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1. General and integration

2. Uniformly ergodic MC’s; LLN and CLT.

3. Non-uniformly ergodic MC’s. Lyapunov stability. Convergence to sta-
tionary distribution in total variation. Harris technique.

4. LLN and CLT, again.

5. Poisson equations. Invariant measures, rate of convergence in total
variation. Localization of Dobrushin’s conditions for local mixing.

6. Poisson equations with parameters.
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1 Introduction: probability spaces and ran-

dom variables

1. We have to define our objects with which we are going to work. For a
probabilist, those objects are, first of all, probability space and random
variable. Hence, in the first lecture we have to discuss these notions.

Eventually, random variable will be a function of outcome, with some
restrictions, the latter beaing practically always omitted in the under-
graduate level. So we start with outcomes. Standard notation for a
probability space is (Ω,F , P ). Here Ω is the space of outcomes, which
formally may be any nonempty set, and whose elements are called out-
comes. Often Euclidean spaces or their subsets may serve as spaces of
outcomes, however, virtually Ω could be any set 1.

2. The next object in the triple (Ω,F , P ) is F . This is understood as
sigma– algebra (equivalently, sigma–field) of subsets of Ω. Can it con-
sist of all subsets of Ω (in this case F is denoted usually by 2Ω)? Only
if Ω itself is finite or countable. This relates to some subtle issues of
measure theory and integration which we are not in the position to
discuss here. However, even if Ω is finite, there are natural cases where
it is unreasonable to include all subsets into F ; we will see this a bit
later when we turn to conditional expectations.

To be a sigma–algebra, the family F must satisfy certain requirements:

(a) The set Ω and emptyset ∅ belong to F .

(b) If A ∈ F , then also Ω \ A ∈ F .

(c) If there is any finite or countable sequence Ai ∈ F , then also⋃
i
Ai ∈ F .

Elements of F are usually called events. If instead of (c) we require
the same property with only any finite number of events, the family is
called algebra.

3. Minimal sigma–algebra generated by some family G ⊂ 2Ω. For any
such (nonempty) family we can define the minimal sigma–algebra which

1Nonempty is a must. We do not touch Set theory axioms here, that is, we admit that
the notion of set does not require any discussion.
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contains all sets from G, this is denoted by FG. Clearly, there is at least
one sigma–algebra which contains G, namely, 2Ω. On the other hand,
the object

⋂S which is the intersection of all sigma–algebras containing
G, indeed, is a sigma–algebra (An Easy Exercise); clearly, it is minimal.
Hence, the notion makes sense.

4. The third element in the triple is P , probability measure. This is a
function on elements from F . That is, we will be talking only of prob-
ability of events. To be a probability measure, the function P must
also satisfy so,e requirements, usually called Kolmogorov’s axioms.

(a) The function P is non-negative, and P (Ω) = 1.

(b) Additivity: if the events Ai, 1 ≤ i ≤ N , do not intersect (are
pairwise exclusive), then P (

⋃
i
Ai) =

∑
i P (Ai).

(c) Sigma–additivity: if there is a countable family of events Ai which
are pairwise exclusive, then P (

⋃
i
Ai) =

∑
i P (Ai).

Naturally, here (c) implies (b), however, we would like to keep the
assumption (b), too.

5. Completed sigma-algebra. Once P is introduced, it is possible and in
some occasions very useful to extend F in the following way: denote
F̄ := {A ⊆ Ω : ∃B ∈ F , P (B∆A) = 0}, where B∆A is a symmetric
difference of B and A, that is, (B \A)

⋃
(A\B). It is An Easy Exercise

to show that thus defined F̄ is a sigma-algebra which has a name,
completed sigma–algebra (with respect to the probability P ). In the
sequel, we always assume that our sigma-algebra F is completed (and
will not use notation F̄ for that).

6. Example. Discrete probability space. Here Ω = {ω1, ω2, . . .}; there are
given non-negative numbers pi, i ≥ 1, so that supi pi = 1. Now, let
F = 2Ω. Then, if we have any event A, its probability is defined as
P (A) = supi: ωi∈A pi. It is An Easy Exercise, to check the axioms of
probability for this case.

7. Example. Continuous probability space, with Ω = R1 or Rd, and a
density, p(·). Here for any set A for which “the integral

∫
A p(x) dx ≡∫

1(x ∈ A) p(x) dx makes sense”, probability P (A) is defined as the
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latter integral. All first course textbooks, of course, use Riemann in-
tegration here; accordingly, set A is suitable for any density if it is
Jordan–measurable, so F should consist of all Jordan–measurable sets
on the line (we do not revise this notion here, however). Unfortunately,
this is an algebra, but not a sigma-algebra. Hence, this way, – to use
Riemann integration, – is potentially dangerous in probability, and may
lead to contradictions and counterexamples, because Riemann integral
has no sigma-additivity property. It works well just because most of
densities and integrals which may arise admit Lebesgue integration,
even though this side remains hidden. If the reader is not convinced,
he may be offered a little exercise, namely, to construct a counterex-
ample so that the axiom (c) above is violated.

Why do we care about the axiom (c)? Simply because if some event
(set) is split into a countable number of mutually exclusive sub-events,
the probability of the original event clearly should not depend on the
order of those sub-events in the sum; moreover, this will also affect
expectations (below).

One could question whether continuous case is necessary at first course
textbooks at all, given that discrete case is really free from those obsta-
cles. The answer is that as long as you do not deal with, say, Central
Limit Theorem or some other limiting procedure where some density
shows up, you can well stay with discrete case. However, if you wish to
use CLT (χ2, F , Student, etc.), apparently, it becomes necessary to deal
with continuous densities, and you must take care of sigma-additivity.

8. General probability space may be neither discrete, nor continuous, but
usually some mixture, and may include a singular non-discrete part of
the probability measure, too. Singular with respect to what? e.g., with
respect to the usual Lebesgue measure on the line. However, we would
not like to go into details here.

9. Random variable. On any probability space, we usually deal with prob-
abilities and random variables. Probabilities being already defined, it
remains to say what is precisely random variable. By definition, this is
any function, say, ξ, on Ω, with values from R1 (more general spaces
of values are possible, but this will be, hopefully, discussed later), such
that for every x ∈ R1, the set {ω ∈ Ω : ξ(ω) ≤ x} ∈ F . In the
other words, for every x ∈ R1 there should be defined probability
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P (ω ∈ Ω : ξ(ω) ≤ x); for brevity, the latter object is usually writ-
ten as P (ξ ≤ x); the usual abbreviation r.v. means random variable2.

10. Sigma–algebra generated by random variable. Let ξ be a r.v. on
(Ω,F , P ). Sometimes we will need the object denoted by F ξ, which is
called sigma–algebra generated by the r.v. ξ. By definition, this is the
minimal sigma–algebra containing all sets from the family {ω ∈ Ω :
ξ(ω) ≤ x}, x ∈ R1.

11. Expectation of r.v. This is a well-known object denoted by Eξ. We
are to give a formal and rigorous definition, and here we are: for any
ξ ≥ 0,

Eξ := lim
N→∞

N×2N∑
k=0

k

2N
P

(
k

2N
≤ ξ <

k + 1

2N

)
.

It easily follows (An Easy Exercise) that the limit always exists, –
although may take value +∞, – because the sequence under the limit
is increasing.

For a general r.v. ξ,
Eξ := Eξ+ − Eξ−,

where ξ+ = ξ 1(ξ ≥ 0), ξ− = |ξ| 1(ξ ≤ 0). In this definition we actually
follow [Kolmogorov, Basic notions of probability theory, 1934.]3 This
definition is equivalent to the use of Lebesgue integration, however, it
looks as if we avoided any mentioning of it. Of course, it is just hidden
somewhere, but still the result is that as if Lebesgue integration did
not show up.

2For advanced reading, it follows from our definition that the function ξ is measurable
as a function from measurable space (Ω,F) to another measurable space (R1,B), where
the latter couple is the real line equipped with the topology of Borel sets. We will not
discuss this here.

3Of course, details of the theory of measurable sets and Lebesgue integration are put
aside here. However, from this more general point of view, our definition is exactly
Lebesgue integral

∫
ξ(ω)P (dω). Below we give another, a bit unusual elementary in-

terpretation of the same integral; there is some evidence (due to a remark in an S. N.
Bernstein’s textbook, if the author’s memory does not fail) that Kolmogorov was aware
of this approach in 30s, but argued that “conventional” Lebesgue integration is far easier.
The latter is, of course, correct, however, this “another way” is a fun.
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12. Another standard notation for the object Eξ is∫
ξ(ω)P (dω).

In the sequel, we may use both as synonyms. The rationale for the latter
form is that in the discrete state space, clearly, the two definitions

Eξ =
∑
xk

xk P (ξ = xk)

and
Eξ =

∑
ωi

ξ(ωi) pi

are equivalent.

13. Change of variables. This is a formula often accepted as a definition in
undergraduate textbooks; however, the reality is that this is a theorem
to be proved (not here), and the sense is that it is, indeed, a change of
variables type result. We formulate it firstly in a restricted form, for
r.v.’s with a density. Suppose p is a density of the r.v. ξ. Then, for
any non-negative function f such that f(ξ) is a random variable,

Ef(ξ) =
∫
f(x)p(x) dx.

More generally, using notation from the previous paragraph, this may
be rewritten as

Ef(ξ) =
∫
f(ξ(ω))P (dω),

and in this form it does not depend on whether the density p exists or
not. Naturally, if f may change sign, we can split f as f = f+ − f−,
and use the additivity,∫

f(x)p(x) dx =
∫
f+(x)p(x) dx−

∫
f−(x)p(x) dx,

or
Ef(ξ) =

∫
f+(ξ(ω))P (dω)−

∫
f−(ξ(ω))P (dω),

of course, under an assumption that both integrals in the right hand
side here are well-defined.
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14. Advanced reading: another approach to Eξ, or how it is possible to
reduce the Lebesgue integral Eξ to Riemann’s one. Emphasize that
we are not to redefine any Lebesgue integral, but just Eξ, which is,
however, general enough. We again split ξ into positive and negative
parts, i.e., ξ = ξ+− ξ−. Thus, it suffices to define what is Eξ+. Hence,
assume from the beginning that ξ ≥ 0. Now, what we are looking for, is
often denoted by

∫
[0,∞) xdFξ(x), where Fξ is the cumulative distribution

function of ξ, i.e., as4 Fξ(x) := P (ξ ≤ x). This can be treated as Stiltjes
(more precisely, Lebesgue–Stiltjes) type integral, however, we prefer to
avoid this way. Instead, we consider the c.d.f. F = Fξ. This is, clearly,
an increasing function of x. As such, it may have not more than a finite
or countable number of jumps, say, at points ak, k ≥ 1. Suppose, the
jumps are of corresponding sizes F (ak)− F (ak−) = δk, k ≥ 1. Hence,
if we subtract F c(x) := F (x) −∑

k: ak≤x δk, the result is an increasing
and continuous function. Now, define∫ ∞

0
x dF (x) :=

∑
k

akδk +
∫ ∞

0
x dF c(x),

next, clearly, ∫ ∞

0
x dF c(x) = lim

N→∞

∫
(0,N ]

x dF c(x)

(remind that F c(0)− F c(0−) = F c(0)− 0 = 0), and, finally,∫
(0,N ]

x dF c(x) := N F c(N)−
∫
(0,N ]

F c(x) dx,

where the latter integral is well defined as Riemenn’s one. Of course,
we should remember that at any step here the result may turn out to
be +∞, but this is possible in any approach.

15. Radon–Nikodym Theorem. The last tool that we have to introduce
in this chapter is Conditional expectations. For that aim, we need
Radon–Nikodym Theorem (accents on both “o”). Suppose ν is a signed
measure on (Ω,F), that is, a sigma-additive function on F . It is called
absolutely continuous with respect to P , if P (A) = 0 always implies
ν(A) = 0, notation ν << P . The Radon–Nikodym Theorem (not to be

4There are two schools, one uses “≤” here, another “<”. Take care. With our definition,
the function Fξ is continuous from the right.
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proved here) claims that if ν << P , then there exists an F–measurable
function f called density, – here measurability means that for each x,
we have {ω : f(ω) ≤ x} ∈ F , – such that for any A ∈ F ,

ν(A) =
∫
f(ω)P (dω).

This density is unique up to P–a.s. (almost surely). Emphasize that
in applications F may change, as it will in the next paragraph.

16. Conditional expectation. Suppose Eξ < ∞, and η is another r.v. We
call the r.v. ζ conditional expectation of ξ given η, with notation E(ξ |
η), or, equivalently, E(ξ | Fη), if

• ζ is measurable with respect to Fη, that is, for each x, we have
{ω : ζ(ω) ≤ x} ∈ Fη,

• for any A ∈ Fη,
Eζ1(A) = Eξ1(A).

Since P (A) = 0 implies E1(A)ξ = 0, the signed measure ν(A) :=
E1(A)ξ is absolutely continuous with respect to P on Fη (An Easy
Exercise). So, by the R-N Theorem, it has a density ζ, which is
Fη–measurable, such that for each A ∈ Fη,∫

1(A)ζP (dω) = ν(A) =
∫

1(A)ξP (dω).

Hence, this density is a conditional expectation of ξ given η, by
definition.

Emphasize that conditional expectation is defined almost surely,
i.e., up to a possible change of values on any P–zero event on F̄ .
For discrete time processes this, of course, is of no harm, but for
continuous time precautions have to be made, such as establishing
existence of regular conditional probabilities (not in this course).

17. Conditional expectation with respect to some sigma–algebra included in
F but maybe not generated by any r.v. can be defined, too, absolutely
similarly as to the previous paragraph, via the R–N Theorem, however,
we will not use it in this course. (Or, if we will use it, we will revise
this point later.)
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18. Why consider F other than 2Ω in finite state case. The answer is in the
previous paragraph: it may be important to consider sigma-algebras
generated by some r.v.’s, for example, because it may be important to
compute conditional expectations of some r.v.’s with respect to some
others. But those sigma-algebras generated by r.v.’s are usually differ-
ent from 2Ω.

19. Literature: ((19b) and (19c) for advanced reading)

(a) Kolmogorov, A. N. Basic notions of probability

(b) Kolmogorov, A. N., Fomin, S. V. Elements of functional analysis,

(c) Krylov, N. V.

(d) Shiryaev, A. N. Probability (any edition). Springer, London et
al.,

(e) Stirzaker

(f) Wentzell, A. D., A course on stochastic processes.

2 Markov processes, invariant measures, uni-

form stabilization (ergodic theorem)

2.1 MP

1. Def. of MP (MC): P (Xt+1 ≤ x | Xt) = P (Xt+1 ≤ x | Xt, Xt−1, . . . , x).

2. First warning. First of all, there are two, closely connected yet differ-
ent, notions of Markov process5 in the literature. One relates, loosely
speaking, to one process which possesses the so called Markov property
formulated in terms of conditional expectations, which we discuss below.
Another notion relates to a family of measures with arbitrary starting
points (i.e. “initial measure” could be any delta–measure, δx, and later
even any distribution, perhaps not concentrated at one point), with
a Markov property formulated in terms of those measures. Not that
those two Markov properties are very different, they just relate to dif-
ferent objects (and, hence, of course, they are different). Some authors

5Of course, they are sometimes mixed.
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use another term to distinguish, calling the first kind of such processes
“Markov stochastic functions”, while retaining the original term for the
second case.

Example of mixing those two different cases is if you read a sentence
like “this Markov process has a stationary version (regime)”, which,
in particular, means another starting distribution. But a given process
with a given initial distribution cannot have another initial distribution,
or it will be a new (Markov stochastic) process, with the same transition
matrix (see below). The sentence could be correctly understood via the
second notion of Markov family. The classical monograph on the second
case is [Dynkin, E. B. Markov processes].

We will be studying the first case, however, having in mind that, if
necessary, it is possible to acquire a wider point of view.

3. Second warning. The Markov property is often, – nearly invariably, –
formulated in textbooks as “future does not depend on the past given
present”, or likewise. Although this is a good intuitive description of
the precise definition (below) via formulas, it also may be very mis-
leading. By independence we must understand only some probabilis-
tic equalities, but certainly not functional independence. In the other
words, trajectories of a Markov process in the “future” and in the
“past” may strongly depend, even given “present”, however, this may
have nothing to do with Markov property or its lack. Because Markov
property is only and no more than some probability equations, which
may allow however strong functional dependence, so to say, in the al-
gorithm which defines the evolution of the process. On the other hand,
functional independence, if it is present, often helps to show Markov
property indeed6.

4. Transition matrices. For m ≤ n, transition from time m to time n is,

T (m,n) = (p(m, i;n, j) = P (Xn = j | Xm = i))N
i,j=1 .

6I am sure this is not my invention, but for my undergraduate course on Markov chains
I introduced a notion of simple algorithm, i.e. of evolution with functional independence
of future and past given present. Such algorithms provide Markov property which does
not require any additional verification (which, of course, can be done easily, but it is not
easy at the UG level: some simple tasks may be difficult to do).

10



5. Homogeneous MP’s, def. MP is called homogeneous if the matrices
T (m,m + 1) does not depend on m. If so, we consider the transition
matrix

T := T (0, 1) (≡ T (m,m+ 1)).

6. Chapman–Kolmogorov’s equations. We denote,

T (n) = (P (Xn = j | x = i))N
i,j=1 ≡ T (0, n).

Then, there is a “micro-theorem”,

T (n) = T n,

or
T (m+k) = T (m)T (k).

This is one version of Chapman–Kolmogorov.

Equivalently, we have a more standard version of it,

p
(m+k)
ij =

∑
`

p
(m)
i` p

(k)
`j .

The proof consists of the reference on complete probability formula
combined with Markov property.

7. Stationary measures. The probability measure µ is called stationary for
the homogeneous MP with a given transition matrix T , if all marginal
distributions µn = (µn(1), . . . , µn(N)) := (Pµ(Xn = 1), . . . , Pµ(Xn =
N)) do not depend on n.

8. An Easy Exercise: Show that equivalently the property of stationarity
may be expressed as

µ = µT. (equivalent def.)

(In the r.h.s. here the row vector is multiplied by the matrix from the
right, and the result is again a row vector of the same dimension N .)
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2.2 Uniform ergodic theorem(s)

1. Theorem 1 Let Xn be a (homogeneous) Markov chain with transition
matrix T , of size N × N . Then there exists at least one stationary
probability measure.

2. Proof. For each i0, consider the sequence of vectors,(
1

n+ 1

n∑
k=0

p
(k)
i0j

)
, n ≥ 0.

Since this is a bounded sequence, for some sub-sequence n′ →∞ there
exists a limit (πj, 1 ≤ j ≤ N), that is, 1

n′ + 1

n′∑
k=0

p
(k)
i0j

→ πj (1 ≤ j ≤ N), n′ →∞.

Since the state space is finite, the vector (πj, 1 ≤ j ≤ N) is a prob-
ability measure, i.e., all πi ≥ 0, and

∑
i πi = 1. Due to Chapman–

Kolmogorov,

1

n′ + 1

n′∑
k=0

p
(k)
i0j =

1

n′ + 1

n′∑
k=0

N∑
`=1

p
(k−1)
i0` p`j +

1

n′ + 1
p

(0)
i0j

=
N∑

`=1

1

n′ + 1

n′−1∑
k=0

p
(k)
i0`p`j +

1

n′ + 1
δi0j

=
N∑

`=1

p`j
1

n′ + 1

n′∑
k=0

p
(k)
i0` +

1

n′ + 1
δi0j −

1

n′ + 1

N∑
`=1

p`jp
(n′)
i0` .

(δij is a Kronecker symbol). This implies for every j,

lim
n′→∞

1

n′ + 1

n′∑
k=0

p
(k)
i0j =

N∑
`=1

p`jπ`

Hence,

πj =
N∑

`=1

p`jπ` (∀j) ∼ π = π T,

i.e., the distribution (πj) is stationary. The Theorem 1 is proved7.

7The method is named after N. M. Krylov and N. N. Bogoliubov, suggested in 1930s.
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3. Theorem 2 Let Xn be a (homogeneous) Markov chain with transition
matrix T , of size N × N , where all entries pij are positive. Then
there is a unique stationary probability measure π = (π1, . . . , πN), and,
moreover, infj πj > 0, and

sup |p(n)
ij − πj| ≤ (1− κ)n, (1)

where
κ = inf

i,j

∑
`

pi` ∧ pj`. (2)

4. Comment. From the proof below and from the formulation of the theo-
rem itself it follows easily that (2) suffices for (1), as well as for unique-
ness of stationary measure (although, perhaps, not for positiveness of
all πj’s).

5. “Kolmogorov’s” Proof.8 (A) Denote for any A,

m(n)(A) := min
i
Pi(n,A), M (n)(A) := max

i
Pi(n,A).

By Chapman–Kolmogorov,

m(n+1)(A) = min
i
Pi(n+ 1, A) = min

i

∑
j

pijPj(n,A)

≥ min
i

∑
j

pij min
j′
Pj′(n,A) = mn(A),

which signifies that the sequence mn(A) does not decrease in n. Simi-
larly, the sequence Mn(A) does not increase in n. Hence, it suffices to
show that

M (n)(A)−m(n)(A) ≤ (1− κ)n. (3)

(B) Again by Chapman–Kolmogorov,

Mn(A)−mn(A) = max
i
Pi(n,A)−max

i′
Pi′(n,A)

= max
i

∑
j

pijPj(n− 1, A)−max
i′

∑
j

pi′jPj(n− 1, A).

8On the West, apparently the author of this proof is unknown, although W. Doeblin
may be sometimes mentioned as its inventor; in fact, another proof belongs to him, which
will be presented in the next chapter. In Russian literature the present proof is attributed
to Kolmogorov, with the standard reference on some (not every) editions of B. V. Gne-
denko’s famous textbook on Probability.
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Let max here be attained at i+ while min at i−. Then,

Mn(A)−mn(A) =
∑
j

pi+jPj(n− 1, A)−
∑
j

pi−jPj(n− 1, A)

=
∑
j

(pi+j − pi−j)Pj(n− 1, A). (4)

(C) Denote by S+ the part of the sum in the right hand side of (4) with
just (pi+j−pi−j) ≥ 0, and by S− the part of the sum with (pi+j−pi−j) <
0. We estimate,

S+ ≤
∑
j

(pi+j − pi−j)+M
(n−1)(A),

and
S− ≤ −

∑
j

(pi+j − pi−j)−m
(n−1)(A).

Therefore,

M (n)(A)−m(n)(A) = S+ + S−

≤M (n−1)(A)
∑
j

(pi+j − pi−j)+ +m(n−1)(A)
∑
j

(pi+j − pi−j)−.

(D) It remains to notice that∑
j

(pi+j − pi−j)− = −
∑
j

(pi+j − pi−j)+, (5)

and ∑
j

(pi+j − pi−j)+ ≤ 1− κ. (6)

The first follows from the normalization condition∑
j

pi+j =
∑
j

pi−j = 1,

while the second from∑
j

(pi+j − pi−j)+ =
∑
j

(pi+j −min(pi−j, pi+j)) ≤ 1− κ.
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So, we find that

M (n)(A)−m(n)(A) ≤ (1− κ) (M (n−1)(A)−m(n−1)(A)).

By induction this implies (3). So, (1) as well as uniqueness of the

limits πj = limn→∞ p
(n)
ij follow. Uniqueness of stationary measure, in

turn, follows from (1) (start from “another” stationary distribution µ,

then µj ≡ Pµ(Xn = j) =
∑

` µ`p
(n)
ij → πj, n → ∞). The Theorem 2 is

proved.

3 More on integration

3.1 Integration: Fubini Theorem

We often perform double integration: it could be expectation of a sum, or
two sums, or sum of integrals, etc., like E

∑
k ξk. We often have to change

the order of summations, integrations, etc. We formulate (without proof)
one popular version of a result of this sort.

Theorem. [Fubini] Let (ξk, k ≥ 1) be a sequence of r.v.’s. Then,

E
∞∑

k=1

ξk =
∞∑

k=1

Eξk,

if the series
∑∞

k=1E|ξk| converges.

3.2 Probabilities = expectations

Indicator functions: If A ∈ F , then we define a random variable

1(A) = 1(A)(ω) :=

{
1, ω ∈ A,
0, ω 6∈ A.

This r.v. is called indicator of A.

An Easy Exercise: show that this is, indeed, a random variable.

Use of indicator functions: we can replace probabilities by expectations
and vice versa,

E1(A) = P (A) ∼ P (A) = E1(A)
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3.3 Conditional expectation as function of condition

Measurability Lemma. Let ξ, η be two r.v.’s and Eξ < ∞. Then for the
expression E(ξ | η) there exists a measurable (Borel) function h such that

E(ξ | η) = h(η) a.s.

Def. Borel function h is a function h : R1 7→ R1 measurable with respect
to Borel sigma-algebras B in the domain and the image space, that is, for
any a ∈ R1, {x : h(x) ≤ a} ∈ B.

Def. B, the Borel sigma–algebra on R1, is the σ–algebra generated by all
open intervals. But B is not completed by any reasonable measure!

Idea of proof: construct firstly hN such that 1(k/2N ≤ η < (k+1)/2N)×
E(ξ | k/2N ≤ η < (k + 1)/2N) = hN(η), then let N go to ∞.

4 Stopping times

4.1 Filtrations, Stopping Times

A big advantage of theory of stochastic processes in comparison to (formally
equivalent) measure theory is such a natural tool as path approach. E.g.,
we may track some trajectory (i.e. given ω) until it attains some prescribed
state, and study questions like how long on average this takes. Measure
theory does allow this, but it looks so unnatural!

Filtration denotes a family of increasing sigma-algebras (FX
t , t ≥ 0),

where FX
t = σ(Xs, s ≤ t).

A r.v. τ ∈ [0,+∞] is called stopping time for the MC X iff for every
(nonrandom) t ≥ 0, we have {τ > t} ∈ FX

t . In the other words, by time t
we can decide if τ “occurred or not”.

An Easy Exercise: given any x ∈ R, the r.v. τ : inf(t ≥ 0 : Xt ≥ x) is a
stopping time (with a natural convention inf(∅) = +∞).

4.2 Xτ – stopped MP

In the sequel, we will deal with processes at random times, such as Xτ ,
where, say, τ is a stopping time. First question is whether this is just a
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random variable! But where is the problem? Here: we have Xn : Ω 7→ R1,
and this is a random variable by definition, i.e. {ω : Xn(ω) ≤ x} ∈ F . Now
we have some complications: Xτ(ω)(ω), hence, this is a composite function.
Why then {ω : Xτ(ω)(ω) ≤ x} ∈ F?

It turns out, however, that in discrete time the problem disappears (unlike
in continuous!).

5 Strong MP

5.1 Strong Markov processes

Definition. Let X be a MP. It is called strong Markov iff for every x ∈ R,

P (Xτ+1 ≤ x | Fτ ) = P (Xτ+1 ≤ x | Xτ ).

Sigma-algebra FX
τ is defined as follows,

FX
τ := {A ∈ F : A

⋂
{τ > t} ∈ FX

t , ∀ t}.

In discrete time, all MP’s are strong MP’s. Crucial is that τ may take
not more than countable number of values.

5.2 Strong MP: Theorem

Remind that time is discrete.
Theorem. Let X be a MP, and τ some stopping time. Then for every x ∈ R1,

P (Xτ+1 ≤ x | FX
τ ) = P (Xτ+1 ≤ x | Xτ ),

that is, the r.h.s. is a version of the conditional probability from the l.h.s.
Equivalently, it suffices to show (a) measurability P (Xτ+1 ≤ x | Xτ ) ∈ FX

τ ,
which is easy (is it?), and (b) that for every A ∈ FX

τ ,

P (Xτ+1 ≤ x;A) = E1(A)P (Xτ+1 ≤ x | Xτ ). (7)

The idea is to split 1 =
∑

k 1(τ = k) and use the standard Markov property.
But how can we plug in k instead of τ in P (Xτ+1 ≤ x | Xτ )? It does not
look really explicit.

17



5.3 Hint

Let us prove that (it will help show (7))

P (Xτ+1 ≤ x | Xτ ) =
∑
k

1(τ = k)P (Xk+1 ≤ x | Xk). (8)

The r.h.s. here ∈ σ(Xτ ). (Let g(Xk) = P (Xk+1 ≤ x | Xk), then r.h.s.
equals

∑
1(τ = k)g(Xk) =

∑
1(τ = k)g(Xτ ) = g(Xτ ) ∈ σ(Xτ ).) Take any

B ∈ σ(Xτ ). Then, 1(B) = h(Xτ ) for some measurable h. Hence, – and this
shows (8), –

E1(B)× r.h.s.
Fubini
=

∑
k

Eh(Xτ )1(τ = k)P (Xk+1 ≤ x | Xk)

=
∑
k

Eh(Xk)1(τ = k)P (Xk+1 ≤ x | Xk)

=
∑
k

E1(B)1(τ = k)1(Xk+1 ≤ x)
Fubini
= E1(B)× l.h.s.

5.4 Proof of the Theorem

Proof. We have, due to (8) and because 1(A)1(τ = k) ∈ FX
k , that the r.h.s.

from (7) can be presented as

E1(A)P (Xτ+1 ≤ x | Xτ )

= E1(A)
∑
k

1(τ = k)P (Xk+1 ≤ x | Xk)

Fubini
=

∑
k

E1(A)1(τ = k)P (Xk+1 ≤ x | FX
k )

=
∑
k

E1(A)1(τ = k)1(Xk+1 ≤ x)

Fubini
= E

∑
k

1(A)1(τ = k)1(Xτ+1 ≤ x) = P (Xτ+1 ≤ x;A).

6 Probability spaces: direct products

Let (Ω1,F1, P 1) and (Ω2,F2, P 2) be two probability spaces. We can con-
struct a new probability space which is called direct product of them,

(Ω,F , P ) := (Ω1,F1, P 1)× (Ω2,F2, P 2).
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The recipe is as follows. A. Ω = Ω1 × Ω2, which simply means that new
outcomes are couples, ω = (ω1, ω2), with ωi ∈ Ωi. B. F = F1 × F2, which
is understood as F := σ(A1 × A2, Ai ∈ F i, i = 1, 2). Finally, measure P is
determined by P (A1 × A2) := P 1(A1)P 2(A2). Here we need the Theorem
[Kolmogorov] about unique extension of a measure from a semi-ring to sigma-
algebra generated by this semi-ring. We do not discuss it here, see [??].

Let
(Ω,F , P ) = (Ω1,F1, P 1)× (Ω2,F2, P 2).

Suppose we have r.v. ξi on (Ωi,F i, P i). We now can extend or re-define both
ξi on a new probability space (Ω,F , P ), as follows,

ξ1(ω1, ω2) := ξ1(ω1), ξ2(ω1, ω2) := ξ2(ω2).

Then, (A) distribution of ξi on the extended space is the same as on the
original one; (B) both r.v.’s are now defined on the same probability space,
so we can ask whether they are (or are not) independent. The answer is that
they are, indeed, independent.

For the finite sate space MP X under the assumptions of Ergodic Theo-
rem min pij > 0, we can use the following idea. Consider another probability
space, and on that space another MP X̃ with the same transition probabil-
ities, which is stationary (which exists, due to the simple Theorem 1 about
stationary measures). Let κ̃ := maxj mini pij =: mini pij0 .

On direct product of the two probability spaces, both processes remain
MP. However, now we can define such an object as their first meeting time
τ := inf(t ≥ 0 : Xt = X̃t). This is a stopping time (with respect to which
filtration?). Let

X̂t := Xt 1(t < τ) + X̃t 1(t ≥ τ).

Lemma 1. X̂ is a MP equivalent to X. (An Easy Exercise)
Lemma 2. For each A ⊂ S,

|P (Xn ∈ A)− P (X̃n ∈ A)| ≤ (1− κ̃2)n.

Proof.
|P (Xn ∈ A)− P (X̃n ∈ A)| = |P (X̂n ∈ A)− P (X̃n ∈ A)|

= |E1(X̂n ∈ A)− E1(X̃n ∈ A)| = |E(1(X̂n ∈ A)− 1(X̃n ∈ A))|
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≤ E|(1(X̂n ∈ A)− 1(X̃n ∈ A))|1(n < τ) ≤ E1(n < τ)

≤ (1−min
i,i′

P (X̂1 = X̃1 = j0 | X̂0 = i, X̃0 = i′))n = (1− κ̃2)n.

The bound of Lemma 2 is not optimal. Here is another one.

Lemma 2’. Let κ̄ := minij pij. For each A ⊂ S,

|P (Xn ∈ A)− P (X̃n ∈ A)| ≤ (1− κ̄)n.

Proof.

|P (Xn ∈ A)− P (X̃n ∈ A)| ≤ P (n < τ)

≤ (1−min
i
P (X̂1 = X̃1 | X̃0 = i))n ≤ (1− κ̄)n.

Is it really an improvement? I.e., is κ̃2 < κ̄? (And how it compares to
κ := minii′

∑
` pi` ∧ pi′`?) Maybe yes, maybe no, although the order has

improved, if, say, all pij are small. Continue our efforts to improve the
bounds.

The bound of Lemma 2’ is not optimal either. Let us do one more try to
improve it. Let κ̂ := minii′

∑
k pikpi′k.

P (X1 6= X̃1 | X0 = i, X̃0 = i′) = Eii′1(X1 6= X̃1)

=
∑
k

Eii′P (X1 6= k | X̃1)1(X̃1 = k)

=
∑
k

Eii′P (X1 6= k)1(X̃1 = k) =
∑
k

(1− pik)pi′k =

= 1−
∑
k

pikpi′k ≤ 1− κ̂.

Still, the bound is worse than in the first proof of Ergodic Theorem. How to
achieve that bound with κ?

The ultimate improvement may be attained on the following way. Let us
reconstruct the process X̂, so that it will have more chances to meet with X̃
at each step, remaining a MP with the same transition matrix. This turns
out to be possible.
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Lemma. Let ξ1, ξ2 be two r.v.’s, each on its own probability space, with

min
ii′

∑
i

pij ∧ pi′j = κ (> 0). (9)

Then there exists a new probability space which is some extension of the
direct product of the first two, on which there exists a third r.v. ξ3, such
that distribution of it coincides with the distribution of ξ1, and, at the same
time,

P (ξ3 = ξ2) = κ.

Let C :=

{
p1(ξ2)

max(p1(ξ2), p2(ξ2))
≥ ζ

}
, ζ ∼ U [0, 1].

Define on some independent probability space a r.v. η ∼ pη(·) = (p1 − p1 ∧
p2)(·)/

∫
(p1 − p1 ∧ p2), and

ξ3 := ξ21(C) + η1(C̄).

Another equivalent representation of ξ3 with a domain S0 = {(x, y) : 0 ≤
y ≤ p1 ∧ p2(x)}, reads,

ξ3 := ξ21((ξ2, ζ p2(ξ2)) ∈ S0) + η1((ξ2, ζ p2(ξ2)) 6∈ S0).

Apparently, P (ξ3 = ξ2) ≥ P ((ξ2, ζ p2(ξ2)) ∈ S0)

=
∫

p2≤p1
p2(x) dx+

∫
p2>p1

p2(x)
p1

p2
(x) dx = κ

(in fact, > in the first line is not possible, An Easy Exercise).
Next, for any bounded (Borel) function f ,

Ef(ξ3) = Ef(ξ2)P (ζ ≤ p1/max(p1, p2)(ξ2))

+Ef(η)P (ζ > p1/max(p1, p2)(ξ2))

= Ef(ξ2) p1/max(p1, p2)(ξ2)

+Ef(η)E(1− p1/max(p1, p2)(ξ2))

= Ef(ξ1),
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because Ef(ξ2) p1/max(p1, p2)(ξ2)

=
∫

p1≥p2
f(x)p2(x) dx+

∫
p1<p2

f(x)
p1

p2
p2(x) dx

=
∫

p1≥p2
f(x)p2(x) dx+

∫
p1<p2

f(x)p1(x) dx,

and Ef(η)E(1− p1/max(p1, p2)(ξ2))

=
∫
f(x)(p1 − p1 ∧ p2)(x)(1− κ)−1 dx×

×
∫

p1<p2
(1− p1/p2)p2(x) dx

=
∫

p1≥p2
f(x)(p1 − p2)(x) dx.

Now, for each step of our MC, using Lemma of three random variables,
we reconstruct our MC Xn so that it is an equivalent MC, but on each
step the probability to coincide with X̃n (stationary version) is at least κ =
minij

∑
` pi` ∧ pj`. Hence, probability P (τ > n) not to meet until time n

admits a bound
P (τ > n) ≤ (1− κ)n.

This finishes the proof of Ergodic Theorem with the same exponential bound
as in the Kolmogorov proof.

Remark. Although we worked with finite state spaces, there is no change
in the above proof for countable ones under the assumption (9).

In Probability an important role belongs to coefficients of mixing (weak
dependence), in particular, to ϕ–mixing or uniformly strong mixing coeffi-
cient [by I. Ibragimov],

ϕ(n) := sup
k

sup
A⊂S

|P(Xk+n ∈ A)− P(Xk+n ∈ A | Fk)|.

We say that the process (Xn) is ϕ–mixing iff its ϕ coefficient satisfies

ϕn → 0, n→∞.

Ergodic Theorem for finite MC’s can be formulated as

ϕn ≤ (1− κ)n.
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However, ϕ–mixing is applicable to much wider class of processes than MC’s, finite
or not.

Pétit sets condition; comparison with (9).

In the next chapters, for non-compact state spaces, we will use a local version
of this condition. Another condition is quite popular in Ergodic theory for
MP’s with non-compact state spaces, namely, pétit sets condition. We have
to realise that condition (9) is much more relaxed, and at the same ti;e
provides a better rate of convergence. Currently we are doing compact state
spaces, and it is appropriate to study this question here.

A “global” analogue of a pétit sets condition was used by Doob, and it
assumes that there exist positive value ε > 0 and a probability measure ν,
such that for any A ⊂ S (this is a “globalization”, we require that S itself is
pétit)

Pi(X1 ∈ A) ≥ εν(A). (10)

Then, the theory provides an exponential convergence bound (with the same
notations as above)

|P (Xn ∈ A)− P (X̃n ∈ A)| ≤ (1− ε)n.

One trivial aspect of our comparison is, of course, that (10) implies (9) with

κ ≥ ε.

More than that, we can easily construct examples where ε is arbitrarily small,
or even equals zero, while κ is bounded away from zero or even arbitrarily
close to one. Let us start with a simple case, with S = (1, 2, 3) and

pk,i =
1

2
1(i 6= k).

Then, clearly,

ε = 0, κ =
1

2
.

Next example, with S = (1, 2, 3, . . . , N) and again

pk,i =
1

2
1(i 6= k).
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Then, clearly,

ε = 0, κ =
N − 2

N − 1
.

It may be noticed, however, that for the two step transition probability
matrix in the first example,

ε(2) =
3

4
.

This provides practically the same convergence rate bound as via κ, namely,

|P (Xn ∈ A)− P (X̃n ∈ A)| ≤ (1− ε(2))[n/2] ≡ (1− 3

4

(2)

)[n/2] ≡ (
1

4
)[n/2].

For n even, this is equal to 2−n, as with κ. For n odd, however, there is a
minor discrepancy which is negligible when n→∞. Notice also that κ(2) = 3

4
,

too. In any case, if we use κ, we will always do better than or equal to what
we may obtain with ε.

In general, the Q if 1− ε(n) and 1− κ(n) may be similar is open.

My hypothesis is that for finite state spaces they may be similar, but for
general state spaces κ may be always strictly better.

Some other examples where using κ is much better could be provided
by diffusion processes, however they relate to continuous time, so we do not
touch them here.

7 LLN

Assumption (A1): Consider a MP satisfying the assumptions of Ergodic
Theorem (with κ > 0).
Theorem 1: [stationary weak LLN] For a stationary MC under (A1), for
any f on the state space S,

1

n

n−1∑
k=0

f(Xk)
P→ Einvf(X0),

where Einv stands for expectation with respect to the invariant measure,
Einvf(X0) =

∑
j∈S f(j)πj.
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Such results were one of the goals of A.A.Markov (1856–1922) himself
when he introduced his Markov chains, i.e., he wanted to extend limit theo-
rems from the usual IID scheme to some naturally dependent r.v.’s.

Proof. We will use Bienaimé–Chebyshev inequality with variance. As-
sume Einvf(X0) = 0, otherwise subtract.

Pinv(|
1

n

n−1∑
k=0

f(Xk)| ≥ ε) ≤ Einv|
∑n−1

k=0 f(Xk)|2

ε2n2

=

∑n−1
k=0 Einvf

2(Xk)

ε2n2
+

2
∑n−1

k<j Einvf(Xk)f(Xj)

ε2n2
. (11)

But |Einvf(Xk)f(Xj)| = |Einvf(Xk)E(f(Xj) | Xk)|
≤ (in fact, =) |Einvf(Xk)Einv(f(Xj)|

+|Einvf(Xk)[E(f(Xj) | Xk)− Einv(f(Xj)]|,

where |E(f(Xj) | Xk)− Einv(f(Xj)]| ≤ Cf (1− κ)j−k.
Remind that Einvf(Xk)Einv(f(Xj) = 0.

Thus, in (58) the first term equals C/n, while the second by modulus
does not exceed (all C generic)

C
∑n−1

k=0

∑n−1
j=k+1(1− κ)j−k

n2
≤
C
∑n−1

k=0

∑∞
j−k=1(1− κ)j−k

n2
=
C

n
.

This completes the proof of “Markov Chain LLN”. Clearly, exponential con-
vergence rate is more than enough, but for finite state MC there is no much
choice.

Theorem 2: [non-stationary weak LLN] Under (A1), for any f on the
state space S,

1

n

n−1∑
k=0

f(Xk)
P→ Einvf(X0),

where Einv stands for expectation with respect to the invariant measure,
Einvf(X0) =

∑
j∈S f(j)πj.

Proof. Considering the stationary version X̃ along with the original MC
X switched to the stationary after the first meeting (τ), denoted by X̂ and
equivalent to X, we have,

P (| 1
n

n−1∑
k=0

f(X̂k)| ≥ ε) ≤ P (| 1
n

n−1∑
k=0

f(X̃k)| ≥ ε/2)
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+P (|
n−1∑
k=0

f(X̂k)−
n−1∑
k=0

f(X̃k)| ≥ nε/2)

≤ P (| 1
n

n−1∑
k=0

f(X̃k)| ≥ ε/2) + P (Cfτ ≥ nε/2),

where the first term goes to zero due to the Theorem 1, while the second due
to the inequality P (τ > n) ≤ (1− κ)n.

8 CLT

Theorem 3: [stationary CLT] Under (A1), for any f on the state space S,

1√
n

n−1∑
k=0

(f(Xk)− Einvf(Xk))
Pinv=⇒ σZ,

where Z ∼ N (0, 1) and

0 ≤ σ2 = Einv(f(X0)− Einvf(X0))
2

+2
∞∑

k=1

Einv(f(X0)− Einvf(X0))(f(Xk)− Einvf(Xk)).

(We consider 0 as a (degenerate) Gaussian r.v.)
Why such “unexpected” (if seen for the first time) σ2?

Einv|
1√
n

n−1∑
k=0

(f(Xk)− Einvf(Xk))|2

=
1

n
Einv

n−1∑
k=0

n−1∑
j=0

(f(Xk)− Einvf(Xk))(f(Xj)− Einvf(Xj))

=
1

n
Einv

n−1∑
k=0

(f(Xk)− Einvf(Xk))
2

+
2

n
Einv

n−1∑
k=0

n−1∑
j=k+1

(f(Xk)− Einvf(Xk))(f(Xj)− Einvf(Xj)),

and the difference between the latter and σ2 goes to zero. In our forthcoming
notations η1 =

∑m−1
k=0 f(Xk), with m→∞, this may be expressed as

varinv(η1)/m ∼ σ2.
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We shall remember this. In the sequel, assume that

Einvf(X0) = 0;

otherwise, subtract.

Why at all there is a (weak) limit, and why Gaussian? Intuitively,
there is a good reason for both assertions, if we compare the expression
1√
n

∑n−1
k=0 f(Xk) with another one, 1√

n

∑γn

k=0 f(Xk), with, say, γ1 := inf(k >

0 : Xk = X0) and by induction γn+1 := inf(k > γn : Xk = X0), which satis-
fies CLT due to standard IID arguments. However, such way is technically
not so easy. We will prove the assertion using another method, historically
the first one. Split the (growing as n → ∞) interval [0, n] by larger and
smaller partitions, e.g., as follows: take k := [ n

[n3/4]
] (the total number of long

“corridors” of equal length, which (the length) will be chosen in a minute:
in any case, it will not exceed n3/4 and will be equivalent to that function);
w := [n1/5] (the length of short “windows” which separate all consequent
corridors); now m := [n

k
] − w = [n

k
] − [n1/5] (the length of each corridor,

except the last one which has the complementary length n− k[n
k
] ≤ k).

Notice that k ∼ n1/4 as n→∞ and that the total length of all windows
is equivalent to n9/20, which satisfies n9/20 << n1/2; that m ∼ n1/4, and that
the last corridor’s length does not exceed k and, hence, asymptotically does
not exceed n1/4.

The idea is now to take into account only the corridors where we perform
summation, while summation over windows is to be dropped, without big
consequence for the assertion due to a small total length of windows. Now
partial sums over different corridors are “nearly independent”, with some
clear sense derived from the exponential estimate of the Ergodic Theorem.
Because of that, we can nearly repeat the calculus with characteristic func-
tions for the IID case, with the remark that the asymptotical variance σ2 is
already evaluated above. The next pages show an “approximately rigorous”
proof.

Denote all partial sums
∑
f(Xs) over first k corridors as ηj, 1 ≤ j ≤ k.

Notice that
1√
n

(
n∑

s=1

f(Xs)−
k∑

j=1

ηj) ∼ 0, n→∞.
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Hence, it remains to evaluate (for a NON-iid case)

E exp(iλ
k∑

j=1

ηj), n→∞.

We will do this by induction, using on its each step the exponential bound
of the Ergodic Theorem.

Notice that

|E(exp(iληj) | FX
(j−1)[n/k])− Einv exp(iληj)| ≤ C(1− κ)n1/5

.

Hence, E exp(i
λ

n1/2

k∑
j=1

ηj)

= E exp(i
λ

n1/2

k−1∑
j=1

ηj)E(exp(i
λ

n1/2
ηk) | FX

(k−1)[n/k])

= E exp(i
λ

n1/2

k−1∑
j=1

ηj)

(
Einv exp(i

λ

n1/2
ηk) +O((1− κ)n1/5

)

)

= . . . =

(
Einv exp(i

λ

n1/2
η1))

)k

+O(k(1− κ)n1/5

).

But it can be seen that (remind that m ∼ n/k)

Einv exp(i
λ

n1/2
η1) = 1 + i

λ

n1/2
× 0− λ2

n

n

k

1

m
Einvη

2
1 + o(1/k)

= 1− λ2

n

n

k
σ2 + o(1/k). (12)

From this we get,(
Einv exp(i

λ

n1/2
η1))

)k

≈
(

1− λ2σ2

2k

)k

→ exp(−λ2σ2/2), (13)

as required.

To show (12), and, hence, (13) rigorously, we have to evaluate the third
moment of η1 with respect to the invariant measure, namely

Einvη
3
1 ≡ E

∑
0≤k1,k2,k3≤m−1

ξk1ξk2ξk3 , (14)
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where we set ξj := f(Xj) − Einvf(Xj). We shall see that Einvη
3
1 is of the

order m, at most. Let us split the sum above into three terms,

E
∑

0≤k1,k2,k3≤m−1

ξk1ξk2ξk3 ≡ E
∑

0≤k1≤m−1

ξ3
k1

+ E
∑

0≤k1,k2≤m−1;k1 6=k2

ξ2
k1
ξk2

+E
∑

0≤k1,k2,k3≤m−1; k1 6=k2 6=k3 6=k1

ξk1ξk2ξk3 =: Σ1 + Σ2 + Σ3.

For the first term, we have straight away,

|Σ1| ≤ Cm. (15)

Consider the second term,

Σ2 = E
∑

0≤k1,k2≤m−1;k1<k2

ξ2
k1
ξk2 + E

∑
0≤k1,k2≤m−1;k1>k2

ξ2
k1
ξk2 =: Σ2a + Σ2b.

We estimate,

Σ2a = E
∑

0≤k1,k2≤m−1;k1<k2

ξ2
k1
ξk2

=
∑

0≤k1,k2≤m−1;k1<k2

∑
j1

∑
j2

f 2(j1)f(j2)πj1p
(k2−k1)
j1,j2

=
∑

0≤k1≤m−1

∑
j1

∑
j2

f 2(j1)f(j2)πj1

∑
k2:k2>k1

(p
(k2−k1)
j1,j2 − πj2).

Denote
A(m, j1, j2) :=

∑
k2:k2>k1

(p
(k2−k1)
j1,j2 − πj2).

Due to the Ergodic Theorem, all values A(·) are uniformly bounded. Hence,

Σ2a =
∑

0≤k1≤m−1

∑
j1

∑
j2

f 2(j1)f(j2)πj1A(m, j1, j2)

is of the order m, at most.
Next, we have,

Σ2b = E
∑

0≤k1,k2≤m−1;k1>k2

ξ2
k1
ξk2

=
∑

0≤k1,k2≤m−1;k1>k2

∑
j1

∑
j2

f 2(j1)f(j2)πj1p
(k1−k2)
j1,j2

=
∑

0≤k2≤m−1

∑
j1

∑
j2

f 2(j1)f(j2)πj1

∑
k1:k1>k2

(p
(k1−k2)
j1,j2 − πj2).
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B(m, j1, j2) :=
∑

k1:k1>k2

(p
(k1−k2)
j1,j2 − πj2).

Due to the Ergodic Theorem, all values B(·) are uniformly bounded. Hence,

Σ2b =
∑

0≤k2≤m−1

∑
j1

∑
j2

f 2(j1)f(j2)πj1

∑
k1:k1>k2

B(m, j1, j2)

is of the order m, at most. Hence, so is the whole term,

|Σ2| ≤ Cm. (16)

Finally, consider the third term,

Σ3 ≡ 6E
∑

0≤k1,k2,k3≤m−1; k1<k2<k3

ξk1ξk2ξk3

≡ 6
m−2∑
k2=1

∑
k1:k1<k2

∑
k3:k3>k2

∑
j1

∑
j2

∑
j3

f(j1)f(j2)f(j3)πj1p
(k2−k1)
j1,j2 p

(k3−k2)
j2,j3

≡ 6
m−2∑
k2=1

∑
k1:k1<k2

∑
k3:k3>k2

∑
j1

∑
j2

∑
j3

f(j1)f(j2)f(j3)πj1p
(k2−k1)
j1,j2 (p

(k3−k2)
j2,j3 − πj3)

≡ 6
m−2∑
k2=1

∑
k1:k1<k2

∑
j1

∑
j2

∑
j3

f(j1)f(j2)πj1p
(k2−k1)
j1,j2

∑
k3:k3>k2

f(j3)(p
(k3−k2)
j2,j3 − πj3).

Denote
A(m, j2) :=

∑
j3

∑
k3:k3>k2

f(j3)(p
(k3−k2)
j2,j3 − πj3).

Due to the Ergodic Theorem estimate

|p(k3−k2)
j2,j3 − πj3| ≤ (1− κ)(k3−k2),

and since f is bounded, the values A(m, j2) are all uniformly bounded by
Cf ×N × κ−1. Rewrite Σ3,

Σ3 ≡ 6
m−2∑
k2=1

∑
k1:k1<k2

∑
j1

∑
j2

f(j1)f(j2)πj1p
(k2−k1)
j1,j2 A(m, j2)

≡ 6
m−2∑
k2=1

∑
j2

∑
j1

∑
k1:k1<k2

f(j1)f(j2)πj1(p
(k2−k1)
j1,j2 − πj2)A(m, j2),
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the latter because

m−2∑
k2=1

∑
j2

∑
j1

∑
k1:k1<k2

f(j1)f(j2)πj1πj2A(m, j2)

=
m−2∑
k2=1

∑
j2

∑
k1:k1<k2

f(j2)πj2A(m, j2)
∑
j1

f(j1)πj1 = 0.

Hence, we continue,

Σ3 ≡ 6
m−2∑
k2=1

∑
j2

∑
j1

f(j1)f(j2)πj1A(m, j2)
∑

k1:k1<k2

(p
(k2−k1)
j1,j2 − πj2).

Denote
B(m, j1) :=

∑
k1:k1<k2

(p
(k2−k1)
j1,j2 − πj2).

Due to the Ergodic Theorem exponential bound, the values B(n, j1) are all
uniformly bounded. Hence, it remains,

Σ3 ≡ 6
m−2∑
k2=1

∑
j2

∑
j1

f(j1)f(j2)πj1A(m, j2)B(m, j1),

which clearly is of order m. So,

|Σ3| ≤ Cm. (17)

Combining all three bounds for Σ1,2,3, we have,

|Einvη
3
1| ≤ Cm. (18)

This shows that in (12) we have an even better estimate,

n−3/2|Einvη
3
1| ≤ C

m

n3/2
∼ C

n1/4

n3/2
= C

1

n5/4
∼ C

1

k5
= o(

1

k
).

The last concern could be a possibly non-complete last corridor, with
maybe a smaller number of terms in ηk+1, say, m′ ≤ m. In this case we just
notice that this relates to only one very last multiple Eπ exp(i(λ/

√
n)
∑m′

j=1 f(Xj))
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which tends to 1 as n → ∞. Indeed, the third moment of the sum above
admits a similar bound,

|Eπ(
m′∑
j=1

f(Xj))
3| ≤ Cm′ ≤ Cm,

and for the variance, σ2
m′ := Eπ(

∑m′

j=1 f(Xj))
2,

|Eπ(
m′∑
j=1

f(Xj))
2| ≤ Cm′ ≤ Cm.

So, we have with some θ ∈ [0, 1],

Eπ exp(i(λ/
√
n)

m′∑
j=1

f(Xj)) = 1− λ2σ2
m′

n
+O(

λ3θ3m′

n3/2
) → 1, n→∞.

Thus, this last corridor cannot spoil the overall estimate, and, hence, the
conclusion (13) is proved.

Theorem 3a: [non-stationary CLT] Under (A1), for any f on the state
space S,

1√
n

n−1∑
k=0

(f(Xk)− Einvf(Xk))
P

=⇒ σZ,

where Z ∼ N (0, 1) and

0 ≤ σ2 = Einv(f(X0)− Einvf(X0))
2

+2
∞∑

k=1

Einv(f(X0)− Einvf(X0))(f(Xk)− Einvf(Xk)).

Notice that here the measure P relates to an arbitrary initial distribution
µ0. The proof can be reduced to the Theorem 3 by the same trick as we used
for the LLN. We have, for X̂ which is equivalent to X,

1√
n

n−1∑
k=0

(f(Xk)− Eπf(X̂k)) ≡
1√
n

n−1∑
k=0

(f(X̂k)− Eπf(Xk))

=
1√
n

n−1∑
k=0

(f(X̃k)− Eπf(X̃k)) +
1√
n

n−1∑
k=0

(f(X̂k)− f(X̃k)).
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Here the first term converges weakly to σZ,

1√
n

n−1∑
k=0

(f(X̃k)− Eπf(X̃k))
P

=⇒ σZ,

while the second term equals

1√
n

n−1∑
k=0

(f(X̂k)− f(X̃k)) ≡
1√
n

n−1∑
k=0

(f(X̂k)− f(X̃k))1(k < τ).

Therefore,

Eµ0|
1√
n

n−1∑
k=0

(f(X̂k)− f(X̃k))| ≤ Cf
Eµ0τ√
n
→ 0, n→∞.

So, the second term converges in probability to zero. This implies the claim
of the Theorem 3a.

9 LD’s

This is another side of “convergence rate” problem: instead of different nor-
malisation coefficients, it is also reasonable to ask, what is the rate of con-
vergence for probability P (| 1

n

∑n−1
k=0 f(Xk)| ≥ ε), as n→∞. In “good cases”

(including the case of finite state space under Ergodic Theorem hypothesis)
this rate turns out to be exponential. To start with, let us recollect how
this may be achieved in the IID case. Hence, for a minute assume that Xk’s
are (bounded) IID with Ef(X1) = 0 (otherwise subtract). We are going to
apply an exponential version of the Bienaimé–Chebyshev inequality. For any
β > 0,

P (| 1
n

n−1∑
k=0

f(Xk)| ≥ ε) = P (|β
n−1∑
k=0

f(Xk)| ≥ βnε)

≤ exp(−βnε)
(
E exp(β

n−1∑
k=0

f(Xk)) + E exp(−β
n−1∑
k=0

f(Xk))

)

= exp(−βnε)
(

(E
n−1∏
k=0

exp(βf(Xk)) + (E
n−1∏
k=0

exp(−βf(Xk))

)
= exp(−βnε) ((E exp(βf(X1))

n + (E exp(−βf(X1))
n)

= exp(−n(βε− lnE exp(βf(X1)))

+ exp(−n(βε− lnE exp(−βf(X1))).
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For β > 0 small the term βε is linear in β, while lnE exp(±βf(X1)) only
quadratic (because Ef(X1) = 0). Hence, for β > 0 small the difference
βε− lnE exp(±βf(X1)) is positive, so with any such β we get an exponential
bound.

In fact, more can be said about the exponential bounds above. It is pos-
sible to show that the best (i.e. the largest possible) L(ε) in the exponential
bound

lim
n→∞

1

n
lnP (| 1

n

n−1∑
k=0

f(Xk)| ≥ ε) ≤ −L(ε),

is given by

L(ε) = sup
β∈R

(βε− ϕ(β)) ∧ sup
β∈R

(βε− ϕ(−β)) ≡ sup
β∈R

(βε−max(ϕ(β), ϕ(−β))),

with
lnE exp(βf(X1)) =: ϕ(β).

Now, how this may be extended to MP’s? The following way may be
tried.
1◦ Show ∀ β ∈ R,

∃ H(β) := lim
n→∞

1

n
ln E exp(β

n−1∑
k=0

f(Xk)) <∞.

2◦ Show
∃ H ′(0) = 0.

If this is doable, we may repeat the main hint for the IID case (about εβ −
H(β) > 0 and εβ − H(−β) > 0) and find β > 0 which would provide an
exponential bound.

Consider the operator (matrix) depending on β, defined by its action on
any function h on the state space:

T βh(j) := Ejh(X1) exp(βf(j)) ≡ exp(βf(j))
∑
k∈S

pjkh(k).

In the other words, T β is simply the transition matrix T multiplied by the
factor exp(βf(x)) > 0. Clearly, this matrix function is analytic with respect
to the variable β. We will use the following famous theorem about positive
matrices.
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Frobenius Theorem. Under the Ergodic Theorem assumptions, the
matrix T β has an isolated eigenvalue λ0 (called spectral radius) which is real
and positive, all other eigenvalues by modulus being strictly less that λ0, and
the eigenvector, say, e0, which corresponds to this eigenvalue, is positive. The
function λ0(β) is analytic.

Corollary. The limit in 1◦ does exist and equals

H(β) = lnλ0(β).

Proof. (The lower bound follows similarly.)

limn→∞ ln Ex exp(β
n−1∑
k=0

f(Xk))

≤ limn→∞ ln CExe0(Xn) exp(β
n−1∑
k=0

f(Xk))

= lim
1

n
lnC + lim

1

n
ln(T β)ne0(x)

= lim
1

n
ln(λ0(β))ne0(x) = lnλ0(β).

Next, consider Hn(β, x) = n−1 ln Ex exp(β
∑n−1

k=0 f(Xk)), and

H ′
n(β, x) = n−1Ex(

∑n−1
k=0 f(Xk)) exp(β

∑n−1
k=0 f(Xk))

Ex exp(β
∑n−1

k=0 f(Xk))

Here H ′ = ∂H/∂β. At β = 0 we get, due to the LLN,

H ′
n(0, x) =

Ex
∑n−1

k=0 f(Xk)

n
→ 0, n→∞.

All functions Hn(·, x) and H(·, x) are convex in β, in which case from con-
vergence of functions convergence (locally uniform) of their derivatives fol-
lows, see, e.g., [T. Rockafellar, Convex Analysis, Theorem 25.7]. So H ′(0) =
0. This shows 2◦. So, 1◦ and 2◦ imply the existence of L(ε) > 0 such that

lim
n→∞

1

n
lnP (| 1

n

n−1∑
k=0

f(Xk)| ≥ ε) ≤ −L(ε).

It is possible to show that the best L(ε) here is given by

L(ε) = sup
β∈R

(βε−H(β)) ∧ sup
β∈R

(βε−H(−β)),

similarly to the IID case.
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10 Generator and Poisson equation

Remind that for any MC, its generator is an operator L,

Lh(x) = Exh(X1)− h(x).

Dynkin’s formula, to be proved by induction

(D1) Eh(Xn) = h(x) +
n−1∑
k=0

ELh(Xk).

The base is clear, and if the formula is true for some n, then

Eh(Xn+1)− h(x)−
n∑

k=0

ELh(Xk) (±Eh(Xn))

= E (E(h(Xn+1)− ELh(Xn)− Eh(Xn)) | Xn) = 0.

In the ergodic case, as we have seen the invariant measure is the only
stationary probability for the MC. The problem which interests us is whether
those stationary probabilities are smooth with respect to some parameter,
provided that transition probabilities depend on this parameter in a regular
way. The answer is positive: invariant probabilities have so many derivatives
as the transition ones. Briefly, this follows from the perturbation theory of
operators (matrices) with a spectral gap (i.e. the property that the spectral
radius is bounded away from the rest of the spectrum by modulus), because
the invariant measure is the eigenvector corresponding to the spectral radius.
See, e.g., [Kato] or other monographs on Functional Analysis.

Poisson equation is the equation of the sort,

Lu(x) = −f(x), x ∈ S,

for some given function f . (Here for finite state space, any “function” is just a
vector on S.)

Notice here that a PE may make sense not for an arbitrary function f ,
if we wish the equation to be satisfied for all values of x; or else, we may
be asked to solve the equation for all values of x but one or several given
values, say, x0, where we should impose some “boundary condition” on the
unknown function u. We will consider both options.

Let A ⊂ S which is strictly less than S.

(PE1) Lu(x) = −f(x), x ∈ S \ A, u|A = g.
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Let τ := inf(n ≥ 0 : Xn ∈ A), and

v(x) := Ex

(
τ−1∑
k=0

f(Xk) + g(Xτ )

)
.

Theorem 1. v is a unique solution of the (PE1) above.

Proof-1. Clearly, if x ∈ A, then τ = 0, and v(x) = g(x), as required. To
verify the equation, we will need a lemma.

Lemma. Exτ <∞. Moreover, there exists α > 0 such that Ex exp(ατ) <
∞.

On each step, probability to get to A is positive, and there is a minimal
probability for that over S \ A, say, pA. Due to the Markov property, prob-
ability not to get to A during n steps is at most (1 − pA)n. This implies
both assertions, the second one with any α < − ln(1− pA). (And if, by some
chance, pA = 1, under our ergodic assumptions this would mean that A = S.)

From this Lemma it follows that the expression for v(·) is finite uniformly
on S. Now we can continue the proof of the Theorem.

Proof-2. Let x 6∈ A. Then τ > 0. We have, due to the Markov property,

v(x) = f(x) +
∑
y

Ex1(X1 = y)Ey

(
τ−1∑
k=0

f(Xk) + g(Xτ )

)

= f(x) +
∑
y

pxyv(y) = f(x) + Exv(X1).

From this, it follows clearly the statement,

Lv(x) = Exv(X1)− v(x) = −f(x).

Proof-3. Why solution is unique? Consider two solutions, then their
difference, say, w(·) = v1(·)− v2(·) satisfies the (PE1) with f ≡ 0 and g ≡ 0.
So what? The matter is that any solution of the Laplace equation (i.e. with
f ≡ 0) satisfies
Maximum principle: its maximum value (and minimum, too) is attained
at the boundary, i.e. at A.

The latter is simply because, due to the equation at any x 6∈ A, the value
v(x) equals the average of the rest. Hence, if at some particular x 6∈ A the
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maximal value of v is attained, no other value may be less (otherwise that
average must be less, too). The same about mininum.

This suffices for uniqueness, because maxw|A = minw|A = 0.

(PE2) Lu(x) = −f(x), ∀x ∈ S.

Assume f “centered”:
∑
f(j)πj = 0. Let

(PE2− sol) v(x) :=
∞∑

k=0
Exf(Xk).

Theorem 2. v is a unique solution of the (PE2) above which is centered
itself. For any constant c, v+c is also a solution of (PE2). (But not centered,
of course.)

1. Firstly, why the series converges? Because Einvf(Xk) = 0 and |Exf(Xk)−
Einvf(Xk)| ≤ qk, by the Ergodic Theorem.

2. Why it satisfy the equation? Due to the same calculus as for the
(PE1). Namely, “due to the Markov property,

v(x) = f(x) +
∑
y

Ex1(X1 = y)Ey

∞∑
k=0

f(Xk)

= f(x) +
∑
y

pxyv(y) = f(x) + Exv(X1).

From this, it follows clearly the statement of the Theorem,

Lv(x) = Exv(X1)− v(x) = −f(x).

3. Why is v centered? We check,

∑
x

πxv(x) =
∑
x

πx

∞∑
k=0

Exf(Xk)

=
∑
x

πx

∞∑
k=0

∑
y

p(k)
xy f(y) =

∞∑
k=0

∑
y

∑
x

πxp
(k)
xy f(y)

=
∞∑

k=0

∑
y

πyf(y) = 0.
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Of course, in the last line we have used centering condition on f .
4. How do we verify uniqueness (with centering condition) by Maximum

Principle?
Suppose there are two such solutions. Their difference then is also cen-

tered and satisfies the Laplace equation Lw = 0 everywhere. Suppose w
has some positive values, then at some point it attains maximum. Then,
all values of w must coincide with that maximum. But in this case center-
ing condition is impossible. Hence, maxw ≤ 0. By similar reasons, also
minw ≥ 0. Uniqueness is proved.

Now we can explain why for the equation without boundary conditions
(PE2) the centering condition is necessary. Suppose it is not satisfied, i.e.

a := Einvf(X1) 6= 0.

But due to the Ergodic Theorem,

Ef(Xk) → a, k →∞.

Hence, the series in the definition of v(x) =
∑∞

k=0Exf(Xk) clearly diverges.
All theories above – i.e., LLN, CLT, LD’s and Poisson equations of both

types, – admit the following generalization. Instead of κ > 0, we may assume
that there exists k0 ≥ 1 such that the transition matrix T k0 ≡ T (k0) satisfies
the same assumption,

κ(k0) := inf
x,x′

∑
y

p(k0)
x,y ∧ p(k0)

x′,y > 0.

E.g., the assertion of the Ergodic Theorem then remains valid, with replace-
ment of the convergence rate from (1−κ)n by (1−κ)[n/k0]. Frobenius Theorem
also remains valid. In general state spaces, a natural analogue of the condi-
tion above is known as Dobrushin’s one.

Parameters

We will be now interested in the following problem: suppose all transition
probabilities depend on some parameter, pxy(θ). The range of questions arise:
let pxy(θ) possess some regularity with respect to θ (continuity, Hölder con-
tinuity, Lipschitz, C1, CN , C∞, analytic dependence). Will this property or
some its version hold true for invariant probabilities πj(θ), or for expressions
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like Einvg(X0). Some of those limiting properties can be derived straight
from the Ergodic Theorem; some others follow from advanced perturbation
methods [Kato] combined with Frobenius Theorem. We will study some sim-
ple method(s) which later in this course will be extended to certain non-finite
and non-compact state spaces.

Theorem 1. Suppose all transition probabilities pxy(·) ∈ C in θ, and
infθ κ(θ) > 0. Then all πy(θ) are continuous in θ.

Indeed, from Chapman–Kolmogorov’s equations

p(k)
xy (θ) =

∑
z

p(k−1)
xz (θ)pzy(θ),

pxy(·) ∈ C =⇒ p(k)
xy (·) ∈ C, ∀k. Continuous functions p(k)

xy (·) converge uni-
formly, so the limit is continuous in θ: ∀ε > 0,

|πy(θ)− πy(θ
′)| ≤ |πy(θ)− p(k)

xy (θ)| (19)

+|p(k)
xy (θ)− p(k)

xy (θ′)|+ |p(k)
xy (θ′)− πy(θ

′)|,
where 1st + 3rd terms ≤ ε/2 for k large enough, and 2nd ≤ ε/2 with this
fixed k as θ − θ′ is small, due to p(k)

xy (·) ∈ C.
Clearly, we have also a uniform version of the Theorem 1, i.e., if all (there

is only a finite number of them!) pxy(·) are uniformly continuous, then the
limiting probabilities are also uniformly continuous. The proof follows from
the same calculus as above, which suits both continuity at just a single point
as well as a uniform one.

How about Lipschitz or Hölder continuity? There is a “limited” result in
this direction. It shows that to make π ∈ C1 and further, we apparently will
need some new methods.

Theorem 2. Suppose all transition probabilities pxy(·) ∈ Hα with some
0 < α ≤ 1, in θ. Then all πy(θ) ∈ Hα′ in θ, for every α′ < α.

In the other words, this method does not provide the same continuity for
the limiting probabilities as for transition ones.

Proof. Assuming for some 0 < α ≤ 1,

sup
xy
|pxy(θ)− pxy(θ

′)| ≤ L|θ − θ′|α,

let ε = |θ − θ′|α. We estimate, from (19) and from the exponential bound of
the Ergodic Theorem, with q = 1− κ, and taking k = [ln(ε/4)/ ln q)] + 1,

|πy(θ)− p(k)
xy (θ)|+ |p(k)

xy (θ′)− πy(θ
′)| ≤ 2qk ≤ ε

2
,

40



and from Chapman–Kolmogorov (L is new),

|p(k)
xy (θ)− p(k)

xy (θ′)| ≤ k L |θ − θ′|α ≤ Cε
ln(ε/4)

ln q
. (20)

Since ε ln(ε/4)
ln q

<< ε1−δ for every δ > 0, when ε→ 0, then we obtain, |πy(θ)−
πy(θ

′)| ≤ C|θ − θ′|α′ , with any α′ < α.
Let us show (20) by induction, i.e.,

|p(k)
xy (θ)− p(k)

xy (θ′)| ≤ k L |θ − θ′|α. (21)

For k = 1 this is an assumption. Assume the inequality (21) holds true for
some k. We get from Chapman–Kolmogorov,

|p(k+1)
xy (θ)− p(k+1)

xy (θ′)|

≤
∑
z

|p(k)
xz (θ)− p(k)

zy (θ′)|pzy(θ) +
∑
z

p(k)
xz (θ′)|pzy(θ)− pzy(θ

′)|

≤ NkL|θ − θ′|α + L|θ − θ′|α ≤ (k + 1)NL |θ − θ′|α,

as required.

11 Heat equations

Poisson equations studied above were “elliptic” ones. Consider another type
of equation, of “parabolic” or “heat” type,

(HE1) v(n+ 1, x)− v(n, x)− Lv(n, x) = +f(n, x), ∀ x ∈ S,

that is, without boundary conditions. In this case, we have to impose some
initial data, say,

(HE2) v(0, x) = v0(x), ∀ x ∈ S.

Now we may speak of Cauchy problem for the equation (HE). By iterations,
solution of this problem, of course, exists and is unique. As we shall see
now, there is another Dynkin’s formula for solving such equations, which is
a useful representation.
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Theorem 3. A unique solution of the equation (HE) is given by the
formula,

(HE-sol) v(n, x) = Ex

(
n∑

k=1

f(k − 1, Xn−k) + v0(Xn)

)
.

Proof. Initial data is check easily: at n = 0, we get from the (HE-sol),
v(0, x) = 0 + v0(x) = v0(x), as required.

To verify the equation, for n ≥ 0 we compute,

Lv(n, x) = Ex

(
n∑

k=1

f(k − 1, Xn+1−k)

)
+ Exv0(Xn+1)

−Ex

(
n∑

k=1

f(k − 1, Xn−k)

)
− Exv0(Xn),

and

v(n+ 1, x)− v(n, x) = Ex

(
n+1∑
k=1

f(k − 1, Xn+1−k) + v0(Xn+1)

)

−Ex

(
n∑

k=1

f(k − 1, Xn−k) + v0(Xn)

)
= Lv(n, x) + f(n, x).

Uniqueness follows simply by induction: clearly, if there are two solutions,
v1 and v2, then their difference w also satisfies a similar equation with zero
initial data and zero right hand side f , that is,

w(n+ 1)− w(n, x)− Lw(n, x) = 0, w(0, x) = 0.

By induction (nothing to solve here!), we get

w(n, x) = 0, ∀ n ≥ 0.

Another proof of the representation (HE-sol) can be also performed by
induction.

We can formulate the hint from this proof as a form of Maximum Principle
for heat equations:

Maximum Principle. If function v satisfies (HE) with f ≡ 0, then for
any n ≥ 0,

supx v(n, x) ≤ supx v0(x).
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Similarly, of course,

inf
x
v(n, x) ≥ inf

x
v0(x).

Both inequalities follow straight away from the representation (HE-sol).

Derivative ∂θp
(k)
xy (θ)

For the rest of this section assume ∃ ∂θpxy(θ), ∀ x, y. From Chapman–
Kolmogorov,

p(k+1)
xy (θ) =

∑
z

pxz(θ)p
(k)
zy (θ),

hence, differentiating wrt θ, we find

∂θp
(k+1)
xy (θ) =

∑
z

∂θ

(
pxz(θ)p

(k)
zy (θ)

)
=
∑
z

p(k)
zy (θ)∂θ (pxz(θ)) +

∑
z

pxz(θ)∂θp
(k)
zy (θ).

Denote

qzy(θ) := ∂θpzy(θ), q(k)
zy (θ) := ∂θp

(k)
zy (θ).

Subtracting ∂θp
(k)
xy (θ) and dropping θ, we get,

q(k+1)
xy − q(k)

xy =
∑
z

p(k)
zy qxz +

∑
z

pxzq
(k)
zy − q(k)

xy . (22)

Notice that∑
z

pxzq
(k)
zy = Exq

(k)
X1y, =⇒

∑
z

pxzq
(k)
zy − q(k)

xy = Lq(k)
·y (x).

So, if we denote f 1(k, x, y) :=
∑

z p
(k)
zy qxz and v(k, x) := q(k)

xy , then the equation
(22) with y fixed may be rewritten as a heat equation,

v(k + 1, x)− v(k, x) = Lv(k, x) + f 1(k, x), (23)

initial data being just v0(x) = ∂θp
(0)
xy = ∂θ1(x = y) = 0.

Of course, we could have also started with k = 1, where the initial data
would have been qxy = ∂θpxy. This would not change our further analysis,
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because if we started from k = 0 as admitted in (23), the next value would
have been exactly

q(1)
xy = q(0)

xy +
∑
z

p(0)
zy qxz +

∑
z

pxzq
(0)
zy − q(0)

xy = qxy,

as required; so we could have continued by induction with the same results.

Solution of the equation (23) (reminder:)

v(k + 1, x)− v(k, x) = Lv(k, x) + f 1(k, x), v0(x) = 0,

is given by Dynkin’s formula–2:

q(n)
xy = v(n, x) = Ex

∑n
k=1 f

1(k − 1, Xn−k).

where f 1(k, x) =
∑

z p
(k)
zy qxz.

Btw, equivalently,

q(n)
xy = v(n, x) = Ex

∑n
k=1 f

1(n− k,Xk−1).

Which expression is better? (We shall see soon that the first one.)
So what? Why do we care of the representation at all? Of course, we

might have expected something of the sort, simply because we can differen-
tiate Chapman–Kolmogorov’s equations in the right hand side...

We will now use the new representation to make a guess, about how could
be looking a formula for the limiting object, ∂θπy: namely, let us try

q(∞)
y :=

∞∑
k=1

Einvf
1(k − 1, X0).

Why X0? Just under the invariant measure there is no difference. It turns
out that the other representation formula is not easily interpreted with ∞ in
place of n. The first was a better one.

(Remind that there was y in f 1 which we dropped for a while.) Now
our plan is as follows. 1. Show that the series converges. 2. Show it is a
derivative of πy(θ) wrt θ. 3. In fact, simultaneously with part 2, we will see
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that the derivative of p(k)
xy tends to q(∞)

y geometrically fast. Start with the
first part of the plan.

First of all, notice that there exists a limit

Einvf
1(k − 1, X0, y) → 0, k →∞.

Why? Indeed, f 1(k, x) =
∑

z p
(k)
zy qxz (y being still fixed), so,

f 1(k, r) =
∑
z

p(k)
zy ∂θprz.

Here if we let k →∞, then the r.h.s. will tend to∑
z

πy∂θprz = πy

∑
z

∂θprz

= πy ∂θ

∑
z

prz = πy (∂θ 1) = 0.

Moreover, under our Ergodic Theorem assumptions, this convergence is ge-
ometric, since |∂θpxy| ≤ C, and

|p(k)
zy − πy| ≤ qk, =⇒ |f 1(k, r)| ≤ Cqk.

Hence, the series in the r.h.s. of

q(∞)
y :=

∞∑
k=1

Einvf
1(k − 1, X0, y)

converges geometrically fast. This completes the first part of our plan.

Now, let us do the third part (before the second one): show that

q(n)
xy → q(∞)

y , n→∞,

hopefully also with some geometric rate, or, at least, uniformly. This is where
we will need in full our representation for q(n)

xy .
Remind that

q(n)
xy = Ex

n∑
k=1

f 1(k − 1, Xn−k) =
n∑

k=1

Exf
1(k − 1, Xn−k),

and

q(∞)
y :=

∞∑
k=1

Einvf
1(k − 1, X0, y).
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We have just explained that the general term of the series for q(∞) goes to
zero geometrically fast, say, ≤ C qn, with some q < 1. In particular, we may
use the bound,

∞∑
k=n/2

|Einvf
1(k − 1, X0, y)| ≤ C qn/2.

The same holds true for the series for q(n)
xy ,

n∑
k=n/2

|Exf
1(k − 1, Xn−k, y)| ≤ C qn/2.

Hence, it remains to consider the difference,

n/2∑
k=1

Exf
1(k − 1, Xn−k)−

n/2∑
k=1

Einvf
1(k − 1, X0).

But f 1 being bounded, again by the Ergodic Theorem,

n/2∑
k=1

Cq(n−k) ≤ C qn/2.

Altogether, we have, with some new C and q,

|q(n)
xy − q(∞)

y | ≤ Cqn. (24)

Btw, notice that since q(k)
xy (·) is continuous (see its representation!), clearly,

q(∞)
y (·) is also continuous.

Otherwise, the same conclusion may be derived from the uniform wrt θ
convergence of the series for q(∞) and continuity of each term in that series,
due to the Theorem 1.

Now, the part 3 of our plan being fulfilled, let us show the second part,
i.e. that q(∞)

y = ∂θπy. We have,

p(k)
xy (θ′)− p(k)

xy (θ) =
∫ θ′

θ
q(k)
xy (t) dt.

In this identity we can pass to the limit as k →∞, to obtain,

πy(θ
′)− πy(θ) =

∫ θ′

θ
q(∞)
y (t) dt.
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The function q(∞)
y being continuous in t, this clearly (e.g., by the First The-

orem of the Calculus) means that πy(·) ∈ C1 and that q(∞)
y is its derivative

wrt θ. We have proved the following result:
Theorem 4. Let assumptions of the Ergodic Theorem be satisfied with

infθ κ(θ) > 0, and let all transition probabilities pxy(θ) belong to the class C1.
Then the (uniquely determined) invariant probabilities πy(θ) ∈ C1, too.

Similarly by induction, with the use of the same calculus, the following
result can be proved. We shall derive the equations of the heat type for
higher derivatives. Observe, however, that with each iteration the rate of
convergence becomes weaker (but still exponential).

Theorem 5. Let assumptions of the Ergodic Theorem be satisfied with
infθ κ(θ) > 0, and let all transition probabilities pxy(θ) belong to the class CN ,
1 ≤ N ≤ ∞ (i.e. including +∞). Then the (uniquely determined) invariant
probabilities πy(θ) ∈ CN , too.

Under the Ergodic Theorem assumptions, analytic dependence of invari-
ant probabilities on θ also follows from analytic dependence of transition
probabilities. For example, – beside perturbation methods [Kato], – it fol-
lows from the uniform convergence (24), or, even easier, from the uniform
convergence p(k)

xy → πy. (An Easy Exercise.)
Naturally, a similar statements that any CN property for transition prob-

abilities is inherited by any expression like
∑

z g(z)πz(θ) = Einvg(X0) can be
made. This does not require any further efforts. If this property was valid
for any function g, this would have been equivalent to the theorems above for
invariant probabilities. Notice, however, that in the continuous time case,
for Markov diffusions, the latter statement is wrong: expectations require
milder assumptions. What about solutions of Poisson equations? The case
(PE1) (with boundary conditions) is easier, and the answer is positive: solu-
tions also inherit any CN property from transition probabilities. In the case
(PE2) (without boundary conditions under the centering assumption) this
is also true, because of uniform convergence with some geometric rate for
the derivatives in question. E.g., for the first derivative, this can be easily
justified by using (24) and the representation formula (PE2-sol).
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12 Non-compact framework

We will study processes in non-compact spaces such as Rd, like non-linear
auto-regressions,

(AR) Xn+1 = Xn + f(Xn) +Wn+1, (Wn) i.i.d.

This will be our main example. Often Wn are standard Gaussian, although
many other distributions are covered by this approach, too. The word “auto-
regression” suggests that there is a flavour of stationarity in this process,
hence, it should be somehow ergodic. Clearly, for that we need some “sta-
bility conditions” on the function f . E.g., it may be

|x+ f(x)| ≤ q|x|, ∀ x, 0 < q < 1.

About the “noise” (Wn), in addition to i.i.d., we will eventually assume
also non-degeneracy in the sense that there exists a density p(·) w.r.t. the
Lebesgue measure.

For our main example above (AR) there is no further technical assump-
tions required to define a MP. However, for some future purposes, we mention
that if any more general case is considered, we will always assume that our
process has a transition kernel

Q(x, dx′) = Px(X1 ∈ dx′),

which kernel is a probability measure for each x, and for any Borel A, Q(·, A)
is a Borel function in x, or, otherwise, that for any Borel bounded f , the
function

∫
f(x′)Q(x, dx′) is again Borel in x.

Remind that in discrete time we can always consider our process Xn as
strong Markov.

Strategy

Our main goals are again: LLN, CLT, invariant measures, Poisson and heat
equations, dependence on parameters. The strategy will be to have a “good
domain”, usually a bounded neighbourhood of the origin, where a “good
local mixing” occurs, and quick return to such good area once the process
leaves it for some excursion.
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Hence, technically we will study two practically separate parts: recur-
rence, and how local mixing with recurrence imply convergence. In compare
to the finite state space case, even local mixing would now require some more
attention, because, informally speaking, when we arrange to glue two copies
of our MP, they should be now both in a “good domain”, so we should study
recurrence for couples of processes, not just one MP.

12.1 Recurrence

Let BR = {x ∈ Rd : |x| ≤ R}. Under a suitable choice of R, this will be a
convenient “good domain” for gluing. Denote

τR := inf(n ≥ 0 : Xn ∈ BR).

From the general theory of MP’s it is known that ergodic properties depend
on whether our MP is “recurrent” (Px(τR < ∞) = 1 for each x), “positive
recurrent” (ExτR < ∞ for each x), or further bounds like Exτ

k
R < ∞, or

∃λ > 0, Ex exp(λτR) <∞ for each x could be established. Positive recurrent
processes “usually” possess a probability invariant measure, while recurrent
but not positive recurrent – like Wiener process – may have an invariant
measure, but it may be infinite (like the Lebesgue one).

Assume that ∃q ∈ (0, 1) such that ∀ |x| ≥ 1/(1− q2),

|x+ f(x)| ≤ q|x|, (25)

s2 := E|W1|2 <∞. (26)

and for simplicity of presentation also

EW1 = 0. (27)

(Why “for simplicity”: because otherwise we could subtract EW1 and include
into f , only slightly changing (25).)

Theorem 1. If R ≥ (1− q2)−1, then for any x,

ExτR ≤ |x|2. (28)

The proof is a typical application of simplest martingale ideas. Let x /∈
BR (otherwise τR = 0). Given Xn /∈ BR, consider EXn|Xn+1|2: due to (25)
and (27),

EXn|Xn + f(Xn) +Wn+1|2 − |Xn|2 ≤ −(1− q2)|Xn|2 + s2.
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From this it follows,

1(τR > n)
(
EXn|Xn+1|2 − |Xn|2

)
≤ 1(τR > n) (−(1− q2)|Xn|2 + s2),

if R is chosen so that −(1− q2)R2 + s2 ≤ −1. Then,

1(τR > n)
(
EXn|Xn+1|2 − |Xn|2

)
≤ −1(τR > n).

1(τR > n)
(
EXn|Xn+1|2 − |Xn|2

)
≤ −1(τR > n),

so,
N−1∑
n=0

1(τR > n)
(
EXn|Xn+1|2 − |Xn|2

)
≤ −

N−1∑
n=0

1(τR > n).

Since 1(τR > n) ≤ 1(τR > n− 1), this implies,

N−1∑
n=0

1(τR > n)EXn|Xn+1|2 −
N−1∑
n=0

1(τR > n− 1) |Xn|2

≤ −
N−1∑
n=0

1(τR > n).

By the way, why we are going to use

1(τR > n) ≤ 1(τR > n− 1), (29)

and not, say, 1(τR > n + 1) ≤ 1(τR > n), which is also correct? Because we
will take expectations, and in the term 1(τR > n)EXn|Xn+1|2 the indicator
1(τR > n) is measurable with respect to FX

n . So, by Markov’s property,

Ex1(τR > n)EXn|Xn+1|2

= Ex1(τR > n)Ex(|Xn+1|2 | FX
n )

= Ex1(τR > n)|Xn+1|2).

Such trick is only possible with (29).
Thus, taking expectations, we get,

N−1∑
n=0

Ex1(τR > n)|Xn+1|2 −
N−1∑
n=0

Ex1(τR > n− 1) |Xn|2

≤ −
N−1∑
n=0

Ex1(τR > n),
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or,

N−1∑
n=0

Ex1(τR − 1 ≥ n)

≤
N−1∑
n=0

Ex1(τR > n− 1) |Xn|2 −
N−1∑
n=0

Ex1(τR > n)|Xn+1|2.

Notice that in the r.h.s. here all terms are canceled out, except the first
one and the last one, i.e.,

Ex

N−1∑
n=0

1(τR − 1 ≥ n) ≤ Ex1(τR ≥ 0) |x|2

−Ex1(τR > N)|XN+1|2 ≤ |x|2.

But
N−1∑
n=0

1(τR − 1 ≥ n) =
(N−1)∧(τR−1)∑

n=0

1 = τR ∧N.

So, Ex(τR ∧N) ≤ |x|2.
Our definition of expectation was via monotone convergence (if not, this

should have been a lemma), i.e., in particular,

ExτR = lim
N↑∞

Ex(τR ∧N).

Hence, because |x|2 does not depend on N , we get,

ExτR ≤ |x|2,

as required. This was done under the assumption |x| > R. If |x| ≤ R, then
clearly τR = 0. So, in all cases,

ExτR ≤ |x|2.

Under E|W1|2 < ∞, we have no opportunity to work with higher mo-
ments. However, there was at least one place where we could relax our
assumptions, namely, when we were to choose R large enough. Here is one
possible generalization. Assume

lim sup
|x|→∞

(|x+ f(x)| − |x|) < 0, & f locally bounded. (30)
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Theorem 2. Under (30), (26)/(2nd moment for W ), and (27)/(zero ex-
pectation of W ), for any R large enough there exists C > 0 such that for any
x,

ExτR ≤ C|x|2.

Notice that now the assumption (27) is essential.
Under (30), if there exists some exponential moment of W , another ex-

ponential moment is finite for hitting time τR like in the Theorem 3 (under
the more restrictive (25)) below [Gulinsky, AYV, 1993, the chapter about
mixing.]

For r large enough, under

lim sup
|x|→∞

(
|x+ f(x)|

|x|
− 1

)
|x|2 =: −r < 0, & f loc bdd, (31)

some polynomial moment can be estimated [AYV, 2000]

Exτ
k
R ≤ C(1 + |x|m),

withm depending on k and the moment assumptions onW ; possiblym = 2k.
For sub-exponential bounds see [Klokov, AYV, 2003, et al.].

Thus, under (30), (26), and (27), we have ExτR ≤ C|x|2. Let us show
that this suffices for existence of at least one invariant measure (we are not
talking of uniqueness so far). We consider the “process on BR”, that is,
XBR

n := Xτn , n ≥ 0, where

τ 1 := τR, and τn+1 := inf(k > τn; Xk ∈ BR).

The sequence of distributions P (XBR
n ∈ ·) is compact in the sense of Prokhorov

(or weak convergence), i.e., they are all supported by some compact domain
(by definition, up to any ε > 0, but in our case with ε = 0). Then, the
sequence (n + 1)−1∑n

t=1 P (XBR
k ∈ ·) =: νn is also compact. So (Lemma)

there exists a subsequence n′ → ∞ such that νn′ has a weak limit ν. Then
ν is stationary for XBR .

The fact that ν is stationary can be proved similarly to the finite state
space case. The Lemma about existence of a convergent subsequence follows
by the diagonalisation procedure from the fact that the space of continuous
functions on R1 (Rd) is separable, that is, for any ε > 0 there exists a not
more than countable ε–net (which is a family f1, f2, . . . ∈ C such that for any
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f ∈ C, there exists fm such that ρ(f, fm) < ε). We then take a sequence of
εk → 0, and all functions from the εk–nets, say, {fk,m}. On each of them we
may have a convergence ∫

fk,mdν
n′ , n′ →∞,

over some subsequence {n′}. Convergence on any f ∈ C then follows from
the convergence on any fk,m.

Notice that this consideration is valid on the whole R1 (Rd), too, however,
the measures may converge to zero or to some sub-probability measure (as
the measure may in some sense “escape” to infinity). But for a compact
family of measures this is impossible.

In this way, we have shown that there exists a measure on BR, say, ν,
which is stationary for our MP (XBR

n , n ≥ 0). Harris’ principle then suggests
how construct an invariant measure for the original process (Xn, n ≥ 0): for
any A ∈ B1 (A ∈ Bd), let

µ(A) := c
∫

BR

(
Ex

T−1∑
t=0

1(Xt ∈ A)

)
ν(dx), (32)

where T := inf(t > 0 : Xt ∈ BR), and c
∫
BR
ExT ν(dx) = 1.

Proof. We are under conditions of the Theorems 1 or 2.
First of all, let us see why µ is well-defined. We have,

ExT = Px(X1 ∈ BR) + Ex1(X1 /∈ BR)(1 + EX1τR)

≤ 1 + Ex1(X1 /∈ BR)(1 + C|X1|2)
≤ 2 + CEx|X1|2 = 2 + CEx|x+ f(x) +W1|2

≤ 2 + 2C( sup
|x|≤R

|x+ f(x)|2 + s2) <∞,

for |x| ≤ R. Hence,

µ(A) := c
∫

BR

(
Ex

T−1∑
t=0

1(Xt ∈ A)

)
ν(dx) ≤ c sup

|x|≤R

ExT <∞.

Now let us see why the formula (32) defines a stationary measure. We
have,

µ(dy) = c
∫

BR

(
Ex

T−1∑
t=0

1(Xt ∈ dy)
)
ν(dx).
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So, ∫
Rd
Py(X1 ∈ A)µ(dy)

= c
∫

Rd
Py(X1 ∈ A)

∫
BR

(Ex

T−1∑
t=0

1(Xt ∈ dy)) ν(dx)

+c
∫

BR

(Ex

T−1∑
t=0

1(Xt ∈ dy)
∫

Rd
Py(X1 ∈ A)) ν(dx).

But clearly,

c
∫

BR

(Ex

T−1∑
t=0

1(Xt ∈ dy)
∫

Rd
Py(X1 ∈ A)) ν(dx)

= c
∫

BR

(Ex

T∑
t=1

1(Xt ∈ A) ν(dx)

= µ(A) + c
∫

BR

(Ex1(XT ∈ A)− Ex1(x ∈ A)) ν(dx)

= µ(A) + c
∫

BR

(Ex1(XBR
1 ∈ A) ν(dx)− cν(A) = µ(A),

the latter since ν is invariant on BR.

A priori bounds
What we need next is a priori bounds like

sup
n
Ex|Xn|2 ≤ h(x) <∞. (33)

Intuitively, there is quite a good hope to have such inequality, because, so to
say, “if |Xn| is small, its square along with expectation of this square remains
not large, and while if it is large, its expectation should decrease with time”
(see the proof of the ExτR <∞). However, it is a bit unclear how to realise
this hope. Then, there are two ways. Firstly, we may build our further
analysis on a weaker bound

sup
n
Ex|Xn|21(τR ≥ n) <∞. (34)

Secondly, one more opportunity is to assume more about moments of
Wn and to work with exponential moments. Why? Simply because for
exponentials it is usually easier to get stronger a priori bounds

sup
n
Ex exp(λ|Xn|) <∞. (35)
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Here we will prefer the second way, although the first one is also OK. To
start with, we, of course, have to assume that

E exp(λ|W1|) <∞

with some λ > 0. To simplify the presentation, we will work on R1, although
it may be repeated on Rd, too (where the calculus would be a bit more
involved).

12.2 Stability

Exponential a priori bounds
So, we assume

E exp(λ|W1|) <∞, ∃ λ > 0,

and also the assumption of the Theorem 2 above,

lim sup
|x|→∞

(|x+ f(x)| − |x|) < 0, & f locally bounded,

and
EW1 = 0.

Under such nice conditions, we may have much more than EτR <∞, which
itself hardly suffices for any good quantitative convergence rate, say, in the
Ergodic Theorem. (By the way, in fact, so far we are not yet under any
Ergodic Theorem conditions at all.)

12.3 Exponential hitting bounds

Assume for simplicity of presentation,

|x+ f(x)| ≤ q|x|, ∀ x, 0 < q < 1, (36)

ψ(λ) := E exp(λ|W1|) <∞, (37)

and for simplicity of presentation also

EW1 = 0. (38)

(Here “for simplicity” means that we can do the same under the Theorem 2
stability assumptions instead of (51).)
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Theorem 3. If R is large enough, then ∃C, α, λ > 0 such that for any
x,

Ex exp(ατR) ≤ C exp(λ(|x| −R)+). (39)

Proof of Theorem 3
We start with some provisional estimates now. Let x /∈ BR (otherwise

τR = 0). Given Xn /∈ BR, consider EXn exp(λ|Xn+1|): due to (51) and (38),

EXn exp(λ|Xn + f(Xn) +Wn+1|)
exp(λ|Xn|)

≤ ψ(λ) exp(−λ|Xn|(1− q)).

This does not exceed some κ < 1 if R is large enough. So,

1(τR > n) (EXn exp(λ|Xn + f(Xn) +Wn+1|)− exp(λ|Xn|))
≤ −1(τR > n) (1− κ) exp(λ|Xn|),

or,

1(τR > n) (EXn exp(λ|Xn+1|)− exp(λ|Xn|))
≤ −1(τR > n)(1− κ) exp(λ|Xn|).

1(τR > n) (EXn exp(λ|Xn+1|)− exp(λ|Xn|))
≤ −1(τR > n)(1− κ) exp(λ|Xn|),

so,

N−1∑
n=0

1(τR > n) (EXn exp(λ|Xn+1|)− exp(λ|Xn|))

≤ −(1− κ)
N−1∑
n=0

1(τR > n) exp(λ|Xn|). (40)

Since 1(τR > n− 1) ≥ 1(τR > n), this implies, as earlier,

N−1∑
n=0

1(τR > n)EXn exp(λ|Xn+1|)−
N−1∑
n=0

1(τR > n− 1) exp(λ|Xn|)

≤ −(1− κ)
N−1∑
n=0

1(τR > n) exp(λ|Xn|).
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Canceling equal terms and taking expectations, we get,

(1− κ)Ex

N−1∑
n=0

1(τR > n) exp(λ|Xn|)

≤ Ex1(τR ≥ 0) exp(λ|x|)− Ex1(τR > N)EXN
exp(λ|XN+1|).

In the other words,

(1− κ)Ex

(τR−1)∧(N−1)∑
n=0

exp(λ|Xn|) ≤ exp(λ|x|).

As earlier, from the monotone convergence it follows,

(1− κ)Ex

τR−1∑
n=0

exp(λ|Xn|) ≤ exp(λ|x|).

This inequality and the Harris principle, – see (32), – imply the first a priori
bound, for any invariant measure µ,∫

exp(λ|x|)µ(dx) <∞. (41)

Rather close to the latter is another observation:

EXn exp(λ|Xn+1|)
exp(λ|Xn|)

≤ κ < 1, |x| ≥ R,

and
sup
|x|≤R

Ex exp(λ|X1|) ≤ C <∞,

imply that for every Xn,

EXn exp(λ|Xn+1|) ≤ C + κ exp(λ|Xn|).

Let zn := Ex exp(λ|Xn|) (<∞). Then, by induction,

sup
n
Ex exp(λ|Xn|) = sup

n
zn ≤

C

1− κ
. (42)

Now, similarly to (40), but with a new Lyapunov function f(n, x) =
exp(αn+ λ|x|), we get,

1(τR > n) (EXn exp(λ|Xn+1|)− exp(λ|Xn|))
≤ −1(τR > n)(1− κ exp(α)) exp(λ|Xn|),
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so with a new constant κ′ = κ exp(α) < 1 (if α is small enough), we repeat
the earlier calculus to get,

N−1∑
n=0

1(τR > n)EXnf(n+ 1, Xn+1)−
N−1∑
n=0

1(τR > n− 1)f(n,Xn)

≤ −(1− κ′)
N−1∑
n=0

1(τR > n)f(n,Xn).

Cancelling equal terms and taking expectations, we get,

(1− κ′)Ex

N−1∑
n=0

1(τR > n) exp(αn+ λ|Xn|)

≤ Ex1(τR ≥ 0) exp(λ|x|).

In the other words,

(1− κ′)Ex

(τR−1)∧(N−1)∑
n=0

exp(αn+ λ|Xn|) ≤ exp(λ|x|).

As earlier, from the monotone convergence it follows,

(1− κ′)Ex

τR−1∑
n=0

exp(αn+ λ|Xn|) ≤ exp(λ|x|).

This implies,

exp((λ|x| −R)+)/(1− κ′)

≥ Ex

τR−1∑
n=0

exp(αn) =
Ex exp(ατR)

exp(α)− 1
.

So, the desired bound (53) is proved.
Open questions
1. For generalizations which would rather require more subtle tool (34),

one strangely unsolved question is whether the stronger a priori bounds like
(33) can be achieved, without local mixing conditions (usually required in the
available texts). The matter is that they are achieved only after establishing
some good rate of convergence towards a unique invariant measure, which,
of course, do require some local mixing.
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2. There is a gap between some minimal critical r value under which
some rate of convergence is known and another critical r, below which there
is no invariant measure, generally speaking. This is the most intriguing, in
particular, because of a great interest about heavy tails of distributions in
various applications.

Uniqueness?

How about uniqueness of invariant measure, and convergence rate towards
it?

13 Non-compact framework

Local mixing condition
We are studying strong Markov chains in Rd, like AR’s

(AR) Xn+1 = Xn + f(Xn) +Wn+1, (Wn) i.i.d.,

which admit the bounds from the Theorem 3. Now we add the “local mixing
condition” on the density pW of the r.v. W :

inf |x|≤R pW (x) > 0, ∀ R > 0. (43)

Theorem 4. Under the assumptions of Theorem 3 and (56),

‖µt − µinv‖TV → 0, t→∞, (44)

where µinv is the unique invariant measure of the MC X, and µt = L(Xt) (=
marginal distribution of X).

Total variation metric
The total variation distance between two measures µ, ν on (Rd,Bd) is

defined as

‖µ− ν‖TV := sup
A∈Bd

(µ− ν)(A) + sup
B∈Bd

(ν − µ)(B).

Clearly, each term here in the right hand side is non-negative, because ∅ ∈ Bd.
For probabilistic measures

‖µ− ν‖TV = 2 sup
A∈Bd

(µ− ν)(A).
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If there are densities w.r.t. (e.g.) Lebesgue’s measure, pµ and pν , then also

‖µ− ν‖TV =
∫
|pµ(x)− pν(x)| dx (

btw
= 2− 2κ).

Reminder: Theorem 3
We will use the conclusions of the Theorem 3:

Theorem 3. If R is large enough, then ∃C, α, λ > 0 such that for any
x,

Ex exp(ατR) ≤ C exp(λ(|x| −R)+). (45)

Also, ∫
exp(λ|x|)µ(dx) <∞, (46)

and
sup

n
Ex exp(λ|Xn|) ≤ C <∞. (47)

Remind that Theorem 3 does not use condition (56).
To extend our analysis performed for finite state spaces, we will need two

technical lemmas. As we have seen, under the assumptions of any Theorem
1–3 from the previous section, there exists at least one invariant measure.
Now we are going to consider two independent copies of our MC, (Xn) and
(X̃n), he second being in the invariant regime, and we would like to arrange
their gluing. We use notations,

τR = inf(n ≥ 0 : Xn ∈ BR), τ̃R = inf(n ≥ 0 : X̃n ∈ BR),

and
γR = inf(n ≥ 0 : Xn ∈ BR, and X̃n ∈ BR).

Bound for γR

Lemma. For R large enough,

Ex,x′ exp(αγR) ≤ C exp(λ(|x| −R)+ + λ(|x′| −R)+). (48)

Proof. We apply the same calculus as for one copy of the process in the
Theorem 3, with minor changes.

Notice that under our assumptions, for any Xn,

EXn exp(λ|Xn+1|) ≤ C exp(λ|Xn|),
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with some C > 0. So, either (if Xn /∈ BR, X̃n /∈ BR)

EXn,X̃n
exp(λ(|Xn+1|+ |X̃n+1|))

≤ C exp(−λ|Xn|(1− q)) exp(λ|Xn|)
×C exp(−λ|X̃n|(1− q)) exp(λ|X̃n|),

Bound for γR

or

EXn,X̃n
exp(λ(|Xn+1|+ |X̃n+1|))

≤ C exp(−λ|Xn|(1− q)) exp(λ|Xn|)× C exp(λ|X̃n|),

if only Xn /∈ BR, or, at last and similarly,

EXn,X̃n
exp(λ(|Xn+1|+ |X̃n+1|))

≤ C exp(−λ|X̃n|(1− q)) exp(λ|X̃n|)× C exp(λ|Xn|),

if only X̃n /∈ BR. In all cases, for R large enough,

EXn,X̃n
exp(λ(|Xn+1|+ |X̃n+1|)) ≤ q exp(λ(|Xn|+ |X̃n|)), q < 1.

So the estimate can be completed as in the Theorem 3.

Lemma of three r.v.’s

Lemma. Let ξ1, ξ2 be two r.v.’s, each on its own probability space, with∫
qξ1(x) ∧ qξ2(x) dx = κ > 0.

Then there exists a new probability space which is some extension of the
direct product of the first two, on which there exists a third r.v. ξ3, such
that distribution of it coincides with the distribution of ξ1, and, at the same
time,

P (ξ3 = ξ2) = κ.

Remark. The densities may be considered wrt to some measure other
than Lebesgue’s.

Application of Lemma of three r.v.’s
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For our MC, we assume local Dobrushin’s condition,

min
x,x̃∈BR

∫
q(x, x′) ∧ q(x̃, x′) dx′ = κ > 0.

Then, each time when the two process are both in BR, we can reconstruct
one of them (non-stationary) using the Lemma of three random variables,
so that a new version of the process, say, (X̂n), has the same transition
density, and coincides with the stationary one with probability at least κ.
Each time when both processes are in BR, they have a chance to meet at
least κ. Convergence rate would have been exponential (≤ (1 − κ)n), were
the processes always in BR. However, in general they may have excursions
outside, and we wait until they are both back. Under Theorem 3, the overall
estimate should remain exponential.

14 Convergence

Convergence in total variation
We consider the couple of independent processes, X and an invariant

version X̃. Consider the sequence of stopping times γn:

γ1 = γ, γn+1 := γ(γn) (informally speaking).

At each γn, the “reconstructed” process X has a chance (≥ κ) to meet and
to be glued with X̃. By the (strong) Markov property,

P (L > γn) ≤ (1− κ)n−1,

where by L we denote the first moment of meeting. Let ε > 0, and choose n
so that (1− κ)n−1 ≤ ε/2.

Since each P (γn <∞) = 1, this implies that

sup
A

(P (Xt ∈ A)− P (X̃t ∈ A)) ≤ P (L > t) (49)

≤ P (L > γn) + P (L > t, L ≤ γn) ≤ ε/2 + P (t < γn).

But for given n and random, but finite γn, clearly, P (t < γn) → 0, t → ∞.
Hence, there exists t such that P (t < γn) ≤ ε/2, and, therefore,

sup
A

(P (Xt ∈ A)− P (X̃t ∈ A)) ≤ ε.
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Hence, we obtain (44),

‖µt − µinv‖TV → 0, t→∞.

Theorem 5. Under the assumptions of Theorem 3 and (56),

‖µt − µinv‖TV ≤ C(x) exp(−ct), (50)

where x = X0.

Proof. Let us use the hint (49) more accurately. By Rogers–Hölder’s
inequality, with 1/a+ 1/b = 1,

P (L > t) =
∞∑

n=0

E1(L > t)1(γn ≤ t < γn+1)

≤
∑
n≥0

P (L > γn)1/aP (γn+1 > t)1/b

≤
∑
n≥0

(1− κ)n/aP (γn+1 > t)1/b/(1− κ)1/a.

Convergence rate

By Bienaimé–Chebyshev’s inequality and by induction,

P (γn+1 > t) ≤ e−αtEeαγn+1

= e−αtE eα(γ1+
∑n

k=1
(γk+1−γk))

≤ e−αtCn
R C exp(λ((|x| −R)+ + (|x′| −R)+)).

Hence,

P (L > t) ≤ C exp(λ((|x| −R)+ + (|x′| −R)+))/1− κ)1/a

× exp(−αb−1t)
∑
n≥0

exp(−n(a−1 ln(1− κ)−1 − b−1 lnCR)).

Convergence rate in total variation
By choosing a > 1, b > 1, so that

a−1 ln q−1 − b−1 ln(CR) > 0,
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which is possible because

lim
b→∞

b−1 ln(CR) = 0

and
lim
a→1

a−1 ln(1− κ)−1 = ln(1− κ)−1 > 0,

we get here in the right hand side a convergent series in n which does not
depend on t, and, hence, the required bound (57). The Theorem 5 is proved.

Convergence for beta–mixing
Reminder
Remind that we are studying strong Markov chains in Rd,

(AR) Xn+1 = Xn + f(Xn) +Wn+1, (Wn) i.i.d.,

under the assumptions

|x+ f(x)| ≤ q|x|, ∀ x, 0 < q < 1, (51)

ψ(λ) := E exp(λ|W1|) <∞, & EW1 = 0. (52)

Reminder: Theorem 3. Under (51) and (52), if R is large enough, then
∃C, α, λ > 0 such that for any x,

Ex exp(ατR) ≤ C exp(λ(|x| −R)+). (53)

Also, a priori bounds hold true for 0 < ε ≤ ε0,∫
exp(ε|x|)µ(dx) <∞, (54)

sup
n
Ex exp(ε|Xn|) ≤ C exp(ε|x|) <∞. (55)

Next step was done when we added the “local mixing condition” on the
density pW of the r.v. W :

inf |x|≤R pW (x) > 0, ∀ R > 0. (56)

Reminder: Theorem 5. Under the assumptions of Theorem 3 and (56),

‖µx
t − µinv‖TV ≤ C exp(ε|x|) exp(−ct), (57)

where x = X0, µinv is the unique invariant measure of the MC X, and
µt = L(Xt) (= marginal distribution of X).
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15 LLN

LLN for stationary MC: non-compact case
Assumption (A1’): Consider a MP satisfying the assumptions of The-

orems 3 and 5 above.
Theorem 1’: [stationary weak LLN] For a stationary MC under (A1’), for
any f on the state space Rd with

∫
f 2 dµinv <∞,

1

n

n−1∑
k=0

f(Xk)
P→ Einvf(X0),

where Einv stands for expectation with respect to the invariant measure,
Einvf(X0) =

∫
f dµinv <∞.

Proof. We will use Bienaimé–Chebyshev inequality with variance. As-
sume Einvf(X0) = 0, otherwise subtract.

Pinv(|
1

n

n−1∑
k=0

f(Xk)| ≥ ε) ≤ Einv|
∑n−1

k=0 f(Xk)|2

ε2n2

=

∑n−1
k=0 Einvf

2(Xk)

ε2n2
+

2
∑n−1

k<j Einvf(Xk)f(Xj)

ε2n2
. (58)

But |Einvf(Xk)f(Xj)| = |Einvf(Xk)E(f(Xj) | Xk)|
≤ (in fact, =) |Einvf(Xk)Einv(f(Xj))|

+|Einvf(Xk)[E(f(Xj) | Xk)− Einv(f(Xj)]|
= |Einvf(Xk)[E(f(Xj) | Xk)− Einv(f(Xj)]|.

Remind that Einvf(Xk)Einvf(Xj) = 0.

Since ‖µx
t − µinv‖TV ≤ C exp(ε|x|) exp(−ct),

and due to (54) and (55), we have,

|[E(f(Xj) | Xk)− Einv(f(Xj)]|

= |
∫
f(x′)p(j−k)(Xk, x

′) dx′ −
∫
f(x′)p∞(x′) dx′|

= |
∫
f(x′)× 1× (p(j−k)(Xk, x

′)− p∞(x′)) dx′|

≤ |
∫
f 2(x′)|p(j−k)(Xk, x

′)− p∞(x′)| dx′|1/2

×(
∫

12|p(j−k)(Xk, x
′)− p∞(x′)| dx′)1/2

≤ C exp(ε|Xk|/2) exp(−c(j − k)/2).
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Now we can estimate |Einvf(Xk)[E(f(Xj) | Xk)− Einv(f(Xj)]|:
|Einvf(Xk)[E(f(Xj) | Xk)− Einv(f(Xj)]|

≤ Einvf(Xk)C exp(ε|Xk|/2) exp(−c(j − k)/2)

= C exp(−c(j − k)/2)Einvf(Xk) exp(ε|Xk|/2)

≤ C exp(−c(j − k)/2)(Einvf
2(Xk))

1/2 (Einv exp(ε|Xk|))1/2

≤ C exp(−c(j − k)/2),

due to the condition
∫
f 2 dµinv <∞ for the first multiple and a priori bounds

from the Theorem 5 for the second multiple. So, the second term in (58)
admits the bound,

2
∑n−1

k<j Einvf(Xk)f(Xj)

ε2n2
≤ Cε−2n−2.

And the first term does not exceed Cn−1. Thus, the Theorem 1’ is proved.
LLN for non-stationary MC
Theorem 2’: [non-stationary weak LLN] Under (A1’), for any f ∈

L2(µinv),

1

n

n−1∑
k=0

f(Xk)
P→ Einvf(X0).

Of course, condition f ∈ L2(µinv) can be easily relaxed to f ∈ L1+δ(µinv) with
any δ > 0 (then we should use Hölder’s inequality instead of CBS), and even, –
although, less easily, – to f ∈ L1(µinv) (however, the latter is not the aim of this
course).

Proof. For simplicity, consider f bounded. Let X̃ be the stationary MC,
X the original one, and X̂ denote X switched to the stationary after the first
meeting (τ). We have,

P (| 1
n

n−1∑
k=0

f(X̂k)| ≥ ε) ≤ P (| 1
n

n−1∑
k=0

f(X̃k)| ≥ ε/2)

+P (|
n−1∑
k=0

f(X̂k)−
n−1∑
k=0

f(X̃k)| ≥ nε/2)

≤ P (| 1
n

n−1∑
k=0

f(X̃k)| ≥ ε/2) + P (Cfτ ≥ nε/2) → 0,
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as n → ∞, because the second term here satisfies Px(τ > n) ≤ C exp(ε|x|)
from the proof of the Theorem 5.

16 CLT

Non-compact CLT
Theorem 3’: [stationary CLT in non-compact case] Under (A1’), for

any f ∈ L2+δ(µinv) with any δ > 0,

1√
n

n−1∑
k=0

(f(Xk)− Einvf(Xk))
Pinv=⇒ σZ,

where Z ∼ N (0, 1) and

0 ≤ σ2 = Einv(f(X0)− Einvf(X0))
2

+2
∞∑

k=1

Einv(f(X0)− Einvf(X0))(f(Xk)− Einvf(Xk)).

(We consider 0 as a (degenerate) Gaussian r.v.)
Comment on σ2:

Einv|
1√
n

n−1∑
k=0

(f(Xk)− Einvf(Xk))|2

=
1

n
Einv

n−1∑
k=0

n−1∑
j=0

(f(Xk)− Einvf(Xk))(f(Xj)− Einvf(Xj))

=
1

n
Einv

n−1∑
k=0

(f(Xk)− Einvf(Xk))
2

+
2

n
Einv

n−1∑
k=0

n−1∑
j=k+1

(f(Xk)− Einvf(Xk))(f(Xj)− Einvf(Xj)),

and the difference between the latter and σ2 goes to zero.
In our forthcoming notations η1 =

∑c−1
k=0 f(Xk), with c→∞, this may be

expressed as
varinv(η1)/c ∼ σ2.

We shall remember this.
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We will prove the assertion using S. Bernstein’s “windows and corridors”,
as earlier. For simplicity, assume f bounded. [(Ibragimov’s conjecture relates
to φ-mixing and f ∈ L2.)]

“Corridors and windows” by S. Bernstein
Split the (growing as n→∞) interval [0, n] by larger and smaller parti-

tions, e.g., as follows: take k := [ n
[n3/4]

] (the total number of long “corridors”

of equal length, which (the length) will be chosen in a minute: in any case,
it will not exceed n3/4 and will be equivalent to that function); w := [n1/5]
(the length of short “windows” which separate all consequent corridors); now
c := [n

k
] − w = [n

k
] − [n1/5] (the length of each corridor, except the last one

which has the complementary length n− k[n
k
] ≤ k).

Notice that k ∼ n1/4 as n→∞ and that the total length of all windows
is equivalent to n9/20, which satisfies n9/20 << n1/2; that c ∼ n1/4, and that
the last corridor’s length does not exceed k and, hence, asymptotically does
not exceed n1/4.

Denote all partial sums
∑
f(Xs) over first k corridors as ηj, 1 ≤ j ≤ k.

Notice that
1√
n

(
n∑

s=1

f(Xs)−
k∑

j=1

ηj) ∼ 0, n→∞.

Hence, it remains to evaluate (for a NON-iid case)

E exp(iλ
k∑

j=1

ηj), n→∞.

We will do this by induction, using on its each step the exponential bound
of the Theorem 5.

Notice that (more accurately, one can write r.h.s.∧1)

|E(exp(iληj) | FX
(j−1)[n/k])− Einv exp(iληj)|

≤ C exp(ε|X(j−1)[n/k]|) exp(−cn1/5).

Naturally,

Einv|Einv(exp(iληj) | FX
(j−1)[n/k])− Einv exp(iληj)|

≤ CEinv exp(ε|X(j−1)[n/k]|) exp(−cn1/5)

≤ C ′ exp(−cn1/5),

68



the latter due to the a priori bound of Theorem 3.
Hence, with an additive error that does not exceed C ′ exp(−cn1/5), one

can replace the last r.v. ηn in the expression

Einv exp(iλ(η1 + . . .+ ηk))

by some independent and identically distributed r.v., say, η̃k.

This error may be regarded as additive, because

| exp(iλ(η1 + . . .+ ηk−1))| = 1.

Repeating this procedure, we can replace all r.v.’s ηk in this expression by
independent ones with the same distribution (w.r.t. the invariant measure),
say, η̃k’s. All errors are additive. So, in the end we get by induction,

|Einv exp(iλ(η1 + . . .+ ηk))− (Einv exp(iλ(η̃1))
k|

(59)

≤ C ′ k exp(−cn1/5).

(On a few next pages there is some illustration of this kind of calculus. I am
not sure if it really helps, i.e., probably it should be better dropped. I leave it,
just in case.)

E.g., for two last r.v.’s,∣∣∣Einv(exp(iλ(ηj−1 + ηj)) | FX
(j−2)[n/k])

−(Einv exp(iληj−1))(Einv exp(iληj))

∓(Einv exp(iληj))(Einv(exp(iληj−1) | FX
(j−2)[n/k]))

∣∣∣
≤
∣∣∣Einv(exp(iλ(ηj−1 + ηj)) | FX

(j−2)[n/k])

−(Einv exp(iληj))(E(exp(iληj−1) | FX
(j−2)[n/k]))

∣∣∣
+
∣∣∣(Einv exp(iληj))(E(exp(iληj−1) | FX

(j−2)[n/k]))

−(Einv exp(iληj−1))(Einv exp(iληj))| .
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Consider the second term here,∣∣∣(Einv exp(iληj))(Einv(exp(iληj−1) | FX
(j−2)[n/k]))

−(Einv exp(iληj−1))(Einv exp(iληj))| .
≤ C exp(ε|X(j−2)[n/k]|) exp(−cn1/5).

Consider the first term (rewriting it in an equivalent form),∣∣∣Einv(exp(iλ(ηj−1)Einv(exp(iλ(ηj)) | FX
(j−1)[n/k]) | FX

(j−2)[n/k])

−(Einv exp(iληj))(Einv(exp(iληj−1) | FX
(j−2)[n/k]))

∣∣∣
=
∣∣∣Einv(exp(iλ(ηj−1) (Einv(exp(iλ(ηj)) | FX

(j−1)[n/k])

−Einv exp(iληj)) | FX
(j−2)[n/k]))

∣∣∣ .
Here we estimate,∣∣∣Einv(exp(iλ(ηj−1) (Einv(exp(iλ(ηj)) | FX

(j−1)[n/k])

−Einv exp(iληj)) | FX
(j−2)[n/k]))

∣∣∣
≤ Einv (| exp(iλ(ηj−1))|

×|Einv(exp(iλ(ηj)) | FX
(j−1)[n/k])− Einv exp(iληj) | FX

(j−2)[n/k]|
)

≤ EinvC exp(ε|X(j−1)[n/k]|) exp(−cn1/5) ≤ C ′ exp(−cn1/5).

Return to evaluating the characteristic function of the normed sum, (η1 +
. . .+ ηk)/

√
n. As in the finite state space, using (59), we may now conclude

that

E exp(i
λ

n1/2

k∑
j=1

ηj)

=

(
Einv exp(i

λ

n1/2
η1))

)k

+O(k exp(−cn1/5)).

But it can be seen that (remind that c ∼ n/k)

Einv exp(i
λ

n1/2
η1) ≈ 1 + i

λ

n1/2
× 0− λ2

n

n

k

1

c
Einvη

2
1 + o(1/k)

≈ 1− λ2

n

n

k
σ2 + o(1/k).
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From this we get, as n (and k) tend to infinity, that

(
Einv exp(i

λ

n1/2
η1))

)k

≈
(

1− λ2σ2

2k

)k

→ exp(−λ2σ2/2),

as required. The “non-compact” CLT is proved.

17 Parameters in non-compact case

17.1 Coupling by using only integration

See av04.pdf, the section 2.4 for a presentation of coupling method via “nor-
mal” integration and just a minimum of probability. The calculus will not
be repeated in this file.

17.2 Invariant measures with parameters

See av04.pdf, the section 4.1 - Assumptions. In our previous file(s), we,
indeed, explained why all the assumptions in that section are valid, except
that (A3i) and (A4i) must be assumed.

The main result here is the Theorem 7 from av04.pdf about p∞(x, ·) ∈ Ci

(here · stands for parameters).

For the proof, we firstly check (27)–(31). The main tool is Chapman–
Kolmogorov’s equation.

Secondly etc., we follow the steps of the proof in av04.pdf. They resemble
our analysis in the finite state space case.

Further reading – for Markov diffusions – is three papers by [E.Pardoux
and A.V. in AP, 2001, 2003, 2003].
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