x+ 5;})f+xfa_xj+xf3); ’

where fis an arbitrary polynomial in x,, X, ...).}

From the definition of the isometry L; IX{R*)=3A4z,, z,,...) it is
easy to deduce that it transforms the operator of multiplication by x;
into M;+ D; and the operator ¢/ dx, into D;. Hence

Iy YL(E:‘,«'"' Eﬂ)I;al p=[—is(M, Dj+ *M;'D;'*' 6:‘;‘)
+{1-is)D,D;—(1+ iS)M;Mj]¢= WR(I%(E:}J" E)p

for any polynomial ¢€C[z,, 25, ...].
We now observe that, for any A€ gl{e0, R}, the operators

d _ d
— LT Iz — Wit
7 {expt A)l ¢ F"and ” w{Tdexp tA)} .

are essentially skew-adjoint on the subspace
Clz), 220 - . JCH#(2), 25, . . )y

since all polynomials are analytic vectors for the representation W,. It
means that these two operators coincide, which proves the theorem.

10.4
Let us realize the group GL* (%0, R) as
GL™(20,R)= U GL'{(2n,R).
ne=]

We shall denote the fundamental representations 7, of the group
GL*(20,R) and GL(,C) by T¥ and T} respectively. Let us
identify the spaces

H(TY=IL1C") and H(T™=L(R"xR")

$The letter { here denotes simultaneously (— 1)' “and anindex 1, 2, .. ..
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by means of the mapping x—(Re x, Im x) {(x&€C*).

Lemma. T = T*oain the sense that
- T(g)=T"a(g) (g€GL(%,C), sER).
This is obvious. {The mapping a is defined in section 1.3.)

10.5

Proor oF THEOREM 10.2 (F=C). Let us realize the group Sp(o,R)™
as Sp(200, R)~ and observe that

Welg) = Walv(g)) (g€ U(w,) ),

where y indicates the embedding U({,®}” —= Sp(2e,R)™ definable
as in section 6.9. Along with lemma 10.4, this reduces the statement
of the theorem to the following formula

I TMa(g) k™' = Wily(z (g)) (g€ GL(%,C)). (1)

Let us recall (see section 4.12) that

1| 1o ilg
I = I;ml(um)IP’ where U 275 [flm lw:l .

(Here T,,(u.) makes sense, as u,E€U(2), and T, admits an
extension to U(2)= /(). Since, for F=R, the theorem is already
proved, {1) is equivalent to

4

Tror(tts ) WD (@ (8))) Rtluta) ™' = Wly(7,(8))  (§EGL(,C)).  (2)

In view of corollary 8.14, the left side of (2} is
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We observe that this statement no longer relates to any
representations. It is sufficient to prove the analogous fact for the Lie
algebra, i.e., that

[g ui’]rﬁ(am)){g"“ 0} A, Acglo,C)  (3)

Let us assume that A=Y (see section 9.8). Then a(Y) is again an
element of the type “Y”, but already for F=R. By the definition of
X, we have

is a(Y) (l—is)a(Y)}

r,(a(Y))=[(1 +isa(Y) =—isal(Y)

On the other hand, it is easy to check that, for any matrix PEC>->,

we have
PO 0  —iP
dma(P)uw=[ -],ama(P)af[ v '],

P —iP 0

0 14 PO
UoO (P U= I s U O (P i, =

P 0 0O P

(it is sufficient to check some one of these formulae and then use the

fact that
I T R O N O
“Tl-1. o)™ -1 0 | )

Applying these formulae to P=Y, we find that the left-hand side in
(3)1s

sy 0 0 —(i+s5)Y]
0 isY —(i+s)Y 0 ()
0 (i-5)Y —~isY 0

(i—=5)Y 0 0 —isY |
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But Y=Y, since Y=Y* From the definition of the mapping y
(section 6.9} and the embedding 7° (section 9.8) it can be seen that
(4) coincides with y(z(Y)), which proves (3) for A=Y.

In the case A= X, the formula (3) can be checked in an even
simpler.way. Notice that it is in fact proved in section 4.13.

10.6

Proor oF Tueorem 10.2 (F=H). We reason by analogy with section
10.5, using the fact that for F=C the theorem is already proved
(compare the proof of theorem 4.6).

10.7

" Remark. Let us define in the space H(T.®*=[}F**) the unitary
representation R, of the group U(k, F)= O(k), U(k), Sp(k) as in
section 6.12. It is obvious that R, commutes with T .

Theorem 4.18 and remark 4.21 show that the isometry [,
transform R, into the representation in the space H{ W, 2%} which was
defined in sections 6.12 and 7.13 and denoted in section 7.13 also by
R, (in the case F=H, both representations differ by an inner
automorphism of the group Sp(k), but this is an insignificant detail).

§11. Construction of irreducible admissible representations of the
groups GL(x, F)

We retain the notation introduced in §9 and constantly use the
equivalence of the representations 7, and Wozr/ of the group G,
proved in theorem 10.2. Let us start by formulating the main results.

11.1

THueorem. For all k=1, 2, ... and all s€R, the representation W, ®*
of the group L and its restriction to the subgroup t{G) generate
identical von Neumann algebras.

For the proof see section 11.13.
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11.2

CoroLLARY. Forall k=1, 2,...and all s€R, the representation T,2*
of the group G possesses a symmetry group U(k, F) (its action is
defined in section 10.7). The fotllowing decomposition holds:

T®= @ (dmana)T,,,

ae Uk F

where T, , are irreducible representations of the group G defined in
conformity with the general principle (section 1.12). The isometry 1,
constructed in §10 carries out the equivalence of the representations
T, ,and Wl

This follows from theorems 1 1.1 and 7.13 and from corollary 7.14.

11.3

Let p=1, 2,.... For an arbitrary group ¥ we agree to denote by ¥’
the direct product of pcopies of 4.

Let us fix the numbers X,..., k,=1, 2,... and examine the
representation

U=(W"® ... ®(W.>") (1)

of the group L”. Let us fix the numbers s, .. ., 5,€R and let us study
the embedding

T=1, X ... X 7::;: G-L". (2)

Tueorem. Let us assume that the numbers s, ..., s, are pairwise
distinct. Then the representation U of the group L7 and its restriction
to the subgroup 7(G) generate identical von Neumann algebras.

This theorem generalizes theorem 11.1; it is proved in section
11.13.

11.4

Corortary. If the numbers s, are pairwise distinct, then any
representation of the group G having the form

T= I,]__\I®...®7;rp._,P,where;t;EU(k;,F)A (i=1,..,p) (3)
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is  irreducible and equivalent to the representation
(WJ'T|® PR ® Wnp)of.

11.5

Tueorem. The number p and the set {(7;, s;)}, permutations of the
indices i being disregarded, are invariants of the representation 7.
This theorem is proved in §12.

11.6

Tueorem. The representation conjugate to T, . is equivalent to T _,
(let us recall that at 7 ~ 7 for F# C).

Two proofs are given in sections 11.19-11.20.

11.7

Remark. Along with the result of section 1.14, these results fully
describe the structure of the ring of representations of the group G
generated by the representations 7, s€R.

11.8

Remark. The representations T of the type (3) are admissible
representations in the sense of definition 9.5. In the decomposition of
the representation T |K, all the multiplicities are finite.

11.9

Remark. As will be seen from the proof, all the results remain valid
if we replace Gby|G,G]= SL(, F).

11.10
We agree to denote by d the diagonal embedding of the group M in
MPC LY,

THeorem. If the numbers s; are pairwise distinct, then the group
[L, L is algebraically generated by its subgroups 7({G, G|} and
d([M, M]).
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Proor. For proof, see section 11.18. We note that [L, L]=L for
F#C; [L, L]=SU(%0,) for F=C; [M, M]is SU(e0), SU{o0)x SU(0)
or SU(2e0)for F=R, C, H respectively.

11.11

Let us proceed to the proofs. Consider the representation 7= Uot of
the group G, where U and t are defined by (1) and (2). Let p=T|K.
This representation is equivalent to the representation 7,* from
section 4.4, where k=k, + ... + k,. Hence it is tame and possesses a
holomorphic extension p* to the group K * which was explicitly
constructed in theorem 4.6.

Let us recall that M either coincides (if F=H) or “almost coincides”
(if F=R,C} with the group K * In any case, we can identify [M, M|
and [K ¥, K ¥ {see section 7.17).

Lemma. The representation o* of the group K* differs from the
representation Uod of the group M only by a scalar factor (which is a
one-dimensional representation). In particular, both representations
coincide on the group [K*¥ K*=[M, M].

Proor. The representation Uod of the group M coincides with
W,®4 M. The latter representation, coincides, to within a scalar
factor, with a certain holomorphic representation of the group K*
(lemma 7.11). On the other hand, (Uod)|K = p, since 7|K=d|K. The
assertion of the lemma follows now from the uniqueness of the
holomorphic extension {see section 2.21).

11.12

Lemma. The representations T|[K, K] and (Uod)|[M, M] generate
identical von Neumann algebras.

Proor. By virtue of lemma 11.11, it is sufficient to establish that the
von Neumann algebras po((K, K])" and p*{[K™* K*]}" coincide. This is
a general fact that is true for any tame representation o. In fact,
oK) =pXK*", by virtue of theorem 2.17. Now it remains to
observe that p(K) =po(K, K]\ (since the group [K, K] either
coincides with K or is dense in it with respect to the weak operator
topology in which p is continuous) and that, by similar
considerations, o {(K*" = pX[K* K*)".
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11.13

Proor of THeorems 11.1 and 11.3. Let us prove theorem 11.3
(theorem 11.1 is a particular case of it for p=1). First let F#C; then
[L, L]=L. By lemma 11.12, the von Neumann algebra generated by
the representation (Uod){[M, M]) is contained in the von Neumann
algebra generated by the representation Uo7 of the group [G,G]. But,
by theorem 11.10, #[G, G]) and d([M, M]) generate [L, L}P=L>,
which proves the theorem.

When F=C, this discussion needs to be augmented by the
observation that the restriction of the representation U to the
subgroup [L, LY does not change its von Neumann algebra: this
follows from the remark 7.15.

11.14

Let us proceed to prove theorem 11.10.

Let a, and 4, be arbitrary Lie algebras (over an arbitrary field);
a=a,®4.; x, and x. be the natural projections of the algebra a onto
a, and a respectively; and let b be a subalgebra in a such that
xi(b)=a, and x,(b)=a,. Letus putb, =604, b,=06Naq..

LEMMA. With these assumptions, we have:

(i) b, isanidealina,,b,isanidealina,,
(ii) there exists an isomorphism

@:a,/b, ~a./b,
such that b coincides with
{X€a: @(x{X)mod b,)= x,(X) mod b,}.

ProOF,

(i) Let XEb,, Ye<a,. Let us select Y'€b such that x(Y')=Y.
Then

lX, Y'J'—'l_X, Y4 1( Y')J =|.Xs Y]
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But [X, Y’]eb,{X, Yi€a,. Thus
[X, Y]ebNa, =a,.

This means that §, is an ideal in @,. Similarly, b, is an ideal in @.,.

(i) Without loss of generality, it may be assumed that b, =b, ={0}.
Then

x:b—a, x:b—a,
are isomorphisms and it is possible to write

@=x-o(x,10)"".

11.15

Let q,,..., a, be simple Lie algebras (over an arbitrary field); a be
their direct sum; x;: a — 4, be the natural projection (i=1, ..., p), b be
a certain subalgebrain a and y,;(b)=aq,for all ;.

Lemma. With these assumptions, we have: either b=a or b is
distinguished from a by some conditions of the type:

@i (x (X N=xdX) (XEU),

where ¢;: a,~4; denotes a certain isomorphism of the Lie algebras
(i#)).

Proor. We carry out an induction on p. For p= 1, the proposition is
trivial. Let p2 2. Let us put

¢=a,®..0aq,,, b=(x®...0y, b<d.

The conditions of the lemma are satisfied for a’ and b’. Hence the
assertion of the lemma is valid for them. Without loss of generality, it
may be assumed that b’=a’. Now it remains to apply lemma 11.14 to
the algebra a=a’®a, and its subalgebra b.
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11.16

Let us remember that m{n) denotes the Lie algebra of the group
M(n); it is isomorphic to u(n), u(n)® u(n) or u(2n) for F=R, C, H
respectively.

Lemma. For any s€R and n2 3, the smallest Lie subalgebra in /(#)
containing 7./ (sl(n, F))and [m(n), m{n)] coincides with {{(rn), Kn)].

Proor. It is sufficient to prove that the smallest complex subalgebra
b in / {n) containing 7./(s/(n, F)) and [m(n), m{(n)] coincides with
[e(n), I{n)].

Let us consider the decomposition (see section 6.3)

Idn)=1_\(n)@(n)®](n)

and denote by ¥ _ |,.#,,,, the corresponding projections.
We observe that the spaces [_,(n), i(n), [,(n), considered as
modules over [[(n), [{n)], are pairwise disjoint, i.e.,, do not have

equivalent irreducible submodules. In fact, let, for example, F=R.
Then

-A 0

L(n)=sp(n, C), [k(n), L{n)}= H 0 A]: A€ sl(n, C)]

It is obvious from this that /_ (n) is an irreducible s/(n, C}module
with the highest weight (2,0,...,0); /(n) is the dual irreducible
module with the highest weight (0, ..., 0,— 2); /() is the direct sum
of the one-dimensional trivial module and the adjoint representation
(which has the highest weight (1,0,...,0,— 1)} Such is the situation
also for F=C,H: /I_,(n) and [,(n) are irreducible and dual to one
another; /(#n) is the direct sum of the adjoint representation and the
trivial module of dimension 1 {(for F=H) or 2 {for F=C).

Since [£(n), §(n)] is the complexification of the subalgebra [m(n),
m(n)), it follows that

b=X_,(b)®H,b)DH(b).

tThe condition n3 3 ensures the difference of these three weights on the algebra
si(n, C); at n=2 they coincide.
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In particular, the spaces

3?—1(71:(51(’1’ F})) and yl(fi(ﬂ(", F})

lie in b. From the definition of 1./ (see section 9.8), it can be seen that
these two spaces are non-trivial for any s€R. Since the modules
I_\(n) and /,(n) are irreducible, they are wholly contained in b. But
[_(n)and [(n)generate [I(n), I{n)], whence b=[[(n), [(n)].

11.17

Let p=1, 2,.. 8,..., S,€R; [{(n), {n)}=[ln), (n)]® ... S[ln),
In), t=th®... @1, slin, F) [l( ), l(n)}"; and d: |m{n),
m{n)|—[n), {n)) be the diagonal embedding.

Lemma. If n>3 and s5#s for i#j, then 1(sl{n, F)) and
d([m(n), m(n)]) generate [/(n), {(n)}.

Proor. We shall use lemma 11.15. In our case a,=[[.(n), I.(n)] for
i=1,.., p;a=q,® ...q,; bCa is the smallest subalgebra over C
containing t(s/(n, F)) and d({m(r), m(n)]). All the assumptions of
lemma 11.15 are fulfilled: in fact, the algebras @; are simple and
x:(b)=a,for all {in view of lemma 11.16.

Let us assume that for a certain pair (i, j), where i#, there exists
an automorphism ¢ of the algebra [/ (n), I.(n)] such that

@(x (A= x{A4), AEb.
since b contains d{{m{r), m(n)], we have
@l[ln(ﬂ), Iu(n)J =id.

In particular, ¢ commutes with the projection J#, (see proof of
lemma 11.16). So,

'-;?u(t;(A)) =%}(Tai(A))

for all AE si(n, F). From the definition of the embeddings 7} it is
evident that this is possible only for s5;=s;, which contradicts our
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assumption. This contradiction shows that
b=a={/.(n), [{n)}.

11.18 -

Proor oF THEOREM 11.10. Lemma 11.17 shows that, for any n= 3,
the Lie algebras of the groups 7{{G{n), G{n))) and d({M(n), M(n)])
generate the Lie algebra of the group [L(n), L(n)}. In view of the
connectedness of the group [L(n), L(n)p, it is algebraically generated
by the subgroups ({G(n), G(n)]) and d({M(n), M{(n)]) (see N.
Bourbaki, Groupes et algébres de Lie, Ch. 11, §6, ex. 25).

11.19

Proor oF TheoreM 11.6 (first method). By theorem 10.2, we may
replace T, ,by W,o7f By theorem 7.7, it is sufficient to check that the
representations

Woporiand Wor?, (3)

of the group G are equivalent. Here @ is an automorphism of the
group L defined in section 7.7.

If F=R, then got*=17_# and this means that the representations
(3) coincide. In cases F=C, H, the embedding @o 1! is transformed
respectively into the embedding go7_ /! (see section 7.8) or intc the
embedding _,/ by a suitable automorphism of the group L of the
type ’

g~'g (gEL)

where 4 is a certain element from U(e)X U() (F=C) or U{2)
(F=H). By corollary 8.14 and remark 7.8, the representations (3) are
equivalent.

11.20

Proor oF THEoReEM 11.16 (second method). Consider the following
bilinear form on L F* =}

F

Hx) Alx)du(x).
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This form is non-degenerate and invariant with respect to the
simultaneous transformations

TR f, AT (8EG).

The assertions of the theorem follow easily from this and from the
definition of the representation 7, ,(see also section 1.12).

§12. Pairwise non-equivalence of irreducible representations

The proof of theorem 11.5 is presented in this paragraph. Its analysis
then leads to the construction of a certain group of currents G *

12.1

Let us examine two sets of numbers
S={5,<s:< ... <5}, 8" ={s5/<s,/’< ... <s,}

and two sets of representations {7} and {7}, where m, € U(k,, F)",
neUk, F)'i=1,..,p;j=1,...,4

For the proof of theorem 11.5, it is sufficient to establish the
following: if the representations

r _ ¥
® (W,ot,) and ®(W,.01)) (1)

i=1 =1

of the group [G, G| are equivalent, then p=gq, s=s" and x;,~ a’, for
i=1,...,p

12.2

We shall write #z(s) and =xs’) instead of x; and =x. Let
L<nL<... <y be ali the points of the set SUS’, where r=card
(SUS').Form=1,...,rweput

Up= Wy, if 1, €8, U,=1,if 1, &S,
Uy =Wy, if t,€S8, U,/ =11f 1, &S".
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Let us consider the irreducible representations

U=® U, and U'=® U,

H= | ne= |

of the group L’ and observe that U|[L, L) and U’|[L, L} are also
irreducible (remark 7.15).

12.3.

Lemma. If the representations U and U’ of the group [L, L} are
equivalent, then p=g¢q, S=5"and n,~ 7', for i=1,.. ., p.

Proor. If U~ U’, then U,~ U, for all m=1,..., r. On the other
hand, we observe that all the representations of the type WL, L],
where n€ Uk, F)", are nontrivial. In fact, lemmas 7.11 and 3.11
show that W,®* possesses a unique [M, M]-invariant vector to within
a multiplier (this is the function f,=1). However, this vector is
obviously not invariant with respect to [L, L], so that W,®*||L, L]
does not contain the trivial representation.

Finally, let us recall that from W,|[L, L]~ W,|[L, L] it follows that
i~ n’' (corollary 7.14 (iii}). Now the assertion of the lemma becomes
obvious.

124

ProoF ofF Theorem 11.5. Let us consider the embedding
T=T,X ... X1, of the group G in L. We observe that the
representations (1) are equivalent respectively to the representations
Uot and U’cr. By lemma 12.3, it is sufficient to check that any
isometry I H(U)— H{U’) commuting with the action of the group
([ G, G)), commutes with the action of the group [L, L}.

By theorem 11.10, the groups 7({G, G]) and 4{[M, M]) generate
[L, L]. Hence it is sufficient to establish that I commutes with the
action of the group d([M, M]). But this follows from the fact that /
must intertwine the holomorphic extensions p* and (p')* of the
representations o= (UoT)|K and po’=(U’o7) K respectively (here we
use lemma 11.11).
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12.5

The construction of section 12.2 allows any two irreducible
representations (from among those constructed in §11} to be
presented as restrictions of appropriate representations with the
highest weight of one and the same group L’. It makes sense to
develop this idea further and to try to construct a “universal™ group
catering for all representations at the same time. By analogy with the
group K *from §2 it is natural to denote this universal group by G *

We shall now give a rough variant of the definition of the group
G* We put G*= U G¥n), where G*n) is defined as the group of
(all) mappings f{s) of the real line R into the group L(n) (the functions
are subject to pointwise multiplication). We shall define embeddings
T. G(n)= G*n)and d: M{n)— G*(n)as follows:

F

T{g)s)= 1g), d{u)s)= u, where s€ER, g€ G(n), ucs M(n). (2)

Theorem 11.10 shows that 7({G, G]) and d{{M, M]) generate inside
G* a subgroup which is dense in [G*G?* with respect to the
topology of convergence on finite subsets in R.

The group G possesses a family of irreducible representations with
the highest weight. They have the following form

Uy si(f)= ® U (flsul) (51 < ... <5, fEG¥,

Bl
=1

where
U‘».,, = WJ!," (JI,,,E U(kma F )n )'

By analogy with §2, these representations are appropriately called
holomorphic. The structure of the ring generated by the holomorphic
representations is evident.

We now see that any irreducible admissible representation of the
group G {from among those constructed in §11) possesses a
canonical holomorphic extension to the group G*

12.6

Let us assume for the sake of simplicity that F=R. Let us replace in
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(2) the elements gEG(n) and u€ M{n) by the elements of the
corresponding Lie algebras g(n) = gl(n, R} and m(n)= u{n).

Turorem. For F=R and rn2 3, the Lie algebra of matrix functions
on R generated by the Lie algebras 7{sl(n, R)) and d(su(n)) consists of
all sp(n, R) valued functions of the type

| i+ shals)-1,+A(s) {1 —is)B(s)
{1+ is)B(s) i(1+s)a(s) 1,4+ Als)|’
where a( - )ER[s], A{- )ER[s]® su(n), B(*)= B{- ) ER[s|®C"".

An analogous result is true for F=C, H. This theorem is proved
with the help of a certain modification of the proof of theorem 11.10
and 1t may be considered a refinement of it.

12.7

Remark. The definition of the group G*n) given in section 12.5
should not be considered the final definition, but only a certain fairly
rough “upper approximation™. In a “correct” definition, it will be
necessary to impose upon the function f(s) some sort of additional
restrictions, the exact form of which is not yet quite clear.

Theorem 12.6, on the contrary, gives a certain “lower
approximation”. We observe that it is possible to derive from it a
statement like the following: 7{[G(n), G(n)]) and d{{M(n), M(n)|
generate a dense subgroup in the group of continuous mappings
R—[L(n), L{n)] with the topology of uniform convergence on
compact sets.

§13. Spherical functions and properties of continuity of
admissible representations of the groups GL(x, F)

We retain the notation introduced in §9.

13.1

Any matrix g€ G may be written in the form g=ug,s, .. .v, where
u,ve€ K and
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[exp ¢ 0]

EXp 5
g."|.'3...= . » t[’t:,---eR.

0

It is assumed that 7, =0 for sufficiently large m. We note that the
numbers £, 1, . . . are determined uniquely to within a permutation.

132
Lemma. The representation
p
T=® T, ,, where meUlk;, F)", sER.

j=1

possesses a non-zero K-invariant vector if and only if 7, is the trivial
representation 1k of the group Ulk;, F) for all j=1,..., p. This
vector is unique to within a number factor.

This follows easily from the fact that T |K is a subrepresentation of
the representation T;* defined in section 4.4, where k=k, + ... +k,.

13.3

We shall write for s&€R

¢s(g)=(7:(g).ﬁlaﬁl)’ where g& G,ﬁ,EH(I:)=L2(Fw), h=l

THeoreM. The formula

- +]

@, (8., )= I1(cosh t,+ issinh £,)” " (d=dimg F). (1)

=]

holds, or, what is the same thing,

qo~(g)=D((1 ;”‘) g+ [’ ;"*')(g*r‘]_ g=6) @)

where D{( - ) was defined in section 1.5.
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Proor. The equivalence of formulae (1) and (2) is checked easily.
Using the  embeddings GL(%,C}> GL*(20,R)  and
GL(0, H)~ GL{2, C), we reduce the general case to the case F=R
(compare with section 10.4). From here it is possible to proceed in
two ways.

First method. From the definition of 7 it can be seen that

(8= 11 (e’ ZJ exp("%xz(ez"”— 1)1+ is) e"z’ldx) ,
|

= — ab

The integrals on the right-hand side are easily calculated and this
leads to (1).

Second method. We shall use the fact that 7.~ W,ot* and that the
spherical function for W, was calculated in section 8.1. Let

denote the image of the element 7%(g ., ...} in the group Sp(e, R)
under the projection Sp(e, R)™ = Sp(cc, R).

From
|:a\ b\:|=h‘ |:au bu:| h_\l
¢, 4, ¢ d
(see section 9.9), we deduce that g, is a diagonal matrix with

eigenvalues cosh ¢z, + i sinh ¢,,, m=1, 2,.... Substituting &, into the
formula from section 8.1, we get (1).

134

Tueorem. The spherical function of the representation

P? Iy
T=® T, isequalto [ gvf‘ .
¥ Y . '
j=t

j=1

This follows from theorem 1 3.3.
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13.5
Let us put

P={g€EG: g=g*>0l=expZ,
where
P={Acgl(o0, F) A= A%,

We observe that G=KP. If g= up, where u€ K, pE P, then u and p
are defined uniquely by the element g:

p=(g*g)"", u=gp
13.6

Let us denote by P the set of all invertible bounded positive self-
adjoint operators in /*(F ) of the type 1+ A, where A is a certain
Hilbert-Schmidt operator. Let us endow P with the topology induced
by the Hilbert-Schmidt operator norm |-[,. We observe that
P=exp®, where & is the space of all self-adjoint bounded
Hilbert-Schmidt operators in /*(F ).

Let us put G=K- P (the topological group K was defined in
section 2.19). G consists of all invertible operators g in [*(F) for
which (g*g)'/2 — 1 is a Hilbert-Schmidt operator. This is equivalent to
the fact that g*g— 1 is a Hilbert-Schmidt operator.

13.7

Lemma. Let us topologise G with the topology of the product K x P.
With respect to this topology Gis a topological group.
A proofis given in [28]. It reduces to the fact that the mapping

u—~udu"' (ue k),
where A is a fixed Hilbert-Schmidt operator in [*(F), is a

continuous mapping from K to the space of Hilbert-Schmidt
operators.
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13.8
We observe that the group |G, G]= SL{, F)is dense in G.

Tueorem. For any s&R, the representation TJ{G, G] admits a
continuous extension to the group G.
Proof is given in section 13.11.

139

CoroLLary,  All irreducible representations of the group [G, G|
constructed in §11 admit a continuous extension to the group G.

13.10

Remark. From the proof it will be seen that in the formulation of
theorem 13.8 it is possible, instead of |G, G|, to substitute G, if we
replace 7, by T,=T.®D(- )" {the one-dimensional representation
g+~ D(g)was defined in section 1.5).

13.11

Proor oF THEOREM 13.8. First of all, let us note that it is sufficient to
check the statement of the theorem for F=R (compare section 10.4).
Then G= GL*(e0,R)and D(g)=det g

Further we shall proceed by analogy with the proof of theorem 8.3.
We shall examine the spherical function ¢, of the representation 7, of
the group GL*(, R). Taking into consideration that ¢,= @, det(- )}**
and using (2), we get after simple transformations ¢,(g)=det 4(g),
where

; ~172
h(8)=(1+1%g(grg_1)) (1+(g'g— 1)+,

We shall assume now that g does not lie in GL*{%0, R} but in G. We
observe that h(g)—1 is a nuclear operator, and the mapping
g~ h{g)— | is a continuous mapping of the topological group G into
the Banach space of nuclear operators. This shows that ¢, admits a
continuous extension to G. ‘

We have proved, by this means, that one of the two irreducible
subrepresentations in T, (specifically, that which is realized in the

¥



364 LIE GROUPS AND RELATED TOPICS

subspace of even functions) admits a continuous extension to G. To
complete the proof, it is necessary, as in section 8.9, to expand the
group G by taking its semidirect product with the Heisenberg group
Heis (A({C)) (or, simpler still, with the group of translations of the
space h(R)).

§14. Approximation of representations of the groups GL(x, F)

We retain the notation introduced in §9. Let us write also d=dimgF.

14.1
For K=1,2,..., we put

Plk)={acsG(k): a= . ,h>0,...,n>05%.

We shall write r, = r,(a), . . . r,=r.(a).
For n> k, we put

M= Hi 2]66(11): = P(k)].

For s, ..., 5;€R, we examine the following character of the group

Pk.u:
k
{} a () = w72
= rlda .
wo (L d]) }_I:l’ J(a)

We shall denote by T’ ., the unitary representation of the group
G(n)induced by the character x4}’ ., of the subgroup P*",
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14.2

THeorem. Let us fix k=1, 2,... and the arbitrary numbers s, ...,
5;€R. As n— o, the representations T4’ s of the group G{n)
approximate the representation 75,® ... ® T;, of the group G in the
sense of definition 22.4.F

We shall prove this theorem below.

14.3

Let us write for brevity 7T"=Ty" . By the definition of the
induced representation, H(7"") is the space of measurable functions
f(g) on the group G(n)satisfying the following two conditions:

fIK(m€ L(K(n),
flpg)=x" . .(p)| det Ad(p)|'*f(g) (pE P*", g G(n)),

where Ad(-) denotes the adjoint representation of the group P*".
The group G(n)acts in H(T"} by right translations

T"(2) flg)=f(88) (8 &< G(n)).

It will be convenient for us now to turn to another realization of
the representation 7', namely to realize it in [X(Q*"} (the Stiefel
manifold Q*" was defined in section 5.4; it is provided with the
normalized K(n)-invariant measure).

We observe that

P K(n)=G(n), P*" N K(n)=K(n)

(the subgroup K,(n} was defined in section 2.4) and that the
characters y4'...., and |det Ad(-)|'”? of the group P*" are trivial on
K, (n). This shows that H(7"") may be identified with LK, (n)\K(n)).
But K (n)\K(n) may be identified with Q*" (by definition, the
projection K (n)—Q*" associates with a matrix from K(n) the set of

+This is also true in a stronger sense, as defined in Ref. 44. There uniform
convergence on compact sets in G is replaced by uniform convergence on so-called
bounded sets in G.
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its first k rows). Thus, we may identify H({7T\") with L{Q*"). In this
identification a function f on K{n) and the function f' on Q&
corresponding to it are connected by the relation f(u)=f{w,u),
where u€ K{n) and w, is a matrix of dimension k& x n with elements
(wll):}.: af'j'

14.4

Lemma. In the realization in the space [*(€2* "), the representation
TV of the group G{n)is given by the formula

T’f}(g) flw)= D(g)KQXu(a(ws g

&
x H r}(a), g)—mﬂ L+ i.v;}.f'lf(wg) (we O k.n, ge G(H)), ( 1 )
=1

where the matrices a{w, g) and w?# are uniquely defined by the
conditions

alw, g)€ Pk), o'€Q", alw, go'=wg;

the real positive numbers rj(w, g) are the diagonal elements of the
matrix a(w, g); X, is a certain character of the group P(k) independent
of n(let us recall that the character D(- ) was defined in section 1.5).

Proor. We observe that any matrix y& F** having (maximal) rank &
may be represented in the form y= ab where a€ P(k), b€ Q** The
matrices 4, bare uniquely determined by the conditions

ac Plk), aa*=yy* b=a 'y

In our case, we take y= wgand then a= dq(w, g), b= w*.
We observe further that for any matnix

0 —H
p= [‘: d]e P*" we have |det Ad(p)|"* = D(p)"*D(a)”""zla),

where x,(a)=|det Ad(a)|'”? (in the last expression, Ad( ) indicates the
adjoint representation of the group P(k), so that ¥, does not actually
depend on n).
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Now the assertion of the lemma follows immediately from the
definition of the identification H(T'*")= [ Q* ")

14.5

Let us-recall that the matrices a{w, g) and w?* are given by the
conditions:

alw, g)E€ P(k), a(w, gla(w, g)*= wgg*w*, (2)
o*=alw, g " wg (3)

Lemma. The diagonal elements r{w, g) of the matrix a(w, g) are
given by the following formula:

D(0,{wgg*w*))
D(6,_ (wgg*w™)

7

(j=1,... k) (4)

]
riw, 8=

where for an arbitrary matrix z&€ F** its left upper corner of
dimension jXj is denoted by 6,(z). (Let us agree that for j=1 the
denominator in (4} is equal to 1.)

PROO.F. Using (2) and the fact that a{w, g) is a lower triangular
matrix, we get
6/(alw, £)6)(alw, 2))*=6lwgg*®) (=1,..., k)
On the other hand, it is obvious that
D(6,(a(w, 8)))= D(8;(alw, g)) *=(n(w, g) ... r{w, g))"
This implies (4).

14.6

Let us consider the representation By®:1:#® T, of the group G and
denote it for brevity by 7. We shall fix two cylindrical functions f}, £
from H(T)=[*F* ) (see section 4.2). Let us fix the number N to be
sufficiently large that fi(x) and f(x) depend only on the first N
columns of the matrix x€ F*®, Then for any m2 N we may treat f,
and f; as functions on F*.
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On the other hand, for any n2 N we define the functions f,'" and
£y on Q% " as in section 5.6:

[ w)=f(Jnd ), where i=1, 2; 0EQ"" C F*",

If f, and £, are bounded, then £, and £, evidently lie in L}(Q*")
for all n. We shall say that f; and f, are continuous if they are
continuous as functions on F*~,

Tueorem. Let f; and f, be fixed bounded continuous cylindrical
functions from L2(F% ). Then

Lim(T"(g) £, £")=(T() £, £)

fi— @™

uniformly on compact sets XC G.

Theorem 14.2 immediately follows from theorem 14.6 and lemma
22.6, since the bounded continuous cylindrical functions form a
dense subset in L2 F* <),

We prove theorem 14.6 below.

14.7

According to the definition of the topology of the inductive limit, any
compact set XC G lies in G(m), where m is sufficiently large. From
this point, we fix m2 N and assume that g runs through a certain
compact set XC G(m). We assume n> m.

Lemma.  The following formula is true.

(T"g :"*,f;"’)=D(g)*’2J

k
xoka)[ 1777572
Qo j=1

;ﬁ(Jﬂd.a"w;g)“j-&(vﬁZ wy) dew

where the following notation is used: dw is the normalized K(n)-
invariant measure on Q% ”; the matrix @, € F*" consists of the first m
columns of matrix w; the matrix a depends on w, g and is uniquely
defined by the conditions
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a< Pk), aa®=1,+ w,(gg*— 1)w*;

the numbers r, >0, ..., r,> 0 also depend on w, g and are given by
the formula

P D(G;'(1k+ w,(gg*— 1w, *)
! D(6,_\(1,+ w,{gg*— L), *)

(j=1,..., k).
Proor. We shall denote by w,E F* "~ the matrix composed of the
last n— m columns of the matrix w. Since wE Q* ", we have
1= ww*= w,w0,*+ w.w,*,
whence
w-w,*=1,— w,w*.
Taking into consideration that g& G(m), we get from this
wgg*w* = w,gg*w * + ww,* = 1, + w(gg*~ w *.
Now the assertion of the lemma follows from (1)~(4) and the

definition of the functions f;'"', £,

14.8

Let us now examine the mapping Q*”— F** which transforms the
matrix @€ Q%" into the matrix x=/nd w,. The probability measure
u, on F&* which is the image of the measure dw, is concentrated on
the set of matrices with ||x]]> € nd. This measure was studied in detail
in §5. The following lemma is simply a reformulation of lemma 14.7.

Lemma. The following formula is true.

A
= ndl ]+ s
ﬂ I

j=1

(T“”(g) ;””a f:'“”) = D(g)“:‘[— HWXn(a)

x fi(a” 'xg) filx) du.,(x), (5)
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where the matrix a depends on n, x, gand is defined by

1
as Pk), aa*=1,+— x(gg*—1)x% (6)
nd
the numbers rn>0,...,r.>0 also depend on #, x, g and are defined
by
i
D (9, 1,+— x(gg*~ l)x*n
2d nd .
r= (j=1,... k). (7)
1
D [6,_] 1;‘+‘— x(gg*— 1)x*]}
nd
14.9

Lerma.  The following formula is true.

(T(g)ﬁ,f:)=D(g)m[ Lﬂ exP(“i x;(gg*— L)x*

Fhmyie |

X {1+ is)

filxg) flx) du(x), (8)

where du(x) is standard Gaussian measure on F*™ (see section 4.1)
and x, denotes the jth row in x.
This quickly follows from the definition of the representation T

(see scction 14.6) and from the definition of fundamental
representations (section 9.4),

14.10

We can now describe the proof of theorem 14.6. Let us denote by
I(n, g) and I{g) the integrals on the right-hand side of (5) and (8)
respectively. We have to prove that [(n, g)—I(g) uniformly in
gE XC G(in).

For any A> 0 we may write

I(n,g)=1ng A)+I'(n g A),
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where the right-hand side is the sum of integrals of the same type as
I{n, g), but taken respectively over the region

(xe F*": |x) < Ajc F*" (9)

and over its complement.

Let /{g; A) denote an integral of the type I{g) but taken over the
region (9).

The proof of theorem 14.6 consists of two stages.

First, we show that for any fixed A >0

im [(n, g; A)=I(g; A) (10)

o= o

uniformly in g€ X. This is derived from the fact that u,— u (see
lemma 5.3).
Then we show that

Iim Him ]'(n,g;A)=O (11)

A=+ 0o a0

14.11 _
ProoF oF THE STATEMENT (10). We use the notation given in section
14.8. We recali that the matrix ¢ and its diagonal elements #,, ..., r;

dependon n, x, g

It is seen from the condition ||x|| <A and from (6) that a— 1, as
n— o uniformly in x and g Since x, does not depend on »n and the
function £, is continuous on F %,

lim y,(a)=1 and lim f(a™' xg)=fi(xg)

1]~ o) =

uniformly in xand g

We now observe that

, 1 1
r.;:=1+; x(gg*— l)x;*+0(’—13] . (12)



372 LIE GROUPS AND RELATED TOPICS

where the error estimate O(1/7°) does not depend on x and g In fact,
(12) quickly follows from (7) if we take into consideration that

D{1,+2)=1+d(z,,+ ... +z;)+ O(lz}")

for an arbitrary matrix z=z *€ F*/ with small ||z]|.
It follows from (12) that

M= o0

: - + i) 2 1 . .
lim g~ =exp(—z x;(gg*— 1x*—(1+ zs,-))(j= L,..,k)

uniformly in xand g. Now {10) becomes evident.

14.12

ProoF OF THE STATEMENT (11),  Since f| and f, are bounded and

k

=ndi |+ i5).2
[Tr

=1

- D(a)—m’l ‘

(11} reduces to the following statement

lim limJ Zola) D{a)™" " du,(x)=0 (13)
A—=+o p—ooo | xE A jix] = A

uniformly in g€ X, where the matrix a€ P(k) depending on n, x, g, is

given by the conditions (6).

Since aa*= wgg*w*<| gl 1, and r,<|a|=|aa*|'", we see that
r;<const uniformly in n, x and gE X (j=1,.. ., k). It easily follows
that y,(a)<const- D(a)"’ uniformly in n, x and g& X where t>0 is a
constant.

Let p2p,2...0,20 be the eigenvalues of the matrix
(xx*'2e F* We may assume o, < /nd because |x|*< nd for all
XE supp u,,. From (6) we now get

-t
D(a)""*=D [1JL -i—i x(gg*— l)x*]
nd
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Let us suppose first that k=m. For this case, the radial part of the
measure g, in the coordinates p,, . . .,0, was calculated while proving
lemma 5.3. From the formula for the density of this radial part given
in section 5.3, it is clear that it does not exceed

T k 2Nin—2k+ 1jd
' i\l = 1 9
constpﬁ’ﬂ(l—&) g (M=k’d—k>0), (15)
Py nd
where “const” does not depend on #.
We observe now that for large n

(n=2k+1)d_ nd_d_
2 s 2777

where we fix £> 0 such that e<d/4. It follows then from (14), (15)
and from the estimate on y,(a) given above that

JI | x{l(a) D(a)_mzdauu (X)

Jondd) Jned) Jored} k p3
<const| do,| ...| pY[1|1-*+
=

A 0 0

Jine) MNoen I"'\Jf(.uld,ll 2

£ 0
= const 1-=]| 4 1-=
com (L p,( ”d) p,)(. 0 ( nd

and it remains to apply lemma 5.1.

Thus we have verified Eq. (13) for m= k. In the case m# kit is still
possible to calculate the radial part of x, and to verify (13) by the
same method. But we can avoid this by making use of the following
trick.

We observe that, (10) being already proved, (13) is in fact
equivalent to the particular case of theorem 14.6 when
5;=...=5.=0 and fi=f£,=1. But for ff=f£=1 we may choose
m= k. This concludes the proof.
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§15. Corollaries of approximation theorem

This paragraph is a direct continuation of §14. We retain the symbols
introduced there.

15.1

THEOREM. As n— <, the spherical functions of the representations

TW=T4! .5 (corresponding to the vectors f"'=1) approximate,

uniformly on compact sets, the spherical function of the

representation 7= 7, ® ... ® T, (corresponding to the vector f, = 1),
This follows immediately from the proof of theorem 1 4.6.

15.2

Let Q(k)> P(k) be the subgroup of all lower triangular matrices in
G{(k)and

Q&.H= H:': g:l = G(n); aEQ(k)]

Q*"is the parabolic subgroup in G(n) preserving the flag { V), .. ,V}},
where V, denotes the subspace in F' spanned by the first i basis
vectors.

The reductive part of the group Q(k) is F*x ... X F* (k times)
where F*= F\{0}. We observe that any element from F* can be
written uniquely in the form rv, where r>0, v€ U(1, F)=0(1),
U(1), Sp(1).

For arbitrary

Hiyeon JrkEU(l, F)A and L PP SkER,

we shall denote by TW/. .. ..y the unitary representation of the
group G(n) induced by the following representation of the subgroup
Q*"(see section 14.1):

0
[iv 2:|Hﬂl(vl)® A ®nk(vk))x.\{.’j{-""“ (|:(:‘ d])’
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where

v,. O

e Pk),v=|"'".
a< P(k), v !0 L

], v, ... 0 EU(L, F).

It is obvious that the representation 73))...s is the direct sum
of the representations T¥l.....n.s with multiplicities equal to
dim (7, ® ... ® m,); the latter are equal to 1 if F#ZH.

15.3

Let us fix the following data.
k=1,2,...m,...m€U(l, F);s, ..., s,€R.

THEOREM. As n— o, the representations T#s,....n.s; of the groups
G(n) approximate, in the sense of definition 22.4, the representation
T.‘-‘T]..\'| ® “vm ® Tﬂ'k.,\‘k Of the gl'Ollp G-T

Proor. The representations T¥).,....n.s; appear as components of
the decomposition of the space H(T4...s) with respect to the
natural action of the group U(1, F¥=U(1, F}x ... xU(1, F) {k
times). This action commutes with the action of the group G. In
realization in the space L*(Q* ") it has the following form:

(v, .., v f) (w)=f([g' . .(:J_ w),

where

fe L"), weQ", (v,,..., v)EU(L, F).

On the other hand, U(1, F) is a symmetry group for each of the
representations T;;, 1 <j<k Hence U(l, F )* acts naturally in the
space

TWe may repeat again the remark given in the footnote to theorem 14.2.
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This action has precisely the same form; it is necessary only to
replace @€ Q* "by x& F+=,

Representations 7Tr,5® ... ® Tz, 5, of the group G are precisely
irreducible components in decomposition with respect to this action.
Now theorem 135.3 directly follows from the proof of theorem 14.2.

It is evident that theorems 15.3 and 14.2 are essentially equivalent.

15.4

Remark. The representation T3/....|K{(n) may be identified with
the representation 7" from section 5.5. Remark 5.10 shows now
that the structure of the decomposition of the representations

{1}
I K (T® ... ®T)K
is one and the same (in the same sense as that in section 5.10). An
analogous fact 1s true for the representations studied in theorem 15.3.

15.5

Remark. The representations T%).s,....n.s; belong to a degenerate
principal unitary series for the group G(n). I. M. Gelfand and M. A.
Naimark [4] have proved that all representations of these series are
irreducible when F=C. Their method can be transferred without any
changes to the case F=R, but not to F=H. However, apparently the
result remains valid also for F=H. The result of the article [19] on
intertwining operators gives some corroboration of this proposition.

15.6

Remark. Let T be an admissible representation of the group G and
{T"} a sequence of representations of the groups G(n),
approximating 7 in the sense of definition 22.4. We shall say that
{T'"} approximates T perfectly if the structure of the decomposition
of the representations TV K(n) and T|K is one and the same in the
sense of section 5.10.

A “"majority” of the irreducibie admissible representations of the
group G constructed in §11 has the form

7,,8...9T, where € U(L,F)", 5;# s for i#j.

E TR
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As follows from theorem 15.3 and remarks 15.4 and 15.5, for each
such representation T we are able (at least for F=R, C) to get a
sequence { 7"} which approximates T perfectly.

For all the remaining irreducible representations T (from among
those constructed in §11), theorem 14.2 equally provides an
approximating sequence { 7V"}. However, the condition of perfection
is not now achieved since the “limiting representation lim 7V
decomposes into a countable discrete sum of irreducible
representations.

In other words, in the case when s;=s; for at least one pair (£, /)
where i# j, the finite-dimensional commutant of the representation
TY').. s of the group G(n) expands in the limit and becomes infinite-
dimensional.

It may still be possible to say that in this case the “links” between
certain “K(n)-types” in T3}!.. .5, vanish in the limit.

15.7

Remark. Among the representations of degenerate series connected
with the parabolic subgroups Q% "C G(n), there are complementary
series of unitary representations (see [4], [19]). These representations
also admit a passage to the limit as n— ; however, as a result, we do
not get new admissible representations of the group G.

The fact is explained as follows. The representations of the
complementary series differ from the representations of the principal
unitary series by the fact that in the formula for the character .. s
(section 14.1), certain real numbers ¢ are added to purely imaginary
numbers—nd i s;/2. However, in all the cases known to the author,
when the unitarity of the corresponding representation of the group
G(n) is proved, these numbers ¢ are bounded by a constant not
depending on n. As follows from the proof of theorem 14.2, such a
modification does not have any effect on the limiting transition.

For the same reasons, nothing new is obtained from another
possible generalization, that of replacing the parabolic subgroup
Q%*"C G(n) (which is connected with the decomposition
n=1+1+ ... +1+{n—k})) by more general parabolic subgroups
connected with decompositions of the type

n=ki+ ...tk (n—k) (k=k+ .. k),

where k does not depend on n.
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§16. Generalizations to $SO,(,~) and other groups of
non-compact type

In this section we shall show how to extend the results of §§9-15 to
the -remaining seven pairs (G, K ) of non-compact type (in Table 7.2
of the Introduction, these pairs were denoted by the symbol { F})).

16.1

We shall find it convenient to change the notation which we have
used in §§9-15 and to use the following (see Table 7.5).

TABLE 7.5

G K G K’
(R,) 50,(%0,) SO{}x SO(w) GL* (20, R} SO{2 )
(R,) Sp{, R) U(=) GL*(2%, R) S0(2)
(C)) SO(, C) SO(e0) GL{=, C) U{eo}
{C,) Sp{=, C) Spi=) GL(2,C) U(2o)
{C.) U(o0,0) U(=0)x U(eo) GL(2%,C) U{2w)
(H,) Sp(0,0) 3p(e0) % Sp(=0) GL* (200, H) Sp(2e)
(H,) SO¥2) U{=) GL{». H) Spleo)

In all seven cases, G'is one of the groups
GL'(»,R), GL(*,C), GL{x,H)

whose admissible representations we have studied in detail in §§9-
15. However, in five cases it will be convenient for us to realize
GL{, F)as GL{2%, F}); we then regard the elements of the groups
G and G’ as matrices of the type

[a b], where a, b, ¢, dE F™~.
c d
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We shall now denote by K'C G’ that subgroup which was earlier
denoted by K. We realize G as a certain subgroup in G’. Then K
coincides with GN K.

16.2 -~
We shall describe the embedding G- G”:

b
SO, %0) = lg= [i d] EGL' (2, R)
-1, 0 —1. 0 |
’ e > .
8[ 0 lm] K lm_,deta 0},

sP(w,R)=[gezGL*(zoo,R): gl ¥ Ie g=[ v ’“‘”;

SO(0,C)={gEGL(0,C): gg=1.};

' 0 1 0 1
Sp(e, C)={gEGL(2,C): ¢ “ | g= 1
p(, C) K ( ) g[_lm o |¥7|-1. o
' 1.0 | [-1. 0 ]
U(eo,00 )= 1g€GL(20,C): g* ° = ® ;
(00,0 ) 8 ( ) g[ o 1|5 0 1.
1. 0 -1, 0
Sp(o0,00 )= 1g€ GL(20,H): g* " = ) ;
Pl ) [g ( ) g[ 0 lw]g [ 0 1,,0“

SO*20)={gE GL(o,H}: g*il,)g=ilu}.

We observe that the groups Sp{e,R) and SO*2) are not
realized here as in §6. However, the transition from one realization to
the other does not pose any problem.

16.3

The admissible representations of the pairs (G, K ) from Table 5 are
defined precisely as in section 9.5.
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Lemma. Let G be any of the seven groups defined in Table 5 and
G'D G the corresponding group. If T is an arbitrary admissible
representation for (G’, K’), then T|G is an admissible representation
for (G, K).

The proof follows trivially from the form of the embeddings
G-~ G and K~ K.

16.4

Our problem now is to study how the admissible representations of
the group G’ studied above behave under restriction to G. All the
propositions will be formulated generally; however, the proofs will be
given only for the pair (R,). Their extension to the pairs (R.)}~(H.,)
does not require any new ideas, although it is sometimes associated
with tiresome calculations with the matrices.

16.5

THeorem. For any fundamental representations 7,,s€R, of the
group G', the representations 7|Gand T_ | G are equivalent.

For proof see section 16.17. The validity of this result may be
guessed after noting that ¢|G=@_ |G, where ¢, is the spherical
function of the representation T, (see section 13.3).

16.6

THeorReM. Let us assume that s#0. For any k=1, 2,..., the
representation 7,.®* of the group G’ and its restriction to G have
common commutants. Thus, for all k=1, 2, ...and &€ U(k, F)", the
representation 7, |Gis irreducible (we shall denote itagainby T .

For proof see section 16.18.

16.7

In the case s=0, the picture is different (up to a certain extent this
has already been seen from theorem 16.5). We need new notations
(see Table 7.6).
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TABLE 7.6
% L Utk F) W, o4 L

(R,) .?';3(200, R)~ U/{0,00} Uk) W,

(Ry)  Sp(2=,R)”  [Sp(eo,Rjx Sp(o,R)}”  Olk)x O(k) (W.® W)
{(C,) Uleo,)" SO*2) Splk) W84

{C.) U{20,20)"  Sp(2¢0, R) O(2k) W

(C;)  U{200,200)"  [U{eo,e0}x U(=0,)]" Ulk)x Utk) (W ®W)*
(H)) SO*8e) U2, 200) U(2k) W, @

(H.) SO4w) SO*2 )X $O*2 ) Splk)x Spik) (W.® W.)ok

In this table L’ denotes the same group that was denoted in Table 7.4
by L. In addition, in those cases when the definition of the group G’
involves a “doubling of infinity”, the realization of the group L’ also
changes in a corresponding manner.

16.8
Let 7,/ denote the embedding 7,/: G'— L’ (section 9.8) at the point
s=0.
THeorReM. There exists an embedding L-— L' possessing the
following properties:

(i) rh(G)eL;

(ii) the restriction of the representation W,®* of the group L’ to
the subgroup L has the form given in the last column of Table 7.6.

We observe that the representation W,®*|L possesses a symmetry
group U;{k, F).
For proof see section 16.19.

16.9

Let us indicate explicit the form of the embedding y:G— L given by
the mapping 7/; below we return to the “complex” realization of the
groups Sp(, R)and SO*2x) (§6).
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In the case (R,), v is the identical embedding SO, (00,0)— U/(e,)
lifted to a two-sheeted covering over U(w, ),
In the case (C,), v is the mapping

. B N
2(z=','+(g"‘) ) 2(g (g7

& 1 1
_E(g*(g*) ) 5(g+(g*) )_

from SO(c0, C)into SO¥2 ).
In the case (C,), yis the mapping

'5 w(g+(g% ™ w’ %w(g—(g*)_')- [ . 1.,,]
g~ , Where w= ,
-1, O
Sl e+ e) |

from Sp(e0, C) into Sp(2 =, R) lifted to the two-sheeted covering.
In the case (H,), vis the mapping

- [a bHﬁ(a) ﬁ(b)]
¢ d| |Ble) B
from Sp(e0,0)} into U(290,2), lifted to a two-sheeted covering (B
is defined in section 1.3).
In the cases {R,), (C;) and (H,), the group L is either GX G or its 2-

covering and then vy is the mapping g—{(g, g), lifted, if necessary to a
two-sheeted covering.

16.10

THeorRem. For any k=1, 2,..., the representation W, 4L and its
restriction to the subgroup y(G)have a common commutant. Thus

T*1G~ @  (dim n) T,

RE€ Uik, F)A
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where T , are irreducible admissible representations of the group G.
For proof see section 16.20.

16.12°

Remark., We observe particularly the pairs (R,}, (C;) and (H,). If Gis
one of the groups of this type, then the representation 7| G coincides
with W,® W,, where F=R, C, H. This fact arises very naturally: from
lemma 7.11, it is evident that W,® W, is an admissible representation.

Letp=1,2,..5 k..., k,=12,..;520,..., 520 be pairwise
distinct numbers; 7; be an irreducible representation of the group
Ulk,, F)(if 5;> 0) or group U,;(k;, F)(if 5;=0).

THEOREM (compare corollary 11.4). Under these assumptions, a
representation of the group G of the type

T0® ... 0T

:IP' “P

1s irreducible.
For proof see section 16.21.

16.13

ThHeorREmM (compare with theorem 11.5). The irreducible
representations of the type

T, .®..®T, , T,,8..0T,,

are equivalent if and only if p= g and the sets

{(nls sl)s e (xp’ Sp)}s {(ﬂ;, S;), cr (JI;, S;)}

coincide to within their order of enumeration.
For proof see section 16.22.
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16.14

Remark. The results formulated above fully describe the structure
of the ring of admissible representations generated by the
representations T|G. The presence of a symmetry s+ —s and the
effect of the extension of the symmetry group at the point s=0 cause
the difference of this ring from the corresponding ring for the group
G

16.15

Remark. Theorems 11.6 (on conjugate representation), 13.3 and
13.4 (on spherical functions) and 13.8 (on continuity in the
appropriate topology) are easily transferred to the groups G from
Table 7.5.

Theorem 14.2 and 15.3 (on the approximation of representations)
also transfer without any great difficulty to the groups G from Table
7.5. As the representations 7V of the groups G(n), it is necessary
to take the representations of the principal degenerate series con-
nected with parabolic subgroups which preserve the flags
i ha ... CV,, wherethe V;are isotropic subspaces.

16.16

Remark. The groups G coincide with their own derived groups
[G, G] in all cases except (C,), when G= U{w,0). All the resuits
remain in force if this group is replaced by SU(%, ),

16.17

ProoF oF THEOREM 16.5. Let us identify 7, with W,otZ For each of
the seven groups it is individually checked that there exists an
automorphism 1, of the group L’ preserving the equivalence class of
the representation W, and sending t/|Ginto 72 |G.

Let us examine in detail the case (R,). The Lie algebra so(o,%} of
the group G= SO, (0,0} consists of real matrices of the type

aexey|® Ol f0 Y
0 x| |y of

where X |= - X, X,=-X,"
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It is embedded in the Lie algebra sp(200,R) of the group
L'=58p(20 R)” by means of mapping t* (section 9.8). Let us
examine the matrix

0 -61, , is—1
h= ,where 8- = .
6.1, 0 1+is

o 0 —6.1,.

This is an element of the group U(20)CSp(200, R). It is easy to
check that

htlAh ' =12(A), A€ so{wo,)

Hence it is possible to write (see sections 8.12, 8.14)

h

vigl="¢ 8ESp(=.R)".

We observe further that in the cases (C, ), (C,) it is necessary to use
the existence of an outer automorphism of the group U{e,o)~ that
does not change the Weil representation (see section 7.8).

16.18

The proof of theorem 16.6 follows the proof of theorem 11.1. In the
group L', a subgroup M’ containing the group K and in essence
coinciding with K *is selected. Let us put

T=(W,*'o1/)|G, p=TIK.
The representation W,®4M’, in essence, coincides with o*. It is then

checked that 7/(G) and M’ generate [L', L’] (analogue of theorem

11.10).
We shall examine in detail the case (R,). Then

G=S0\(0,®), K= SO(0)x SO(®), K*= U(w)x U{x).
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We put
M’ =SU(o0)x SU(e0)C SU{20)C U{20) CSp(2o,R),

M'(n)=SU(n)x SU(n)C L'(n})=8p(2n,R)",

m’(n)=su(n)+su(n)C[’(n)=sp(2n, R).
We observe that
TA O . y
0
min)=< c A, A,€ suln)s.
A 0
L 0 A,

We have to establish the analogue of lemma 11.16. It is formulated
as follows: if s# 0 and n=2 3, then the smallest complex subalgebra b
in the algebra [-'(n)=sp(2n,C) containing t%(so(n, n)) and m'(n)
coincides with [ "

Let us examine the decomposition (see section 6.3).

Fn)=1_(m@!'(n)® I (n)

and the corresponding projections. ¥ _ |, . %, ./,.

First we shall check that the components of this decomposition are
disjunct as m’(n)-modules. This shows that b is stable with respect to
H_ |, H,

Then we shall check that ¥, {t*(so(n, n)) and m'(n) generate [, {n),
L,'(n)}= sl(2n, C). It is just at this point that the condition s# 0 is used
for s=0, the space S, TR(so(n, n)) reduces to a subspace of m(n)).

Now we use the irreducibility of the [/, (n), {,(n)}-modules /,(n) and
[_,"(n) for checking that b contains /_,(n) and /,'(n). After this it is
evident that b= sp(2n, C).

16.19
Proor oF THEOREM 16.8.  Let us study the case (R, ). Then

L'=5p(20,R)", L=U(»,0)" .
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The embedding L— L’ is, by definition, a canonical embedding
defined in section 6.9 and this proves (ii).
In the notation of section 16.17, we have for AE so(c0,c0):

i, X, 00 Y-
x, YN |o x|y o
rﬁ(A)=rﬁ([Y', X]]=
2 0 Y|X, O
-Y 010 X,-
since X = — X}, X;=—X,’, this matrix lies in the Lie algebra

u{e0,0) of the group L embedded in sp(2,R) canonically. This
proves (i).

16.20

Proor oF THeorem 16.10. Let us study the case (R,). Then
G=80,(,2), K=580(0)x §O{»), L= U(w,0)”, The embedding
G— L is generated by the identical mapping so(e,%0}— u(w0, ),

Now the proof reduces to a check of the fact that SO,(<,%) and
SU(0) X SU(o0) generate the group [L, L]= SU(0, ).

16.21

Proor oF THeorem 16.12 follows the proof of theorem 11.3 and
reduces to a check of an assertion analogous to lemma 11.17. We
shall formulate and prove this assertion for the case (R, ).

Among the numbers s, ..., s, a zero is found not more than once.
If it occurs, it will be assumed for definiteness that it is s,. Let us fix
n23 and put

_sp(2n, CY=sp(2n, C)® ... Bsp(2n, C), if 5,#0,
sp(2n, CY ' @si(2n, C) if 5,=0;

7= rﬁ@ ... @rf:: so(n, n)—m;
d: su{n)@ su{n)—-m,

the diagonal embedding,.
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Let bCa be the smallest complex subalgebra containing t(so(n, n))
and d(su(n)® su(n)). Our assertion is that b= q.

Just as in section 11.17, we use lemma 11.15; its prerequisites are
fulfilled by virtue of what is proved in sections 16.18, 16.19. Just as
in section 11.17, we have to exclude the existence of an
automorphism ¢ of the algebra I(n) = sp(2n, C) such that

¢| su(n)® su(n)=id, (1)
B(7,(A))= 1,(A\AE s0(n, n) (2)

for certain {, j, where
i#j, 5>0, 5>0, s#s,. {3)

From (1) it follows that ¢ commutes with the projections 3#_,, ¥,
J# . In particular, ¢ leaves invariant the subalgebra

[Fo(n), Fo(n)|=si(2n, C).

Any automorphism of this algebra that is identical on the subalgebra
si(n, C)® s/(n, C) has the form

[P o],
vt

"

79 e

'R S

From (2) and the fact that ¢ commutes with %, it follows that

YT (A) =7 (A)), A€ so(n, n).
From this and from the definition of the embedding t, it is easy to
obtain
t=x1,5==%s,.

But this contradicts (3).



THE FORMALISM OF R. HOWE FOR SPINOR REPRESENTATIONS

16.22

ProoF ofF THEOREM 16.13. After proving theorem 16.12, we may
argue in precisely the same way as in §12. As G*{n), one may take
the group of L'(n)-valued functions f(s) on the half-line 52 0, such

that f(0)€ L{n)C L'(n).

PART IV
ADMISSIBLE REPRESENTATIONS OF THE PAIRS (G, K)
OF COMPACT TYPE

§17. The formalism of R. Howe for spinor representations of the
groups Sp(e), U(2)~ and SO (2 x)"~

17.1
We adopt the notation indicated in Table 7.7 (compare with Table 7.3
of §6).
TABLE 7.7

F=R F=C F=H
Kn) spin) ul{2n) so(2n)
m(n) u(n) uln)®uln) u(n)
l{n) sp(n, C) g((2n, C) so{2n, C)
Lin) Spin) Ui2n)” SO(2n)"
Mn) Uln) (Ulnyx Uln))~ Uln)”
L Sp(eo) U(2e)" SO(22)"
M U() (U(e)x U{e0))" U(e)~
Ulk, F) Sp(K) Ulk) Olk)

As usual,

n=|

L= GL(n), M= G Min).

ne=|

389
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17.2

We realize Lie algebras /(n) as follows:

_A' B LT,
- sp{n)= {[ _p* 4 eC™" A= - A¥, B=B’]
=u(2n)Nsp(n, C}
A B| ..
2n)= eC"" A= - A% D= ~-D%;
_A’ B )
so(2n)={ _pB* 4 eC " A= - A% B= —B’}

=u(2n)Nso(2n, C).

The pairs (/{n), m(n)) studied here are dual in the sense of Cartan to
the pairs (/(n), m(n)) from §6.

17.3
For the groups

L{n)=Sp(n), U(2n)", SO(2n)",

there exist representations which are analogues of the Weil
representations WY". We shall call them spinor representations and
denote them by S}, where F=R, C, H. These representations are
easily generalized to the groups L= Sp(®), U(20)~, $O(20)" (see
below). We call the corresponding representations spinor
representations also and denote by §,.

The analogues of all the statements of §§6-8 on Weil
representations are valid for spinor representations. Hence our
account here will be less detailed.

17.4

Let us recall that Weil representations W\" are constructed first for
F=R and then for F=C and F=H. In this construction the following
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embeddings are used:
Uln,n) CSp(2n,R)", SOT2n)CU{n, n) .

For spinor representations SV, the reverse order is used: first F/=H
and then F=C and F=R. Now the following embeddings are used

U(2n) € SO{4n)", Sp(m)cU(2n)".

The group U(k, F) shown in the last row of Table 7.7 is the
symmetry group for S{"/®%,

17.5

Let H be a complex Hilbert space and A "(H) the pre-Hilbert space
which is the algebraic exterior m-th power of space H. The scalar
product in A" {H }is given as follows:

(El AA gnn m Aol A ﬂm)=det"(§i,’7j)"'

If {e,, €, . ..} is an orthonormal basis in H, then the multivectors

¢ .. =N .. Ne (1<...<i,)

form a basis in A "{H).

17.6

DeriniTioNn {compare definition 3.1} The completion of the pre-
Hilbert space

COHO AN (H)® ...

is called Fermion Fock space#{H)=% ~(H).

If H is finite-dimensional, then #{H) is also finite-dimensional. If
H=H ®H,, then #{H)=F{H)®FH.). )

In #(H), a unitary representation of the group U{H )= U(H ) of all
unitary operators in the space His defined.

As in the boson case, instead of Z (H ), we shall write .32(H ).



392 LIE GROUPS AND RELATED TOPICS

17.7

For £€ H, we define in #(H) the operators M; and D; as follows:

M§x=§/\x, D§=M§*‘

These operators are bounded:

|M =D, "= (&, &).

They satisfy the canonical anticommutation relations

[M:, M’}]*‘ =|D;, D)+ =0
[MJE’ Dr;]+ =(§a 77). 1 (Es ﬂe H)

If a basis {e,, e,, . . .} is selected in H, then we shall put

M=M,,D=D, (i=1,2,...).

17.8

Now we shall define the representations S}". First let F=H: then
l(n)=so(2n).

The spinor representation S, of the group L(n)=SO{2n)~ acts in
the finite-dimensional space J?(C'"). The corresponding
representation of the Lie algebra [(n)=s0(2n, C) is also denoted by

S[Hl"l

Let us give explicit formulae for the representation S§,\"'®*
(k=1,2,...), which acts in the space J#(C*"):

-E;, 0 : k
' - Mai Dﬂ' — A 6:“. 1
[ 0 EJ (El }] 2

k
E M(u\ Drx,:

N!'-‘

0 E,- : 1
l}) 0 J g m_ 2 Z les Dm.l
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= M,”‘Mq'=_ Mm'-r er"
lEU_ E}.‘ 0] Z ! 2 agl [ I]

o=

Here i, j=1, ..., n; the operators M,;,D,; have an obvious meaning,
The -representation S,"/|M{(n) of the group M(n)=U(n)" is the

multiplicity free direct sum of irreducible representations with the

highest weights

(1,...,1,0 ..,0)-(1/2,..,1/2)
N St ’
m n-m

where m=0,1,...n

17.9

Let us study now the case F=C. Then [{(n)=u(2n),{ (n}=g¢l(2n, C).
We shall define the embedding ¢l(2#, C)—so(4n,C) as follows
(compare section 6.9};

A B
¢ D

CA 0 0 BT
0 -D|-B 0
0O -C|—-A 0

LC 0! 0 DA

This mapping embeds u(2n) into so(4n) and defines an embedding
U(2n)” = SO(4n)".

Let us define the representation S, "' of the group L{n)= U(2n}" as
the restriction to it of the representation S,!*". The representation
5.M®k of the Lie algebra gl{2n, C) acts in the space:

y(cl\.zn) =‘#(CL.H® Ck.!l)

as follows (compare section 6.10).

- F A
l Eﬂ' 0]._.[ Z MM,D“;] _E éﬂ_. 1‘

0 o] \.2 2
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k
_5 Cj,-j' 1,

0 0| &
= M i Ma'-
[ Ef:’ 0] cgl ‘ !

The representation S.'"|M(n} of the group (U(n)X U{n))” is the
tensor product of the representations indicated at the end of section
17.8.

17.10

Let now F=R, then ((n)=sp{n), [(n)=sp(n, C). The embedding
8p(n)—~ u(2n) is defined by the realization of the algebra 8p(n) (see
section 17.2). It gives the embedding Sp(n)— U(2n) which is lifted
into U(2n)".

The representation S is defined as S|Sp(n). The
representation S,"/®* of the Lie algebra sp{n, C) acts in the space

W (Ck.l«:) =3 ( CA’,H® Ck.n),

which is conveniently identified with X#(C**") (compare section
6.11). According to this, we write M;;,D; . instead of M;,D,;.
The formulae for SY®* have the following form

-E. 0 k
[ 0 ji Ej:l»-» [agl(Md; D+ Mm-Dm,)] ~kd,1,
+E| &
O BB S (DDt DyD.),
0 0 a=l

0 0] <
i Z (Mm' M:i,i+ Mﬂj Mtii)'

a=

The representation S,"|M(n) of the group M{n)= U(n) is the tensor
square of the representation shown in section 17.8.
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17.11

We shall define the unitary representation R of the group U(k, F)
(see Table 7.7)in the space H{S\'®%) as follows.
If F=R, then Ulk, F)=Sp(k),

H(S[:;r@k) =‘#(Czk'”) =%(C2M )@ﬂ

and R/ originates from the identical representation of the group
Sp(k)in C**,
If F=C, then U(k, F)= U(k),

H(Sén)ﬁk) =W(Ck.2n) =%(Ck" @ Ck.] )@ﬂ

and R, originates from the representation g—g®g of the group
Ulk}in C'®CH",

If F=H, then Ulk, F)=0(k), H(§"®*)=3¢(Ck")=x(C*')*",
and R/ originates from the identical representation of the group
O(k)in C*',

17.12

TheoreM oF R. Howe (compare with theorem 6.14). For any k=1,
2, ..., the representation S{"®* of the group L(n) from Table 7.7
possesses the symmetry group U(k, F).

For a proof see [9}, {30)].

17.13

CoroLLary. For any o€ U(k, F)" occurring in the decomposition
of representation R\ of the group U(k, F), an irreducible
representation S, of the group L(n; is defined.

17.14

Thus, we have obtained analogues of all resuli- of §6. After this, all
the results of §7 are easily transferred to spinor representations.t We

tAnatogues of lemma 7.1 and corollary 7.2 are formulated thus: for any
o€ Ulk, F)" an n, can be found such that, for n2 n,, the representation & is contained
in R, and thus S, is determined. Unlike the boson case, n, depends on a.
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observe that the automorphism ¢ from theorem 7.7 is defined in our
situation in precisely the same way and the proof of the theorem does
not require changes.

The spinor representation S, of the group L is determined again as
the inductive limit of the representations S,”. The representation
S:2* possesses the symmetry group U(k, F) and decomposes into a
direct sum of irreducible representations S, where o runs through
U(k, F)*. In its turn, S, is the inductive limit of the representations
S,

As the representation T, of the group U(0) is taken the canonical
representation of this group in.#(/,(C)). This again is a holomorphic
tame representation. It is equivalent to the multiplicity free direct sum
of irreducible representations of the type

£a....Luo... pmunits, m=0,1,2,...

The representation 5,24/ M is again the product of a certain tame
holomorphic representation and a one-dimensional representation.

17.15

Remark. For Weil representations, the following propositions are
valid:
{A,) The irreducible representations
W, and W, ~ W, o

of the group L(n) are not equivalent for any s, and 7. (In fact, let us
consider the corresponding irreducible ,(n)-modules. Both of them
are infinite-dimensional, but the first is a module with the highest
weight and the second with the lowest weight, so that isomorphism

between them is not possible.)
(A ) The irreducible representations

W, and W,~W,.cg

of the group L are not equivalent for any &, and 7. (First proof: this
follows from the proposition (A ,). Second proof: the representations
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Wn|M and Ww|M are disjunct because the first is “almost”
holomorphic and the second “almost™ antiholomorphic; for greater
persuasiveness, it is possible to replace Mby (M, M}.)

The proposition (A ) does not hold for spinor representations. For
example, the spinor representation S, of the group L{n)=S0(2n)"
is the sum of two irreducible representations S, and S$_,*
corresponding to two characters of the group U(1,H)= O(1}={% 1}.
These representations are conjugate to one another if n is odd and
self-conjugate if n1s even. This shows that

tnh Ln]__ ~{ 1)
S, ~8,~8,0¢

for F=H, and that means, also for F=C,R.

At the same time the proposition (A, ), together with the second
proof, remains valid.

At first glance this seems improbable. This phenomenon is very
clearly manifested in the case F=R, when L= Sp(). In fact, let us
consider any irreducible representation of the group Sp(e) of the
type S,, where o€ Sp(k)". It is an inductive limit of the irreducible
representations " of the groups L(n}= Sp{n).

We have

Sy~ 8509, S,~ S0

The representations S, ' and S are equivalent, since for the group
Sp(n) all the irreducible representations are self-conjugate. It is
possible also to observe that @|Sp(n) is an inner automorphism. At
the same time the representations S, and S, are not equivalent.

The explanation consists of the fact that the multiplicity with which
S, " enters the decomposition of the representation S,"*"|Sp(n)
always exceeds unity. Hence the embedding

H(ST)~H(S'")
which is prescribed by the construction of the representations S\ is
not the only one possible. In other words, the diagram

H(S')~H(SS™")
i !
H(S,To@)~H(S," "),
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where the vertical arrows realize equivalence of the representations,
is not commutative.

Thus, the automorphism ¢ of the infinite-dimensional group L is a
“genuinely outer” automorphism in the fermion as in the boson case.

17.16
All results of §8 are also easily transferred to spinor representations.
We give the formulae for the spherical function ¢, of the

representation §,%*:
If F=R, g€ Sp(co),

then @, (g)=(det @)* = (det d)*.
If F=C,ge U(2)" and

a b
c d
is the projection of the element g in U(2), then

@, (g)={det a)}(det g)~* > ={det d)*(det g)* *.
If F=H, g& SO(2)" and
a b
c d

is the projection of the element gin SO(2 ), then

@.(g)=(det @)} *=(det d)* ".

17.17

In the proof of the analogue of theorem 8.3, instead of the group He?s
(H) it is necessary to take the real Jordan algebra J{H), which is
formed by the bounded self-adjoint operators

A=M;+D;, £€ H,
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in the space #(H)=%(H) and the identity operator. The complete

orthogonal group SO(2) is an automorphism group of the Jordan
algebra J{1,(C)).

§18. “Boson” and “fermion” fundamental representations

18.1

For the pairs (G, K') of compact type (see Table 7.2 of Introduction) it
will be possible to get an analogue of the second (but not the first)
construction of fundamental representations (see §9). For pairs of
non-compact type we used the Weil representation. For compact
pairs, along with the Weil representation, spinor representations are
used, as well as certain “intermediate” representations (see §19).

For distinguishing the groups L, L(n), U{k, F) from Table 7.3 (§6)
(boson case) and the corresponding groups from Table 7.7 (§17)
(fermion case), we shall give the former the index "+ " and latter the
index " —".

18.2

The scheme of construction of boson and fermion fundamental
representations is as follows. At first three pairs (G, K) of the type
(R), (C) and (H) are studied. Boson (respectively fermion)
fundamental representations of a pair of type (F) have respectively
the form

WFO T,» S!' © vr L)

where W, is the Weil representation of the corresponding group
L=1L", S, the spinor representation of the corresponding group
L=1",

1,.(G K)=(L*,M) and v;:(G K)—=(L", M)

are certain embeddings, sand rthe parameters.

The group L* is selected from Table 7.3 (§6) and the group L~
from Table 7.7 (§17) in conformity with the type F. The subgroup M
is essentially one and the same for L* and L~.
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The fundamental representations of the remaining seven pairs of
the type (F;) are obtained by means of the appropriate embedding of
the pair of type (F,) into the pair of type (F ) (compare section 16.2).

We shall examine in detail only the case (R). Thus from this point

G=U(»), K=5O(w), L' = $p{0,R)", L™ = Sp().

18.3

Let us construct a family of embeddings {z} into the group
L"=58p(o,R)”. The parameter s runs through R\{0}. The
embeddings 7, are not single-valued on U(c0). To make them single-
valued, it is necessary temporarily to replace U(e) by U{%)~. In
constructing the fundamental representations, a “gauge multiplier”
det(-)* ' will be added, making the representation single-valued on
the group U(e). This small complication does not arise if the group
SU(e0)is studied from the very beginning.

Just as in §9, 7, is conveniently given at the level of the Lie
algebras. Let us put

\

B s . s ]
cosh(— ‘1e smh(—) -1,
. 2/ 2
h, =
\ !
) ) S
sinh|—|[°1. cosh —] -1,
| 2] 2 i

This is an element of the group Sp(o, R)(see section 8.2).
For

A€ u(o)= U y(n),

= |

we put

A ()](hf)",po;

r‘(A}=h‘{ 0 A

r(A)=1.,(~A)=1_,(A), s<0,
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We shall put A= X+ Y, where

) A—A i A+ A
X= ..—.——X'=-«——-—--, Y==-Y=Y'=
2 2
Then
X 0
WX)= ,  SERNO
(X) [0 X} SERVO)
r\(Y)=-—c.oshs-Y sinhs-Y-,S>0;
| —sinhs-Y  coshs* Y|
r(Y)= c.()shs-Y smhs-Y‘S<0.
| —sinhs*Y -—coshs-Y)
18.4

Remark. The embedding 1,|SO{)} does not depend on s and
coincides with the canonical embedding

SO(e0)— SU(w)~ U(w) - Sp{=, R) .

We observe that T_,= @o7,, where ¢ is the outer automorphism of
the group Sp(eo, R)~ from section 7.7.

18.5

Remark. Any matrix from Sp(1, R)=SU(1, 1) may be reduced to
the form

cosh 3 sinh 2
2 2

. s
sinh — cosh—

by multiplication on the left and on the right by appropriate elements
from the subgroup U(1)C Sp(1, R){compare section 9.15).
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18.6
Let us define the boson fundamental representations T.*, s€R\{0}, of
the pair (U(), SO{)} as follows:

o T (g)= Wylz.(g)Xdet g) "7 g€ U(w).

Here sgn(s)is equal to 1 for s> 0 and — | for s<0.

Both the cofactors on the right-hand side are correctly defined
only on U(e)}~; however, their product is already a single-valued
function on U(e).

18.7
Remark. The double-valuedness of the representation WOt may
be compensated by any “gauge” multiplier of the type

det{ -}, where a= £1/2, £3/2,...

Our selection of the “gauge” multiplier is convenient, because as
s— 10 the spherical function of the representation 1" tends to the
spherical function of the trivial representation (i.e. to the function

flg)=1).
18.8

Remark. The representations 7.* and 7_,* are conjugate to one
another.

18.9

Now we construct the family {v} of embeddings of the group
G= U() into the group L~ = $p(e). The parameter ¢ runs through
the open interval (0, 7).

Let us put
\ -
B {
cos(— ‘1o sin(—{] -1,
2 2

!
. t\ t
—sin (— 1, cos[-) ‘1.
_ 2, 2 i

b= , 1€(0, 7).




"BOSON™ AND “FERMION" FUNDAMENTAL REPRESENTATIONS 403

This is an element of the group Sp(e), which is defined by analogy
with Sp(eo, R) (see section 8.2).

v, is given by the embedding v,: u(e0)~ sp(%) of the Lie algebras. If
AE u{0), then

-A 0 —e
](h,) '0<i<

Assuming A= X+ Y as in section 18.3, we get

v (X )= lg ;:,], 0<i<m

—cost'Y smrY
) , 0<t<m.
sinf*Y costY

v,(Y)=[

18.10

Remark. v,|SO(%) does not depend on ¢ and coincides with the
canonical embedding

$O(e0)— U(w0)~ Sp(=).
We may also repeat remark 18.5.

18.11

Remark. For all r<(0, ), we have
v A)= @iv(4)) (A€ U(x)),
where ¢, is an automorphism of the group Sp(®) given by

conjugation by the matrix

1o 0 -, -
[I . _ ] € U{w0)C Sp(eo).
() =il

We emphasize that ¢, does not change the equivalence class of the
spinor representation S, of the group Sp().



404 LIE GROUPS AND RELATED TOPICS

18.12

Remark. Foray r€(0, 7r), we have

v, = @OV,
where ¢ is the automorphism of the group Sp(®) given by the
conjugation by the matrix

0 1] —
=
[i-lw 0 } Spie).

@ induces an inner automorphism of the subgroup Sp(n)for all n=1,
2, ..., yet, nevertheless, @ is a “genuinely outer™ automorphism of the
group Sp(=o). In fact, it does not preserve the spherical function of the
representation S, (see section 17.16) and this means that it does not
preserve the equivalence class of the representation §,. The
representations S, and S,0¢ of the group Sp{e) are conjugate to one
another and are not equivalent (see remark 17.15).

18.13

We define the fermion fundamental representations T,”, 0 <t<m, of
the pair { U(o0}, SO{%}} as follows:

T (g)= Sk(v.(g)) detig)*" ™ * (g€ U(e)).

The symbol sgn(x) is equal to 1, 0, —1 for x>0, x=0, x<0
respectively. The “gauge multiplier”, introduced into the definition of
the representation I,” is necessary here not for compensation of
non-singlevaluedness (because the representation §,0v, is correctly
defined on U{c0): it serves the same purpose as in remark 18.7.

18.14

Remark. The representations 7,” and T _, are conjugate to one

another. In particular, at the point 1= /2, the fermion fundamental
representation is conjugate to itself.
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18.15

In conclusion let us examine, still briefly, a pair of the type (C}. In this
case,

G=U(w)x U(w), K= U(®), L" = U, @), L"=U(2x)".
Let us recall that K is the diagonal in G
The embeddings
7,1 u(0)® (o) u(e,0), sER0},
are given as follows:

A 0

R, 5> 0;
0 Az( s

t\'(Al@A2)= ht|:

I-_\‘(A]®A2)= T-_\-(A,@Az), S<O.

Here A,, A,€ u(®)and A,* is the matrix from section 18.3.
The boson fundamental representation 7,*, where s€ER\{0}, is
given thus:

172 spnis}

T, (8, &)= Wel7,(8), &))det(g, ')
(g1, &€ U(0), s€RY{0}).

The representations 7,* and 7 are conjugate to one another.
The embeddings

v,: u{o0)® u(e0)— u(2«), 0 <t<m,

are given as follows:

A 0

}(h;)“,0<:< TT.
0 A,

v (A, @A)=h,

Here A, is the matrix from section 18.9.
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The fermion fundamental representation 7,7, 0 <7<y, is given
thus

sgnli/2)— 1)

T, (8, &)=Sc(v(g, &) det(gig ')

The representations 7,” and T _, are conjugate to one another. In
particular, at the point r= n/2, we get a self-conjugate representation.

§19. The “intermediate” series of fundamental representations

19.1

Let H be a complex Hilbert space, U(H) the group of all unitary
operators in H and Heis (H ) the group defined in section 8.4. Let us
recall that the elements of this group are pairs (x, §}€R X H. Group
U{H ) acts in Heis (H ) as automorphisms as follows:

u: (x, E~(x, uEY (u€ U(H ).

Let us denote by Heis (H)- U(H) the corresponding semi-direct
product.

19.2

Consider the representation V of the group Heis (H) in boson Fock
space Z (H ) (see section 8.5) and the canonical representation of the
group U(H)=U(H) in the same space. These two representations
give the unitary representation of the group Heis (H)- U(H)in F(H )
which we shall again denote by V. It is irreducible since its restriction
to Heis (H) is irreducible. For r>0, we shall denote by V, the
irreducible unitary representation of the group Heis (H): U(H)
obtained from V by the outer automorphism (x, &)+ u={(rx, J(r)§)- u,
where (x, £)€ Heis (H), u€ U(H). The representation V, possesses a
unique U{H }-invariant vector, to within a factor. The corresponding
spherical function has the form

{x, £} u—~exp r(zx—-"—gzu—)
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The representation V, may be characterized as the cyclic
representation given by this function.

193

Let ¥ be an abstract group and x(-), &(- ), u(-) mappings of it into R,
H, U(H ) respectively.

Lemma. The mapping

g(x(g), §(g))- ulg) (g€¥),
given by these three mappings is a morphism ¥ —~Heis (H)+ U(H} if
and only if the following three conditions are satisfied:

(i) fru(g)is a morphism ¥~ U(H), i.e., a unitary representation
of the group ¥ in H,

(i) g=&(g)isa l-cocycle on & with values in H, i.e.,

E(gig)=E(g)+ulg)éle) (g, 8€9);

(iii} the real function x(g) satisfies the relation

x(g.&)=x(g)+ x(g) —Im(&(g)), u(g)&{g)h.

The proof is trivial..

19.4

We shall describe now one method of constructing morphisms
¥—Heis (H )+ U{H ) giving non-trivial results for infinite-dimensional
spaces H.

Let a unitary representation g— u(g) of the group Gin H be given.
Let us assume that in A there is a G-invariant dense subspace @ C H.
Let us denote by @’ the space of all antilinear functionals on @
(without any continuity conditions). Then it is possible to write

bC HC Q.
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The canonical sesquilinear pairing between @ and @’ will be denoted
just like the scalar product in H. We shall denote the obvious action
of the group ¥ in @’ just like the action in H.

Let us assume now that in ¢’ there exists a vector 7 such that

ulglhp—ned (gE9).
Let us then put

E(g)=ulgln—n, x(g)=Im(n, §(g)).

Lemma. The mappings u(+), &), x(-) satisfy the conditions (i)-(iii)
of lemma 19.3 and hence they give a morphism

¥—Heis(H) - U(H ).
The proof is trivial.

19.5

Remark. The function &(g) from section 19.4 is a trivial 1-cocycle
with values in @', However, as a cocycle with values in H, it may be
non-trivial (see below). The corresponding morphism is also then
non-trivial in the sense that it is not conjugate to any morphism into
the subgroup U(H ).

19.6

We shall carry out the construction of the intermediate series of
fundamental representations on the example of the pair (R), i.e.

G= U(w), K= S0().
Let us put
H(n)={§€C"": §=§&'}, M{n)=U(n).
The group M(n)acts in H{n) as follows:

u+ E=gka’, where u€ M(n)= U(n), E€ H(n).



“INTERMEDIATE" SERIES OF FUNDAMENTAL REPRESENTATIONS 409

Let us introduce into H(#n) the scalar product

(& m)=tr En*=tr &7

Let us- denote by L%n) the semi-direct product of the group Heis
(H{n)) by M(n). The group Ln) is a subgroup in the group Heis
(H{n))- U{H(n)). Let us denote by V™ the restriction of the canonical
representation V; of this group (see section 19.2) to L'(n).

V" is an irreducible representation of the group L(»n) in the space
¥ (H{n)). From the definition of the action of the group M(n)= U(n)
in H(n), it is seen that V"|U(n) decomposes into irreducible
representations with non-negative highest weights. We call here the
weight (4,, ..., 4,) non-negative if 4,20,

We shall give here an explicit realization of the representation V"

Vi"(x, &) f(z)=explir x— r|§ /2 = Jriz, &) f(z+ JrE),
V"u) f(z)=f (u'zu).
Here fe#(H(n)), xER, z, E€ H(n), us U(n).

19.7
Let us put
L'= VU 'n).
n=|
The group L' is a subgroup of the group Heis (H )+ U(H ), where H

denotes the completion of the space

H{wo)= D H(n):

= |

H={EE€C™™: E=§F" tr EE*¥=1r EE< + ),

The restriction of the standard representation V, of the group Heis
(H)- U(H) to L' is again denoted by V,. This representation is the
inductive limit of the representations V. It is irreducible.
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The subgroup

M= U M(n)

1= 1

in I is isomorphic to U{e) and V|M is a tame holomorphic
representation of it.

The representation V, of the group L' acts in ¥ (H ) precisely as
described in section 19.6; it need only be assumed that & is a finite
matrix and that fis a cylindrical function.

19.8
We shall now construct the embeddings

#1, -y (U(0), SO(0))= (L', M),

using the procedure given in 19.4.

The space H is defined in section 19.7. We shall take H(} (see
section 19.7} as ®. Then @’ may be identified with

{feC™™: E=¢8"}
Let us take as € @’ the vector 1. Then for g&€ U(w) we have:

ulgl=g

x(g)=1m tr(gg’—1).

Let us denote the corresponding embedding U{e)— L' by u,.
It is evident that

#(G(n))C L'(n), u(K(n)< M(n), w(K)C M.

Further, we put

po(g)=ug) (g€ G= U(x)).
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It is clear that . ,| K coincides with the canonical embedding

K=50(x)- U{=)=McC L

19.9

For r> 0 we define the intermediate fundamental representations T,
T?, of the pair (U(e), SO(x)) as Vou,,. We shall give explicit
formulae for them.

T"(g) flz) =explr trigg’ — 1)~ Jrtrlz(gg'— 1))
x f(g'zg—Jrig’g— 1)),
T (g)= T"(@)

Here g€ U(®), z=7€C>", f is a cylindrical function.
The representations 7", TV " are conjugate to one another,

19.10
The following fact will be used in §20.
Lemma. Letr,>0,r,>0.Then

T:||® T;":* ]:':}+r3 ®I

where T'is a certain tame representation of the group U{).

Proor. T'® T acts in the space ¥ (H)®N(H)=3¢(H® H) as
follows:

(T'® T))g) f(z), 25)=
= expl(r, + r)tr{gg’ ~ 1)— tr{( Jr,2, + Jraza)(gg"— 1))]

xflgzg—Jr (g8—1), g28—Inigg—1)).
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We consider here f as a cylindrical function. Let us replace the
variables

b dn
o Jn+n l Jntn
Jn Jn

Jn+rn IHJ"I'*'rz— -

We observe that this transformation preserves the Gaussian measure
on @’ X @’. In the new variables our representation appears thus:

(T'® T,)g) f(z, &)=expl(r, + r)tr(gg’ — 1)— Jr, + r, tr(z(ge’— 1))]

Xflg'zg—JIn+r, (g8 1),8¢Lg).

Now our proposition becomes evident: it is necessary to take for T
the canonical representation of the group U(H ) in #(H ), restricted
to U(eo),

19.11

Remark. The group I[*n)} is very similar to the groups
L*(n)=S8p(n,R)™ and L~ (n)= Sp(n).

In fact, let ["(n) be the Lie algebra of the group L%n) and [.%#) its
complexification. The algebra [."(n) possesses the decomposition

[(n)=1"\(n)@L (n)@1}(n)

of the same sort as the algebra L.(n)=sp(n, C). Here [}(n) is the
complexification of subalgebra

R® u(n){(n)

and [_{(n)®[}{n) is the complexification of the subspace H{n)C["(n).
The analogy becomes more complete if we replace ["{n) by [("(n),
["(n)]: this leads to the fact that R® u(n) is replaced by R® su(n).
We observe that the Lie algebra [(-"(n), [%(n)] may be obtained
from I (n) by a process of “contraction™ in the sense of Inonii and
Wigner.
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Finally, we observe that the triality
{L(n), L™(n), L'(n)}

is fully analogous to the triality in the theory of symmetric spaces
(spaces of negative curvature, positive curvature and zero curvature).

19.12

The construction given in this paragraph can be transferred to all
pairs {G, K) of compact type. In all cases the cocycle &(-) is
constructed with the help of an involution that distinguishes the
subgroup K from G.
Let us consider the pair (C). In this case
G=U({»)x U{o), K= U{®), G(n)=U(n)x U(n), K(n)=U(n),
H(n)=C"", M(n)= U(n)x U(n), L'(n)=Heis(H{(n)}+ M(n).
The action of M(n) on H(n) has the following form:
(y, ty): £~ w1, &1 (), )€ M(n), E€ H(n)).
The morphism u(* ) from G{n)into M{n)has the form

(8, &)~(8&. &).

As 7, let us again take the matrix 1 ,€C*-~.
Let us consider further the pair (H). In this case

G=U(2), K= Sp(»), G(n)=U(2n), K(n)=S5p(n),
H(n)={£€C""": = — &'}, M(n)= U(2n),
L'(n)=Heis(H(n)), - M(n).
M(n) acts on H(n) as follows:

u: E~ uki(us M(n), §€ H(n)).
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The morphism u( - ) from G(n) into M(n) is the identical mapping. As
the vector #, we take the matrix

0 1,
o -1, 0]

For pairs (G, K} of type (F;), embeddings into pairs of type (F) are
again used in the construction of the intermediate fundamental
representations.

§20. Construction of irreducible admissible representations

20.1

In this section we shall describe the structure of the ring generated by
the fundamental representations which were constructed in §§18 and
19. For the pairs (G, K) of compact type the definition of admissible
representations given in section 9.5 remains in force. All fundamental
representations are admissible. Hence all the irreducible
representations obtained as a result of decomposition of their tensor
products will also be admissible representations.

Let us recall that we provide the groups L, L{n), U(k, F) with the
signs *+” or " — " (see section 18.1).

We shall consider in detail only the pair (R).

20.2
Let k=1, 2,.... Let us recall that U*{k,R)=O(k). Let 7€ O(k)*
and W, be the corresponding irreducible representation of the group
L* =Sp(o,R)".Let

7,0 U()” = Sp(, R)” {s&€RY0})
be the embedding constructed in section 18.3. Let us put

T, (g)= Wi(z.(g)(det g)” " ™" (g€ U(<o).

This is a correctly defined admissible representation of the pair

(U(e0), SO()).
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THeorem. The representation T, of the group U() is irreducible
for all k=1, 2,..., 7€ 0(k)", s€R\0}. Moreover, its restriction to
SU(}is irreducible. Thus,

(T))®~ @ (dimanx) Tj,.
mE k)N

The proof is fully analogous to the proof of theorem 11.1. Consider
the tame representation o of the group K= SO(0):

p=(T")%"|SO(w) = (W, 01| SO()

and its holomorphic extension p* to the group K*= U(w}. The
representation o* coincides, to within a one-dimensional factor, with
the representation

W 2" M

(let us recall that the subgroup MC Sp(oo, R)™ is U(%0)7),
Now we check that, for any n2 3, the groups

7(SU(n)) and [M(n), M(n}}=SU(n)

jointly generate Sp(n, R)

20.3

Let /=1, 2,....Let us recall that U~ (] R)= Sp(/). Let o< Sp{/)" and
S, be the corresponding irreducible representation of the group
L~ =Sp(e).
Let
v, U{eo)— Sp(e0) (0 < s< )

be the embedding constructed in section 18.9. Let us put

T,.(8)= S,(v.(gXdet g) """ (g€ U(e0)).
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THeoreM. The representation T, of the group U(0) is irreducible

for all /=1, 2,..., o€ Sp(/)* and r€(0, m). Moreover, its restriction
to SU(0)is irreducible. Thus,

- (T, )%~ @ (dimo)-T,,.

o€ SpihHn

The proof is the same as for theorem 20.2.

20.4

Let r>0; T be the representation of the group U(®) constructed in
section 199; p an irreducible arbitrary tame holomorphic
representation of the group U(co).

THEOREM. The representation T'®p of the group U(e) is
irreducible. Moreover, its restriction to SU(®} is irreducible.

The proof again follows the same idea. We shall examine the group
L' and its representation V,(sections 19.6-19.7). Then

(T'®pNg)=(V,®p)ulg), gEU()

(here p is considered simultaneously as the representation of the
group [! that is trivial on the Heisenberg subgroup).
We show first that the representation V,® pis irreducible. Let

AE(V®p)L'Y.

Let us represent H{V.® o) as H{V,)® H{p). Since V, is an irreducible
representation of the Heisenberg subgroup, we have

A=1®B,

where B is a certain operator in H{p). But B must commute with the
representation o, from which it follows that B 1s scalar. This means
that V.® o is irreducible. We observe that in this discussion it is
possible to replace L' by [L", 1] (also, the subgroup M= U({®)}C L' is
replaced by [M, M]= SU()).

We now observe that the representation ( V,® o)| M of the subgroup
M= U(0} is holomorphic (this foliows from the holomorphy of the
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representation p). Thus this representation coincides with the
holomorphic extension of the representation (T ® 0)| SO(),

It now remains to prove that the subgroups u,(SU(n)) and
[M(n), M(n)]=SU(n) generate the whole group
[I%n), I%(n)]=Heis(H(n)): SU{n), but this does not cause any
difficulties.

20.5

Remark. The irreducible representations of the group L of the type
V.®p, where p=p,, play the same role in our construction as the
irreducible representations W, and §, of the groups L* and L~
respectively.

We observe that V.® o is the inductive limit of the irreducible
representations V"'® o' of the groups L%(n), where o' denotes the
irreducible representation of the group U(n) with the highest weight
(Ays ... 4,). We observe further that V!"® p'” remains irreducible
after restriction to the subgroup

| L'(n), L'(n)]=Heis(H{n))- SU(n).

20.6

Tueorem. The following representations of the group U(w) are
pairwise conjugate to one another:

T..and T,” (n€O(k)", sER0}),
T,,and T, (o€ Sp(l)*, 1€(0, m)),
T'®p, and T\ ®6,(r>0, AEA).

The proof is analogous to the proof of theorem 11.6 given in section
11.20.

20.7
Let

paq=12,. 0k, kb L,=1,2,..,
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nieo(k:')n (I= ]-’ Lo p)a UJE Sp(l,f)/\ (J= 19 LRI q)’
5. S, ERNOL 1, .., £,€(0, ) 1 >0, 1> 0.

Let o= o, , be an irreducible tame representation of the group U();
let us recall that o= 0,® 0, . S
We shall assume that the numbers s,,..., s, are pairwise distinct
and that 7, .. ., £, are also pairwise distinct.
Let us put

14 q
T= [@ z;,) ® [@ T‘,;G) RT,)®T  ®p. (1)

i=1 i=1\

It is evident that T is an admissible representation of the pair
(U(o0), SO{)).

20.8

THeEOREM. Any representation 7 from section 20.7 is irreducible.
Moreover, its restriction to SU{®) is irreducible {of course, the
theorem continues to hold if some of the factors are omitted in (1)),

The proof differs only slightly from the proof of theorem 11.3.
However, we shall give certain details so as to demonstrate how well
the boson, fermion and intermediate representations supplement one
another.

Let us put

A=(L"Y'x(L™y'x[L', LT,
T=T, X .. XTI Xy, X L XY Xy X g SU(0)= 4,

d. SU{=0)—~ A be the diagonal embedding.

Here the upper index p, g or 2 indicates the product of p, g or 2
copies of the corresponding group.

We observe that 7 is equivalent to the restriction to T(SU(%)) of
the irreducible representation

(é w,,']@(é s,,,)®(lé,®pa)®(ld,®pu)

i= | j=1
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of the group A. Our usual argument shows that it is sufficient to
check that the subgroups t(SU(n)) and d(SU(n)) generate the whole
group

A(n)=L"(nY'x L™ (n)'x|L'(n), L'(n)]

= Sp(n, RY x Sp(n)’ x (Heis( H(n))- SU(n))}

forall n= 3. '

We shall study the complexified Lie aigebra of the group A(n)
which is the direct sum of p+ g copies of the algebra [ (n)=sp(n, C)
and two copies of the algebra [[ “(n), [ "(n)]. Let () be the smallest
complex subalgebra containing t(su(n)) and d(su(n)), we have to
prove that b(n)=a(n).

We cannot immediately use lemma 11.15 for the algebra a(n) as it
is not semisimple. Hence we slightly change the argument.

Let us examine the decomposition

aln)=a_,(n)@a,(n)®a,(n),

wh*:h originates from the decompositions of the algebras sp(n, C)
ar. [ "(n), [."(n) (see section 19.11). As usual, let ¥#_,, J#, and J#,
be the corresponding projections.
The d(su(n))-modules a_ (n), ayn), a,(n) are pairwise disjunct.
Hence b(n) is stable with respect to the projections ¢ _,, J,, J#,.
We now show that the subalgebras

H(t(su(n))) and d(su(n))

generate |a,(n), a,(n)], from which the equality b(n)=a(n) that we
used easily follows.

The algebra [a,(n), a,(n)] is semisimple: it is the direct sum of
p+g+2 copies of the algebra sl/(n, C). Hence we may use lemma
11.15forit. :

We shall write an explicit form for the element

o TNA)Eay(n), ay(n)], where AE su(n).
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It will be sufficient for us to take A= Y= Y’. We have
(ot Y)=(aqY)® ... ®{a,Y )®(b Ye. . &
(Y )®(C\Y)O(GY)EsIn C)® ... ®sl(n, CYp+ g+ 2 times),

where

cosh s, if >0,
a! = -
—cosh s,, if s,<0;

b=cost; C=1, (GG=—1.

We observe that all these numbers are pairwise distinct, since
la;|> L, |b;| <1, a,#a, b, #b,.
Hence we may conclude the proof just as in section 11.17.

209

THeorem. For the irreducible representations from section 20.7, the
natural analogue of theorem 11.5 on pairwise non-equivalence is
true.

Proof is precisely the same as in §12.

20.10

Remark. The totality of the irreducible admissible representations
of the pair ({0}, $O(0)) constructed by us is closed with respect to
the operations of conjugation and taking of tensor products {with
subsequent decomposition into irreducible components). This
quickly follows from our construction (see also lemma 19.10).

20.11

Remark. The restriction of any- irreducible representation from
section 20.7 to the subgroup K=3S80() has a finitely-multiple
spectrum. In §21, we shall see that there exist irreducible
representations for which this is not so.
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20.12

It is convenient to unite the three families of embeddings {7}, {v},
{#+,}, where sER\{0}, r€(0, 7), into one family {z,} where xER. Let
us write for this

(a

x"(s)=sgn(s)coshs, x{f}=cost, x(xl)==%1.
Then
U (U (£ 1)) =R.

For x# 1, we put alx)=J1+x/2, b{x)=J1—x/2, where for
| x| > 1 the branch of the root is selected arbitrarily. Let
[ a1 bx)-1[g 0][ax)1 =1
0 g|lblx)1 a{x)- 1

87| b1 a1l

Fll+x . (1-x) 1 ——, ]
— |8 -—]g ~J1-x (g—=§)
2 2 2
= , §& U(0).
1 —— o [1T+x +(l—x]_
S1-x (g8 |8t )8

If |x|<1, then 7.{g)€ L~ =Sp{c) while 7,=v, where x=x (1)
If |x|> 1, then 7,(g)€ Sp(o0, R). Considering g as an element of the
group U(e)” as in’ section 18.3, we may lift z.(g) into
LY =Sp(eo, R}".

For |x|> 1, our new mapping 7, differs from the old mapping 7,
where x= x*(s) by an automorphism of the group L* that does not
change the Weil representation.

Finally, at the points x=+ 1, weput 7, , = u.,.

20.13

Let us denote by G(n) the group of (all) functions f(x) taking values
in the groups L*(n), L~{n) and L"#n)} for [x|> 1, {x| <1 and x= %1
respectively. Let G*= U G{n).
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Let us define the embedding 7 of the group G= /(=) (or, more
precisely, of the group U(w)™) into the group. G* by putting
1(g)(x})= 1.(g), where 7, was defined in section 20.12. Let us observe
that 7 maps the subgroup K= SO{) into the subgroup of constant
funetions.

The group G* possesses a family of irreducible representations of
the following type:

U\-, ...... X ,(.ﬂ= ® Utm(f(xrii))’ X <... <xr! fe G*-

=]

Here Uy, has the form W_S,,V.®p, respectively for |x,j>1,
lx,.| <1, x,=* 1, where @, g, r, A depend on m. The representations
Uxy, ..., x, will be called holomorphic.

It is clear that the irreducible representations T of the pair (U{),
SO(0)) constructed in section 20.7 are precisely the representations
of the type y®(Uort) where U is an irreducible holomorphic
representation of the group G* and y the corresponding “gauge
multiplier™.

The given construction is an analogue of the construction from
section 12.5.

20.14

Consider the Lie algebra g*n) of (all) functions on R\{ £ 1} taking
values in the Lie algebra /*(n)=sp(n, R) for |x|>1 and in the Lie
algebra [ (n)= sp(n) for |x| < 1. We shall define the embedding 7 of
the Lie algebra g{n)= u(n) into the Lie algebra g*n) as the differential
at the identity of the embedding of the groups : G(n)—~ GXn).

THEOREM {compare with theorem 12.6). For n2 3, the subalgebra in
@ ¥(n) generated by the algebra {su(n)) and the algebra d(su(n)) of
constant su(»}-valued functions, consists of all functions of the type

H-ﬁu—fmuyh+Au)J1-fBu)
~-1=x Bix) il -x)alx):1,+Alx)]

where

a(-)ERx], A(+)ERIx|®su(n), B{-)

il

B(-yERx|®C"".
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The proof is obtained by some modification of the arguments from
section 20.8.

20.15

Remark. The matrix functions described in theorem 20.14, being
extended to the whole real line in an obvious manner, take, at the
points x= t1, values from the subalgebra su(n). We observe,
however, that the triplet of functions {a(x), B(x), A(x)}} gives at
x=*1 a morphism of our Lie algebra into [/*(n), I"(n)]. This effect
agrees with remark 19.11. It agrees also with the above definition of
the group G*(n), where we have assumed that, at the points x= 1 1,
our functions take values in the group L'(n).

20.16

Remark. The results of this section transfer to all other (G, K)-
pairs of compact type. For the pairs (C) and (H), nothing changes
essentially. For pairs (F)), just as in the non-compact case, two
additional effects arise.

Let (G, K) be one of the seven pairs (F;} and (G, K’) the
corresponding pair (F). By definition, the fundamental
representations of the pair (G’, K’} are restrictions of fundamental
representations of the pair (G’, K’).

The first effect consists of the fact that T|G~ T|G for any
fundamental representation T of the pair (G’, K’), which is clearly
seen at the level of spherical functions (compare theorem 16.5).

The second effect consists of the fact that if T is the unique self-
conjugate fermion fundamental representation of the group G, then
the symmetry group of the representation 7®% is wider than the
symmetry group U~ (k, F) of the representation T%* Here the
analogue of theorem 16.8 holds. The corresponding group L=L"s a
“compact form™ of the group L=L* from Table 7.6 (see section
16.7).

For the pairs (R,), (C;} and {H,) it is possible to repeat remark
16.11 after replacing W, by §,.

20.17

In conclusion, we shall prove one result mentioned in the
Introduction.
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ThHeorem, Let (G', K') and (G?, K?) be two different pairs of
compact type for which G' and G- are isomorphic (see Table 7.2). If
the unitary representation T of the group G= G'= (- is admissible
for both the pairs, then it is a tame representation of the group G(the
converse is obvious).

Proor. Changing, if necessary, the numbering of the subgroups, it
may be assumed that G'{n)= G*(n)= G(n). Let us denote by G,, K!
and K the subgroups “complementary” to G(n), K'(n) and K*(n)
respectively (see section 2.4). Let H,, H! and H; be subspaces of
vectors in /= H(T') which are invariant with respect to G,, K! and
K respectively.

By agreement,

UH! and U H;

f n

are dense in H and we have to prove that

U Hﬂ

N

is dense in H. The key observation is that K'K*K'= G and similarly
K!K:K! =G forall n.

Let §€ H and £>0 be arbitrary. If »n is sufficiently large, then
| T(g)5— &l < € for all g&€G,. In fact, for large » it is possible to find
vectors in H) and in H? close to §. But then all the elements from K
and from K: only slightly displace &; this means that the same is true
alsofor G,= K!K:K!.

Let A be the weak closure of the convex hull of the G,-orbit of the
point &. The function n—||#| is weakly lower semicontinuous on A
and hence achieves its minimum at a certain point n,€A. If
Tighn,#n, for a certain g€G,, then |lpll<|{nll for
n =(n,+ T(gn,)/2 and that is impossible because 7, € A. Thus,
T{g)y,=n, for all g€G,, ie., 5, € H,. But A lies in the sphere of
radius € with its centre at £, and that means that ||n, — §|| € &.

We have proved that

U H,

1

is dense in H, t.e., Tis a tame representation.
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§21, Spherical functions. Properties of continuity. Infinite tensor
products

21.1

We observe that each of the fundamental representations of the pair
(U(o0), SO{0)} possesses a unique SO(oo)-invariant vector, to within
a factor.

THeorem (Compare with Theorem 13.3). Normalized spherical
functions ¢ ¢, ¢, of the fundamental representations T, T,

¢, where s€R\0, +€(0, x), r>0, are given by the following
formulae (below g€ U(0)):

. -1
@ g = det(cush (%) ! —sinh- (;] gg')

and ¢ (g)=@. (g =g (g) fors>0;

“(g)=det|cos?| |- 1 +sin?|~ | g
¢ .(8)=det|cos’| - sin”| > |* &8
- I — b |
and @, _,(g)=¢,(§)= ¢, (g) for fe( 2];
+§ 1 ‘
@, (g)=det{‘gT‘g = det 1+§(gg'—l) det g
/
;] — )
= det 1+5(gg'-—-1) det g;
/

@, (g)=exp(rir(gg’'— 1)) and ¢.,(g)= ¢ (§)

= @(g) for r> 0.

The proof follows the second method of proof of theorem 13.3: it is
based on the explicit formulae for spherical functions of the
representations W,, S, V,(see sections 8.1,17.6, 19.16).
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21.2

THEOREM (compare theorem 134 and lemma 13.2). The
representation T of the pair (U(o), SO()), given by formula (1)
from section 20.7, possesses a non-zero SO(o0)-invariant vector if
and only if all representations x;, 0;, o are trivial representations of
the corresponding groups. If this condition is satisfied, then the
normalized spherical function of the representation T is equal to

4

g
[T@: e, ) -one’,.

i=] =1
The proof is obvious.

21.3

Consider the group U{oo) of all unitary operators in the Hilbert space
I’(C) and distinguish in it the subset U,(o0)={ge U(=x): g¢g'—1 is a
Hilbert-Schmidt operator}. (Do not confuse this with the notation in
section 2.4!) It is easy to check that _y_;(W) is a subgroup. It contains
the complete orthogonal group SO{«). Let us recall that we
topologize SO() by the weak = strong operator topology.

Lemma (ComparRe wiTH LEMMA 13.7).  U{®) possesses the structure
of a topological group for which the fundamental system of
neighbourhoods of the identity is formed by the sets of the type AB,,
where A is an arbitrary neighbourhood of the identity in the
topological group SO(e), and

B =lacU(w) a=a’, |la—1|.< &,

where || - ||, indicates the Hilbert-Schmidt norm.
The simple proof is omitted.

214

Consider on the group U,(%) the function

Y(g)=det (h exp [% (W' - h)]], where g€ U(), h=gg’".
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It is correctly defined, since under the sign of the determinant stands
an operator of the type 1+ (nuclear operator). The function ¥ is
continuous on U,(®)and maps it into the circle [z| = 1.

It is easy to check that the degree of the mapping

=0

is equal to 1. This shows that U,(e0) is not simply connected. Let us
denote by U,(e0) the minimal covering over U,(e) on which the
function In ¥ becomes single-valued. The fibre of this covering is the
group Z. U,(®0) is a topological group containing SO(0). It is possible
to show that U,(} is the universal covering for Us().

The fundamental principle of treating the group U,() consists of
the fact that all calculations may be done in the matrix group Us(®};
but in addition it is permitted to consider functions of the type y{(g)",
where a€R. .

Let us define also the group U(e0) (do not confuse this with
U(e)™!) as the universal (Z—) covering over U(w}; the function
In det(gg’) becomes single-valued. U(®) is a dense subgroup in
Uy(0).

21.5

THEOREM (CompParRe wiTH THEOREM 13.8). Let us regard the
fundamental representations T;, T, 7, .’ of the pair ({(%), SO(})
as representations of the group {{«). Then they may be multiplied
by appropriate “gauge multipliers” of the type det(gg’)’, where a€R,
as a result of which we get representations that admit a continuous
extension to the group U,(®). By the same means, an analogous
result holds also for all the representations constructed in section
20.7.

Proot. Let us use the notations of sections 20.12-2}).1 3 and define
modified fundamental representations of the pair (U(), SO()) as
follows:

T.(g)= We(7.(g)) det(ge) ™", xER, |x|> 1;

T.(8)= Sk(r.(g)) det(gg’)'~, xER, |x| < 1;
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I..(g)= Vi« (g)) det(gg’)"”’, r>0.

Their spherical functions are as follows:

{{ \ -1/2
1+x | R §
d t ! —1/4, > ;
5 ] — ]g] et(gg’)”"", [x[>1
1+x)_ [1-
- g+ (—"2 x)g)det(gg')"z, |x]<1;

g+

@, (g)=det \

\
({

@ (g)=det
\\

/

@+.(g)=exp(rtr{(gg’)*' — 1)) det{gg")*’, r>0.

After simple transformations we get (below A= gg’):

1~x o ~-12
o

Xy ™, x> 15

@.t(8)=det[(l +lTx (h— 1)) exp

1— 1 — -
¢‘(g)=det[(l+—2£(h—l)] exp[ 4x(h —h)”
X p(g) ™" x| < 1;

h'+h

-1

G, lg)= exp(r tr( 11;:(g)¢ T r>0.

These expressions are already correctly defined on the group U,(e),
that proves the assertion of the theorem in the particular case of
spherical representations. In the general case, we use the same device
asinsections 13.11 and 1 7.17.

21.6

We observe that the spherical functions of the representations 7., 77
tend to unity as s— 0, 1= 0 or - & This fact allows one to generalize
the construction of the representations 7 from section 20.7 as
follows.
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We shall examine a set of data of the same type as in section 20.7,
with, however, the difference that now the indices i and j will run
through a countable set. We shall assume that the representations
re0(k)" and ogE€Sp(l)* are different from the trivial
representations only for a finite number of indices. We shall assume
also that

kisi< + o0, Yl {m—1) <+, (1)
i=1 i=1

Lemma.  Under these conditions there exists a representation of the
group U(e)

T= ( ® T;.:v) © (® To;:’] QT T, 80, 2)

=1 j=1

where the infinite tensor product is understood in the sense of von
Neumann [16], while in the Hilbert spaces being multiplied the
SO(eo}-invariant vectors are taken as distinguished vectors,

Proor. It is sufficient to establish the existence of an infinite tensor
product of spherical representations; that leads to the convergence of
the infinite product of the corresponding spherical functions. The
latter is checked with the help of (1) and the formulae of section 21.2.

21.7

Tueorem. The representations (2), constructed in lemma 21.6, are
irreducible admissible representations of the pair (U(e0), SO{=0}) (of
course, in (2) it is possible to omit some of the factors; it is also
possible to replace one of the two infinite tensor products by a finite
one).

Proor. The admissibility of the representation T is checked trivially.
We shall prove that T|SU() is irreducible. The basic idea here
remains the same as that in the proof of theorems 11.3 and 20.8;
however, some technical complications arise which we shall discuss
now.

In the notation of section 20.12, we shall put

M={x"(shUix B U{E 1},
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M is a bounded countable set in R. The condition (1) shows that

2ixr—1{< + o,
e M
In particular, the only points of accumulation of the set Mare £ 1.

For n=1, 2, ..., we denote by a(n) the Lie algebra whose elements
are the matrix functions from section 20.14, but which are now
regarded as functions on MCR. Besides this, we additionally assume
that these functions are continuous on M, i.e. continuous at £ 1. Let
us provide a{n) with the topology of uniform convergence on M of
the functions afx), A(x), B(x). This topology may be given by a norm
with respect to which a{n) becomes a Banach Lie algebra.

Let us now consider the functions on M with values in the groups
Sp(n,R)™, Sp(n), SU(n) respectively for |x|>1, |x|<1, x=*£1,
having close to the points £ 1 the form

flx)= exp{—i(1—x")a(x): 1,+ Alx)) 0 ]
0 exp(i{1 — x7)a(x)- 1,+ A(x))
0 J1—x B(x)
xeXpl:_J—-rl_x_m 0 :|-|

where a, A, B, are as before assumed continuous at x= %1 (the
branch of the root for |x|>1 may be selected arbitrarily). Such
functions form the group A(n), which admits the structure of a
Banach Lie group with Lie algebra a(n) (the letter A is used here with
two different meanings!).

The mappings f—f(* 1) give morphisms of the group A{n) in
SU(n), which may be lifted to the group {Ln), L'n)] (see remark
20.15). Thus, we may assume that f(%1) lies in the group
[Ln), L'm)].

For x€ M, we define the irreducible representation U, as one of
the following representations: W, if x=x"(s,); So, if x= x~ (8, V., ® o,
if x=1, V,2®p” fx=—-1.

From (1) follows the existence of the representation U, where

U(f)= ® U,(f(x)), f€ A= U Ain).

e M

It is easy to check that Uis irreducibie.
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Let us define the embedding 7 of the group [G, G|= SU() into the
group A just as in section 20.13. Then T= Uct. We observe that, for
nz 3, the group t([G(n), G(n)]), together with the group d{(M(n),
M(n)]) of constant functions generate a dense subgroup in A(n). In
fact, it is sufficient to check this assertion at the level of Lie algebra
and then it follows from theorem 20.14.

Now the proof can be completed just as in section 11.13.

21.8

Tueorem. For the representations 7 from section 21.5, the
analogues of theorems 11.5 and 20.9 on pairwise non-equivalence
are true.

The proof is obtained by analogy with the proof of theorem 11.5
and taking into consideration the construction of section 21.7.

219

Remark. As is seen from lemma 19.10, there is no need to study
infinite tensor products of representations of the type 7'¢,.

21.10

Remark. Theorem 21.5 obviously carries over to infinite tensor
products. '

21.11

Remark. The results of this paragraph can be transferred to all
other pairs (G, K) of compact type. For example, in theorem 21.5, in
the case of the pair (U()x U(w), U(w)), it is necessary to consider
the universal (Z—) covering over the group {(g, g&)€ U{)X
U{). g,g ' —1 is a Hilbert-Schmidt operator}. This covering is
constructed with the help of the function

¥(8, &)=det(hexp(h™' ~ h)/2), where h=g,g; ".

In the case of pairs of the type (F}), the difficulties connected with the
selection of the “gauge nwltipliers” do not arise at all, since, when
embedding such a pair (G, K) into the pair (G’, K’) of the type (F)
(see 18.2), the image of the group Glies in[G, G'].
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PART V

SUPPLEMENTS: “ABSTRACT” THEOREMS

§2 2, Approximation of irreducible representations for general
inductive limits

22.1

In this paragraph it is assumed that

G=\ G(n),

= |

where the G{n) are arbitrary locally compact separable groups, while
G(n)is a closed subgroup in G(n+ 1). The group Gis topologized by
the topology of the inductive limit.

222

Lemma.  Any compact set in G is completely contained in G{m),
where m is sufficiently large.
The proof s trivial.

223

Below, T will denote a certain unitary representation of the group
G (continuous in the topology of the inductive limit) and { 7,} a certain
sequence of unitary representations of the groups G(n), T, is a
representation of the group G(n);

Let us assume that

E={&.... EICH(T),
E,={E L EJNCH(T), n=1,2,...

We shall write (T, Z, )~ (

b
(x]

)if
(7.(8)8i, £u)— (T(g)61.E) (1 <4, j< s, g€ G)

uniformly on compact sets in G.
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We observe that the matrix elements on the left-hand side have
meaning for any gEG as soon as n is sufficiently large. The
expression “uniformly on compact sets” makes sense in view of
lemma 22.2.

224

"} of unitary
representations of the group G(n) approximates the unitary
representation T of the group G if, for any finite subset £C H{T), it
is possibie to select finite subsets =,C H(T,) of the same cardinality
so that

Derinmion,  We  shall say that the sequence {7,

(T,

11

(T E)as n— 0,

in the sense indicated in section 22.3.
If this condition is satisfied, we shall write 7, = T.

22.5

Examples. 1If T is arbitrary and 7,= T|G(n), then 7,~ T If Tis an
inductive limit of the representations 7,,then 7,—~ T.

These examples are trivial. A non-trivial example of approximation
is provided by theorem 14.2.

22,6

Lemma. Let us assume that the condition of definition 22.4 is
satisfied for all Z from a certain total subsetin H(T ). Then 7,— T.
Let us recall that a subset is called tozalif its linear span is dense.
The proofis trivial.

22.7

Lemma. Let us assume that T possesses a cyclic vector & (for
example, T is irreducible) and that the condition of definition 22.4 is

satisfied for Z={&}. Then 7,—~ T.

Proor. By the condition of the lemma, there exist vectors §,€ H(T,)
such that (T, (g)§, &,)—(T{g'5 &) as n— < uniformly on compact
sets in G.
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Letusfix g, ..., &€ Gand put

ni=Tg)&, n,=T,(8),, 1 €i<s.

This notation makes sense for all sufficiently large n. It is obvious that

(TosdMins - - o Bad) = (LA .o mh)

in the sense of section 22.3. It now remains to use lemma 22.6.

22.8

Let ¢, @,, @, ... be normalized continuous positive definite
functions on the groups G, G(1), G(2),... respectively and let 7, T,
1,, ... be the corresponding cyclic unitary representations.

Lemma. If ¢,~ @ uniformly on the compact sets, then 7,— T.
This quickly follows from lemma 22.7.

22.9

Theorem.f With the assumptions of section 22.1 we have: for any
irreducible unitary representation 7 of the group G there is a
sequence {7} of irreducible unitary representations of the groups
G(n)approximating 7 in the sense of definition 22.4.

By virtue of lemma 22.8, this theorem is equivalent to the following
theorem.

22.10

THeorem. For any continuous, normalized, indecomposable,
positive definite function ¢ on G, there is a sequence {g,}, where @,
is a continuous normalized indecomposable positive definite function
on ((n), such that ¢, — @ uniformly on compact sets.

We shall prove theorem 22.10 below.

tIn the setting of admissible representations of (G, K )}-pairs, a somewhat stronger
version of this theorem is given in {44),
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22.11

If A is a convex subset in a certain real vector space L, then we shall
denote by ex(A) the set of all extreme points in A.

Lemma, If L, L, are vector spaces, B,CL, and B,C L, convex
subsets, then

ex{B, X B,)=ex(B,) X ex{B,).

The proof is trivial.

22.12

Let L be a locally convex real vector space, L’ the space of all
continuous linear functionals on L, AC L a convex compact set. For
&€ L' and a€R, we put

U, a)={y€ A: E(y)> a}, V(E, a)={yE A: E(y)Za}.

Lemma. Let x€ex(A) and V be a neighbourhood of x in L. Then
£€e L', a<R can be found so that

x€U(§, a), V(§a)SV.
Proor. The intersection of all sets V(& a) for which x€ U(§, a)
coincides with {x} by the Hahn-Banach theorem. Since A\V is
compact, it is sufficient to check the follov - g assertion:
If §,, &, a,, a, are such that
x€ U(gl’ al) N U(g.la az),
then &, and a, can be found such that

x€U(&E;, az),  V(Es, a3)S VIE, a))N V(& ay).

Consider the complements of U(&,, a,)and U(&,, a,)in A. These are
two convex compact sets not containing the point x. Their convex
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hull B does not contain X since x is an extreme point. But then &, and
a; can be found such that

&)< a; for all yE B, &;(x}> a,.

This proves our proposition.
The given argument is taken from [3], Appendix B, No.B14.
22.13

Lemma. Let us assume that L is a locally convex space, that
Ay, A,, ... are convex compact sets in L satisfying the first axiom of
countability (for example, metrizable compact sets), and that

ARA,2A,2 .., A=A, NAN ...
Then for any x€ ex(A) a sequence of points x,E ex(A,) can be found

such that x, - x.

Proor. It is sufficient to prove that for any neighbourhood V of the
point xin L there is a sequence of points y,E ex(A,) lying in V for all
sufficiently large n.

Bylemma 22.12, £€ L’ and a R can be found such that

xeV(E a)C V.
For any n, the set
(Ze A,: E(z)> a}

is non-empty and hence, it contains a point y,E ex(A,). Let y be an
arbitrary limit point for the sequence {y,}. It is clear that y& A and
that &y) 2 a. Hence y& V. Our proposition easily follows from here.

22.14
Let us return to the group G and introduce the following notations:

L, is the space L*(G(n)) (with respect to Haar measure) endowed
with the weak-star topology as the space dual to L'(G(n));
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0, 1s the set of all continuous positive definite functions on G{»)
whose values at the identity do not exceed 1;

P,C (, is the subset of normalized indecomposable functions;
Qand P are the analogous sets for the group G.

We oi)serve that
ex(Q,)= P, U{0}, ex(Q)=P U{0}.

We may regard O, as a convex compact set in L,. Since the groups
G(n) are assumed separable the compact sets Q, are metrizable.

22.15

We shall denote by Res the restriction operator from G{n+1) to
G(n). The value of nwill always be clear from the context.

Lemma. We have Res Q,, € 0,, and O may be identified with the
projective limit of the sets Q,.
This is obvious.

22.16

To illustrate the basic idea of the proof of theorem 22.10 we shall
prove it now assuming the discreteness of the groups G(n). In this
case Res gives a continuous mapping from L., to L ,.

Let us examine the space L=L,xXL,X ... with the product
topology. This is a locally convex space and

Q=Q|xsz ...CL
is a convex metrizable compact set. We shall put
Anl={f=(fi’fé’ ' "EQ:ﬁ=Resﬁ+h t= 19 RN (e 1}-

A, is a convex compact set, which is isomorphicto Q, X Q,. ;X ....
We observe that

= .. JEX(A,)= L€ ex(Q,).
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In fact, this follows from lemma 22.11, if we take

Bi=QnaBZ=Qﬂ-rleﬂ+2x R

We may identify Q with A=A, NA,N .... In this identification,
ex{A)is identified with ex(Q)= P U{0}.

Let @€ P. We shall regard ¢ as an element from ex(A) and denote
it by x. According to lemma 22.13, a sequence of points x,E ex{A,)
can be found such that x, — x in the topology of space L.

We shall denote by ¢, the n-th component of the point x,. Then
@, E ex(Q,). From the definition of the topology in L, it follows that,
for fixed m, we have:

@a| Gim)~ @] G(m)

in the topology of space L, i.e. pointwise.

If @, =0 for an infinite set of indices #, then obviously ¢ =0, which
is impossible. Thus, @,E P,. Since the groups G(n) are discrete, the
convergence on the compact sets in G coincides with the pointwise
convergence.

This proves the theorem in the particular case being studied.

22.17

In the general case, the mapping Res cannot be considered as a
mapping from L, to L, _,, hence the construction of the compact sets
A, becomes more complicated.

If fand g are two functions on a certain group, we shall write f > g
if f— gis positive definite. '
We put
B,=lf={f;,.. . LYEQ, X ... xQ,: fi>Res f, for i=1,..., n— 1},
L=L|XLEX « v
AH=BHX Qn+! x Qn+] X . CQI X le e CL.

It is evident that A, is convex.
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22.18

Lemma. A, is closed in the topology of space L and hence this is a
metrizable compact set.

Proor. Itis sufficient to check that, for i=1, 2, .. ., the set

{(fs e )EQX Qv f>Res f, JCL, X Ly,

is closed.

We shall regard the elements of the space L'(G(i)) as measures that
are absolutely continuous with respect to Haar measure. Any
measure on G(i) may be considered simultaneously as a measure on
G(i+1). We shall denote by u~g the canonical involution of the
Banach algebra L'(G{i)).

We have now

5 Res £, o, ¥ u)> (Res £, , @k pVpue L'(G(i))
o (f,, k) (f, , gkpVue L(G(i)
oo (f, %) > (ukf, FpiNelVue L(G(i),

We observe that u*f, %4 is a continuous positive definite
function on G{i+ 1). Hence

(u¥kf. i) e)=suplukf, ¥4, v)
Vv

= Sup<ﬁ+ I ﬂ*v*ﬂ>s
14

where v runs through the set of all probability measures from
LNG(i+ 1))
Thus

fi®Res fi  &(f, w2 (fi,,, i¥v¥u)

for all i and v. This proves our proposition.
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22.19

For m< n, we put
Qun={fis-- - FIEQ X ... X Q,: f=Res" ",
fori=1,..,m; f=0 for i=m+1,...,n}.

It is evident that the mapping f~f, establishes an isomorphism

between Q,,, and Q,. For any g€ (Q,,, we shall denote by g’ the
corresponding element from Q,,,.

22.20

Lemma. The set B, defined in 22.17 is the convex hull of its subsets
Qul LA ann .

Proor. Let

f={,...[L)EB,CQx ... X(Q,.
Fori=1,..., n—1,wedefine g€ L, by the condition
fi=Res f,, +g.
It follows from the definition of B, that g, 0. Further,
file)=fi. (e} +gle), fir (€)= 0.

Hence, in particular, g{e)<1. Thus g€ Q,.
It is obvious that

fi'+ g+ gl =]
file)+ g, \le)+ ... +gle)=fle)
Hence f is a convex combination of the elements

(anﬁ:)w}s (an— i 8:;— I)m}s LR (ai 81 ){"}a
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where the numbers q,,, . . ., a, are as follows:

file) __file) _Aile)
> @y = ree s =
fule) 8- i{e) gile)
(if g.(e)=0 for certain numbers i, then g =0 and the corresponding

elements (a; g’ must be omitted).
We observe that

a,=

anﬁr(e)= an-—lgn—l(e)= LR =a|gl(e)=ﬁ(e)$ 1'
Hence
anﬁrEQﬂ’ an—]gn—lEQn*h ] a]gIEQ}‘

So our elements lie respectively in

: an Qﬂ.n—la ey in ]

which proves the lemma.

22.21

LeMma.
ex(Bn)=ex(Qn])U CX(Q,,Z)U e U CX(QM).

Proor. It follows from lemma 22.20 that
ex(B,)Sex(Qn)U ... U ex(Q,.)
The reverse inclusion is obvious.

2222

Consider the sets A,, A, ... from section 22.17 and put
A=A, NA,N ... . Itisclear that

A=lf=(f, .- JEQ X Oy X .. .fi>Resf,, for i=1,2,..}

We may regard Q as a subset in A by virtue of lemma 22.15.
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Lemma. ex(Q)Sex{A).
Proor. Let f=(f|, f5,...) be a point from A. Then

It is clear that (2 may be distinguished from A by the condition

fle)=fle)=...
which proves the lemma.

22.23

Remark. ltis easy to prove that
ex(A)=ex{(Q)U ex(Qu 1)U ex{(Qu2)U ...,

where

Qon=lf=(f, f.. ) EQ XX .. .:ﬁ=Res'"_'f,,,
fori=1,...,m f=0fori=m+1, m+2,...}.

In other words ex(A) may be identified with the union of the sets

ex(Q), ex(Q1), ex(Ds), . ...

(which intersect pairwise only in {0}).

22.24

Completion of the proof of theorem 22.10 (compare with section
22.16). We shall prove that, for any @< F, one may find a sequence
of numbers n, <n, < ...and also elements ¢, € ex( P,,j) such that

P~ @ as jo o

uniformly on the compact sets in G.
This assertion seems weaker than that of theorem 22.10, but as is

easily seen, is equivalent to it.
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We shall identify @ with a point x€ A. By virtue of lemma 22.22,
x€ ex{A). Thanks to lemma 22.18, we can apply lemma 22.13 and
obtain a sequence of points x,&ex(A,) converging to x in the
topology of the space L.

If we write

xn= (ﬁ:h ﬁ‘.‘Z) R ')s Where ﬁﬂe Qis

then we find that, for any fixed mand as n—+ «,

f;rm_’ q)l G(m)

in the topology of the space L{m).

We observe that @#0. Hence f,,,#0 for all n that are sufficiently
large in comparison with m.

From the definition of A, (section 22.17) and the condition
x,E ex(A,), it follows that

(f;r!s e f;m)e eX(B,,).

Hence

(ﬁfls v ﬁm)e ex( an)\{o}"

for a certain k= k(n) < n{see lemma 22.21).
This means, in particular, that

f;lke Rklnjs f;,,'E 0 for i> k
It is obvious that k(n}— e as n— o and that
Sokim | G(m)= @| G(m)

in the topology of the spaces L, as n— «.

It is well known that, for normalized positive definite functions on
G(m), the convergence in the topology of L, coincides with uniform
convergence on compact sets. This is a general fact that is valid for an
arbitrary locally compact group (see [3], 13.5.2).

Now changing, if necessary, the parametrization of the functions
Foxn € Puy» we get the formulated proposition.
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§23. Spherical pairs and spherical representations. The
functional equation and the theorem of multiplicativity

231
Let Gbea topological group and K a closed subgroup of G.

DermviTion.  We shall say that (G, K) is a spherical pair if, for any
irreducible unitary representation T of the group G, the subspace
H(T )X of all K-invariant vectors in H(T ) has dimension <1.

If G is locally compact and K compact, then this condition is
equivalent to the commutativity of the algebra of K-biinvariant
functions from L'(G) (or the algebra of K-biinvariant finite
measures).

23.2

Dermvimion. Let (G, K) be a spherical pair. The unitary
representation T of the group is called a spherical representation of
the pair (G, K ) if Tis irreducible and H(T)* is one-dimensional. The
function @ on Gis called sphericalif it has the form

o(g)=(T(g)§, &), where g€ G, £€ H(T)', €] =1,

for a certain spherical representation 7.

23.3

Lemma. @ is a spherical function if and only if the following three
conditions are satisfied:

(a) @is positive definite and g(e)=I;

(b) @is continuous on Gand K-biinvariant;

(c) @ is an extreme point in the set of all functions on G satisfying
the conditions (a) and (b) (nothing is changed if condition (b) is
discarded here).

The proof is standard.
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234

Let us assume that {G, K} is a spherical pair, where G is locally
compact and K is compact. It is well known that any spherical
function @ on G satisfies the functional equation

Ltp(gl kg))dk= (g )@(g), (1)

where dkis the normalized Haar measure on K.

We observe further that condition (¢) in lemma 23.3 may be
replaced by (1).

23.5

From this point we shall assume that

[-+]

G= U G(n), K= U K(n),

=] |

G(n) is locally compact, K (n) is compact, G{n) is closed in G(n+1)
and K(n) coincides with G(r)N K. We shall assume also that
(G(n), K(n)) are spherical pairs for all n. The groups G and K are
topologized by the topology of the inductive limit.

23.6
TheoreM. With the assumptions of section 23.5, we have
(i) {G, K)is a spherical pair;
(i) The function @ on G is spherical if and only if it satisfies the

conditions (a) and (b) of lemma 23.3 and also the following equation
(2), which is an analogue of equation (1):

limJ' o(g kg)dk= (g )p(g) (8, &€G). (2)
Kin)

H— o

ProoF.

(i) Let T be an arbitrary unitary representation of the group G
and P the projector onto the subspace H(T)X. It is obvious that
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PET(GY. We shall show that the algebra PT(G)'P is always
commutative. Obviously, (i) will follow from this.
It is sufficient to check that

T PT(g)PT(g)P=PT(g,)PT(g)P (g, &EG). (3)

Let P, be the projector onto the subspace of all K(n)-invariant
vectors in H(T ). Since (G(n), K(n))is a spherical pair, we have

Pn T(gl )Pn T(gZ)Pn = Pn T(gZ)Pn T(gl )Pn (gl’ & & G)s (4)

if nis so large that g, g.€ G(n).
But as n— o the projectors P, strongly converge to P. Hence,
passing to the limit in (4), we get (3).

(ii) Let us assume that ¢ is a spherical function of a certain
spherical representation 7. The validity of the conditions (a) and (b) is
obvious. Let us prove (2).

LetE€ H(T, |&|=1.Then

PT(g)PE= (g} (g=G).

From this,

PT(g)PT(g)Ps=@(g)9(g)E (8, E€G)

and this means that

(T(g)PT(g)E, &)= o(g)p(g) (8, &EG) (5)

The left side in (5) coincides with

hm(T(g, )P, T{g)&, &)= limj }@(gl kg.)dk.
Kin

n— o0 n—= =

This proves (2).

Conversely, let us assume that ¢ satisfies the conditions (a), (b), (2}
and prove that ¢ is a spherical function.  Consider the unitary
representation T of the group G with cyclic vector & [§]=1,
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generated by the function ¢@. It is continuous, because ¢ is
continuous. It is clear that §&€ H(T ). It remains to prove that T is
irreducible, and that reduces to the fact that H(T )X coincides with

CE.

For this, it 1s sufficient to check that
PT(g}eCE (geG).

We shall show that

PT(g)é = @(g)E.

For this, it is sufficient to check that

(PT(g), T(h)E)= ()&, T(h)E) (g hEG).

Let us rewrite the last equation thus:

(T(h™)PT(g)E, &)= (k" 'Jolg) (g hEG). (6)

Since

(T(h")PT(g)E, &)= ﬁm[ }tp(h’ kg)dk,
Kin

n—o

the conditions {6) and {2) are equivalent.

23.7

CoroLLARrY. All pairs {G, K ) enumerated in Tables 7.1 and 7.2 from
the Introduction are spherical pairs.

In fact, it follows from the assertion (i) of theorem 23.6, since the
corresponding pairs (G(n), K(n)) are spherical.

23.8

Let (G, K') be any of the 20 pairs of non-compact or compact type
(see Table 7.2 from the Introduction). We write I'=K\G/K and
observe that any K-biinvariant function on G may be considered as a
functiononT.
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THEOREM,

(i) The set I’ possesses a natural structure of a commutative
semigroup with the neutral element.

(i)). _Let ¢ be a function on G satisfying conditions (a) and (b) of
lemma 23.3. @ is spherical if and only if @ is multiplicative as a
functionon .

For a proof of (ii), we shall show that the property of
multiplicativity is equivalent to the “functional equation” (2), after
which our assertion will follow from theorem 22.6(ii). In checking the
equivalence we do not use the positive definiteness. It is sufficient to
know that @ satisfies (b).

The proof of the theorem is set forth in sections 23.10-23.15. For
the sake of simplicity, we examine only pairs (R), (C) and (H) of non-
compact type. The transference to the remaining pairs does not pose
any difficulty.

23.9

CoroLLary. Forany pair (G, K } from Table 7.2 of the Introduction,
we have: the product of two spherical functions is again a spherical
function. :

23.10

The semigroup structure in I is introduced as follows. Let
a,=Kg K, a,=Kg,KET, where g, E€G(m)CG.

The a,a, = Kg; K, where

g, = [g' OleG(Zm)c G.
0 &

It is easy to check the correctness of this definition and also that the
introduced multiplication is commutative and associative.

23.11

In the case when (G, K ) is one of the three pairs
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(GL™ (0, R), SO(=)), (GL{c, C), U{e0)), (GL{%0, H), Sp(=0)),

to which we restrict ourselves now, the operation of multiplication in
I' may be described as follows.

Let us recall (see section 13.1) that the elements of the set I' may
be parametrized by the unordered sets (7, 4, ...) of real numbers,
among which only a finite number are different from 0. In these
terms, multiplication in I" reduces to the union of two sets.

The property of multiplicativity now takes the following form:

-

¢(gf|f2 .. ')= n¢(‘l’)’
i=|
where

O(1)= plgw. ), tER.

In §13, we have seen that the spherical functions known to us possess
such a property.

23.12
We shall prove the following proposition. For any continuous K-
biinvariant function ¢ on G and any g, g €G(m), m=1, 2,..., we
have

) 0
lim | (g ug.)du= @(g), where g, = 5 ] :
n—oJ Kin) 0 g?.

The equivalence of the property of multiplicativity and equation

(2) will immediately follow from this.
Let us introduce the matrix

0 1
- "le K(2m)CK.
w l*lm 0} (2m)

It is obvious that

Plgwe)=elgwew )= o(g)
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Let us recall that we are denoting by K, (n) the subgroup in K{(n)
consisting of matrices of the type

1, 0O
. 0 x|°

It 1s evident that the function

u— @(g ug)

is biinvariant with respect to K, (n}.

Now we can formulate the main idea of the proof: it turns out that,
as n—o, “almost all” double cosets K, (n)-u-K,(n} are
concentrated close to the class K, (n)- w- K,,(n).

23.13

Let us examine the mapping

6: K{n)~F"™", n>m,
which associates with a matrix from K(n) its upper left corner of size
mX m. This mapping is constant on double cosets mod X, (n).

Lemma. Let n2> 2m. Then

(i) any double coset mod K, (n)in K (n)intersects K(2m)C K{n);

(ii) if u€K(n) and [[6u)] <¢ then the coset containing u
contains a matrix x(u)€ K(2m) such that

|x{u)—w| <8, whered=O{e)
This evaluation is uniform with respect to n.
ProOF.
(i) Let

u= [a b}e K{(n) {then a= 6{u)).
c d
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Using a transformation of the type
c~v.c, b—bv, where v, v,€ K{nrm),

we can make all rows in the matrices ' and ¢, starting with the
(m+ 1)-th, zero. After this 4 will take the form

d 0 ~2ma=2m
d= [0] dj’ where 4, € F™", dye F'" """,

After multiplying « on the left or right by the matrix

1Zm—l 0 0 o
0 a 0|’
0 0 4,

where a=1 for F#R, a=det d,= + 1 for F=R, we get the required
proposition.

(ii) By virtue of (i), it is possible to suppose that

C

u= [a z:|’ a, b, c de F™"

We observe that a, b, ¢, d satisfy the relations
aa*+ bb*=a%a+ c*c=cc*+dd*=b*b+d*d=1,,.

Hence if the matrix « is small, then the matrices b and c are close 10
unitary ones and the matrix d is also small. From this, (ii) is obtained
very easily.
23.14
For £> 0, we put

Ki(n)={u€ K{(n): | 8{u)| < &.

Let v(e, n) denote the volume of the set K4n) with respect to the
normalized Haar measure on K({n).
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Lemma,  If £> 0 is arbitrary, but fixed, then v(e, n)— 1 as n— ©,
This follows at once from section 5.3.

23. 15

We can now prove the proposition formulated at the beginning of
section 23.12. We have:

J co(glugz)dwj <P(g.ug:)du+J @ (g ug»)du.
Kinj Kin) K{nhR(n}

From assertion (i) of lemma 23.13, it follows that

0(gKg)= 6(g K(2m)g,).

Hence the function ¢ is bounded on the set g Kg, CG. It follows
from here and from lemma 23.14 that, for large n, the integral over
K{n)\K¥n)is close to 0 together with &.

On the other hand, by virtue of lemma 23.13 (ii)

P(gu &)= @(gix(u)g)= @lgwe)+ Ole),

from which it is evident that the integral over K4n) is close to
(g, wg,) together with ¢,

(We also make use of the fact that @ is uniformly continuous on
any compact set lying in G(2m).)

This proves our proposition.

Theorem 23.8 is fully proved.

§24. The link with the theory of factor representations

24.1

Let K be an arbitrary topological group and s its continuous unitary
representation in a separable Hilbert space.

Derinimion. 7 is called a factor representation if the von Neumann
algebra (K )" is a factor.

4
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Factor representations 7, and 7, of the group K are called
quasiequivalent if there exists an isomorphism

@: m(K) = m(KY)

such that gon, = 7., :

Perhaps it is more natural to regard any factor representation as a
continuous morphism of the group K into the group of unitary
elements of a certain factor; the latter is considered in either of the
two coinciding topologies: ultra-weak or ultra-strong.

242

Let Tbe an irreductble unitary representation of the group K X K and
n=T|(KX{e}).

Lemma. o is a factor representation. Any factor representation is
obtained by such a method to within quasiequivalence.

Proor. The first assertion is obvious. To verify the second, it is
necessary to select a standard form for the factor 7(K )" and define T
by the condition

T|(Kx{el)=m, T|({e}x K}=Jnl,

where J is the involution in Hilbert space H(x) connected with the
given standard form and realizing the antilinear isomorphism of the
factor (K )" onto its commutant 7{(K )

24.3
Let

d: K- KxK

denote the diagonal embedding. Let T be an irreducilqle unitary
representation of the group K X K possessing a d(K )-invariant vector
E | El=1.Letus put 7= T|(K X {e}).

Lemma. z(K )" is a factor of the type II, or I,.
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Proor. The function
@: x~(x&, &), x€n(K ),
is a finite trace on the factor (K )".

244

CororLary. (KX K, d(K )) is always a spherical pair in the sense of
definition 23.1.

Proor. Let T be an irreducible unitary representation of the group
K X K possessing a d(K )-invariant vector £ with ||&| = 1. Then, for all
u, LEK, (Tlu, )8, &)=(m(u,”'u,)§, §)=@(u,”'u,). Since the
trace on the factor is defined uniquely, the left side does not depend
on the selection &. This means that § is uniquely defined to within a
number factor.

24.5

TueoreM. Let K be an arbitrary topological group. The functor
T— 7 from section 24.3 establishes a bijection between the set of
equivalence classes of spherical representations 7 of the pair
(Kx K, d(K)) and the set of classes of quasiequivalence of factor
representations of the group K such that #(K )" as is a factor of the
typell, orl,.

Proor. We construct the reverse functor &~ 7. Let n be a factor
representation of the type II, or I,, A=n(K)" and ¢ the normalized
trace on A. Let us endow A with the structure of a pre-Hilbert space
with scalar product

(x, y)=@(y*x).

Then A becomes a Hilbert algebra. The group KX K acts in A by the
rule:

(ula Uz, x)H ux ul_] (H], u.’.e K) x& A)

This action determines the unitary representation T of the group
K % K in the completion of the space A. Its irreducibility follows from
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the theorem on the commutant for Hilbert algebras. T is a spherical
representation, because the vector x,= 1 € A is invariant with respect
to d(K ).

246 -

Remark. Let K be one of the groups SO(w), U(}, Sp(=). Any
spherical representation of the pair (KX K, d(K)) is then an
admissible representation. Thus, theorem 24.5 shows that the
irreducible admissible spherical representations of the pair
(KX K, d(K )} and the factor representations of the type II, for K are
essentially the same.

24,7

Let K be one of the groups SO{e), U{x), Sp(«) and & a factor
representation of K. We assume that #{K )" has type I, or II, and
denote by ¢ a semifinite trace on #(K )",

Tueorem. If the trace ¢ is not trivial on the subalgebra

8

(K (n))ycaKY,

n=|

then x is obtained from a certain irreducible admissible
representation T of the pair (KX K, d{K)).

Proor. let A be the subspace in #(K) consisting of
“Hilbert-Schmidt elements™, i 2.,

A={xEmK): @(x*x})< + |

Repeating the argument of section 24.5, we construct an irreducible
unitary representation T of the group K x K in the completion of the
space A. It remains to prove that T'is admissible.

By assumption the element

xeEa(K(n)yNA, x#0
can be found for sufficiently large ». It is invariant with respect to the

subgroup K,C K= d(K ). This means that the subspace H,(T|d(K))
is non-trivial. It is dense in H{T ), since 7is irreducible.



456 LIE GROUPS AND RELATED TOPICS

24.8

The factor representations 7 of type I, satisfying the condition of
theorem 24.7 are precisely the irreducible tame representations. (If
K= U(0), then the product of an irreducible tame representation by
a one-dimensional one may be taken as well.) This follows from the
following theorem, which we shall not prove here (it can be obtained
with the help of theorem 2.23).

THeoreM. Let K be one of the groups SO(«), U(), Sp(e) and =
be an irreducible unitary representation of K.

(1) If z is tame, then, for any sufficiently large n, an irreducibie
unitary representation of the group K{n) can be found which enters
7| K {n) with finite multiplicity.

(ii) Conversely, if for any » an irreducibie unitary representation
of the group K{n) entering sl K(n) with finite multiplicity can be
found, then st is tame {to within a factor of the form det(- )", me Z, if
K= U(w)).

24.9

Remark. Examples of factor representations 7 of type I, satisfying
the condition of theorem 24.7 are provided by factor representations
of the form m,® x,, where 7, is a factor representation of type II,
and 7, is an irreducible tame representation.

COMMENTS

TO THE INTRODUCTION

The idea of the main method (“passage into the complex region along
the subgroup K”) was explained in the author’s note [22]. The
formalism of (G, K }-pairs and their admissible representations was
proposed by the author [24]. Yu. A. Neretin found very interesting
applications of this formalism for the construction of representations
of the group of diffeomorphisms of the circle (see his article in this
book).

P. de la Harpe [7] studied other infinite-dimensional generalizations
of the classical groups, namely certain groups connected with factors.

L)
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TO §2

The theory of ‘tame representations was initiated by A. A. Kirillov,
whose note [11] contains several very important ideas. The
representations 0, of the full unitary group U{e) had earlier been
characterized by 1. E. Segal [26]. For more details on tame
representations, see the author's articles {20] and [25]; they are
studied from other points of view in [1],{12],[14],{17],[18]},[31].

TO §3

The matenal of this paragraph is standard. The realization of the
space.#’(C*)in the coordinate-free form is given in {27].

TO §4

The integral transform I, is well known. Corollary 4.7 and theorem
4.19 (for F=R and F=C) were obtained also in [14], [17] and {18}
Other methods and language are used in these works. The quaternion
case has apparently not been studied earlier; however, more
significant is the syste —atic use of the language of holomorphic
extensions.

TO §5

The key result—lemma 5.3—is well known [41}, [42]. The idea of the
proof given in section 5.3 was mentioned in [20], section 4.8. In the
case F=R, k=1, the assertion of the lemma is classical and goes back
to Maxwell.

TO §6

For a more detailed description of the theory of unitarizable highest
weight modules, see [10]. Weil's representation of the group Sp(n, R)”
has heen thoroughly studied from various points of view (see, for
exaraple, [13]). Theorem 6.14 is due to R. Howe [9] (see also [30]).
M. Kashiwara and M. Vergne [10] found explicit formulae for the
highest weights and highest vectors of the representations W™ of the
group Sp(n, R)™ and U(n, n)~. Their results may be transferred to
the group SO *2n)also.
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TO §7

Lemma 7.1 and theorem 7.6 may also be deduced from the explicit
formulae in [10]. Weil's representation W, of the infinite-dimensional
symplectic group was studied by many authors (see, for example,
[28],(33]). |

TO §8

This section is written actually for the sake of corollary 8.14.
Theorem 8.3 is well known. The extension of the group for the proof
of continuity of the representation (section 8.9) is a very useful
method; I drew this idea from [16a).

TO §§9-12

A detailed description of results obtained by the author and
announced in [22]is given here.

TO §13

Theorem 13.8 was formulated by the author in [22]. In the case F=R,
s=0, it was proved earlier by D. Shale [28] by another method. N, L.
Nessonov [15] succeeded in proving the completeness of the list of
spherical representations of the group GL(o, C}.

TO §§14-15

The main result (theorem 14.2) was formulated briefly, due to the
paucity of space, at the end of the author’s note [22]. N. I. Nessonov
[15] arrived at similar results in the case of spherical representations
of the group GL(«,C) using explicit formulae for spherical
functions.

TO §16

The results of this section were announced by the author [22]. For
further results concerning SO,(%,%0) and allied groups U(e 0} and
Sp(e0,00), see [44].

ot
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TO §17

Many works are devoted to spinor representations of the groups
§O{2n)" and SO{2)~ (see, for example, the survey of A. M.
Vershik [35] and his article in this book). Theorem 17.2 was proved
by R. Howe (see [9] and [30]). It would be possible to derive explicit
formulae (a la Kashiwara-Vergne [10]) for the highest weights and
highest vectors of the representations S, I did not do this because
these formulae are not used here.

TO §18-21

The results of these sections have been announced in [24] I got
them by following the analogy with the non-compact case. In the
context of II,-representations of the group U(), the fundamental
representations were earlier constructed by D. Voiculescu {39] and
also by A. M. Vershik and S. V. Kerov [37]. Lemma 19.3 is a
reformulation of a well-known construction [6]. In respect to the
theory of factor representations, the reaily new results of §18-21 are
theorems on irreducibility 20.8 and 21.7. In particular, they allow us
to make more precise the realization of II,-representations in
“degenerate” cases, i.e., when, among the fundamental
representations being multiplied, equivalent ones are found, cf.
corollary at the end of [37].

The central result of the theory of II,-representations is their
complete classification (for the group U{e)). As shown in (2] and
[37], it is implicitly contained in one old paper by A. Edrey, which, at
first glance, seems to be unconnected with our topic. A. M. Vershik
and S. V. Kerov have outlined in [37] yet another, very remarkable
proof. When the classification theorem is translated into our
language, a description of the spherical representations of the pair
(U(o0)x U(e0), U{))is obtained.

A few words on theorem 21.5. Earlier D. Voiculeseu [39) showed
that all II,-representations of the group U(e) are continuous in the
nuclear topology. Then R. P. Boyer [l], quoting J. Rosenberg,
observed that some of them (but not all), are continuous also in
Hilbert-Schmidt topology. Theorem 21.5, showing that it is always
possible to take this topology if we pass to the universal covering, was
the result of attempts to get a complete analogy with the noncompact
case.



460 LIE GROUPS AND RELATED TOPICS
TO §22

Definition 22.4 and theorem 22.9 were formulated by the author
[24]. For a more flexible concept of approximation and further
results, see [44]. Working with characters, A. M. Vershik and S. V.
Kerov [37] prove an approximation theorem in another way, with the
help of the “ergodic method™ of A. M. Vershik [34].

It is interesting to compare the construction of the compact set A
from section 22.22 with the construction of the enveloping C*
algebra for the inductive limit of compact groups, given in the book
[31]. In both the constructions, are necessarily arise “superfluous
elements™ in [31] they are the states on pre-limit group algebras, and
in our case extreme points of the compact sets Q.,, (see remark
22.23); i.e. they are essentially the same. In fact, both constructions
are equivalent: our set A may be identified with the set of positive
functionals, with norm not exceeding 1, on the enveloping C*
algebra. Notice also that the construction of the enveloping

*-algebra from [31] is valid for locally compact pre-limit groups as
well as for compact ones.

A more general proposition than lemma 22.13 is proved in [29].

TO §23

Theorem 23.6 was announced by the author in [23]. Theorem 23.8
and corollary 23.9 in the context of the theory of characters was
obtained earlier by D. Voiculescu [38], [39] using another method; see
also his work [40]. The approach to the multiplicativity theorem
based on the asymptotics of Haar measure was proposed by the
author in [20]. There it was applied to pairs (G, K ) of finite rank.

Other approachels to multiplicativity theorems have been
proposed by R. S. Ismagilov (see [21]), by N. I. Nessonov [15] and by
A.M. Vershik and S. V. Kerov (see their article in this volume}).

TO §24.

Theorems 24.5 and 24.7 were formulated by the author [24]. In the
technical sense they are almost trivial. However, the observation
underlying them is very important, since it links our theory with
factor representation theory. In connection with remark 24.9, see the
works of R. P. Boyer [2] and G. Ya. Gitel'son [5].

i
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In conclusion a few words about Weil and spinor representations.
They may be correctly defined on one-dimensional central
extensions of the groups Sp(, R) and SO(2 ) respectively (instead
of taking a 2-covering). This point of view, which goes back (in the
case of the symplectic group) to A. Weil, is propagated by A. M.
Vershik [35]. As has now become clear, the groups L* are preferably
defined in terms of one-dimensional central extensions. The fact is
that then K *as a whole {and not only [K ¥ K *]) may be embedded in
them, which leads to simplification and a better understanding of the
constructions of our article (see [45]).
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