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Abstract

The text contains a review and new results on stochastic averaging via
mixing bounds.

1 Introduction

The advanced technique of averaging was proposed in celestial mechanics in [45].
The idea is that when the planets turn around the Sun, their motion may be approx-
imately calculated using classical mechanics for each planet as a two bodies problem,
i.e. this planet and the Sun, without taking into account the other planets. Then,
the next step should be to incorporate the other planet into the analysis, by means
of asymptotic series. In the first approximation, this means that the action of the
other planets should be replaced by some effective change in the coefficients of the
equations over the period of rotation. Further deterministic aspects were developed
by many researchers, including N. N. Bogoliubov with his collaborators, see, e.g.,
[5]; see also [2], [44], et al. However, the goal of this review is a stochastic aspect.

Later on, a stochastic version of the theory emerged. This theory is applicable
to a wide range of systems with randomness and with “slow” and “fast” compo-
nents which are often called “action” and “angle” variables, due to physical reasons.
The idea of the method is to replace coefficients of the slow part of the system by
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certain “effective” or averaged ones, which would not depend on the fast variable
any more. This is a useful simplification that often plays a crucial role, especially in
applications. Nowadays, stochastic systems with averaging may be found not only
in mechanics, but also in many areas of physics, chemistry, mathematical biology,
weather modelling, mathematical statistics, financial mathematics, et al., see [58],
[7], [16], [21], [8], [51], [19], etc.; some other works will be mentioned below, but,
clearly, this list is quite difficult to make complete. Hence, the authors aspirations
are only perhaps to attract attention though to some less known sources.

Although it is usually impossible to find the “first word” or the first author, it
seems very likely that the idea of stochastic averaging was proposed as a hypothe-
sis by N. N. Bogoliubov. Technically – and perhaps a bit artificially – the area of
stochastic averaging may be split into two large directions, (1◦) a kind of functional
law of large numbers (which may be further split into results of convergence in prob-
ability vs. weak convergence), and (2◦) a kind of functional central limit theorem,
the latter often being called diffusion approximation. Further directions include,
in particular, large and moderate deviations, however, we do not touch them here
only mentioning the pioneering works [20], [21], and some further development in
[67]–[68], [26] (for discrete time systems), [18], [22], [23], [50], [70]– [72], [38], et al.

The first named direction started with a seminal paper [29] and was further
advanced in [21, ch.7], [65], [26], [13], [12], et al. In [65] stochastic averaging prin-
ciple has been established for a wide class of SDE systems with non-smooth drift
coefficients; both types of convergence in probability and weak convergence have
been treated. In [12] an answer has been given to the question in which situation
convergence is in probability (strong): earlier it was noticed in several sources that
if diffusion coefficient does not depend on fast component, convergence may be of-
ten established only in probability. The results from [12] are stronger: they state
that if the averaged SDE has a pathwise unique strong solution, then convergence
is in probability. The background for such result is the paper [28] about approxima-
tion methods for strong solutions of SDEs and theorems about pathwise uniqueness.
About diffusion approximation see [20], [8], [57], [21, ch.7], [17], [7], [3], [26], [56];
close results in PDEs may be found in [4], [31], [43], [52]. Quite often (see [57], [17],
[56]) such results relate to solving Poisson equations “in the whole space”. About
this side of the theory see also [31], [51], [52], [41], et al.

In all papers on stochastic averaging, some quantitative ergodic properties were
used. Often those ergodic properties are realised as mixing bounds. Hence, the sec-
ond part of this work concerns some new results on mixing bounds for a new class
of stochastic differential equations that are genuinely highly degenerate. Simulta-
neously, some new weak existence and uniqueness results are established. We leave
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some comments to this part till the corresponding sections, in order not to overload
this introduction.

Hence, the paper consists of two parts, about averaging for two-scaled processes
and about (new) mixing. Notice that practically any new mixing bound for a new
class of processes can be immediately used so as to get new averaging results. We
do not pursue this goal here only because of an already large volume of the text.
The first part of the paper – section 2 – is a review of some basic ideas of averaging
for stochastic processes, with results of three sorts: of functional Law of Large
Numbers (LLN) type, of diffusion approximation (= functional CLT) type, and of
large deviations. In the second part of the paper – section 3 – we establish new
weak existence for a degenerate SDE system with non-smooth drift, uniqueness in
distribution for this system, local mixing (local Dobrushin’s condition), and finally
exponential mixing bounds.

2 Stochastic averaging

2.1 Averaging inequalities

Consider an SDE system with a small parameter ε > 0,

dXε
t = b(Xε

t , Y
ε
t ) dt + σ(Xε

t , Y
ε
t ) dWt, X0 = x,

(1)

dY ε
t = ε−1B(Xε

t , Y
ε
t ) dt + ε−1/2C(Xε

t , Y
ε
t ) dW̃t, Y0 = y.

Formally, is not really very important whether the same or different Wiener processes
drive the equations for both components X and Y . Often it is assumed that the two
Wiener Processes are different and independent; in some other they are assumed
equal; however, all this may be included in the general scheme just by choosing
suitable dimensions of the matrices σ and C, although some degeneracy issues would
arise. We will assume W and W̃ independent.

The idea of stochastic averaging of LLN type is based on a simple method,
which has at the same time some strength and certain weakness. Firstly, the slow
component is to be frozen, and the fast motion becomes an (ergodic) Markov process
with a quantitative convergence rate to its invariant regime; the slow component is
then replaced by a Markov process with coefficients “averaged” with respect to that
invariant measure (diffusion is averaged as σσ∗). Secondly, the difference has to be
estimated. It should be said that there exist critical opinions that claim that the
method is very rough and hardly can be optimal. However, currently there is no
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real alternative to this technique, although it is not impossible that such alternative
might be introduced in some future.

According to [21], the following standing inequality may be used to justify the
procedure: it is assumed that there exists a function b̄ such that the following two
inequalities hold true,

sup
t,x,y

Ex,y

∣∣∣∣∣ 1T
∫ t+T

t
b(x, yx,y

s ) ds− b̄(x)

∣∣∣∣∣ ≤ κ(T ), (2)

and

sup
t,x,y

Ex,y

∣∣∣∣∣ 1T
∫ t+T

t
σσ∗(x, yx,y

s ) ds− ā(x)

∣∣∣∣∣ ≤ κ(T ), (3)

with κ(T ) → 0, T → ∞, possibly with a certain specified rate. Here yx,y
t denotes

the solution of the SDE

dyt = B(x, yt) dt + C(x, yt) dW̃t, Y0 = y. (4)

Hence, the question arises about how to verify existence of κ satisfying (2)–(3) for
particular classes of processes. In fact, the assumption (2)–(3) in its original form
turns out to be rather restrictive: practically, it can be checked only for SDEs with
the component Y on a compact manifold, but not in R` as in (1). That is to say that,
in fact, the condition (2)–(3) is, indeed, rather restrictive for the systems in Rd+`,
which does not look compact, except for a periodic case with respect to the second
component y, which makes the state space of Y equivalent to the (compact) torus.
Perhaps, other compactifications may be also possible, yet, in general, the system in
Rd+` certainly cannot be reduced to the compact case. Does it mean that for really
non-compact spaces/cases there is no averaging? The answer is that certainly there
is averaging, just (2)–(3) ought to be replaced by some suitable weaker version, for
example, as suggested in [65], by

sup
t,x,y

Ex,y

∣∣∣∣∣ 1T
∫ t+T

t
b(x, yx,y

s ) ds− b̄(x)

∣∣∣∣∣ ≤ κ(T )(1 + |x|2 + |y|2), (5)

along with another complementary assumption,

sup
t,x,y

Ex,y(1 + |yx,y
t |2) ≤ C(1 + |x|2 + |y|2). (6)

Some variations are allowed here, e.g., other increasing functions instead of squares
in the right hand side of the inequality (5) would do as well, including some ex-
ponentials, however, the growth rate ought to be controlled by an appropriately
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changed “adjoint” condition (6). We do not go into details here. The point is that
the inequalities (5)–(6) are quite realistic and may be easily verified for a wide class
of SDEs in R`. For certain particular classes of processes, under assumptions on
coefficients conditions of the type (5 – 6) are checked in [26], et al. In turn, those
sufficient conditions are based on mixing rate bounds, as shown, e.g., in [26]. Meth-
ods of how to check mixing bounds for Markov diffusions have been developed in
[61], [64], [62], [73], [39], [40], et al. In most of the sources on mixing for SDEs it is
assumed that diffusion coefficient is nondegenerate. Some exception is [59], where
instead some hypoellipticity condition is used; however, this is also some kind of
nondegeneracy, and requires a good smoothness. In this paper we propose a new
method to study mixing rates suitable for highly degenerate SDEs without smooth-
ness. This is reasonable in all mechanical systems, because if we treat solution of an
SDE as a position of some particle, then the only appropriate place where nonde-
generate random noise may show up is apparently forces. This leads quite naturally
to systems of the following type,

Ẋ = Y, Ẏ = “random forces”,

where the first component X may have no white noise term (cf. [9]) by virtue of
“physical reasons”.

2.2 About diffusion approximation

The problems of invariance principle kind (= functional central limit theorem type
results) were studied firstly for a compact state space for the “fast” component in
[57]. Even a bit earlier, similar results in terms of partial differential equations have
been established in [4]. Later the theory was developed in [31], [17], [7], [53], [41], et
al. In many papers on the subject starting from [57] the role of Poisson equations
“in the whole space” has been emphasized, see, e.g., [17].

A general non-compact and “fully–coupled” (i.e. with all coefficients that depend
on all components) case

dX = b(Xt, Yt)dt + ε−1/2f(Xt, Yt)dt + σ(Xt, Yt)dWt, X0 = x,

(7)

dY = ε−1B(X,Y ) dt + ε−1/2C(X, Y ) dW̃t, Y0 = y.

has been considered in [56] via Poisson equations. The latter were investigated in
this series of papers with the help of quantitative mixing bounds developed earlier
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in [73] et al. A different approach for Lipschitz coefficients was earlier developed
in [7] (to be precise, for discrete time, but this is not very important). Another
version of fully coupled equations has been treated in [3] with a motivation from
mathematical models of weather. The whole direction of diffusion approximation
theory is not yet completed, although basic problems seem to have been solved.
We do not go into details here, but just mention that the diffusion approximation
theorem from [21] does not use directly Poisson equation. The latter is a hint that
although the Poisson equation in the whole space is, indeed, a very powerful tool,
nevertheless, in some interesting situations it may be avoided, or possibly it could
even not applicable, while some other more probabilistic approaches may still work.

3 Degenerate case: new mixing bounds

In this section we study a 2D process that plays the role of the process (yx,y
t , t ≥ 0)

as in (4), slightly abusing the notations accepted in the Section 2: now the first
component of our 2D process is X and the second Y , but X is not averaged.

In a series of papers by F. Campillo et al. [9], [10], [11] the following system of
SDEs in R2 has been investigated for recurrence, invariant measure, approximation,
etc.,

dXt = Yt dt, X0 = x,

(8)

dYt = b(Xt, Yt) dt + dWt, Y0 = y,

where W is a standard Wiener process, and drift b is a Borel measurable function
satisfying a linear growth condition and having a special form,

b(x, y) = −u(x, y)y − β x− γ sign(y), (9)

where β and γ are some positive constants, and u satisfies (see the Assumption
(A1) below) 0 < u1 ≤ u(·) ≤ u2 < ∞. The system describes a mechanical “semi–
active” suspension device in a vehicle under external stochastic perturbation forces
treated as a white noise, which, in fact, attracted much attention; we do not extend
the list of references so as to cite only what is necessary for our presentation here.
So, in particular, all positiveness conditions above have some clear physical nature.
The term with γ corresponds to friction, β is a spring coefficient, uY corresponds
to damping (control related to the velocity of the device), and the function u here
stands for tuning of this damping control. Under certain assumptions, existence of a
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(unique) invariant measure has been proved [9]; as we show below, those assumptions
may be relaxed. On the other hand, the question of rate of convergence to stationary
regime remained completely open. We will show exponential bound on rate of
convergence towards the stationary measure in the distance of total variation for
the system (8)–(9), and a similar exponential bound of beta-mixing, under rather
weak assumptions on the coefficients. The approach is based on recurrence and local
mixing. The method of establishing local mixing proposed below is applicable to the
equation (8), and should be suitable for a wider class of processes, in particular, not
necessarily 2D. The method of establishing global mixing rate, as well as convergence
to stationary regime, does not use “small sets” nor strong Feller property: perhaps
the latter may hold true, however, due to the lack of smoothness of the drift it
should not be elementary to show that.

The first question about the system (8) may be regarded as unexpected: we
ought to revise existence and uniqueness questions. Why unexpected? Just be-
cause the golden period of this topic was in 60s-70s. However, motivated by the
setting from [11], one may notice that it is not reasonable to assume any smooth-
ness of the drift in the second component. The matter is that this drift may admit
some control, and it is well known that optimal strategies are usually discontinues;
hence, no smoothness on he drift will be assumed in the sequel. In such a case, the
most traditional technique to establish (weak) existence, starting from the works
[58], [46], [47] does not work. Indeed, [58] requires continuity of coefficients, while
[47] requires nondegeneracy of diffusion; and we have neither assumed. Hence, we
will apply another well known although less frequent approach based on Girsanov’s
transformation of measure [27]. Notice a similarity between the methods in the
next section and in [74]: the latter is also based on Girsanov’s formula and also
provides weak solutions for certain class of degenerate SDE of (8) type. However,
the method below is different and covers another class of equations, although there
is a non-trivial intersection.

3.1 Weak existence and uniqueness

Since we are going to apply Girsanov’s technique [27], we could get only weak
solutions. (This does not mean, of course, that strong solution is not possible for
some example or class of examples; but it should follow from some complementary
analysis.) The same relates to uniqueness: we are going to check weak uniqueness,
i.e. uniqueness in distribution. In fact, for non-degenerate SDE systems it was
noticed by Girsanov himself in the last comment of his seminal paper (without
proof), and it was realised later in [6] and [15], that linear growth of the drift suffices
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to establish martingale property of a stochastic exponential, and, hence, justify
Girsanov’s method. Remind that [27] recommended to work with bounded drifts;
in case of unbounded, recommendation was to stop or truncate. Nevertheless, the
results from [6] and [15] (see [33] for a more modern presentation) were very useful.
However, they are not sufficient for the system (8), due to the evident degeneracy.
They would be sufficient under condition

sup
x
|b(x, y)| ≤ C(1 + |y|), ∀ y, (10)

but this inequality is more restrictive than what is assumed, following [10], [11].
Remind that assumptions in [11] were based on engineering meanings of all terms
of the equations. Assumption (10) is unreasonable due to physical nature of the
equation.

It may be said more. Since the paper [63], it is known that any SDE in a
finite-dimensional Euclidean space with a unit diffusion matrix and linear growth
condition on a (Borel measurable) drift has a pathwise unique strong solution. Thus,
weak existence result from [6] for such SDEs is redundant since about year 1980:
it is fully covered by strong existence from [63]; it is actually also covered by weak
existence from [46] and [47]. However, for the system (8)–(9) there is no result on
strong solutions except for under rather special restrictions in [9]; we do not assume
those restrictions here.

We formulate two assumptions, (A1) will be used for existence and uniqueness,
and (A2) for estimating rate of mixing.

Assumptions for (8)

(A1) The function b in (8) is Borel measurable, and there exists C such that

|b(x, y)| ≤ C(1 + |x|+ |y|).

(A2) The function u in (9) is Borel measurable, and there exist constants 0 < u1 ≤
u2 < ∞ such that u1 ≤ u ≤ u2; β and γ are strictly positive constants.

In the sequel, µx,y
t denotes the marginal distribution of (Xt, Yt), the couple with the

initial state (x, y), and µ∞ stands for its (unique) invariant distribution if the latter
exists.
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Theorem 1 Let the system (8) satisfy (A1). Then the equation (8) has a (weak)
solution; this solution is unique in distribution and it is a strong Markov process.

Proof. First of all let us show that there exists a weak solution of the system
(8), and that it possesses a weak uniqueness property. Emphasize that (9) is not
assumed in this section. Basically, there are two methods available: one based on
approximations; and another based on Girsanov’s transformations. In the general
case, if we want to use approximations and weak convergence, then we do have a
good a priori bound, – e.g., for the second moment, – but the function u may be
discontinuous, in particular, in variable x, while the component X has no diffusion
term at all. This is an obstacle while using approximations and passing to a limiting
measure. So, we will work with Grisanov’s transformations. We start with a couple
(X, W̃ ) on some probability space (Ω,F , P̃ ), where W̃ is a Wiener process, and
Xt = x +

∫ t
0 W̃s ds. In other words, the process (X, W̃ ) solves the system (8) in the

trivial case b ≡ 0. We will use Girsanov’s exponential to solve a general case. Let

ρ̃T := exp

(∫ T

0

(
b(Xt, y + W̃t) dW̃t −

1

2

∫ T

0

∣∣∣b(Xt, y + W̃t)
∣∣∣2 dt

)
.

The existence part of the Theorem will be proved if we show that this is a probability
density, i.e., that Ẽρ̃T = 1. It is convenient to formulate the statement as a lemma.

Lemma 1 Under the assumption (A1), there exists T > 0 small enough, such that
for every R > 0,

sup
(x,y)∈BR

Ẽx,yρ̃
2
T < ∞. (11)

Moreover, for every (x, y) ∈ BR and every T > 0 (not only small),

Ẽx,yρ̃T = 1. (12)

Emphasize that the value of the left hand side in (11) may depend on R, however,
the value T can be chosen so that it suits all values R > 0.

Proof of Lemma 1. Notice that the assertion (11) guarantees uniform integrability
of ρ̃T with respect to the measure P̃ , for every (x, y) ∈ BR, which implies (12) for
small values of T . However, the latter equality is extended on any T by simple
induction based on Markov property (remind that small T in (11) does not depend
on initial data), see [6] or [33, Corollary 3.5.14]. Hence, it suffices to prove only
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(11). We estimate, using Cauchy–Bouniakovsky–Schwarz’ inequality (known widely
as Cauchy–Schwarz’ or Cauchy’s),

(
Ẽx,yρ̃

2
T

)2
≤
(
Ẽ exp

(
−4

∫ T

0
b(x +

∫ t

0
W̃s ds, y + W̃t) dW̃t

−8
∫ T

0

∣∣∣∣b(x +
∫ t

0
W̃s ds, y + W̃t)

∣∣∣∣2 dt

))

×Ẽ exp

(
+6

∫ T

0

∣∣∣∣b(x +
∫ t

0
W̃s ds, y + W̃t)

∣∣∣∣2 dt

)

≤ Ẽ exp

(
+6

∫ T

0

∣∣∣∣b(x +
∫ t

0
W̃s ds, y + W̃t)

∣∣∣∣2 dt

)

≤ Ẽ exp

(∫ T

0
C
(
1 + (x +

∫ t

0
W̃s ds)2 + (y + W̃t)

2
)

dt

)

≤ Ẽ exp

(∫ T

0

(
C(1 + |x|2 + |y|2) + C(

∫ t

0
W̃s ds)2 dt + C(Wt)

2
)

dt

)

≤ C(T,R, x, y) Ẽ exp

(
C(T + T 3) sup

0≤t≤T
|W̃t|2

)

= C(T, R, x, y) Ẽ exp

(
C (T 2 + T 4) sup

0≤t≤1
|W̃t|2

)
.

Since, due to the André reflection principle, for any v > 0,

P̃ ( sup
0≤t≤1

|W̃t| > v) ≤ 4P̃ (W̃1 > v) ≤ 4

v
exp(−v2/2),

it is, indeed, easy to see that with any constant β, the latter expectation is finite
if T > 0 is chosen small enough. The Lemma 1 is proved. In particular, we have
(weak) existence for the system (8–9).

Now, to show (weak) uniqueness, we suppose that the couple (X, Y ) solves the
system (8) under the assumption (A1). Let

ρT := exp

(
−
∫ T

0
(b(Xt, Yt) dWt −

1

2

∫ T

0
|b(Xt, Yt)|2 dt

)
.
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In the sequel, the index T in ρT = ρ may be dropped if T is already fixed. The
statement about weak uniqueness – and strong Markov property – is convenient to
formulate as a proposition.

Proposition 1 Under the assumption (A1), weak solution of the system (8) on
[0,∞) is unique in distribution. Any solution on any probability space is a strong
Markov process. Also, for any T > 0,

E ρT = 1. (13)

Proof of Proposition 1. We already know that given x, y, for any T , weak existence
follows straight away from Girsanov’s transformation due to the Lemma 1. Let
us show that for any T , weak uniqueness (= uniqueness in law) follows from the
same Girsanov transformation. Indeed, if there is a solution of (1), we can apply
the inverse Girsanov transformation and using the standard localization procedure
along with Fatou’s lemma, we get (13) by the Lemma 1. Hence, the distribution of
(X,Y ) on [0, T ] can be obtained from the distribution of (X̃, Ỹ ) with Ỹ −y = W̃ (P̃–
Wiener process), by means of the Girsanov transformation ρ̃T . So, this distribution
is, indeed, unique on [0, T ]. This kind of argumentation about using Girsanov’s
transformation in order to prove uniqueness in law can be found, in particular, in
[25], and here we present it only for the reader’s convenience. For a slightly different
reasoning see [33].

Strong Markov property follows from [48], due to weak uniqueness. The proof
of the Proposition 1 is completed. The Theorem 1 is also proved.

In the sequel we will use the following close assertion.

Lemma 2 Under the assumption (A1), there exists T > 0 small enough, such that
for every R > 0,

sup
(x,y)∈BR

Eρ
x,yρT < ∞. (14)

Proof of Lemma 2. Notice that since Eρ
x,yρT = Eρ2

T , the assertion (14) guarantees
uniform integrability of ρT with respect to the measure P , for every (x, y) ∈ BR,
which, by the way, again implies the Proposition 1, at least, for T > 0 small enough.
The inequality (14) can be rewritten as

sup
(x,y)∈BR

Eρ
x,yρT = sup

(x,y)∈BR

Ẽx,y(ρ̃T )−1 < ∞.
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In this form, it follows from the calculus quite similar to that in the proof of the
Lemma 1. The Lemma 2 is proved.

Remark 3. Both weak existence and martingale property of Girsanov’s exponential
can be easily extended to a multidimensional case where both Xt ∈ Rd and Yt ∈ Rd,
with just minor changes in the calculus; different dimensions for the components are
also possible.

Remark 4. The result from [6] about Girsanov’s transformation relates to the
following SDE in Rd with a d-dimensional Wiener process (we use another notation
Zt for the process, to distinguish it from the setting (8)),

dZt = b(t, Zt) dt + dWt, Z0 = z. (15)

In this Remark, drift b is a d-dimensional Borel measurable vector–function, and it
satisfies a linear growth condition with some constant L > 0,

|b(t, z)| ≤ L (1 + |z|), ∀ z ∈ Rd. (16)

The following Theorem is a reformulation of some combination of Lemma 0 and
Theorem 1 and a discussion around them from [6], and the Lemma 7 from [27].
However, it is easier for us to cite a later presentation from [33, Corollary 3.5.16
Proposition 5.3.6]. As usual (e.g., as above in the Lemma 1), to solve (15), we
consider a probability space (Ω,F , P̃ ) with a (another) Wiener process W̃t, t ≥ 0.

Proposition 2 (Benes 1971) Under (16), for any T ,

ẼζT = 1, ζT := exp(−
∫ T

0
b(s, W̃s) dW̃s −

1

2

∫ T

0
|b(s, W̃s)|2 ds),

the process Wt := W̃t−
∫ t
0 b(s, W̃s) ds, 0 ≤ t ≤ T , is d-dimensional Wiener under the

new measure dP ≡ dP̃ ζ := ζT dP̃ , and, hence, the equation (15) has a weak solution
unique in the sense of distribution.

The reader may wish to check himself whether or not this Proposition is applicable
directly to (8), or, at least, to (8) with the restriction (9); the authors believe that
it is not.

Remark 5. The assumption (16) is essentially used in the proof of this result. It
may be of interest to notice the last remark in the paper by Girsanov [27], actually
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related to more general processes with a variable diffusion, which (the remark) in
the case of constant diffusion reduces precisely to (16). The author did not prove
the claim, but promised to do it later, which apparently never occurred. Perhaps,
it may be partially explained by the fact that even without that remark his method
did allow applications if used with appropriate truncations.

Notice also that in [9], Girsanov’s transformation was actually used to remove
only the u(Xt, Yt)Yt part of the drift, although this does not affect our comments.
Despite all arguments above, the authors are still inclined to think that all results
of this section are possibly just a re-discovery of something well-known, and they
keep this section until a proper reference on some earlier paper(s) is advised to us
by referees or readers.

Remark 6. Notice that non-Markov SDEs may be considered quite similarly, which
would generalize weak existence for equations with delay from [15]; again, mention
that the cited paper mainly deals with other control problems.

3.2 Local mixing via local Dobrushin’s condition

In this subsection we are going to establish local mixing condition which we call local
Dobrushin’s. The name is because Dobrushin used global condition of this sort in his
studies of central limit theorem for Markov processes. Of course, the same condition
appears in the standard form of ergodic theorem for Markov chains, so – as usual
– the question of who was the first to suggest this type of condition is unclear.
However, remind that the expression in the left hand side of the condition (17)
below in the case B = Rd is called Dobrushin’s ergodic coefficient in the literature.
So, we are going to verify that for any R large enough and some suitable T > 0,

inf
(x0,y0),(x1,y1)∈BR

∫
BR

(
µT ;x0,y0(dx dy)

µT ;x1,y1(dx dy)
∧ 1

)
µT ;x1,y1(dx dy) =: κR > 0. (17)

Here notation is used,

µT ;x0,y0(dx dy) := Px0,y0(XT ∈ dx, YT ∈ dy).

The density of one measures with respect to another is understood in the usual way,
that is, as a density of the absolute continuous component. Also we notice that
the notation used κR does not mean at all that the left hand side in (17) does not
depend on anything but R. It may well depend on other parameters, however, for

13



the time being, what is important is the choice of R; so all other parameters – which
can be easily recovered – are dropped from this notation.

The assumption (17) is strictly weaker than small sets condition that is often
used in such situations, and (17) provides a better constant in a final bound, and also
this condition is satisfied for a wider class of processes. There is one more reason:
despite a bit cumbersome outlook, the condition (17) is actually often easier to
verify, and it is not an exaggeration: just imagine how to check small sets condition
for the system (8). The next result is the second part of the method used in this
paper and our main contribution to the technique of verification of mixing rate here.
We consider any solution to the equation (8), without the restriction (9).

Lemma 3 Let (A1) be satisfied. Then for any R > 0 there exists c > 0 such that
(17) holds true.

Proof. First of all, notice that

µT ;x0,y0(dx dy)

dx dy
> 0, a.s. (18)

Indeed, by virtue of Girsanov’s transformation (cf., e.g., the Proposition 1 above),
under the measure P ρ we have a representation,

ρT = exp

(
−
∫ T

0
b(x0 +

∫ t

0
W̃s ds, y0 + W̃t) dW̃t

−1

2

∫ T

0

∣∣∣∣b(x0 +
∫ t

0
W̃s ds, y0 + W̃t)

∣∣∣∣2 dt

)
.

Denote
µρ

T ;x0,y0
(dx dy) := Eρ

x0,y0
1(XT ∈ dx, YT ∈ dy).

We have,

µT ;x0,y0(dx dy)

dx dy
=

µρ
T ;x0,y0

(dx dy)

dx dy
Ex0,y0(ρ

−1
T | XT = x, YT = y),

where both multiples µρ
T ;x0,y0

(dx dy)/dx dy and E(ρ−1
T | XT = x, YT = y) are positive

(a.s. for the second one). For the second this is because 0 < ρ−1 < ∞ a.s. For the

14



first one there is an explicit representation of a lower bound of this density, see (19)
below. So, (17) can be rewritten equivalently as

inf
(x0,y0),(x1,y1)∈BR

∫
BR

(
µT ;x0,y0(dx dy)

µT ;x1,y1(dx dy)
∧ 1

)
µT ;x1,y1(dx dy)

= inf
(x0,y0),(x1,y1)∈BR

∫
BR

(
µT ;x0,y0(dx dy)

dx dy
∧ µT ;x1,y1(dx dy)

dx dy

)
dx dy ≥ c > 0.

Let L > 0 and consider the densities,

µT ;x0,y0(dx dy)

dx dy
:=

Ex0,y01(XT ∈ dx, YT ∈ dy)

dx dy
,

µL
T ;x0,y0

(dx dy)

dx dy
:=

Ex0,y01(XT ∈ dx, YT ∈ dy) 1(ρT > L)

dx dy
.

Clearly, the measure µL
T ;x,y(dx dy) is absolutely continuous with respect to the Lebesgue

measure dxdy, similarly to µx,y(dx dy). Moreover, ρT is a probability density (see
the Proposition 1). So, we can use the following notations,

µT ;x0,y0(dx dy)

dx dy
≡

Eρ
x0,y0

ρ−11(XT ∈ dx, YT ∈ dy)

dx dy
=: px0,y0(x, y; T ),

µρ
T ;x0,y0

(dx dy)

dx dy
≡

Eρ
x0,y0

1(XT ∈ dx, YT ∈ dy)

dx dy
=: pρ

x0,y0
(x, y; T ),

µL
T ;x0,y0

(dx dy)

dx dy
=

Eρ
x0,y0

1(XT ∈ dx, YT ∈ dy) 1(ρT > L)

dx dy
=: pL

x0,y0
(x, y; T ).

We estimate,

µT ;x0,y0(dx dy)

dx dy
=

Eρ
x0,y0

ρ−1
T 1(XT ∈ dx, YT ∈ dy) 1(ρT ≤ L)

dx dy

+
Eρ

x0,y0
ρ−1

T 1(XT ∈ dx, YT ∈ dy) 1(ρT > L)

dx dy

≥ L−1 Eρ
x0,y0

1(XT ∈ dx, YT ∈ dy) (1− 1(ρT > L))

dx dy

≥ L−1

(
Eρ

x0,y0
1(XT ∈ dx, YT ∈ dy)

dx dy
−

Eρ
x0,y0

1(XT ∈ dx, YT ∈ dy) 1(ρT > L)

dx dy

)
.
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Here ρ is a probability density on Ω. So, the first term up to the multiple L−1 is a
positive density of the two-dimensional Gaussian vector(

X

W̃

)
∼ N

((
x
y

)
, CT

)
, CT =

(
T 3/3 T 2/2
T 2/2 T

)
,

under the probability measure P ρ. In other words,

pρ
x0,y0

(x, y; T ) =

√
12

2πT 2
exp

(
−1

2
(x− x, y − y)(C−1

T )(x− x, y − y)∗
)

,

and

px0,y0(x, y; T ) ≥ L−1
(
pρ

x0,y0
(x, y; T )− pL

x0,y0
(x, y; T )

)
. (19)

In particular, the main term in the lower bound of the density pT is uniformly
bounded from below on any compact. We estimate,

inf
(x0,y0),(x1,y1)∈BR

∫
BR

(
µT ;x0,y0(dx dy)

µT ;x1,y1(dx dy)
∧ 1

)
µT ;x1,y1(dx dy)

= inf
(x0,y0),(x1,y1)∈BR

∫
BR

(
µT ;x0,y0(dx dy)

dx dy
∧ µT ;x1,y1(dx dy)

dx dy

)
dx dy

≥ inf
(x0,y0),(x1,y1)∈BR

∫
BR

L−1
(
pρ

x0,y0
(x, y; T ) ∧ pρ

x1,y1
(x, y; T )

−pL
x0,y0

(x, y; T )− pL
x1,y1

(x, y; T )
)

dx dy

≥ L−1

(
inf

(x,y),(x′,y′)∈BR

pρ
x,y(x

′, y′; T ) |BR| − 2 sup
(x,y)∈BR

P ρ
x,y(ρT > L)

)
.

We used the elementary inequality, (a− b)∧ (c− d) ≥ (a∧ c)− b− d. Next, clearly,

inf
(x,y),(x′,y′)∈BR

pρ
x,y(x

′, y′; T ) |BR| = π R2 inf
(x,y),(x′,y′)∈BR

pρ
x,y(x

′, y′; T ) > 0,

and this value does not depend on L. The second term admits the following bound
due to Bienaimé–Chebyshev (it would do with any power),

sup
(x0,y0)∈BR

P ρ
x0,y0

(ρT ≥ L) ≤ L−1 sup
(x0,y0)∈BR

Eρ
x0,y0

ρT .
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Hence, in order to complete the proof of the Lemma, it suffices to notice that

sup
(x0,y0)∈BR

Eρ
x0,y0

ρT < ∞, (20)

at least, for T > 0 small enough. Indeed, the inequality (20) has been established
in the Lemma 2 above. The Lemma 3 is proved.

Remark 9. Let us emphasize once more again that the calculus above does not
guarantee local boundedness of the transition density p (unlike pρ). Hence, an
applicability of small sets condition remains an open question, not speaking of its
optimality.

The Lemma 3 could be very helpful on its own. However, in the sequel it will be
more convenient to use some modification of its statement. Let us start our process
(X,Y ) at (x0, y0) ∈ BR, and consider the exit measure νR′

x0,y0
(·) of this process from

the cylinder
QT

R′ := {(t, x, y) : t ≤ T, |(x, y)| ≤ R′}, R′ ≥ R.

This exit measure is concentrated on the parabolic boundary of QT
R′ . Clearly, if let

R′ → ∞ – with R fixed – the mass of this function on the surface where t < T
will tend to zero. Moreover, on the part of the boundary where t = T , for any
A ∈ B(R2),

νR′

x0,y0
((T, x, y) : (x, y) ∈ A) ↑ µT ;x0,y0(A), R′ ↑ ∞.

Due to the domination νR′
x0,y0

({T} × A) ≤ µT ;x0,y0(A), the measure νR′
x0,y0

({T} × ·)
has a density with respect to µT ;x0,y0 and, hence, also with respect to the Lebesgue
measure on R2. Let us denote the latter

qR′

x0,y0
(dxdy) :=

νR′
x0,y0

(dxdy)

dxdy
.

Consider a modified local Dobrushin’s condition, with any R′ ≥ R and for simplicity
written in a truncated style,

inf
(x0,y0),(x1,y1)∈BR

∫
BR

(
dνR′

T ;x0,y0

dνR′
T ;x1,y1

∧ 1

)
dνR′

T ;x1,y1
> 0. (21)

Because of existence of densities with respect to the Lebesgue measure, it is possible
to rewrite the latter equivalently as

inf
(x0,y0),(x1,y1)∈BR

∫
BR

(
dνR′

T ;x0,y0

dΛ
∧

dνR′
T ;x1,y1

dΛ

)
dΛ =: κR,R′ > 0, (22)
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where Λ denotes the Lebesgue measure on the whole parabolic boundary of the
cylinder QR′

T , i.e. on the set {(T, x, y) : |(x, y)| ≤ R′}.

Lemma 4 Let (A1) be satisfied. Then for any R > 0 there exist R′ ≥ R and c > 0
such that (22) holds true.

Proof follows from the monotone convergence theorem. Indeed, as R′ ↑ ∞, the den-

sities
dνR′

dxdy
on the boundary where t = T increase, and they almost everywhere con-

verge to the density
dµ

dxdy
. Hence, the sequence of minimums of two sub-probability

densities also monotonically converges almost everywhere on the boundary t = T ,(
dνR′

T ;x0,y0

dΛ
∧

dνR′
T ;x1,y1

dΛ

)
t=T

↑
(

µT ;x0,y0(dx dy)

dx dy
∧ µT ;x1,y1(dx dy)

dx dy

)
, R′ ↑ ∞.

So, the condition (22) follows from (17). The Lemma 4 is proved.

3.3 Lyapunov functions and hitting time bounds

The main ideas of this section are due to [9]-[11]; however, our presentation contains
some further news adjusted so as to serve establishing mixing bounds.

Lemma 5 Let the assumptions (A1)–(A2) be satisfied. Then for the system (8–9)
there exists a constant C > 0 such that

sup
t≥0

Ex,y(|Xt|2 + |Yt|2) ≤ C(1 + |x|2 + |y|2).

Proof follows from [9], with the Lyapunov function suggested there,

f(x, y) = βx2 + εxy + y2,

where ε > 0 is small enough. Let us remind the main line, entirely for the reader’s
convenience. Let gx,y(t) ≡ g(t) := Ex,yf(Xt, Yt); from general martingale inequali-
ties it easily follows that this function is locally bounded. There exists ε0 > 0 such
that for any ε0 > ε > 0

f(x, y) ≥ 1

2
(βx2 + y2),
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and, of course,
f(x, y) ≤ C (x2 + y2).

Hence it suffices to show that g(t) ≤ C(1 + |x|2 + |y|2) for any t ≥ 0 with some
C > 0. Naturally, g(0) = f(x, y) ≤ C(1 + |x|2 + |y|2). Applying Itô’s formula, we
find that there exist positive constants ε and δ such that

d

dt
g(t) ≤ −C(ε, δ)g(t) +

ε

2δ
+ σ2, (23)

where C(ε, δ) > 0. From here it follows that

g(t) ≤ g(0) exp(−C(ε, δ)t) + (
ε

2δ
+ σ2) C(ε, δ)−1. (24)

Clearly, the arguments above may require some localization procedure which is quite
standard. The Lemma 5 is proved.

Corollary 1 There exists a stationary distribution µ∞ with the property∫
(x2 + y2) µ∞(dx dy) < ∞.

The proof follows from the Lemma 5 as in [9], for example.

Lemma 6 Let (A1)–(A2) be satisfied, and R be large enough. Then for the system
(8–9) there exist C, α > 0 such that

Ex,y exp(ατ) ≤ C(1 + f(x, y)),

The proof of Lemma 6 follows easily from the standing inequality above (23), simi-
larly to the calculus in [73] or [61].

We will need a similar technical inequality for a process in a double–dimension
state space. Namely, we consider another independent copy (X̄t, Ȳt, t ≥ 0) of the
process (Xt, Yt, t ≥ 0), possibly with another initial condition. Let Zt = (Xt, Yt),
Z̄t = (X̄T , Ȳt).

Lemma 7 Let (A1)–(A2) be satisfied, and R be large enough. Then for the system
(8–9) there exist C, α > 0 such that

Ez,z′ exp(αγ) ≤ C (1 + f(z) + f(z′)),

where γ is defined as follows,

γ := inf(t ≥ 0 : |Zt| ∨ |Z̄t| ≤ R).
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The proof follows similarly from the Lyapunov inequality above (23), cf. [73] or [61].

Remark 8. Such inequalities are frequently needed in techniques which use cou-
pling. They usually do follow from a similar analysis as without space-doubling.
However, it is a bit unclear whether such assertions may follow, say, from the Lemma
6 automatically, i.e. without a new calculus.

3.4 Mixing rate bounds

Next step is mixing and convergennce rate to the stationary regime. Remind the
definition of beta-mixing coefficient,

βx,y
t := sup

s≥0
Ex,y sup

B∈B2

(Px,y((Xt+s, Yt+s) ∈ B)−Px,y((Xt+s, Yt+s) ∈ B | FX,Y
s )), (25)

where (x, y) is the initial condition for the equation. The coefficient βx,y
t dominates

the (non-stationary) alpha-mixing coefficient introduced (in the stationary form) by
Rosenblatt, and the latter is widely used for establishing all kinds of limit theo-
rems. Hence, naturally, βx,y

t is also suitable for this goal. The stationary version
of the coefficient βt is widely known as Kolmogorov’s coefficient (for the first time
it appeared in the joint work by his students Volkonskii and Rosanov). The non-
stationary version of beta-coefficient for Markov processes (25) was investigated, in
particular, in a series of papers by the second author. The approach consists of two
parts, recurrency – e.g., via Lyapunov functions – and “local mixing condition”.
Both issues have been studied in the previous sections, and now we can turn to our
second main goal, i.e. beta-mixing bounds.

In the sequel, µx,y
t denotes the marginal distribution of (Xt, Yt), the couple with the

initial state (x, y), and µ∞ stands for its (unique) invariant distribution if the latter
exists.

Theorem 2 Let the system (8) satisfy (A1) and (A2). Then there exists a unique
probability distribution µ∞ which does not depend on initial data (x, y), and there
exist C, c > 0 such that

‖µx,y
t − µ∞‖TV ≤ C exp(−ct)(1 + x2 + y2), t ≥ 0, (26)

and also
βx,y

t ≤ C exp(−ct)(1 + x2 + y2), t ≥ 0. (27)
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Proof. The plan is to use the Lemmas 7 and 4 and the calculus from [73], with a
natural replacement of polynomial inequalities by exponential ones.

1. Consider a couple of independent processes Zt = (Xt, Yt), t ≥ 0, and Z̃t =
(X̃t, Ỹt), t ≥ 0, where (Xt, Yt) is a solution of the (8), while Z̃t now is a stationary
version of the Markov process with the same generator and with a finite seond
moment (see the Corollary 1). On the direct product of those two probability
spaces, construct a sequence of stopping time, following [29],

τ̂1 = inf(t ≥ 0 : |Zt| ∨ |Z̃t| ≤ R),

and for all n ≥ 1,

Tn = inf(t ≥ τ̂n : |Zt| ≥ R′, or |Z̃t| ≥ R′) ∧ (τ̂n + 1),

τ̂n+1 = inf(t ≥ Tn : |Zt| ∨ |Z̃t| ≤ R).

2. Using the coupling method as in [62], due to the Lemma 4, we can construct
a new process Z̄. (a copy of Z.) and a stopping time L ≥ 0 on some extended
probability space, so that

Pz,Z̃0
(Z̄t = Zt , t ≤ L− 1) = Pz,Z̃0

(Z̄t = Z̃t, t ≥ L) = 1. (28)

Here z = (x, y), while Z̃0 has a stationary distribution, Pz,Z̃0
means conditional

probability given Z̃0 and Z0 = z; Pz stands for probability given only Z0 = z. It
follows from the implementation of the coupling method as in [60] that there exists
q ≤ 1− κR,R′ such that

Pz,Z̃0
(L > τ̂n) ≤ qn, ∀n. (29)

Naturally, we choose here R,R′ so that κR,R′ > 0, which is possible due to the
Lemma 4. We have, ∀C ∈ B(R2),

|Pz(Zt ∈ C)− P (Z̃t ∈ C)| = |Pz(Z̄t ∈ C)−
∫

Pz̃(Z̃t ∈ C) µ∞(dz̃)|

(30)

= |
∫ (

Pz(Z̄t ∈ C)− Pz̃(Z̃t ∈ C)
)

µ∞(dz̃)| ≤ Ez Pz,Z̃0
(L ≥ t).

So,
||µx,y

t − µ∞||TV := 2 sup
C

(µx,y
t (C)− µ∞(C)) ≤ 2EzPz,Z̃0

(L ≥ t).
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3. Now, with a−1 + b−1 = 1, a, b > 1, by Rogers – Hölder’s inequality (known
usually as Hölder’s), the following holds:

Pz,Z̃0
(L > t) =

∞∑
n=0

Ez,Z̃0
1(L > t)1(τ̂n ≤ t < τ̂n+1)

≤
∑
n≥0

Pz,Z̃0
(L > τ̂n)1/aPz,Z̃0

(τ̂n+1 > t)1/b ≤
∑
n≥0

qn/aPz,Z̃0
(τ̂n+1 > t)1/b.

By Bienaimé–Chebyshev, the Lemmae 5 and 7, and by induction,

Pz,Z̃0
(τ̂n+1 > t) ≤ e−αtEz,Z̃0

eατ̂n+1

= e−αt Ez,Z̃0
eα(τ̂1+

∑n

k=1
(τ̂k+1−τ̂k)) ≤ e−αtCn

R C(1 + |x|2 + |y|2 + |X̃0|2 + |Ỹ0|2).

Hence, given the initial values X0 and Y0 for the process Zt, we get

Pz,Z̃0
(L > t) ≤ (1 + |x|2 + |y|2 + |X̃0|2 + |Ỹ0|2) exp(−αb−1t)

×
∑
n≥0

exp(−n(a−1 ln q−1 − b−1 ln CR)).

By choosing a, b, so that a−1 ln q−1 − b−1 ln(CR) > 0, which is possible due to

lim
b→∞

b−1 ln(CR) = 0, and lim
a→1

a−1 ln q−1 = ln q−1 > 0,

we get here in the right hand side a convergent series and, hence, due to the Corollary
1, the required bound (26) follows after integration over X̃0 and Ỹ0.
4. Beta-mixing is established similarly (see, for example, [73]), and we drop the
details. The Theorem 2 is proved.

Remark 8. Hence, some part of analysis in [9] et al. concerning invariant measures
for systems (8)–(9) can be accomplished by the exponential rate of convergence.
More than that, clearly, this conclusion may be extended on a wider class of equa-
tions, but we will not pursue it here. It is interesting to notice that we have achieved
even a bit more than promised: in the right hand side of the bound (26) we may ac-
tually have a multiple (1+|x|2+|y|2)1/b with some b > 1, rather than (1+|x|2+|y|2).

The last assertion is a trivial consequence of the Theorem 2 – by integration –
and it returns the reader to the standing assumption needed for averaging from the
Section 2.
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Corollary 2 Let function (f(x, y), x, y ∈ R1) be Borel and bounded and let the
process Zt = (Xt, Yt) satisfy (8)–(9). Then there exists C > 0 such that for any x, y
and any T > 0,

sup
t,x,y

Ex,y

∣∣∣∣∣ 1T
∫ t+T

t
f(Xs, Ys) ds−

∫
f(x′, y′)µ∞(dx′dy′)

∣∣∣∣∣
(31)

≤ C‖f‖B ×min

(
1 + |x|2 + |y|2

T
, 1

)
.

This is a way to establish (5) with κ(T ) ≤ C ‖f‖B T−1, because (31) is a special
form of the former, while the Lemma 5 provides (6). Remind that the couple (X, Y )
here plays the role of the component (yx,y

t , t ≥ 0) in (5)–(6).
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tions (Russian), Kibernetika, 4(3) (1968), 260-279.

[30] R. Z. Has’minski, Stochastic stability of differential equations. Sijthoff Noord-
hoff, Alphen aan den Rijn, The Netherlands, and Rockville, Maryland, USA,
1980.

25



[31] V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of Differential Op-
erators and Integral Functionals, Springer-Verlag, New York, 1994.

[32] V. V. Jikov, S. M. Kozlov, Multiscaled homogenization. In: Berdichevsky, V.
(ed.) et al., Homogenization. In memory of Serguei Kozlov. Singapore: World
Scientific. Ser. Adv. Math. Appl. Sci. 50, 35-64 (1999).

[33] I. Karatzas, S. E. Shreve, Brownian motion and stochastic calculus. Springer-
Verlag, 1991.

[34] R. Z. Khasminskii, Principle of Averaging for Parabolic and Elliptic Differential
Equations and for Markov Processes with Small Diffusion, Theory Probab.
Appl., 8(1) (1963), 1-21.

[35] R. Z. Khasminskii, On the averaging principle for Itô stochastic differential
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