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Abstract. These lecture notes concentrate on some general facts and

ideas of the theory of stochastic processes. The main objects of study

are the Wiener process, the stationary processes, the infinitely divisible

processes, and the Itô stochastic equations.

Although it is not possible to cover even a noticeable portion of the

topics listed above in a short course, the author sincerely hopes that

after having followed the material presented here the reader acquires a

good understanding of what kind of results are available and what kind

of techniques are used to obtain them.

These notes are intended for graduate students and scientists in

mathematics, physics and engineering interested in the theory of Ran-

dom Processes and its applications.
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§8. The structure of Itô integrable functions 65

§9. Hints to exercises 69

Chapter 3. Martingales 71

vii



viii Contents

§1. Conditional expectations 71

§2. Discrete time martingales 78

§3. Properties of martingales 81

§4. Limit theorems for martingales 87

§5. Hints to exercises 92

Chapter 4. Stationary Processes 95

§1. Simplest properties of second-order stationary processes 95

§2. Spectral decomposition of trajectories 101

§3. Ornstein-Uhlenbeck process 105

§4. Gaussian stationary processes with rational spectral densities 112

§5. Remarks about predicting Gaussian stationary
processes with rational spectral densities 117

§6. Stationary processes and the Birkhoff-Khinchin theorem 119

§7. Hints to exercises 127

Chapter 5. Infinitely Divisible Processes 131

§1. Stochastically continuous processes with independent increments131
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Chapter 2

The Wiener Process

1. Brownian motion and the Wiener process

Robert Brown, an English botanist, observed (1828) that pollen grains sus-
pended in water perform an unending chaotic motion. L. Bachelier (1900)
derived the law governing the position wt at time t of a single grain perform-
ing a one-dimensional Brownian motion starting at a ∈ R at time t = 0:

Pa{wt ∈ dx} = p(t, a, x) dx, (1)

where

p(t, a, x) =
1

√
2πt

e−(x−a)2/(2t)

is the fundamental solution of the heat equation

∂u

∂t
=
1

2

∂2u

∂a2
.

Bachelier (1900) also pointed out the Markovian nature of the Brownian
path and used it to establish the law of maximum displacement

Pa{max
s≤t

ws ≤ b} =
2

√
2πt

� b

0
e−x

2/(2t) dx, t > 0, b ≥ 0.

Einstein (1905) also derived (1) from statistical mechanics considerations
and applied it to the determination of molecular diameters. Bachelier was
unable to obtain a clear picture of the Brownian motion, and his ideas were

27



28 Chapter 2. The Wiener Process, Sec 1

unappreciated at the time. This is not surprising, because the precise math-
ematical definition of the Brownian motion involves a measure on the path
space, and even after the ideas of Borel, Lebesgue, and Daniell appeared,
N. Wiener (1923) only constructed a Daniell integral on the path space
which later was revealed to be the Lebesgue integral against a measure, the
so-called Wiener measure.

The simplest model describing movement of a particle subject to hits by
much smaller particles is the following. Let ηk, k = 1, 2, ..., be independent
identically distributed random variables with Eηk = 0 and Eη2

k = 1. Fix
an integer n, and at times 1/n, 2/n, ... let our particle experience instant
displacements by η1n

−1/2, η2n
−1/2, .... At moment zero let our particle be

at zero. If

Sk := η1 + ...+ ηk,

then at moment k/n our particle will be at the point Sk/
√
n and will stay

there during the time interval [k/n, (k+1)/n). Since real Brownian motion
has continuous paths, we replace our piecewise constant trajectory by a
continuous piecewise linear one preserving its positions at times k/n. Thus
we come to the process

ξnt := S[nt]/
√
n+ (nt− [nt])η[nt]+1/

√
n. (2)

This process gives a very rough caricature of Brownian motion. Clearly,
to get a better model we have to let n → ∞. By the way, precisely this
necessity dictates the intervals of time between collisions to be 1/n and the
displacements due to collisions to be ηk/

√
n, since then ξnt is asymptotically

normal with parameters (0, 1).

It turns out that under a very special organization of randomness, which
generates different {ηk; k ≥ 1} for different n, one can get the situation where
the ξnt converge for each ω uniformly on each finite interval of time. This
is a consequence of a very general result due to Skorokhod. We do not use
this result, confining ourselves to the weak convergence of the distributions
of ξn· .

1. Lemma. The sequence of distributions of ξn· in C is relatively compact.

Proof. For simplicity we assume that m4 := Eη4
k < ∞, referring the

reader to [Bi] for the proof in the general situation. Since ξn0 = 0, by
Theorem 1.4.7 it suffices to prove that

E|ξnt − ξ
n
s |

4 ≤ N |t− s|2 ∀s, t ∈ [0, 1], (3)
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where N is independent of n, t, s.

Without loss of generality, assume that s < t. Denote an = E(Sn)
4.

By virtue of the independence of the ηk and the conditions Eηk = 0 and
Eη2

k = 1, we have

an+1 = E(Sn + ηn+1)
4 = an + 4ES

3
nηn+1 + 6ES

2
nη

2
n+1

+ 4ESnη
3
n+1 +m4 = an + 6n+m4.

Hence (for instance, by induction),

an = 3n(n− 1) + nm4 ≤ 3n
2 + nm4.

Furthermore, if s and t belong to the same interval [k/n, (k + 1)/n], then

|ξnt − ξ
n
s | =

√
n|ηk+1| |t− s|,

E|ξnt − ξ
n
s |

4 = n2m4|t− s|
4 ≤ m4|t− s|

2. (4)

Now, consider the following picture, where s and t belong to different
intervals of type [k/n, (k + 1)/n) and by crosses we denote points of type
k/n:

× × × × × ×
s1 t1 ts

||

Clearly

s1 − s ≤ t− s, t− t1 ≤ t− s, t1 − s1 ≤ t− s, (t1 − s1)/n ≤ (t1 − s1)
2,

s1 = ([ns] + 1)/n, t1 = [nt]/n, [nt]− ([ns] + 1) = n(t1 − s1).

Hence and from (4) and the inequality (a+ b+ c)4 ≤ 81(a4+ b4+ c4) we
conclude that

E|ξnt − ξ
n
s |

4 ≤ 81E(|ξnt − ξ
n
t1 |

4 + |ξnt1 − ξ
n
s1 |

4 + |ξns1 − ξ
n
s |

4)

≤ 162(t − s)2m4 + 81E|S[nt]/
√
n− S[ns]+1/

√
n|4

= 162(t − s)2m4 + 81n
−2a[nt]−([ns]+1)
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≤ 162(t − s)2m4 + 243(t− s)
2 + 81(t1 − s1)m4/n ≤ 243(m4 + 1)|t− s|

2.

Thus for all positions of s and t we have (3) with N = 243(m4 + 1). The
lemma is proved.

Remember yet another definition from probability theory. We say that a
sequence ξn, n ≥ 1, of R

k-valued random variables is asymptotically normal
with parameters (m,R) if Fξn converges weakly to the Gaussian distribution
with parameters (m,R) (by Fξ we denote the distribution of a random vari-
able ξ). Below we use the fact that the weak convergence of distributions is
equivalent to the pointwise convergence of their characteristic functions.

2. Lemma. For every 0 ≤ t1 < t2 < ... < tk ≤ 1 the vectors (ξnt1 , ξ
n
t2 , ..., ξ

n
tk
)

are asymptotically normal with parameters (0, (ti ∧ tj)).

Proof. We only consider the case k = 2. Other k’s are treated similarly.
We have

λ1ξ
n
t1 + λ2ξ

n
t2 = (λ1 + λ2)S[nt1]/

√
n+ λ2(S[nt2] − S[nt1]+1)/

√
n

+η[nt1]+1{(nt1 − [nt1])λ1/
√
n+ λ2/

√
n}+ η[nt2]+1(nt2 − [nt2])λ2/

√
n.

On the right, we have a sum of independent terms. In addition, the coeffi-
cients of η[nt1]+1 and η[nt2]+1 go to zero and

E exp(ianη[nt]+1) = E exp(ianη1)→ 1 as an → 0.

Finally, by the central limit theorem, for ϕ(λ) = E exp(iλη1),

lim
n→∞

ϕn(λ/
√
n) = e−λ

2/2.

Hence,

lim
n→∞

Eei(λ1ξnt1
+λ2ξnt2

) = lim
n→∞

�
ϕ(λ1/

√
n+λ2/

√
n)

�[nt1]�ϕ(λ2/
√
n)

�[nt2]−[nt1]−1

= exp{−((λ1 + λ2)
2t1 + λ

2
2(t2 − t1))/2}

= exp{−(λ2
1(t1 ∧ t1) + 2λ1λ2(t1 ∧ t2) + λ

2
2(t2 ∧ t2))/2}.

The lemma is proved.

3. Theorem (Donsker). The sequence of distributions Fξn· weakly converges
on C to a measure. This measure is called the Wiener measure.
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Proof. Owing to Lemma 1, there is a sequence ni → ∞ such that Fξni
·

converges weakly to a measure µ. By Exercise 1.2.10 it only remains to
prove that the limit is independent of the choice of subsequences.

Let Fξmi
·
be another weakly convergent subsequence and ν its limit. Fix

0 ≤ t1 < t2 < ... < tk ≤ 1 and define a continuous function on C by the
formula π(x·) = (xt1 , ..., xtk ). By Lemma 2, considering π as a random
element on (C,B(C), µ), for every bounded continuous f(x1, ..., xk), we get

�

Rk

f(x1, ..., xk)µπ−1(dx) =

�

C
f(xt1 , ..., xtk )µ(dx·)

= lim
i→∞

�

C
f(xt1 , ..., xtk )Fξni

·
(dx·) = lim

i→∞
Ef(ξni

t1 , ..., ξ
ni
tk
) = Ef(ζ1, ..., ζk),

where (ζ1, ..., ζk) is a random vector normally distributed with parameters
(0, ti ∧ tj). One gets the same result considering mi instead of ni. By Theo-
rem 1.2.4, we conclude that µπ−1 = νπ−1. This means that for every Borel
B(k) ⊂ R

k the measures µ and ν coincide on the set {x· : (xt1 , ..., xtk ) ∈

B(k)}. The collection of all such sets (with varying k, t1, ..., tk) is an alge-
bra. By a result from measure theory, a measure on a σ-field is uniquely
determined by its values on an algebra generating the σ-field. Thus µ = ν
on B(C), and the theorem is proved.

Below we will need the conclusion of the last argument from the above
proof, showing that there can be only one measure on B(C) with given
values on finite dimensional cylinder subsets of C.

4. Remark. Since Gaussian distributions are uniquely determined by their
means and covariances, finite-dimensional distributions of Gaussian pro-
cesses are uniquely determined by mean value and covariance functions.
Hence, given a continuous Gaussian process ξt, its distribution on (C,B(C))
is uniquely determined by the functions mt and R(s, t).

5. Definition. By a Wiener process we mean a continuous Gaussian pro-
cess on [0, 1] with mt = 0 and R(s, t) = s ∧ t.

As follows from above, the distributions of all Wiener processes on
(C,B(C)) coincide if the processes exist at all.

6. Exercise*. Prove that if wt is a Wiener process on [0, 1] and c is a
constant with c ≥ 1, then cwt/c2 is also a Wiener process on [0, 1]. This
property is called self-similarity of the Wiener process.

7. Theorem. There exists a Wiener process, and its distribution on
(C,B(C)) is the Wiener measure.
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Proof. Let µ be the Wiener measure. On the probability space (C,B(C),
µ) define the process wt(x·) = xt. Then, for every 0 ≤ t1 < ... < tk ≤ 1 and
continuous bounded f(x1, ..., xk), as in the proof of Donsker’s theorem, we
have

Ef(wt1 , ..., wtk ) =

�

C
f(xt1 , ..., xtk )µ(dx·)

= lim
n→∞

Ef(ξnt1 , ..., ξ
n
tk
) = Ef(ζ1, ..., ζk),

where ζ is a Gaussian vector with parameters (0, (ti ∧ tj)). Since f is arbi-

trary, we see that the distribution of (wt1 , ..., wtk ) and (ζ
1, ..., ζk) coincide,

and hence (wt1 , ..., wtk ) is Gaussian with parameters (0, (ti ∧ tj)). Thus, wt
is a Gaussian process, Ewti = 0, and R(ti, tj) = Ewtiwtj = Eζiζj = ti ∧ tj.
The theorem is proved.

This theorem and the remark before it show that the limit in Donsker’s
theorem is independent of the distributions of the ηk as long as Eηk = 0
and Eη2

k = 1. In this framework Donsker’s theorem is called the invariance
principle (although there is no more “invariance” in this theorem than in
the central limit theorem).

2. Some properties of the Wiener process

First we prove two criteria for a process to be a Wiener process.

1. Theorem. A continuous process on [0, 1] is a Wiener process if and only
if

(i) w0 = 0 (a.s.),

(ii) wt −ws is normal with parameters (0, |t− s|) for every s, t ∈ [0, 1],

(iii) wt1 , wt2 − wt1 , ...wtn − wtn−1 are independent for every n ≥ 2 and
0 ≤ t1 ≤ t2 ≤ ... ≤ tn ≤ 1.

Proof. First assume that wt is a Wiener process. We have w0 ∼ N(0, 0),
hence w0 = 0 (a.s.). Next take 0 ≤ t1 ≤ t2 ≤ ... ≤ tn ≤ 1 and let

ξ1 = wt1 , ξ2 = wt2 −wt1 , ..., ξn = wtn − wtn−1 .

The vector ξ = (ξ1, ..., ξn) is a linear transform of (wt1 , ..., wtn ). There-
fore ξ is Gaussian. In particular ξi and, generally, wt − ws are Gaussian.
Obviously, Eξi = 0 and, for i > j,

Eξiξj = E(wti − wti−1)(wtj −wtj−1) = Ewtiwtj −Ewti−1wtj − Ewtiwtj−1

+Ewti−1wtj−1 = tj − tj − tj−1 + tj−1 = 0.
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Similarly, the equality Ewtws = s ∧ t implies that E|wt −ws|
2 = |t− s|.

Thus wt − ws ∼ N(0, |t − s|), and we have proved (ii). In addition ξi ∼
N(0, ti − ti−1), Eξ

2
i = ti − ti−1, and

E exp{i
�

k

λkξk} = exp{−
1

2

�

k,r

λkλrcov (ξk, ξr)}

= exp{−
1

2

�

k

λ2
k(tk − tk−1)} =

�

k

E exp{iλkξk}.

This proves (iii).

Conversely, let wt be a continuous process satisfying (i) through (iii).
Again take 0 ≤ t1 ≤ t2 ≤ ... ≤ tn ≤ 1 and the same ξi’s. From (i) through
(iii), it follows that (ξ1, ..., ξn) is a Gaussian vector. Since (wt1 , ..., wtn ) is a
linear function of (ξ1, ..., ξn), (wt1 , ..., wtn ) is also a Gaussian vector; hence
wt is a Gaussian process. Finally, for every t1, t2 ∈ [0, 1] satisfying t1 ≤ t2,
we have

mt1 = Eξ1 = 0, R(t1, t2) = R(t2, t1) = Ewt1wt2 = Eξ1(ξ1 + ξ2)

= Eξ21 = t1 = t1 ∧ t2.

The theorem is proved.

2. Theorem. A continuous process on [0, 1] is a Wiener process if and only
if

(i) w0 = 0 (a.s.),

(ii) wt − ws is normal with parameters (0, |t − s|) for every s, t ∈ [0, 1],

(iii) for every n ≥ 2 and 0 ≤ t1 ≤ t2 ≤ ... ≤ tn ≤ 1, the random variable
wtn − wtn−1 is independent of wt1 , wt2 , ...wtn−1 .

Proof. It suffices to prove that properties (iii) of this and the previous
theorems are equivalent under the condition that (i) and (ii) hold. We are
going to use the notation from the previous proof. If (iii) of the present
theorem holds, then

E exp{i
n�

k=1

λkξk} = E exp{iλnξn}E exp{i
n−1�

k=1

λkξk},

since (ξ1, ..., ξn−1) is a function of (wt1 , ..., wtn−1 ). By induction,

E exp{i

n�

k=1

λkξk} =
�

k

E exp{iλkξk}.
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This proves property (iii) of the previous theorem. Conversely if (iii) of the
previous theorem holds, then one can carry out the same computation in
the opposite direction and get that ξn is independent of (ξ1, ..., ξn−1) and of
(wt1 , ..., wtn−1), since the latter is a function of the former. The theorem is
proved.

3. Theorem (Bachelier). For every t ∈ (0, 1] we have maxs≤t ws ∼ |wt|,
which is to say that for every x ≥ 0

P{max
s≤t

ws ≤ x} =
2

√
2πt

� x

0
e−y

2/(2t) dy.

Proof. Take independent identically distributed random variables ηk so
that P (ηk = 1) = P (ηk = −1) = 1/2, and define ξnt by (1.2). First we want
to find the distribution of

ζn = max
[0,1]

ξnt = n
−1/2max

k≤n
Sk.

Observe that, for each n, the sequence (S1, ..., Sn) takes its every par-
ticular value with the same probability 2−n. In addition, for each integer
i > 0, the number of sequences favorable for the events

{max
k≤n

Sk ≥ i, Sn < i} and {max
k≤n

Sk ≥ i, Sn > i} (1)

is the same. One proves this by using the reflection principle; that is, one
takes each sequence favorable for the first event, keeps it until the moment
when it reaches the level i and then reflects its remaining part about this
level. This implies equality of the probabilities of the events in (1). Further-
more, due to the fact that i is an integer, we have

{ζn ≥ in−1/2, ξn1 < in
−1/2} = {max

k≤n
Sk ≥ i, Sn < i}

and

{ζn ≥ in−1/2, ξn1 > in
−1/2} = {max

k≤n
Sk ≥ i, Sn > i}.

Hence,

P{ζn ≥ in−1/2, ξn1 < in
−1/2} = P{ζn ≥ in−1/2, ξn1 > in

−1/2}.

Moreover, obviously,

P{ζn ≥ in−1/2, ξn1 > in
−1/2} = P{ξn1 > in

−1/2},
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P{ζn ≥ in−1/2} = P{ζn ≥ in−1/2, ξn1 > in
−1/2}

+ P{ζn ≥ in−1/2, ξn1 < in
−1/2}+ P{ξn1 = in

−1/2}.

It follows that

P{ζn ≥ in−1/2} = 2P{ξn1 > in
−1/2}+ P{ξn1 = in

−1/2} (2)

for every integer i > 0. The last equality also obviously holds for i = 0. We
see that for numbers a of type in−1/2, where i is a nonnegative integer, we
have

P{ζn ≥ a} = 2P{ξn1 > a}+ P{ξ
n
1 = a}. (3)

Certainly, the last probability goes to zero as n → ∞ since ξn1 is asymp-
totically normal with parameters (0, 1). Also, keeping in mind Donsker’s
theorem, it is natural to think that

P{max
s≤1

ξns ≥ a} → P{max
s≤1

ws ≥ a}, 2P{ξn1 > a} → 2P{w1 > a}.

Therefore, (3) naturally leads to the conclusion that

P{max
s≤1

ws ≥ a} = 2P{w1 > a} = P{|w1| > a} ∀a ≥ 0,

and this is our statement for t = 1.

To justify the above argument, notice that (2) implies that

P{ζn = in−1/2} = P{ζn ≥ in−1/2} − P{ζn ≥ (i+ 1)n−1/2}

= 2P{ξn1 = (i+ 1)n
−1/2}+ P{ξn1 = in

−1/2} − P{ξn1 = (i+ 1)n
−1/2}

= P{ξn1 = (i+ 1)n
−1/2}+ P{ξn1 = in

−1/2}, i ≥ 0.

Now for every bounded continuous function f(x) which vanishes for x < 0
we get

Ef(ζn) =
∞�

i=0

f(in−1/2)P{ζn = in−1/2} = Ef(ξn1 − n
−1/2 ) + Ef(ξn1 ).

By Donsker’s theorem and by the continuity of the function x· → max[0,1] xt
we have

Ef(max
[0,1]

wt) = 2Ef(w1) = Ef(|w1|).
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We have proved our statement for t = 1. For smaller t one uses Exercise 1.6,
saying that cws/c2 is a Wiener process for s ∈ [0, 1] if c ≥ 1. The theorem is
proved.

4. Theorem (on the modulus of continuity). Let wt be a Wiener process
on [0, 1], 1/2 > ε > 0. Then for almost every ω there exists n ≥ 0 such that
for each s, t ∈ [0, 1] satisfying |t− s| ≤ 2−n, we have

|wt − ws| ≤ N |t− s|
1/2−ε,

where N depends only on ε. In particular, |wt| = |wt − w0| ≤ Nt1/2−ε for
t ≤ 2−n.

Proof. Take a number α > 2 and denote β = α/2 − 1. Let ξ ∼ N(0, 1).
Since wt − ws ∼ N(0, |t− s|), we have wt − ws ∼ ξ|t− s|

1/2. Hence

E|wt − ws|
α = |t− s|α/2E|ξ|α = N1(α)|t− s|

1+β.

Next, let

Kn(a) = {x· ∈ C : |x0| ≤ 2
n, |xt − xs| ≤ N(a)|t− s|

a ∀|t− s| ≤ 2−n}.

By Theorem 1.4.6, for 0 < a < βα−1, we have

P{w· ∈

∞�

n=1

Kn(a)} = 1.

Therefore, for almost every ω there exists n ≥ 0 such that for all s, t ∈ [0, 1]
satisfying |t − s| ≤ 2−n, we have |wt(ω) − ws(ω)| ≤ N(a)|t − s|a. It only
remains to observe that we can take a = 1/2− ε if from the very beginning
we take α > 1/ε (for instance α = 2/ε). The theorem is proved.

5. Exercise. Prove that there exists a constant N such that for almost
every ω there exists n ≥ 0 such that for each s, t ∈ [0, 1] satisfying |t− s| ≤
2−n, we have

|wt − ws| ≤ N
�
|t− s|(− ln |t− s|),

The result of Exercise 5 is not far from the best possible. P. Lévy proved
that

lim
0≤s<t≤1
u=t−s→0

|wt − ws|�
2u(− ln u)

= 1 (a.s.).
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6. Theorem (on quadratic variation). Let 0 = t0n ≤ t1n ≤ ... ≤ tknn = 1
be a sequence of partitions of [0, 1] such that maxi(ti+1,n − tin) → 0 as
n→∞. Also let 0 ≤ s ≤ t ≤ 1. Then, in probability as n→∞,

�

s≤tin≤ti+1,n≤t

(wti+1,n − wtin)
2 → t− s. (4)

Proof. Let

ξn :=
�

s≤tin≤ti+1,n≤t

(wti+1,n − wtin)
2

and observe that ξn is a sum of independent random variables. Also use that
if η ∼ N(0, σ2), then η = σζ, where ζ ∼ N(0, 1), and Var η2 = σ4Var ζ2.
Then, for N := Var ζ, we obtain

Var ξn =
�

s≤tin≤ti+1,n≤t

Var [(wti+1,n − wtin)
2] = N

�

s≤tin≤ti+1,n≤t

(ti+1,n − tin)
2

≤ N max
i
(ti+1,n − tin)

�

0≤tin≤ti+1,n≤1

(ti+1,n − tin) = N max
i
(ti+1,n − tin)→ 0.

In particular, ξn − Eξn → 0 in probability. In addition,

Eξn =
�

s≤tin≤ti+1,n≤t

(ti+1,n − tin)→ t− s.

Hence ξn − (t − s) = ξn − Eξn + Eξn − (t − s) → 0 in probability, and the
theorem is proved.

7. Exercise. Prove that if tin = i/2n, then the convergence in (4) holds
almost surely.

8. Corollary. It is not true that there exist functions ε(ω) and N(ω) such
that with positive probability ε(ω) > 0, N(ω) <∞, and

|wt(ω)− ws(ω)| ≤ N(ω)|t− s|
1/2+ε(ω)

whenever t, s ∈ [0, 1] and |t− s| ≤ ε(ω).

Indeed, if |wt(ω) − ws(ω)| ≤ N(ω)|t − s|1/2+ε(ω) for |t − s| sufficiently
small, then

�

i

(wti+1,n(ω)− wtin(ω))
2 ≤ N2

�

i

(ti+1,n − tin)
1+2ε → 0.

9. Corollary. P{Var[0,1]wt =∞} = 1.
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This follows from the fact that, owing to the continuity of wt,

�

i

(wti+1,n(ω)− wtin(ω))
2 ≤ max

i
|wti+1,n(ω)− wtin(ω)|Var[0,1]wt(ω)→ 0

if Var[0,1]wt(ω) <∞.

10. Exercise. Let wt be a one-dimensional Wiener process. Find

P{max
s≤1

ws ≥ b, w1 ≤ a}.

The following exercise is a particular case of the Cameron-Martin the-

orem regarding the process wt −
� t
0 fs ds with nonrandom f . Its extremely

powerful generalization for random f is known as Girsanov’s Theorem 6.8.8.

11. Exercise. Let wt be a one-dimensional Wiener process on a probability
space (Ω,F , P ). Prove that

Eewt−t/2 = 1.

Introduce a new measure by Q(dω) = ew1−1/2P (dω). Prove that (Ω,F , Q)
is a probability space, and that wt − t, t ∈ [0, 1], is a Wiener process on
(Ω,F , Q).

12. Exercise. By using the results in Exercise 11 and the fact that the
distributions on (C,B(C)) of Wiener processes coincide, show that

P{max
s≤1

[ws + s] ≤ a} = Ee
w1−1/2Imaxs≤1 ws≤a.

Then by using the result in Exercise 10, compute the last expectation.

Unboundedness of the variation of Wiener trajectories makes it hard to
justify the following argument. In real situations the variance of Brownian
motion of pollen grains should depend on the water temperature. If the
temperature is piecewise constant taking constant value on each interval of
a partition 0 ≤ t1 < t2 < ... < tn = 1, then the trajectory can be modeled
by

�

ti+1≤t

(wti+1 − wti)fi + (wt − wtk)fk,

where k = max{i : ti ≤ t} and the factor fi reflects the dependence of the
variance on temperature for t ∈ [ti, ti+1). The difficulty comes when one
tries to pass from piecewise constant temperatures to continuously changing
ones, because the sum should converge to an integral against wt as we make
partitions finer and finer. On the other hand, the integral against wt is not
defined since the variation of wt is infinite for almost each ω. Yet there is a
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rather narrow class of functions f , namely functions of bounded variation,
for which one can define the Riemann integral against wt pathwise (see
Theorem 3.22). For more general functions one defines the integral against
wt in the mean-square sense.

3. Integration against random orthogonal measures

The reader certainly knows the basics of the theory of Lp spaces, which can
be found, for instance, in [Du] and which we only need for p = 1 and p = 2.
Our approach to integration against random orthogonal measures requires
a version of this theory which starts with introducing step functions using
not all measurable sets but rather some collection of them. Actually, the
version is quite parallel to the usual theory, and what follows below should
be considered as just a reminder of the general scheme of the theory of Lp
spaces.

Let X be a set, Π some family of subsets of X, A a σ-algebra of subsets
of X, and µ a measure on (X,A). Suppose that Π ⊂ A and Π0 := {Δ ∈ Π :
µ(Δ) < ∞} �= ∅. Let S(Π) = S(Π, µ) denote the set of all step functions,
that is, functions

n�

i=1

ciIΔ(i)(x),

where ci are complex numbers, Δ(i) ∈ Π0 (not Π!), n <∞ is an integer. For
p ∈ [1,∞), let Lp(Π, µ) denote the set of all A

µ-measurable complex-valued
functions f on X for each of which there exists a sequence fn ∈ S(Π) such
that

�

X

|f − fn|
p µ(dx) −→ 0 as n→∞. (1)

A sequence fn ∈ S(Π) that satisfies (1) will be called a defining sequence
for f . From the convexity of |t|p, we infer that |a+ b|p ≤ 2p−1|a|p+2p−1|b|p,
|f |p ≤ 2p−1|fn|

p + 2p−1|f − fn|
p and therefore, if f ∈ Lp(Π, µ), then

�f�p :=

� �

X

|f |p µ(dx)

�1/p

<∞. (2)

The expression �f�p is called the Lp norm of f . For p = 2 it is also
useful to define the scalar product (f, g) of elements f, g ∈ L2(Π, µ):
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(f, g) :=

�

X

f ḡ µ(dx). (3)

This integral exists and is finite, since |f ḡ| ≤ |f |2+ |g|2. The expression
�f−g�p defines a distance in Lp(Π, µ) between the elements f, g ∈ Lp(Π, µ).
It is “almost” a metric on Lp(Π, µ), in the sense that, although the equality
�f − g�p = 0 implies that f = g only almost everywhere with respect to µ,
nevertheless �f − g�p = �g − f�p and the triangle inequality holds:

�
�f + g

�
�
p
≤

�
�f

�
�
p
+

�
�g

�
�
p
.

If fn, f ∈ Lp(Π, µ) and �fn − f�p → 0 as n → ∞, we will naturally say
that fn converges to f in Lp(Π, µ). If �fn− fm�p → 0 as n,m→∞, we will
call fn a Cauchy sequence in Lp(Π, µ). The following results are useful. For
their proofs we refer the reader to [Du].

1. Theorem. (i) If fn is a Cauchy sequence in Lp(Π, µ), then there exists
a subsequence fn(k) such that fn(k) has a limit µ-a.e. as k →∞.

(ii) Lp(Π, µ) is a linear space, that is, if a, b are complex numbers and
f, g ∈ Lp(Π, µ), then af + bg ∈ Lp(Π, µ).

(iii) Lp(Π, µ) is a complete space, that is, for every Cauchy sequence
fn ∈ Lp(Π, µ), there exists an A-measurable function f for which (1) is
true; in addition, every A

µ-measurable function f that satisfies (1) for some
sequence fn ∈ Lp(Π, µ) is an element of Lp(Π, µ).

2. Exercise*. Prove that if Π is a σ-field , then Lp(Π, µ) is simply the set
of all Πµ-measurable functions f that satisfy (2).

3. Exercise. Prove that if Π0 consists of only one set Δ, then Lp(Π, µ) is
the set of all functions µ-almost everywhere equal to a constant times the
indicator of Δ.

4. Exercise. Prove that if (X,A, µ) = ([0, 1],B[0, 1], �) and Π = {(0, t] :
t ∈ (0, 1)}, then Lp(Π, µ) is the space of all Lebesgue measurable functions
summable to the pth power on [0, 1].

We now proceed to the main contents of this section. Let (Ω,F , P ) be
a probability space and suppose that to every Δ ∈ Π0 there is assigned a
random variable ζ(Δ) = ζ(ω,Δ).

5. Definition. We say that ζ is a random orthogonal measure with reference
measure µ if (a) E |ζ(Δ)|2 < ∞ for every Δ ∈ Π0, (b) E ζ(Δ1)ζ̄(Δ2) =
µ(Δ1 ∩Δ2) for all Δ1,Δ2 ∈ Π0.
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6. Example. If (X,A, µ) = (Ω,F , P ) and Π = A, then ζ(Δ) := IΔ is a
random orthogonal measure with reference measure µ. In this case, for each
ω, ζ is just the Dirac measure concentrated at ω.

Generally, random orthogonal measures are not measures for each ω,
because they need not even be defined on a σ-field. Actually, the situation
is even more interesting, as the reader will see from Exercise 21.

7. Example. Let wt be a Wiener process on [0, 1] and

(X,A, µ) = ([0, 1],B([0, 1]), �).

Let Π = {[0, t] : t ∈ (0, 1]} and, for each Δ = [0, t] ∈ Π, let ζ(Δ) = wt.
Then, for Δi = [0, ti] ∈ Π, we have

Eζ(Δ1)ζ(Δ2) = Ewt1wt2 = t1 ∧ t2 = �(Δ1 ∩Δ2),

which shows that ζ is a random orthogonal measure with reference mea-
sure �.

8. Exercise*. Let τn be a sequence of independent random variables ex-
ponentially distributed with parameter 1. Define a sequence of random
variables σn = τ1 + ...+ τn and the corresponding counting process

πt =

∞�

n=1

I[σn,∞)(t).

Observe that πt is a function of locally bounded variation (at least for almost
all ω), so that the usual integral against dπt is well defined: if f vanishes
outside a finite interval, then

� ∞

0
f(t) dπt =

∞�

n=1

f(σn).

Prove that, for every bounded continuous real-valued function f given on R

and having compact support and every s ∈ R,

ϕ(s) := E exp{i

� ∞

0
f(s+ t) dπt} = exp(

� ∞

0
(eif(s+t) − 1) dt).

Conclude from here that πt − πs has Poisson distribution with parameter
|t− s|. In particular, prove Eπt = t and E(πt − t)

2 = t. Also prove that πt
is a process with independent increments, that is, πt2 − πt1 , ..., πtk+1

− πtk
are independent as long as the intervals (tj , tj+1] are disjoint. The process
πt is called a Poisson process with parameter 1 .



42 Chapter 2. The Wiener Process, Sec 3

9. Example. Take the Poisson process πt from Exercise 8. Denote mt =
πt − t. If 0 ≤ s ≤ t, then

Emsmt = Em
2
s + Ems(mt −ms) = Em

2
s = s = s ∧ t.

Therefore, if in Example 7 we replace wt with πt, we again have a random
orthogonal measure with reference measure �.

We will always assume that ζ satisfies the assumptions of Definition 5.
Note that by Exercise 2 we have ζ(Δ) ∈ L2(F , P ) for every Δ ∈ Π0. The
word “orthogonal” in Definition 5 comes from the fact that if Δ1 ∩Δ2 = ∅,
then ζ(Δ1) ⊥ ζ(Δ2) in the Hilbert space L2(F , P ). The word “measure” is
explained by the property that if Δ,Δi ∈ Π0, the Δi’s are pairwise disjoint,
and Δ =

�
iΔi, then ζ(Δ) =

�
i ζ(Δi), where the series converges in the

mean-square sense. Indeed,

lim
n→∞

E|ζ(Δ)−
�

i≤n

ζ(Δi)|
2

= lim
n→∞

[E|ζ(Δ)|2 +
�

i≤n

E|ζ(Δi)|
2 − 2Re

�

i≤n

Eζ(Δ)ζ̄(Δi)]

= lim
n→∞

[µ(Δ) +
�

i≤n

µ(Δi)− 2
�

i≤n

µ(Δi)] = 0.

Interestingly enough, our explanation of the word “measure” is void in
Examples 7 and 9, since there is no Δ ∈ Π which is representable as a
countable union of disjoint members of Π.

10. Lemma. Let Δi,Γj ∈ Π0, and let ci, dj be complex numbers, i =
1, ..., n, j = 1, ...,m. Assume

�
i≤n ciIΔi =

�
j≤m djIΓj (µ-a.e.). Then

�

i≤n

ciζ(Δi) =
�

j≤m

djζ(Γj) (a.s.), (4)

E|
�

i≤n

ciζ(Δi)|
2 =

�

X
|
�

i≤n

ciIΔi |
2 µ(dx). (5)

Proof. First we prove (5). We have

E|
�

i≤n

ciζ(Δi)|
2 =

�

i,j≤n

cic̄jEζ(Δi)ζ̄(Δj) =
�

i,j≤n

cic̄jµ(Δi ∩Δj)

=

�

X

�

i,j≤n

cic̄jIΔiIΔj µ(dx) =

�

X
|
�

i≤n

ciIΔi |
2 µ(dx).

Hence,
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E|
�

i≤n

ciζ(Δi)−
�

j≤m

djζ(Γj)|
2 =

�

X
|
�

i≤n

ciIΔi −
�

j≤m

djIΓj |
2 µ(dx) = 0.

The lemma is proved.

11. Remark. The first statement of the lemma looks quite surprising in
the situation when µ is concentrated at only one point x0. Then the equality�
i≤n ciIΔi =

�
j≤m djIΓj holds µ-almost everywhere if and only if

�

i≤n

ciIΔi(x0) =
�

j≤m

djIΓj(x0),

and this may hold for very different ci,Δi, dj ,Γj. Yet each time (4) holds
true.

Next, on S(Π) define an operator I by the formula

I :
�

i≤n

ciIΔi →
�

i≤n

ciζ(Δi).

In the future we will always identify two elements of an Lp space which
coincide almost everywhere. Under this stipulation, Lemma 10 shows that
I is a well defined linear unitary operator from a subset S(Π) of L2(Π, µ)
into L2(F , P ). In addition, by definition S(Π) is dense in L2(Π, µ) and every
isometric operator is uniquely extendible from a dense subspace to the whole
space. By this we mean the following result, which we suggest as an exercise.

12. Lemma. Let B1 and B2 be Banach spaces and B0 a linear subset of
B1. Let a linear isometric operator I be defined on B0 with values in B2

(|Ib|B2 = |b|B1 for every b ∈ B0). Then there exists a unique linear isometric

operator Ĩ : B̄0 → B2 (B̄0 is the closure of B0 in B1) such that Ĩb = Ib for
every b ∈ B0.

Combining the above arguments, we arrive at the following.

13. Theorem. There exists a unique linear operator I : L2(Π, µ) →
L2(F , P ) such that

(i) I(
�
i≤n ciIΔi) =

�
i≤n ciζ(Δi) (a.s.) for all finite n, Δi ∈ Π0 and

complex ci;

(ii) E|If |2 =
�
X |f |

2 µ(dx) for all f ∈ L2(Π, µ).

For f ∈ L2(Π, µ) we write

If =

�

X
f(x) ζ(dx)
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and we call If the stochastic integral of f with respect to ζ. Observe
that, by continuity of I, to find If it suffices to construct step functions fn
converging to f in the L2(Π, µ) sense, and then

�

X
f(x) ζ(dx) = l.i.m.

n→∞

�

X
fn(x) ζ(dx).

The operator I preserves not only the norm but also the scalar product:

E

�

X
f(x) ζ(dx)

�

X
g(x) ζ(dx) =

�

X
f ḡ µ(dx), f, g ∈ L2(Π, µ). (6)

This follows after comparing the coefficients of the complex parameter λ in
the equal (by Theorem 13) polynomials E|I(f +λg)|2 and

�
|f +λg|2 µ(dx).

14. Exercise. Take πt from Example 9. Prove that for every Borel f ∈
L2(0, 1) the stochastic integral of f against πt − t equals the usual integral;
that is,

−

� 1

0
f(s) ds+

�

σn≤1

f(σn).

15. Remark. If Eζ(Δ) = 0 for every Δ ∈ Π0, then for every f ∈ L2(Π, µ),
we have

E

�

X
f ζ(dx) = 0.

Indeed, for f ∈ S(Π), this equality is verified directly; for arbitrary f ∈
L2(Π, µ) it follows from the fact that, by Cauchy’s inequality for fn ∈ S(Π),

|E

�

X
f ζ(dx)|2 = |E

�

X
(f − fn) ζ(dx)|

2

≤ E|

�

X
(f − fn) ζ(dx)|

2 =

�

X
|f − fn|

2 µ(dx).

We now proceed to the question as to when Lp(Π, µ) and Lp(A, µ) co-
incide, which is important in applications. Remember the following defini-
tions.
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16. Definition. Let X be a set, B a family of subsets of X. Then B is
called a π-system if A1 ∩ A2 ∈ B for every A1, A2 ∈ B. It is called a
λ-system if

(i) X ∈ B and A2 \ A1 ∈ B for every A1, A2 ∈ B such that A1 ⊂ A2;

(ii) for every A1, A2, ... ∈ B such that Ai ∩Aj = ∅ when i �= j,
∞�

n=1
An ∈

B.

A typical example of λ-system is given by the collection of all subsets
on which two given probability measures coincide.

17. Exercise*. Prove that if B is both a λ-system and a π-system, then
it is a σ-field.

A very important property of π- and λ-systems is stated as follows.

18. Lemma. If Λ is a λ-system and Π is a π-system and Π ⊂ Λ, then
σ(Π) ⊂ Λ.

Proof. Let Λ1 denote the smallest λ-system containing Π (Λ1 is the
intersection of all λ-systems containing Π). It suffices to prove that Λ1 ⊃
σ(Π). To do this, it suffices to prove, by Exercise 17, that Λ1 is a π-system,
that is, it contains the intersection of every two of its sets. For B ∈ Λ1 let
Λ(B) denote the family of all A ∈ Λ1 such that A ∩ B ∈ Λ1. Obviously,
Λ(B) is a λ-system. In addition, if B ∈ Π, then Λ(B) ⊃ Π (since Π is a
π-system). Consequently, if B ∈ Π, then by the definition of Λ1, we have
Λ(B) ⊃ Λ1. But this means that Λ(A) ⊃ Π for each A ∈ Λ1, so that as
before, Λ(A) ⊃ Λ1 for each A ∈ Λ1, that is, Λ1 is a π-system. The lemma is
proved.

19. Theorem. Let A1 = σ(Π). Assume that Π is a π-system and that
there exists a sequence Δ(1),Δ(2), ... ∈ Π0 such that Δ(n) ⊂ Δ(n + 1),
X =

�
nΔ(n). Then Lp(Π, µ) = Lp(A1, µ).

Proof. Let Σ denote the family of all subsets A of X such that

IAIΔ(n) ∈ Lp(Π, µ)

for every n. Observe that Σ is a λ-system. Indeed for instance, if A1, A2, ... ∈
Σ are pairwise disjoint and A =

�
k Ak, then

IAIΔ(n) =
�

k

IAk
IΔ(n),

where the series converges in Lp(Π, µ) since
�
k≥mAk ↓ ∅ as m → ∞,

µ(Δ(n)) <∞, and
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�

X
|
�

k≥m

IAk
IΔ(n)|

p µ(dx) =

�

X

�

k≥m

IAk
IΔ(n) µ(dx) = µ

�
Δ(n)∩

�

k≥m

Ak
�
→ 0

as m→∞.

Since Σ ⊃ Π, because Π is a π-system, it follows by Lemma 18 that Σ ⊃
A1. Consequently, it follows from the definition of Lp(A1, µ) that IΔ(n)f ∈
Lp(Π, µ) for f ∈ Lp(A1, µ) and n ≥ 1. Finally, a straightforward application
of the dominated convergence theorem shows that ||IΔ(n)f − f ||p → 0 as
n → ∞. Hence f ∈ Lp(Π, µ) if f ∈ Lp(A1, µ) and Lp(A1, µ) ⊂ Lp(Π, µ).
Since the reverse inclusion is obvious, the theorem is proved.

It turns out that, under the conditions of Theorem 19, one can extend ζ
from Π0 to the larger set A0 := σ(Π) ∩ {Γ : µ(Γ) <∞}. Indeed, for Γ ∈ A0

we have IΓ ∈ L2(Π, µ), so that the definition

ζ̃(Γ) =

�

X
IΓ ζ(dx)

makes sense. In addition, if Γ1,Γ2 ∈ A0, then by (6)

Eζ̃(Γ1)ζ̃(Γ2) = E

�

X
IΓ1 ζ(dx)

�

X
IΓ2 ζ(dx)

=

�

X
IΓ1IΓ2 µ(dx) = µ(Γ1 ∩ Γ2).

Since obviously ζ(Δ) = ζ̃(Δ) (a.s.) for every Δ ∈ Π0, we have an extension
indeed. In Sec. 7 we will see that sometimes one can extend ζ even to a
larger set than A0.

20. Exercise. Let X ∈ Π0, and let Π be a π-system. Show that if ζ̃1 and
ζ̃2 are two extensions of ζ to σ(Π), then

�

X
f(x) ζ̃1(dx) =

�

X
f(x) ζ̃2(dx)

(a.s.) for every f ∈ L2(σ(Π), µ). In particular, ζ̃1(Γ) = ζ̃2(Γ) (a.s.) for any
Γ ∈ σ(Π).

21. Exercise. Come back to Example 7. By what is said above there is an
extension of ζ to B([0, 1]). By using the independence of increments of wt,
prove that

E exp(−
�

n

|ζ((an+1, an])|) = 0,

where an = 1/n. Derive from here that for almost every ω the function
ζ(Γ),Γ ∈ B([0, 1]), has unbounded variation and hence cannot be a measure.
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Let us apply the above theory of stochastic integration to modeling
Brownian motion when the temperature varies in time.

Take the objects introduced in Example 7. By Theorem 19 (and by
Exercise 2), for every f ∈ L2(0, 1) (where L2(0, 1) is the usual L2 space of
square integrable functions on (0, 1)) the stochastic integral

�
X f(t) ζ(dt) is

well defined. Usually, one writes this integral as

� 1

0
f(t) dwt.

Observe that (by the continuity of the integral) if fn → f in L2(0, 1), then

� 1

0
fn(t) dwt →

� 1

0
f(t) dwt

in the mean-square sense. In addition, if

fn(t) =
�

i

f(ti+1,n)Itin<t≤ti+1,n =
�

i

f(ti+1,n)[It≤ti+1,n − It≤tin ]

with 0 ≤ tin ≤ ti+1,n ≤ 1, then (by definition and linearity)

� 1

0
f(t) dwt = l.i.m.

n→∞

� 1

0
fn(t) dwt = l.i.m.

n→∞

�

i

f(ti+1,n)(wti+1,n − wtin).

(7)

Naturally, the integral
� t

0
f(s) dws :=

� 1

0
Is≤tf(s) dws

gives us a representation of Brownian motion in the environment with chang-
ing temperature. However, for each individual t this integral is an element
of L2(F , P ) and thus is uniquely defined only up to sets of probability zero.
For describing individual trajectories of Brownian motion we should take an

appropriate representative of
� t
0 f(s) dws for each t ∈ [0, 1]. At this moment

it is absolutely not clear whether this choice can be performed so that we
will have continuous trajectories, which is crucial from the practical point
of view. Much later (see Theorem 6.1.10) we will prove that one can indeed
make the right choice even when f is a random function. The good news is
that this issue can be easily settled at least for some functions f .
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22. Theorem. Let t ∈ [0, 1], and let f be absolutely continuous on [0, t].
Then

� t

0
f(s) dws = f(t)wt −

� t

0
wsf

�(s) ds (a.s.).

Proof. Define tin = ti/n. Then the functions fn(s) := f(tin) for s ∈
(tin, ti+1,n] converge to f (s) uniformly on [0, t] so that (cf. (7)) we have

� t

0
f(s) dws =

� 1

0
Is≤tf(s) dws = l.i.m.

n→∞

�

i≤n−1

f(tin)(wti+1,n − wtin)

= f(t)wt − l.i.m.
n→∞

�

i≤n−1

wti+1,n

�
f(ti+1,n)− f(tin)

�

(summation by parts), where the last sum is written as

� t

0
wκ(s,n)f

�(s) ds (8)

with κ(n, s) = ti+1,n for s ∈ (tin, ti+1,n]. By the continuity of ws we have
wκ(s,n) → ws uniformly on [0, t], and by the dominated convergence theorem

(f � is integrable) we see that (8) converges to
� t
0 wsf

�(s) ds for every ω. It
only remains to remember that the mean-square limit coincides (a.s.) with
the pointwise limit if both exist. The theorem is proved.

23. Exercise*. Prove that if a real-valued f ∈ L2(0, 1), then
� t
0 f(s) dws,

t ∈ [0, 1], is a Gaussian process with zero mean and covariance

R(s, t) =

� s∧t

0
f2(u) du = (

� s

0
f2(u) du) ∧ (

� t

0
f2(u) du).

The construction of the stochastic integral with respect to a random
orthogonal measure is not specific to probability theory. We have consid-
ered the case in which ζ(Δ) ∈ L2(F , P ), where P is a probability measure.
Our arguments could be repeated almost word for word for the case of an
arbitrary measure. It would then turn out that the Fourier integral of L2

functions is a particular case of integrals with respect to random orthogonal
measure. In this connection we offer the reader the following exercise.

24. Exercise. Let Π be the set of all intervals (a, b], where a, b ∈ (−∞,∞),
a < b. For Δ = (a, b] ∈ Π, define a function ζ(Δ) = ζ(ω,Δ) on (−∞,∞) by
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ζ(Δ) =
1

iω

�
eiωb − eiωa

�
=

�

Δ
eiωx dx.

Define Lp = Lp(Π, �) = Lp(B(R), �). Prove, using a change of variable,
that the number

�
ζ(Δ1), ζ(Δ2)

�
equals its complex conjugate, that is, it is

real, and that
�
�ζ(Δ)

�
�2

2
= c �(Δ) for Δ1,Δ2,Δ ∈ Π, where c is a constant

independent of Δ. Use this and the observation that ζ(Δ1 ∪Δ2) = ζ(Δ1) +
ζ(Δ2) if Δ1,Δ2,Δ1 ∪ Δ2 ∈ Π, Δ1 ∩ Δ2 = ∅, to deduce that in that case�
ζ(Δ1), ζ(Δ2)

�
= 0. Using the fact that Δ1 = (Δ1 \ Δ2) ∪ (Δ1 ∩ Δ2)

and adding an interval between Δ1,Δ2 if they do not intersect, prove that�
ζ(Δ1), ζ(Δ2)

�
= c �(Δ1 ∩Δ2) for every Δ1,Δ2 ∈ Π and, consequently, that

we can construct an integral with respect to ζ, such that Parseval’s equality
holds for every f ∈ L2:

c
�
�f

�
�2

2
=

�
�
�
�

�

fζ(dx)

�
�
�
�

2

2

.

Keeping in mind that for f ∈ S(Π), obviously,

�

fζ(dx) =

∞�

−∞

f(x)eiωx dx (a.e.),

generalize this equality to all f ∈ L2 ∩L1. Putting f = exp(−x
2) and using

the characteristic function of the normal distribution, prove that c = 2π.
Finally, use Fubini’s theorem to prove that for f ∈ L1 and −∞ < a < b <∞,
we have

b�

a

� ∞�

−∞

f̄(ω)eiωx dω

�

dx =

∞�

−∞

1

iω

�
eiωb − eiωa

�
f̄(ω) dω.

In other words, if f ∈ L1 ∩ L2, then
�
ζ(Δ), f

�
= c(IΔ, g), where

ḡ(x) = c−1

�

f̄(ω)ζ(x, dω),

and (by definition) this leads to the inversion formula for the Fourier trans-
form:

f(ω) =

�

g(x)ζ(ω, dx).

Generalize this formula from the case f ∈ L1 ∩ L2 to all f ∈ L2.
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4. The Wiener process on [0,∞)

The definition of the Wiener process on [0,∞) is the same as on [0, 1] (cf. Def-
inition 1.5). Clearly for the Wiener process on [0,∞) one has the corre-
sponding counterparts of Theorems 2.1 and 2.2 about the independence of
increments and the independence of increments of previous values of the
process. Also as in Exercise 1.6, if wt is a Wiener process on [0,∞) and c is
a strictly positive constant, then cwt/c2 is also a Wiener process on [0,∞).
This property is called self-similarity of the Wiener process.

1. Theorem. There exists a Wiener process defined on [0,∞).

Proof. Take any smooth function f(t) > 0 on [0, 1) such that

� 1

0
f2(t) dt =∞.

Let ϕ(r) be the inverse function to
� t
0 f

2(s) ds. For t < 1 define

y(t) = f(t)wt −

� t

0
wsf

�(s) ds.

Obviously y(t) is a continuous process. By Theorem 3.22 we have

y(t) =

� t

0
f(s) dws =

� 1

0
Is≤tf(s) dws (a.s.).

By Exercise 3.23, yt is a Gaussian process with zero mean and covariance

� s∧t

0
f2(u) du = (

� s

0
f2(u) du) ∧ (

� t

0
f2(u) du), s, t < 1.

Now, as is easy to see, x(r) := y(ϕ(r)) is a continuous Gaussian process
defined for r ∈ [0,∞) with zero mean and covariance r1 ∧ r2. The theorem
is proved.

Apart from the properties of the Wiener process on [0,∞) stated in the
beginning of this section, which are similar to the properties on [0, 1], there
are some new ones, of which we will state and prove only two.

2. Theorem. Let wt be a Wiener process for t ∈ [0,∞) defined on a prob-
ability space (Ω,F , P ). Then there exists a set Ω� ∈ F such that P (Ω�) = 1
and, for each ω ∈ Ω�, we have

lim
t↓0
tw1/t(ω) = 0.

Furthermore, for t > 0 define
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ξt(ω) =

�
tw1/t(ω) if ω ∈ Ω�,

0 if ω �∈ Ω�,

and let ξ0(ω) ≡ 0. Then ξt is a Wiener process.

Proof. Define ξ̃t = tw1/t for t > 0 and ξ̃0 ≡ 0. As is easy to see, ξ̃t is a
Gaussian process with zero mean and covariance s ∧ t. It is also continuous
on (0,∞). It follows, in particular, that sups∈(0,t] |ξ̃s(ω)| equals the sup over

rational numbers on (0, t]. Since this sup is an increasing function of t, its
limit as t ↓ 0 can also be calculated along rational numbers. Thus,

Ω� := {ω : lim
t↓0

sup
s∈(0,t]

|ξ̃s(ω)| = 0} ∈ F .

Next, let C � be the set of all (maybe unbounded) continuous functions
on (0, 1], and Σ(C �) the cylinder σ-field of subsets of C �, that is, the smallest
σ-field containing all sets {x· ∈ C

� : xt ∈ Γ} for all t ∈ (0, 1] and Γ ∈ B(R).

Then the distributions of ξ̃· and w· on (C
�,Σ(C �)) coincide (cf. Remark 1.4).

Define

A = {x· ∈ C
� : lim

t↓0
sup
s∈(0,t]

|xs| = 0}.

Since x· ∈ C � are continuous in (0, 1], it is easy to see that A ∈ Σ(C �).
Therefore,

P (ξ̃· ∈ A) = P (w· ∈ A),

which is to say,

P (lim
t↓0

sup
s∈(0,t]

|ξ̃s| = 0) = P (lim
t↓0

sup
s∈(0,t]

|ws| = 0).

The last probability being 1, we conclude that P (Ω�) = 1, and it only

remains to observe that ξt is a continuous process and ξt = ξ̃t on Ω
� or almost

surely, so that ξt is a Gaussian process with zero mean and covariance s∧ t.
The theorem is proved.

3. Corollary. Let 1/2 > ε > 0. By Theorem 2.4 for almost every ω there

exists n(ω) < ∞ such that |ξt(ω)| ≤ Nt1/2−ε for t ≤ 2−n(ω), where N

depends only on ε. Hence, for wt, for almost every ω we have |wt| ≤ Nt
1/2+ε

if t ≥ 2n(ω).
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4. Remark. Having the Wiener process on [0,∞), we can repeat the con-
struction of the stochastic integral and define

�∞
0 f(t) dwt for every f ∈

L2([0,∞)) starting with the random orthogonal measure ζ(0, a] = wa de-
fined for all a ≥ 0. Of course, this integral has properties similar to those

of
� 1
0 f(t) dwt. In particular, the results of Theorem 3.22 on integrating by

parts and of Exercise 3.23 still hold.

5. Markov and strong Markov properties of the

Wiener process

Let (Ω,F , P ) be a probability space carrying a Wiener process wt, t ∈ [0,∞).
Also assume that for every t ∈ [0,∞) we are given a σ-field Ft ⊂ F such
that Fs ⊂ Ft for t ≥ s. We call such a collection of σ-fields an (increasing)
filtration of σ-fields.

A trivial example of filtration is given by Ft ≡ F .

1. Definition. Let Σ be a σ-field, Σ ⊂ F and ξ a random variable taking
values in a measurable space (X,B). We say that ξ and Σ are independent
if P (A, ξ ∈ B) = P (A)P (ξ ∈ B) for every A ∈ Σ and B ∈ B.

2. Exercise*. Prove that if ξ and Σ are independent, f(x) is a measurable
function, and η is Σ-measurable, then f(ξ) and η are independent as well.

3. Definition. We say that wt is a Wiener process relative to the filtration
Ft if wt is Ft-measurable for every t and wt+h −wt is independent of Ft for
every t, h ≥ 0. In that case the couple (wt,Ft) is called a Wiener process.

Below we assume that (wt,Ft) is a Wiener process, explaining first that
there always exists a filtration with respect to which wt is a Wiener process.

4. Lemma. Let

Fwt := σ{{ω : ws(ω) ∈ B}, s ≤ t, B ∈ B(R)}.

Then (wt,F
w
t ) is a Wiener process.

Proof. By definition Fwt is the smallest σ-field containing all sets {ω :
ws(ω) ∈ B} for s ≤ t and Borel B. Since each of them is (as an element) in
F , Fwt ⊂ F . The inclusion Fws ⊂ Fwt for t ≥ s is obvious, since {ω : wr(ω) ∈
B} belong to Fwt for r ≤ s and F

w
s is the smallest σ-field containing them.

Therefore Fwt is a filtration.

Next, {ω : wt(ω) ∈ B} ∈ F
w
t for B ∈ B(R); hence wt is F

w
t -measurable.

To prove the independence of wt+h − wt and F
w
t , fix a B ∈ B(R), t, h ≥ 0,

and define

µ(A) = P (A,wt+h −wt ∈ B), ν(A) = P (A)P (wt+h − wt ∈ B).



Ch 2 Section 5. Strong Markov property of the Wiener process 53

One knows that µ and ν are measures on (Ω,F). By Theorem 2.2 these

measures coincide on every A of type {ω : (wt1(ω), ..., wtn (ω)) ∈ B
(n)} pro-

vided that ti ≤ t and B(n) ∈ B(Rn). The collection of these sets is an
algebra (Exercise 1.3.3). Therefore µ and ν coincide on the smallest σ-field,
say Σ, containing these sets. Observe that Fwt ⊂ Σ, since the collection
generating Σ contains {ω : ws(ω) ∈ D} for s ≤ t and D ∈ B(R). Hence µ
and ν coincide on Fwt . It only remains to remember that B is an arbitrary
element of B(R). The lemma is proved.

We see that one can always take Fwt as Ft. However, it turns out that
sometimes it is very inconvenient to restrict our choice of Ft to F

w
t . For

instance, we can be given a multi-dimensional Wiener process (w1
t , ..., w

d
t )

(see Definition 6.4.1) and study only its first coordinate. In particular, while
introducing stochastic integrals of random processes against dw1

t we may be
interested in integrating functions depending not only on w1

t but on all other
components as well.

5. Exercise*. Let F̄wt be the completion of F
w
t . Prove that (wt, F̄

w
t ) is a

Wiener process.

6. Theorem (Markov property). Let (wt,Ft) be a Wiener process. Fix t,
h1, .., hn ≥ 0. Then the vector (wt+h1 − wt, ..., wt+hn − wt) and the σ-field
Ft are independent. Furthermore, wt+s − wt, s ≥ 0, is a Wiener process.

Proof. The last statement follows directly from the definitions. To
prove the first one, without losing generality we assume that h1 ≤ ... ≤ hn
and notice that, since (wt+h1 − wt, ..., wt+hn − wt) is obtained by a linear
transformation from ηn, where ηk = (wt+h1−wt+h0 , ..., wt+hk

−wt+hk−1
) and

h0 = 0, we need only show that ηn and Ft are independent. We are going to
use the theory of characteristic functions. Take A ∈ Ft and a vector λ ∈ R

n.
Notice that

EIA exp(iλ · ηn) = EIA exp(iµ · ηn−1) exp(iλ
n(wt+hn − wt+hn−1)),

where µ = (λ1, ..., λn−1). Here IA is Ft-measurable and, since Ft ⊂ Ft+hn−1 ,
it is Ft+hn−1-measurable as well. It follows that IA exp(iµ ·ηn−1) is Ft+hn−1-
measurable. Furthermore, wt+hn−wt+hn−1 is independent of Ft+hn−1 . Hence,
by Exercise 2

EIA exp(iλ · ηn) = EIA exp(iµ · ηn−1)E exp(iλ
n(wt+hn − wt+hn−1)),

and by induction and independence of increments of wt

EIA exp(iλ·ηn) = EIA

n�

j=1

E exp(iλn(wt+hj
−wt+hj−1

)) = P (A)E exp(iλ·ηn).
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It follows from the theory of characteristic functions that for every Borel
bounded g

EIAg(ηn) = P (A)Eg(ηn).

It only remains to substitute here the indicator of a Borel set in place of g.
The theorem is proved.

Theorem 6 says that, for every fixed t ≥ 0, the process wt+s−wt, s ≥ 0,
starts afresh as a Wiener process forgetting everything that happened to wr
before time t. This property is quite natural for Brownian motion. It also
has a natural extension when t is replaced with a random time τ , provided
that τ does not depend on the future in a certain sense. To describe exactly
what we mean by this, we need the following.

7. Definition. Let τ be a random variable taking values in [0,∞] (including
∞). We say that τ is a stopping time (relative to Ft) if {ω : τ(ω) > t} ∈ Ft
for every t ∈ [0,∞).

The term “stopping time” is discussed after Exercise 3.3.3. Trivial ex-
amples of stopping times are given by nonrandom positive constants. A
much more useful example is the following.

8. Example. Fix a ≥ 0 and define

τ = τa = inf{t ≥ 0 : wt ≥ a} (inf ∅ :=∞)

as the first hitting time of the point a by wt. It turns out that τ is a stopping
time.

Indeed, one can easily see that

{ω : τ(ω) > t} = {ω : max
s≤t

ws(ω) < a}, (1)

where, for ρ defined as the set of all rational points on [0,∞),

max
s≤t

ws = sup
r∈ρ,r≤t

wr,

which shows that maxs≤tws is an Ft-measurable random variable.

9. Exercise*. Let a < 0 < b and let τ be the first exit time of wt from
(a, b):

τ = inf{t ≥ 0 : wt �∈ (a, b)}.

Prove that τ is a stopping time.
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10. Definition. Random processes η1
t , ..., η

n
t defined for t ≥ 0 are called

independent if for every t1, ..., tk ≥ 0 the vectors (η
1
t1 , ..., η

1
tk
), ..., (ηnt1 , ..., η

n
tk
)

are independent.

In what follows we consider some processes at random times, and these
times occasionally can be infinite even though this happens with probability
zero. In such situations we use the notation

xτ = xτ (ω) =

�
xτ(ω)(ω) if τ(ω) <∞,

0 if τ(ω) =∞.

11. Lemma. Let (wt,Ft) be a Wiener process and let τ be an Ft-stopping
time. Assume P (τ <∞) = 1. Then the processes wt∧τ and Bt := wτ+t−wτ
are independent and the latter one is a Wiener process.

Proof. Take 0 ≤ t1 ≤ ... ≤ tk. As is easy to see, we need only prove that
for any Borel nonnegative functions f(x1, ..., xk) and g(x1, ..., xk)

Iτ := Ef(wt1∧τ , ..., wtk∧τ )g(Bt1 , ..., Btk )

= Ef(wt1∧τ , ..., wtk∧τ )Eg(wt1 , ..., wtk ). (2)

Assume for a moment that the set of values of τ is countable, say r1 <
r2 < .... By noticing that {τ = rn} = {τ > rn−1} \ {τ > rn} ∈ Frn and

Fn := f(wt1∧τ , ..., wtk∧τ )Iτ=rn = f(wt1∧rn , ..., wtk∧rn)Iτ=rn ,

we see that the first term is Frn-measurable. Furthermore,

Iτ=rng(Bt1 , ..., Btk ) = Iτ=rng(wrn+t1 − wrn , ..., wrn+tk − wrn),

where, by Theorem 6, the last factor is independent of Frn , and

Eg(wrn+t1 −wrn , ..., wrn+tk − wrn) = Eg(wt1 , ..., wtk ).

Therefore,

Iτ =
�

rn

EFng(wrn+t1 − wrn , ..., wrn+tk − wrn)

= Eg(wt1 , ..., wtk )
�

rn

EFn.

The last sum equals the first term on the right in (2). This proves the
theorem for our particular τ .
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In the general case we approximate τ and first notice (see, for instance,
Theorem 1.2.4) that equation (2) holds for all Borel nonnegative f, g if and
only if it holds for all bounded continuous f, g. Therefore, we assume f, g
to be bounded and continuous.

Now, for n = 1, 2, ..., define

τn(ω) = (k + 1)2
−n for ω such that k2−n < τ(ω) ≤ (k + 1)2−n, (3)

k = −1, 0, 1, .... It is easily seen that τ ≤ τn ≤ τ +2
−n, τn ↓ τ , and for t ≥ 0

{ω : τn > t} = {ω : τ(ω) > 2−n[2nt]} ∈ F2−n[2nt] ⊂ Ft,

so that τn are stopping times. Hence, by the above result,

Iτ = lim
n→∞

Iτn = Eg(wt1 , ..., wtk ) limn→∞
Ef(wt1∧τn , ..., wtk∧τn),

and this leads to (2). The lemma is proved.

The following theorem states that the Wiener process has the strong
Markov property.

12. Theorem. Let (wt,Ft) be a Wiener process and τ an Ft-stopping time.
Assume that P (τ <∞) = 1. Let

Fw≤τ = σ{{ω : ws∧τ ∈ B}, s ≥ 0, B ∈ B(R)},

Fw≥τ = σ{{ω : wτ+s − wτ ∈ B}, s ≥ 0, B ∈ B(R)}.

Then the σ-fields Fw≤τ and Fw≥τ are independent in the sense that for every

A ∈ Fw≤τ and B ∈ Fw≥τ we have P (AB) = P (A)P (B). Furthermore, wτ+t−
wτ is a Wiener process.

Proof. The last assertion is proved in Lemma 11. To prove the first one
we follow the proof of Lemma 4 and first let B = {ω : (wτ+s1−wτ , ..., wτ+sk−
wτ ) ∈ Γ}, where Γ ∈ B(Rk). Consider two measures µ(A) = P (AB) and
ν(A) = P (A)P (B) as measures on sets A. By Lemma 11 these measures

coincide on every A of type {ω : (wt1∧τ , ..., wtn∧τ ) ∈ B
(n)} provided that

B(n) ∈ B(Rn). The collection of these sets is an algebra (Exercise 1.3.3).
Therefore µ and ν coincide on the smallest σ-field, which is Fw≤τ , containing

these sets. Hence P (AB) = P (A)P (B) for all A ∈ Fw≤τ and our particular
B. It only remains to repeat this argument relative to B upon fixing A. The
theorem is proved.
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6. Examples of applying the strong Markov property

First, we want to apply Theorem 5.12 to τa from Example 5.8. Notice that
Bachelier’s Theorem 2.3 holds not only for t ∈ (0, 1] but for t ≥ 1 as well.
One proves this by using the self-similarity of the Wiener process (cwt/c2 is
a Wiener process for every constant c �= 0). Then, owing to (5.1), for t > 0
we find that P (τa > t) = P (|wt| < a) = P (|w1|

√
t < a), which tends to

zero as t→∞, showing that P (τa <∞) = 1. Now Theorem 5.12 allows us
to conclude that wτ+t − wτ = wτ+t − a is a Wiener process independent of
the trajectory on [0, τ ]. This makes rigorous what is quite clear intuitively.
Namely, after reaching a, the Wiener process starts “afresh”, forgetting
everything which happened to it before. The same happens when it reaches
a higher level b > a after reaching a, and moreover, τb − τa has the same
distribution as τb−a. This is part of the following theorem, in which, as well
as above, we allow ourselves to consider random variables like τb− τa which
may not be defined on a set of probability zero. We set τb(ω)− τa(ω) = 0 if
b > a > 0 and τb(ω) = τa(ω) =∞.

1. Theorem. (i) For every 0 < a1 < a2 < ... < an < ∞ the random
variables τa1 , τa2 − τa1 , ..., τan − τan−1 are independent.

(ii) For 0 < a < b, the law of τb − τa coincides with that of τb−a, and τa
has Wald’s distribution with density

p(t) = (2π)−1/2at−3/2 exp(−a2/(2t)), t > 0.

Proof. (i) It suffices to prove that τan − τan−1 is independent of τa1 , ...,
τan−1 (cf. the proof of Theorem 2.2). To simplify notation, put τ(a) = τa.
Since ai ≤ an−1 for i ≤ n− 1, we can rewrite (5.1) as

{ω : τ(ai) > t} = {ω : sup
s∈ρ,s≤t

ws∧τ(an−1) < ai},

which implies that the τ(ai) are F≤τ(an−1)-measurable. On the other hand,
for t ≥ 0,

{ω : τ(an)− τ(an−1) > t}

= {ω : τ(an)− τ(an−1) > t, τ(an−1) <∞}

= {ω : sup
s∈ρ,s≤t

(wτ(an−1)+s − wτ(an−1)) < an − an−1, τ(an−1) <∞}

= {ω : 0 < sup
s∈ρ,s≤t

(wτ(an−1)+s − wτ(an−1)) < an − an−1}, (1)

which shows that τ(an) − τ(an−1) is F≥τ(an−1)-measurable. Referring to
Theorem 5.12 finishes the proof of (i).
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(ii) Let n = 2, a1 = a, and a2 = b. Then in the above notation τ(an) = τb
and τ(an−1) = τa. Since wτ(an−1)+t − wτ(an−1) = wτa+t − wτa is a Wiener
process and the distributions of Wiener processes coincide, the probability
of the event on the right in (1) equals

P ( sup
s∈ρ,s≤t

ws < an − an−1 = b− a) = P (τb−a > t).

This proves the first assertion in (ii). To find the distribution of τa, remember
that

P (τa > t) = P (max
s≤t

ws < a) = P (|w1|
√
t < a) =

2
√
2π

� a/
√
t

0
e−y

2/2 dy.

By differentiating this formula we immediately get our density. The theorem
is proved.

2. Exercise. We know that the Wiener process is self-similar in the sense
that cwt/c2 is a Wiener process for every constant c �= 0. The process τa,
a ≥ 0, also has this kind of property. Prove that, for every c > 0, the process
cτa/

√
c, a ≥ 0, has the same finite-dimensional distributions as τa, a ≥ 0.

Such processes are called stable. The Wiener process is a stable process of
order 2, and the process τa is a stable process of order 1/2.

Our second application exhibits the importance of the operator u →
u�� in computing various expectations related to the Wiener process. The
following results can be obtained quite easily on the basis of Itô’s formula
from Chapter 6. However, the reader might find it instructive to see that
there is a different approach using the strong Markov property.

3. Lemma. Let u be a twice continuously differentiable function defined on
R such that u, u�, and u�� are bounded. Then, for every λ > 0,

u(0) = E

� ∞

0
e−λt(λu(wt)− (1/2)u

��(wt)) dt. (2)

Proof. Since wt is a normal (0, t) variable, the right-hand side of (2)
equals

I :=

� ∞

0
e−λtE(λu(wt)− (1/2)u

��(wt)) dt

=

� ∞

0
e−λt

�
�

R

(λu(x)− (1/2)u��(x))p(t, x) dx
�
dt,

where

p(t, x) :=
1

√
2πt

e−x
2/(2t), t > 0.



Ch 2 Section 6. Examples of applying the strong Markov property 59

We continue our computation, integrating by parts. One can easily check
that

1

2

∂2p

(∂x)2
=
∂p

∂t
, e−λtλp−

e−λt

2

∂2p

(∂x)2
= −

∂

∂t
(e−λtp).

Hence

I = lim
ε↓0

� ∞

ε
e−λt

�
�

R

(λu(x)− (1/2)u��(x))p(t, x) dx
�
dt

= − lim
ε↓0

� ∞

ε

∂

∂t

�
e−λt

�

R

u(x)p(t, x) dx
�
dt = lim

ε↓0
e−λε

�

R

u(x)p(ε, x) dx

= lim
ε↓0
Eu(wε) = u(0).

The lemma is proved.

4. Theorem. Let −∞ < a < 0 < b <∞, and let u be a twice continuously
differentiable function given on [a, b]. Let τ be the first exit time of wt from
the interval (a, b) (see Exercise 5.9). Then, for every λ ≥ 0,

u(0) = E

� τ

0
e−λt(λu(wt)− (1/2)u

��(wt)) dt+ Ee
−λτu(wτ ). (3)

Proof. If needed, one can continue u outside [a, b] and have a function,
for which we keep the same notation, satisfying the assumptions of Lemma
3. Denote f = λu− u��. Notice that obviously τ ≤ τb, and, as we have seen
above, P (τb <∞) = 1. Therefore by Lemma 3 we find that, for λ > 0,

u(0) = E

� ∞

0
... = E

� τ

0
...+ E

� ∞

τ
...

= E

� τ

0
e−λtf(wt) dt+

� ∞

0
e−λtEe−λτf(wτ +Bt) dt =: I + J,

where Bt = wτ+t − wτ . Now we want to use Theorem 5.12. The reader
who did Exercise 5.9 understands that τ is Fw≤τ -measurable. Furthermore,

wt∧τIτ<∞ → wτ as t→∞, so that wτ is also F
w
≤τ -measurable. Hence (τ, wτ )

and Bt are independent, and

J =

� ∞

0
e−λtEe−λτf(wτ +Bt) dt = Ee

−λτv(wτ ),

where

v(y) := E

� ∞

0
e−λtf(y +Bt) dt = E

� ∞

0
e−λtf(y + wt) dt.
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Upon applying Lemma 3 to u(x + y) in place of u(x), we immediately get
that v = u, and this proves the theorem if λ > 0.

To prove (3) for λ = 0 it suffices to pass to the limit, which is possible due
to the dominated convergence theorem if we know that Eτ <∞. However,
for the function u0(x) = (x− a)(b− x) and the result for λ > 0, we get

|a|b = u0(0) = E

� τ

0
e−λt(λu(wt) + 1) dt ≥ E

� τ

0
e−λt dt,

E

� τ

0
e−λt dt ≤ |a|b

and it only remains to apply the monotone convergence theorem to get
Eτ ≤ |a|b <∞. The theorem is proved.

In the following exercises we suggest the reader use Theorem 4.

5. Exercise. (i) Prove that Eτ = |a|b.

(ii) By noticing that

Eu(wτ ) = u(b)P (τ = τb) + u(a)P (τ < τb)

and taking an appropriate function u, show that the probability that the
Wiener process hits b before hitting a is |a|/(|a| + b).

6. Exercise. Sometimes one is interested in knowing how much time the
Wiener process spends in a subinterval [c, d] ⊂ (a, b) before exiting from
(a, b). Of course, by this time we mean Lebesgue measure of the set {t <
τ : wt ∈ [c, d]}.

(i) Prove that this time equals

γ :=

� τ

0
I[c,d](wt) dt.

(ii) Prove that for any Borel nonnegative f we have

E

� τ

0
f(wt) dt =

2

b− a

�
b

� 0

a
f(y)(y − a) dy − a

� b

0
f(y)(b− y) dy

�
,

and find Eγ.

7. Exercise. Define xt = wt + t, and find the probability that xt hits b
before hitting a.
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7. Itô stochastic integral

In Sec. 3 we introduced the stochastic integral of nonrandom functions on
[0, 1] against dwt. It turns out that a slight modification of this procedure
allows one to define stochastic integrals of random functions as well. The
way we proceed is somewhat different from the traditional one, which will
be presented in Sec. 6.1. We decided to give this definition just in case
the reader decides to study stochastic integration with respect to arbitrary
square integrable martingales.

Let (wt,Ft) be a Wiener process in the sense of Definition 5.3, given on a
probability space (Ω,F , P ). To proceed with defining Itô stochastic integral
in the framework of Sec. 3 we take

X = Ω× (0,∞), A = F ⊗B((0,∞)), µ = P × � (1)

and define Π as the collection of all sets A× (s, t] where 0 ≤ s ≤ t <∞ and
A ∈ Fs. Notice that, for A× (s, t] ∈ Π,

µ(A× (s, t]) = P (A)(t− s) <∞,

so that Π0 = Π. For A× (s, t] ∈ Π let

ζ(A× (s, t]) = (wt − ws)IA.

1. Definition. Denote P = σ(Π) and call P the σ-field of predictable sets.
The functions on Ω × (0,∞) which are P-measurable are called predictable
(relative to Ft).

By the way, the name “predictable” comes from the observation that
the simplest P-measurable functions are indicators of elements of Π which
have the form IAI(s,t] and are left-continuous, thus predictable on the basis
of past observations, functions of time.

2. Exercise*. Prove that Π is a π-system, and by relying on Theorem 3.19
conclude that L2(Π, µ) = L2(P, µ).

3. Theorem. The function ζ on Π is a random orthogonal measure with
reference measure µ, and Eζ(Δ) = 0 for every Δ ∈ Π.

Proof. We have to check the conditions of Definition 3.5. Let Δ1 =
A1 × (t1, t2], Δ2 = A2 × (s1, s2] ∈ Π. Define

ft(ω) = IΔ1(ω, t) + IΔ2(ω, t)
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and introduce the points r1 ≤ ... ≤ r4 by ordering t1, t2, s1, and s2. Obvi-
ously, for every t ≥ 0, the functions IΔi(ω, t+) are Ft-measurable and the
same holds for ft+(ω). Furthermore, for each ω, ft(ω) is piecewise constant
and left continuous in t. Therefore,

ft(ω) =
3�

i=1

gi(ω)I(ri,ri+1](t), (2)

where the gi = fri+ are Fri-measurable.

It turns out that for every ω

ζ(Δ1) + ζ(Δ2) =

3�

i=1

gi(ω)(wri+1 − wri). (3)

One can prove (3) in the following way. Fix an ω and define a continuous
function At, t ∈ [r1, r4], so that At is piecewise linear and equals wri at
all ri’s. Then by integrating through (2) against dAt, remembering the
definition of ft and the fact that the integral of a sum equals the sum of
integrals, we come to (3).

It follows from (3) that

E(ζ(Δ1) + ζ(Δ2))
2 =

3�

i=1

Eg2i (wri+1 − wri)
2

+2
�

i<j

Egigj(wri+1 − wri)(wrj+1 − wrj ),

where all expectations make sense because 0 ≤ f ≤ 2 and Ew2
t = t < ∞.

Remember that E(wrj+1 − wrj ) = 0 and E(wri+1 − wri)
2 = ri+1 − ri. Also

notice that (wri+1−wri)
2 and g2i are independent by Exercise 5.2 and, for i <

j, the gi are Fri-measurable and Frj -measurable, owing to Fri ⊂ Frj , so that
gigj(wri+1 − wri) is Frj -measurable and hence independent of wrj+1 − wrj .
Then we see that

E(ζ(Δ1) + ζ(Δ2))
2 =

3�

i=1

Ef2
ri+(ri+1 − ri) = E

� r4

r1

f2
t dt

= E

� r4

r1

(IΔ1 + IΔ2)
2 dt = E

� r4

r1

IΔ1 dt+ 2E

� r4

r1

IΔ1∩Δ2 dt+E

� r4

r1

IΔ2 dt
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= µ(Δ1) + 2µ(Δ1 ∩Δ2) + µ(Δ2). (4)

By plugging in Δ1 = Δ2 = Δ, we find that Eζ
2(Δ) = µ(Δ). Then, devel-

oping E(ζ(Δ1) + ζ(Δ2))
2 and coming back to (4), we get Eζ(Δ1)ζ(Δ2) =

µ(Δ1 ∩Δ2). Thus by Definition 3.5 the function ζ is a random orthogonal
measure with reference measure µ.

The fact that Eζ = 0 follows at once from the independence of Fs and
wt −ws for t ≥ s. The theorem is proved.

Theorem 3 allows us to apply Theorem 3.13. By combining it with
Exercise 2 and Remark 3.15 we come to the following result.

4. Theorem. In notation (1) there exists a unique linear isometric opera-
tor I : L2(P, µ) → L2(F , P ) such that, for every n = 1, 2, ..., constants ci,
si ≤ ti, and Ai ∈ Fsi given for i = 1, ..., n, we have

I(

n�

i=1

ciIAiI(si,ti]) =

n�

i=1

ciIAi(wti − wsi) (a.s.). (5)

In addition, EIf = 0 for every f ∈ L2(P, µ).

5. Exercise*. Formula (5) admits the following generalization. Prove that
for every n = 1, 2, ..., constants si ≤ ti, and Fsi-measurable functions gi
given for i = 1, ..., n and satisfying Eg2i <∞, we have

I(

n�

i=1

giI(si,ti]) =

n�

i=1

gi(wti − wsi) (a.s.).

6. Definition. We call If , introduced in Theorem 4, the Itô stochastic
integral of f , and write

If =:

� ∞

0
f(ω, t) dwt.

The Itô integral between nonrandom a and b such that 0 ≤ a ≤ b ≤ ∞
is naturally defined by

� b

a
f(ω, t) dwt =

� ∞

0
f(ω, t)I(a,b](t) dwt.

The comments in Sec. 3 before Theorem 3.22 are valid for Itô stochastic
integrals as well as for integrals of nonrandom functions against dwt. It is
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natural to notice that for nonrandom functions both integrals introduced in
this section and in Sec. 3 coincide (a.s.). This follows from formula (3.7),
valid for both integrals (and from the possibility of finding appropriate fn, a
possibility which is either known to the reader or will be seen from Remark
8.6).

Generally it is safe to say that the properties of the Itô integral are ab-
solutely different from those of the integral of nonrandom functions. For
instance Exercise 3.23 implies that for nonrandom integrands the integral
is either zero or its distribution has density. About 1981 M. Safonov con-
structed an example of random ft satisfying 1 ≤ ft ≤ 2 and such that the

distribution of
� 1
0 ft dwt is singular with respect to Lebesgue measure.

One may wonder why we took sets like A× (s, t] and not A× [s, t) as a
starting point for stochastic integration. Actually, for the Itô stochastic in-
tegral against the Wiener process this is irrelevant, and the second approach
even has some advantages, since then (cf. Exercise 5) almost by definition
we would have a very natural formula:

� ∞

0
f(t) dwt =

n�

i=1

f(ti)(wti+1 − wti)

provided that f(t) is Ft-measurable and E|f(t)|
2 < ∞ for every t, and

0 ≤ t1 ≤ ... ≤ tn+1 < ∞ are nonrandom and such that f(t) = f(ti) for
t ∈ [ti, ti+1) and f(t) = 0 for t ≥ tn+1. We show that this formula is indeed
true in Theorem 8.8.

However, there is a significant difference between the two approaches
if one tries to integrate with respect to discontinuous processes. Several
unusual things may happen, and we offer the reader the following exercises
showing one of them.

7. Exercise. In completely the same way as above one introduces a sto-
chastic integral against π̄t := πt − t, where πt is the Poisson process with
parameter 1. Of course, one needs an appropriate filtration of σ-fields Ft
such that πt is Ft-measurable and πt+h − πt is independent of Ft for all
t, h ≥ 0. On the other hand, one can integrate against π̄t as usual, since this
function has bounded variation on each interval [0, T ]. In connection with
this, prove that

E(usual)

� 1

0
πt dπ̄t �= 0,

so that either πt is not stochastically integrable or the usual integral is
different from the stochastic one. (As follows from Theorem 8.2, the latter
is true.)
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8. Exercise. In the situation of Exercise 7, prove that for every predictable
nonnegative ft we have

E(usual)

� 1

0
ft dπt = E

� 1

0
ft dt.

Conclude that πt is not predictable, and is not P
µ-measurable either.

8. The structure of Itô integrable functions

Dealing with Itô stochastic integrals quite often requires much attention to
tiny details, since often what seems true turns out to be absolutely wrong.
For instance, we will see below that the function I(0,∞)(wt)I(0,1)(t) is Itô
integrable and consequently its Itô integral has zero mean. This may look
strange due to the following.

Represent the open set {t : wt > 0} as the countable union of disjoint
intervals (αi, βi). Clearly wαi = wβi

= 0, and

I(0,∞)(wt)I(0,1)(t) =
�

i

I(0,1)∩(αi,βi)(t). (1)

In addition it looks natural that

� ∞

0
I(0,1)∩(αi,βi)(t) dwt = w1∧αi − w1∧βi

, (2)

where the right-hand side is different from zero only if αi < 1, βi > 1,
and w1 > 0, i.e. if 1 ∈ (αi, βi). In that case the right-hand side of (2)
equals (w1)+, and since the integral of a sum should be equal to the sum of
integrals, formula (1) shows that the Itô integral of I(0,∞)(wt)I(0,1)(t) should
equal (w1)+. However, this is impossible since E(w1)+ > 0.

The contradiction here comes from the fact that the terms in (1) are not
Itô integrable and (2) just does not make sense.

One more example of an integral with no sense gives
� 1
0 w1 dwt. Again

its mean value should be zero, but under every reasonable way of defining

this integral it should equal w1

� 1
0 dwt = w

2
1.

All this leads us to the necessity of investigating the set of Itô inte-
grable functions. Due to Theorem 3.19 and Exercise 3.2 this is equivalent
to investigating which functions are Pµ-measurable.
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1. Definition. A function ft(ω) given on Ω× (0,∞) is called Ft-adapted if
it is Ft-measurable for each t > 0. By H we denote the set of all real-valued
Ft-adapted functions ft(ω) which are F ⊗B(0,∞)-measurable and satisfy

E

� ∞

0
f2
t dt <∞.

The following theorem says that all elements of H are Itô integrable.
The reader is sent to Sec. 7 for necessary notation.

2. Theorem. We have H ⊂ L2(P, µ).

Proof (Doob). It suffices only to prove that f ∈ L2(P, µ) for f ∈ H such
that ft(ω) = 0 for t ≥ T , where T is a constant. Indeed, by the dominated
convergence theorem

�

X
|ft − ftIt≤n|

2 dPdt = E

� ∞

n
f2
t dt→ 0

as n → ∞, so that, if ftIt≤n ∈ L2(P, µ), then ft ∈ L2(P, µ) due to the
completeness of L2(P, µ).

Therefore we fix an f ∈ H and T < ∞ and assume that ft = 0 for
t ≥ T . It is convenient to assume that ft is defined for negative t as well,
and ft = 0 for t ≤ 0. Now we recall that it is known from integration theory
that every L2-function is continuous in L2. More precisely, if h ∈ L2([0, T ])
and h(t) = 0 outside [0, T ], then

lim
a→0

� T

−T
|h(t+ a)− h(t)|2 dt = 0.

This and the inequality

� T

−T
|ft+a − ft|

2 dt ≤ 2
�
� T

−T
f2
t+a dt+

� T

−T
f2
t dt

�
≤ 4

� T

0
f2
t dt

along with the dominated convergence theorem imply that

lim
a→0

E

� T

−T
|ft+a − ft|

2 dt = 0. (3)

Now let

ρn(t) = k2
−n for t ∈ (k2−n, (k + 1)2−n].

Changing variables t+ s = u, t = v shows that
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� 1

0
E

� T

0
|fρn(t+s)−s − ft|

2 dtds =

� T+1

0

�
E

� u∧T

u−1
|fρn(u)−u+v − fv|

2 dv
�
du.

The last expectation tends to zero owing to (3) uniformly with respect to
u, since 0 ≤ u− ρn(u) ≤ 2

−n. It follows that there is a sequence n(k)→∞
such that for almost every s ∈ [0, 1]

lim
k→∞

E

� T

0
|fρn(k)(t+s)−s − ft|

2 dt = 0. (4)

Fix any s for which (4) holds, and denote fkt = fρn(k)(t+s)−s. Then (4)

and the inequality |a|2 ≤ 2|b|2 + 2|a− b|2 show that |fkt |
2 is µ-integrable at

least for all large k.

Furthermore, it turns out that the fkt are predictable. Indeed,

fρn(t+s)−s =
�

i

fi2−n−sI(i2−n−s,(i+1)2−n−s](t) =
�

i:i2−n−s>0

. (5)

In addition, ft1I(t1,t2] is predictable if 0 ≤ t1 ≤ t2, since for any Borel B

{(ω, t) : ft1(ω)I(t1,t2](t) ∈ B}

= ({ω : ft1(ω) ∈ B} × (t1, t2]) ∪ {(ω, t) : I(t1,t2](t) = 0 ∈ B} ∈ P.

Therefore (5) yields the predictability of fkt , and the integrability of |f
k
t |

2

now implies that fkt ∈ L2(P, µ). The latter space is complete, and owing to
(4) we have ft ∈ L2(P, µ). The theorem is proved.

3. Exercise*. By following the above proof, show that left continuous Ft-
adapted processes are predictable.

4. Exercise. Go back to Exercise 7.7 and prove that if ft is left continuous,

Ft-adapted, and E
� 1
0 f

2
t dt <∞, then the usual integral

� 1
0 ft dπ̄t coincides

with the stochastic one (a.s.). In particular, prove that the usual integral
� 1
0 πt− dπ̄t coincides with the stochastic integral

� 1
0 πt dπ̄t (a.s.).

5. Exercise. Prove that if f ∈ L2(P, µ), then there exists h ∈ H such that
f = h µ-a.e. and in this sense H = L2(P, µ).

6. Remark. If ft is independent of ω, (4) implies that for almost any s ∈
[0, 1]

lim
k→∞

� T

0
|fρn(k)(t+s)−s − ft|

2 dt = 0,

� T

0
ft dt = lim

k→∞

� T

0
fρn(k)(t+s)−s dt.
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This means that appropriate Riemann sums converge to the Lebesgue inte-
gral of f .

7. Remark. It is seen from the proof of Theorem 2 that, if f ∈ H, then for
any integer n ≥ 1 one can find a partition 0 = tn0 < tn1 < ... < tnk(n) = n
such that maxi(tn,i+1 − tni) ≤ 1/n and

lim
n→∞

E

� ∞

0
|ft − f

n
t |

2 dt = 0,

where fn ∈ H are defined by fnt = ftni for t ∈ (tni, tn,i+1], i ≤ k(n)− 1, and
fnt = 0 for t > n. Furthermore, the f

n
t are predictable, and by Theorem 7.4

� ∞

0
ft dwt = l.i.m.

n→∞

� ∞

0
fnt dwt. (6)

One can apply the same construction to vector-valued functions f , and then
one sees that the above partitions can be taken the same for any finite
number of f ’s.

Next we prove two properties of the Itô integral. The first one justifies
the notation

�∞
0 ft dwt, and the second one shows a kind of local property

of this integral.

8. Theorem. (i) If f ∈ H, 0 = t0 < t1 < ... < tn < ..., ft = fti for
t ∈ [ti, ti+1) and i ≥ 0, then in the mean square sense

� ∞

0
ft dwt =

∞�

i=0

fti(wti+1 − wti).

(ii) If g, h ∈ H, A ∈ F , and ht(ω) = gt(ω) for t ≥ 0 and ω ∈ A, then�∞
0 gt dwt =

�∞
0 ht dwt on A (a.s.).

Proof. (i) Define f it = ftiI(ti,ti+1] and observe the simple fact that f =�
i f
i µ-a.e. Then the linearity and continuity of the Itô integral show that

to prove (i) it suffices to prove that

� ∞

0
gI(r,s](t) dwt = (ws − wr)g (7)

(a.s.) if g is Fr-measurable, Eg
2 <∞, and 0 ≤ r < s <∞.

If g is a step function (having the form
�n
i=1 ciIAi with constant ci and

Ai ∈ Fr), then (7) follows from Theorem 7.4. The general case is suggested
as Exercise 7.5.
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To prove (ii), take common partitions for g and h from Remark 7 and
on their basis construct the sequences gnt and h

n
t . Then by (i) the left-hand

sides of (6) for fnt = gnt and f
n
t = hnt coincide on A (a.s.). Formula (6)

then says that the same is true for the integrals of g and h. The theorem is
proved.

Much later (see Sec. 6.1) we will come back to Itô stochastic integrals
with variable upper limit. We want these integrals to be continuous. For
this purpose we need some properties of martingales which we present in
the following chapter. The reader can skip it if he/she is only interested in
stationary processes.

9. Hints to exercises

2.5 Use Exercise 1.4.14, with R(x) = x, and estimate
� x
0

�
(− ln y)/y dy

through
�
x(− ln x) by using l’Hospital’s rule.

2.10 The cases a ≤ b and a > b are different. At some moment you may
like to consult the proof of Theorem 2.3 taking there 22n in place of n.

2.12 If P (ξ ≤ a, η ≤ b) =
� b
−∞ f(x) dx for every b, then Eg(η)Iξ≤a =�

R
g(x)f(x) dx. The result of these computations is given in Sec. 6.8.

3.4 It suffices to prove that the indicators of sets (s, t] are in Lp(Π, µ).

3.8 Observe that

ϕ(s) = E exp(i

∞�

n=1

f(s+ σn)),

and by using the independence of the τn and the fact that EF (τ1, τ2, ...) =
EΦ(τ1), where Φ(t) = EF (t, τ2, ...), show that

ϕ(s) =

� ∞

0
eif(s+t)−tϕ(s+ t) dt = es

� ∞

s
eif(t)(e−tϕ(t)) dt.

Conclude first that ϕ is continuous, then that ϕ(s)e−s is differentiable, and
solve the above equation. After that, approximate by continuous functions
the function which is constant on each interval (tj, tj+1] and vanishes outside
of the union of these intervals.

3.14 Prove that, for every Borel nonnegative f , we have

E
�

σn≤1

f(σn) =

� 1

0
f(s) ds,

and use it to pass to the limit from step functions to arbitrary ones.

3.21 For bn > 0 with bn → 1, we have
�
bn = 0 if and only if

�
n(1− bn) =

∞.
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3.23 Use Remark 1.4.10 and (3.6).

5.9 Take any continuous function u(x) defined on [a, b] such that u < 0 in
(a, b) and u(a) = u(b) = 0, and use it to write a formula similar to (5.1).

6.7 Define τ as the first exit time of xt from (a, b) and, similarly to (6.3),
prove that

u(0) = E

� τ

0
e−λt(λu(xt)− u

�(xt)− (1/2)u
��(xt)) dt+ Ee

−λτu(xτ ).

7.7 Observe that
�
(0,t] πs dπs = πt(πt + 1)/2.

7.8 First take ft = IΔ.

8.4 Keep in mind the proof of Theorem 8.2, and redo Exercise 7.5 for πt in
place of wt.

8.5 Take a sequence of step functions converging to f µ-a.e., and observe
that step functions are Ft-adapted.



Chapter 5

Infinitely Divisible

Processes

The Wiener process has independent increments and the distribution of each
increment depends only on the length of the time interval over which the
increment is taken. There are many other processes possessing this property;
for instance, the Poisson process or the process τa, a ≥ 0, from Example 2.5.8
are examples of those (see Theorem 2.6.1).

In this chapter we study what can be said about general processes of
that kind. They are supposed to be given on a complete probability space
(Ω,F , P ) usually behind the scene. The assumption that this space is com-
plete will turn out to be convenient to use starting with Exercise 5.5. One
more stipulation is that unless explicitely stated otherwise, all the processes
under consideration are assumed to be real valued . Finally, after Theorem
1.5 we tacitly assume that all processes under consideration are stochasti-
cally continuous without specifying this each time.

1. Stochastically continuous processes with

independent increments

We start with processes having independent increments. The main goal of
this section is to show that these processes, or at least their modifications,
have rather regular trajectories (see Theorem 11).

1. Definition. A real- or vector-valued random process ξt given on [0,∞)
is said to be a process with independent increments if ξ0 = 0 (a.s.) and
ξt1 , ξt2 − ξt1 , ..., ξtn − ξtn−1 are independent provided 0 ≤ t1 ≤ ... ≤ tn <∞.

131
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We will be only dealing with stochastically continuous processes.

2. Definition. A real- or vector-valued random process ξt given on [0,∞)

is said to be stochastically continuous at a point t0 ∈ [0,∞) if ξt
P
→ ξt0

as t → t0. We say that ξt is stochastically continuous on a set if it is
stochastically continuous at each point of the set.

Clearly, ξt is stochastically continuous at t0 if E|ξt − ξt0 | → 0 as t→ t0.
Stochastic continuity is very weakly related to the continuity of trajectories.
For instance, for the Poisson process with parameter 1 (see Exercise 2.3.8)
we have E|ξt − ξt0 | = |t − t0|. However, all trajectories of ξt are discontin-
uous. By the way, this example shows also that the requirement β > 0 in
Kolmogorov’s Theorem 1.4.8 is essential. The trajectories of τa, a ≥ 0, are
also discontinuous, but this process is stochastically continuous too since
(see Theorem 2.6.1 and (2.5.1))

P (|τb − τa| > ε) = P (τ|b−a| > ε) = P (max
t≤ε

ws < |b− a|)→ 0 as b→ a.

3. Exercise. Prove that, for any ω, the function τa, a > 0, is left continuous
in a.

4. Definition. A (real-valued) random process ξt given on [0,∞) is said to
be bounded in probability on a set I ⊂ [0,∞) if

lim
c→∞

sup
t∈I
P (|ξt| > c) = 0.

As in usual analysis, one proves the following.

5. Theorem. If the process ξt is stochastically continuous on [0, T ] (T <
∞), then

(i) it is uniformly stochastically continuous on [0, T ], that is, for any
γ, ε > 0 there exists δ > 0 such that

P (|ξt1 − ξt2 | > ε) < γ,

whenever t1, t2 ∈ [0, T ] and |t1 − t2| ≤ δ;

(ii) it is bounded in probability on [0, T ].

The proof of this theorem is left to the reader as an exercise.

From this point on we will only consider stochastically continuous pro-
cesses on [0,∞), without specifying this each time.

To prove that processes with independent increments admit modifica-
tions without second-type discontinuities, we need the following lemma.
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6. Lemma (Ottaviani’s inequality). Let ηk, k = 1, ..., n, be independent
random variables, Sk = η1 + ...+ ηk, a ≥ 0, 0 ≤ α < 1, and

P{|Sn − Sk| ≥ a} ≤ α ∀k.

Then for all c ≥ 0

P{max
k≤n

|Sk| ≥ a+ c} ≤
1

1− α
P{|Sn| ≥ c}. (1)

Proof. The probability on the left in (1) equals

n�

k=1

P{|Si| < a+ c, i < k, |Sk| ≥ a+ c}

≤
1

1− α

n�

k=1

P{|Si| < a+ c, i < k, |Sk| ≥ a+ c, |Sn − Sk| < a}

≤
1

1− α

n�

k=1

P{|Si| < a+c, i < k, |Sk| ≥ a+c, |Sn| ≥ c} ≤
1

1− α
P{|Sn| ≥ c}.

The lemma is proved.

7. Theorem. Let ξt be a process with independent increments on [0,∞),
T ∈ [0,∞), and let ρ be the set of all rational points on [0, T ]. Then

P{sup
r∈ρ

|ξr| <∞} = 1.

Proof. Obviously it suffices to prove that for some h > 0 and all t ∈ [0, T ]
we have

P{ sup
r∈[t,t+h]∩ρ

|ξr| <∞} = 1. (2)

Take h > 0 so that P{|ξu − ξu+s| ≥ 1} ≤ 1/2 for all s, u such that
0 ≤ s ≤ h and s + u ≤ T . Such a choice is possible owing to the uniform
stochastic continuity of ξt on [0, T ]. Fix t ∈ [0, T ] and let

r1, ..., rn ∈ [t, t+ h] ∩ ρ, r1 ≤ ... ≤ rn.

Observe that ξrk = ξr1+(ξr2 − ξr1)+ ...+(ξrk − ξrk−1
), where the summands

are independent. In addition, P{|ξrn − ξrk | ≥ 1} ≤ 1/2. Hence by Lemma 6
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P{sup
k≤n

|ξrk | ≥ 1 + c} ≤ 2 sup
t∈[0,T ]

P{|ξt| ≥ c}. (3)

The last inequality is true for any arrangement of the points rk ∈ [t, t+h]∩ρ
which may not be necessarily ordered increasingly. Therefore, now we can
think of the set {r1, r2, ...} as being the whole ρ ∩ [t, t + h]. Then, passing
to the limit in (3) as n→∞ and noticing that

sup{|ξrk | : k = 1, 2, ...} ↑ sup{|ξr| : r ∈ ρ ∩ [t, t+ h]},

we find that

P{ sup
r∈[t,t+h]∩ρ

|ξr| > 1 + c} ≤ 2 sup
t∈[0,T ]

P{|ξt| ≥ c}.

Finally, by letting c → ∞ and using the uniform boundedness of ξr in
probability, we come to (2). The theorem is proved.

Define D[0,∞) to be the set of all complex-valued right-continuous func-
tions on [0,∞) which have finite left limits at each point t ∈ (0,∞). Similarly
one defines D[0, T ]. We say that a function x· is a cadlag function on [0, T ]
if x· ∈ D[0, T ], and just cadlag if x· ∈ D[0,∞).

8. Exercise*. Prove that if xn· ∈ D[0,∞), n = 1, 2, ..., and the x
n
t converge

to xt as n→∞ uniformly on each finite time interval, then x· ∈ D[0,∞).

9. Lemma. Let ρ = {r1, r2, ...} be the set of all rational points on [0, 1], xt
a real-valued (nonrandom) function given on ρ. For a < b define βn(x·, a, b)
to be the number of upcrossings of the interval (a, b) by the function xt
restricted to the set r1, r2, ..., rn. Assume that

lim
n→∞

βn(x·, a, b) <∞

for any rational a and b. Then the function

x̃t := lim
ρ�r↓t

xr

is well defined for any t ∈ [0, 1), is right continuous on [0, T ), and has
(perhaps infinite) left limits on (0, T ].

This lemma is set as an exercise on properties of lim and lim.
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10. Lemma. Let ψ(t, λ) be a complex-valued function defined for λ ∈ R

and t ∈ [0, 1]. Assume that ψ(t, λ) is continuous in t and never takes the
zero value. Let ξt be a stochastically continuous process such that

(i) sup
r∈ρ

|ξr| <∞ (a.s.);

(ii) lim
n→∞

Eβn(η
i
· (λ), a, b) < ∞ for any −∞ < a < b < ∞, λ ∈ R,

i = 1, 2, where

η1
t (λ) = Re [ψ(t, λ)e

iλξt ], η2
t (λ) = Im [ψ(t, λ)e

iλξt ].

Then the process ξt admits a modification, all trajectories of which belong
to D[0, 1].

Proof. Denote ηt(λ) = ψ(t, λ)e
iλξt and

Ω� =
∞�

m=1

�

a<b
a,b rational

{ lim
n→∞

βn(η
i
· (

1
m), a, b) <∞, i = 1, 2} ∩ {sup

r∈ρ
|ξr| <∞}.

Obviously, P (Ω�) = 1. For ω ∈ Ω� Lemma 9 allows us to let

η̃t(
1
m ) = lim

ρ�r↓t
ηr(

1
m ), t < 1, η̃1(

1
m ) = η1(

1
m).

For ω �∈ Ω� let η̃t(
1
m ) ≡ 0. Observe that, since ψ is continuous in t and

P (Ω�) = 1 and ξt is stochastically continuous, we have that

η̃t(
1
m) = P - limρ�r↓t

ηr(
1
m ) = ηt(

1
m ) (a.s.) ∀t < 1,

η̃1(
1
m ) = η1(

1
m ).

(4)

Furthermore, |η̃t(
1
m )ψ

−1(t, 1
m)| ≤ 1 for all ω and t.

Now define µ = µ(ω) = [supr∈ρ |ξr|] + 1 and

ξ̃t = µ arcsin Im η̃t(1/µ)ψ
−1(t, 1/µ)IΩ� .

By Lemma 9, η̃·(
1
m) ∈ D[0, 1] for any ω. Hence, ξ̃t ∈ D[0, 1] for any ω.

It only remains to prove that P{ξ̃t = ξt} = 1 for any t ∈ [0, 1]. For t ∈ ρ
we have this equality from (4) and from the formula

ξt = µ arcsin Im ηt(1/µ)ψ
−1(t, 1/µ),

which holds for ω ∈ Ω�. For other t, owing to the stochastic continuity of ξt
and the right continuity of ξ̃t, we have
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ξt = P - lim
ρ�r↓t

ξr = P - lim
ρ�r↓t

ξ̃r = ξ̃t

(a.s.). The lemma is proved.

11. Theorem. Stochastically continuous processes with independent incre-
ments admit modifications which are right continuous and have finite left
limits for any ω.

Proof. Let ξt be a process in question. It suffices to construct a modifi-
cation with the described properties on each interval [n, n+1], n = 0, 1, 2, ....
The reader can easily combine these modifications to get what we want on
[0,∞). We will confine ourselves to the case n = 0. Let ρ be the set of all
rational points on [0, 1], and let

ϕ(t, λ) = Eeiξtλ, ϕ(t1, t2, λ) = Ee
iλ(ξt2−ξt1).

Since the process ξt is stochastically continuous, the function ϕ(t1, t2, λ)
is continuous in (t1, t2) ∈ [0, 1] × [0, 1] for any λ. Therefore, this function
is uniformly continuous on [0, 1] × [0, 1], and, because ϕ(t, t, λ) = 1, there
exists δ(λ) > 0 such that |ϕ(t1, t2, λ)| ≥ 1/2 whenever |t1 − t2| < δ(λ) and
t1, t2 ∈ [0, 1]. Furthermore, for any t ∈ [0, 1] and λ ∈ R one can find n ≥ 1
and 0 = t1 ≤ t2 ≤ ... ≤ tn = t such that |tk − tk−1| < δ(λ). Then, using the
independence of increments, we find that

ϕ(t, λ) = ϕ(t1, t2, λ) · ... · ϕ(tn−1, tn, λ),

which implies that ϕ(t, λ) �= 0. In addition, ϕ(t, λ) is continuous in t.

For fixed λ consider the process

ηt = ηt(λ) = ϕ
−1(t, λ)eiλξt .

Let s1, s2, ..., sn be rational numbers in [0, 1] such that s1 ≤ ... ≤ sn. Define

Fk = σ{ξs1 , ξs2 − ξs1 , ..., ξsk − ξsk−1
}.

Notice that (Re ηsk ,Fk) and (Im ηsk ,Fk) are martingales. Indeed, by virtue
of the independence of ξsk+1

− ξsk and Fk, we have

E{Re ηsk+1
|Fk} = ReE{e

iλξskϕ−1(sk+1, λ)e
iλ(ξsk+1

−ξsk
)|Fk}

= Re eiλξskϕ−1(sk+1, λ)ϕ(sk, sk+1, λ) = Re ηsk (a.s.).

Hence by Doob’s upcrossing theorem, if ri ∈ ρ, {r1, ..., rn} = {s1, ..., sn},
and 0 ≤ s1 ≤ ... ≤ sn, then

Eβn(Re η·, a, b) ≤ (E|Re ηsn |+ |a|)/(b − a)
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≤ ( sup
t∈[0,1]

ϕ−1(t, λ) + |a|)/(b − a) <∞,

sup
n
Eβn(Im η·, a, b) <∞.

It only remains to apply Lemma 10. The theorem is proved.

12. Exercise* (cf. Exercise 3). Take the stable process τa, a ≥ 0, from
Theorem 2.6.1. Observe that τa increases in a and prove that its cadlag
modification, the existence of which is asserted in Theorem 11, is given by
τa+, a ≥ 0.

2. Lévy-Khinchin theorem

In this section we prove a remarkable Lévy-Khinchin theorem. It is worth
noting that this theorem was originally proved for so-called infinitely divisi-
ble laws and not for infinitely divisible processes. As usual we are only deal-
ing with one-dimensional processes (the multidimensional case is treated,
for instance, in [GS]).

1. Definition. A process ξt with independent increments is called time
homogeneous if, for every h > 0, the distribution of ξt+h− ξt is independent
of t.

2. Definition. A stochastically continuous time-homogeneous process ξt
with independent increments is called an infinitely divisible process.

3. Theorem (Lévy-Khinchin). Let ξt be an infinitely divisible process on
[0,∞). Then there exist a finite nonnegative measure on (R,B(R)) and a
number b ∈ R such that, for any t ∈ [0,∞) and λ ∈ R, we have

Eeiλξt = exp{t

�

R

f(λ, x)µ(dx) + itbλ}, (1)

where

f(λ, x) = (eiλx − 1− iλ sin x)
1 + x2

x2
, x �= 0, f(λ, 0) := −

λ2

2
.

Proof. Denote ϕ(t, λ) = Eeiλξt . In the proof of Theorem 1.11 we saw
that ϕ(t, λ) is continuous in t and ϕ(t, λ) �= 0. In addition ϕ(t, λ) is contin-
uous with respect to the pair (t, λ). Define

a(t, λ) = argϕ(t, λ), l(t, λ) = ln |ϕ(t, λ)|.

By using the continuity of ϕ and the fact that ϕ �= 0, one can uniquely
define a(t, λ) to be continuous in t and in λ and satisfy a(0, λ) = a(t, 0) = 0.



138 Chapter 5. Infinitely Divisible Processes, Sec 2

Clearly, l(t, λ) is a finite function which is also continuous in t and in λ.
Furthermore,

ϕ(t, λ) = exp{l(t, λ) + ia(t, λ)}.

Next, it follows from the homogeneity and independence of increments
of ξt that

ϕ(t+ s, λ) = ϕ(t, λ)ϕ(s, λ).

Hence, by definition of a, we get that, for each λ, it satisfies the equation

f(t+ s) = f(t) + f(s) + 2πk(s, t),

where k(s, t) is a continuous integer-valued function. Since k(t, 0) = 0, in
fact, k ≡ 0, and a satisfies f(t+ s) = f(t)+ f(s). The same equation is also
valid for l. Any continuous solution of this equation has the form ct, where
c is a constant. Thus,

a(t, λ) = ta(λ), l(t, λ) = tl(λ),

where a(λ) = a(1, λ) and l(λ) = l(1, λ). By defining g(λ) := l(λ) + ia(λ),
we write

ϕ(t, λ) = etg(λ),

where g is a continuous function of λ and g(0) = 0. We have reduced our
problem to finding g.

Observe that

g(λ) = lim
t↓0

etg(λ) − 1

t
= lim

t↓0

ϕ(t, λ) − 1

t
. (2)

Moreover, from Taylor’s expansion of exp(tg(λ)) with respect to t one easily
sees that the convergence in (2) is uniform on each set of values of λ on
which g(λ) is bounded. In particular, this is true on each set [−h, h] with
0 ≤ h <∞.

By taking t of type 1/n and denoting Ft the distribution of ξt, we con-
clude that

n

�

R

(eiλx − 1)F1/n(dx)→ g(λ) (3)

as n→∞ uniformly in λ on any finite interval. Integrate this against dλ to
get



Ch 5 Section 2. Lévy-Khinchin theorem 139

lim
n→∞

n

�

R

�

1−
sin xh

xh

�

F1/n(dx) = −
1

2h

� h

−h
g(λ) dλ. (4)

Notice that the right-hand side of (4) can be made arbitrarily small by
choosing h small, since g is continuous and vanishes at zero. Furthermore,
as is easy to see, 1 − sin xh/xh ≥ 1/2 for |xh| ≥ 2. It follows that, for any
ε > 0, there exists h > 0 such that

lim
n→∞

(n/2)

�

|x|≥2/h
F1/n(dx) ≤ ε.

In turn, it follows that, for all large n,

n

�

|x|≥2/h
F1/n(dx) ≤ 4ε. (5)

By reducing h one can accommodate any finite set of values of n and find
an h such that (5) holds for all n ≥ 1 rather than only for large ones.

To derive yet another consequence of (4), notice that there exists a
constant γ > 0 such that

1−
sinx

x
≥ γ

x2

1 + x2
∀x ∈ R.

Therefore, from (4) with h = 1, we obtain that there exists a finite constant
c such that for all n

n

�

R

x2

1 + x2
F1/n(dx) ≤ c. (6)

Finally, upon introducing measures µn by the formula

µn(dx) = n
x2

1 + x2
F1/n(dx),

and noticing that µn ≤ nF1/n, from (5) and (6), we see that the family
{µn, n = 1, 2, ...} is weakly compact. Therefore, there exist a subsequence
n� →∞ and a finite measure µ such that

�

R

f(x)µn�(dx)→

�

R

f(x)µ(dx)
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for every bounded and continuous f . As is easy to check f(λ, x) is bounded
and continuous in x. Hence,

g(λ) = lim
n→∞

n

�

R

(eiλx − 1)F1/n(dx)

= lim
n→∞

[

�

R

f(λ, x)µn(dx) + iλn

�

R

sin xF1/n(dx)]

= lim
n�→∞

[

�

R

f(λ, x)µn�(dx) + iλn
�

�

R

sin xF1/n�(dx)]

=

�

R

f(λ, x)µ(dx) + iλb,

where

b := lim
n�→∞

n�
�

R

sin xF1/n�(dx),

and the existence and finiteness of this limit follows from above computations
in which all limits exist and are finite. The theorem is proved.

Formula (1) is called Khinchin’s formula. The following Lévy’s formula
sheds more light on the structure of the process xt:

ϕ(t, λ) = exp t{

�

R

(eiλx − 1− iλ sin x)Λ(dx) + ibλ− σ2λ2/2},

where Λ is called the Lévy measure of ξt. This is a nonnegative, generally
speaking, infinite measure on B(R) such that

�

R

x2

1 + x2
Λ(dx) <∞, Λ({0}) = 0. (7)

Any such measure is called a Lévy measure. One obtains one formula from
the other by introducing the following relations between µ and the pair
(Λ, σ2):

µ({0}) = σ2, Λ(Γ) =

�

Γ\{0}

1 + x2

x2
µ(dx).

4. Exercise*. Prove that if one introduces (Λ, σ2) by the above formulas,
then one gets Lévy’s formula from Khinchin’s formula, and, in addition, Λ
satisfies (7).
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5. Exercise*. Let a measure Λ satisfy (7). Define

µ(Γ) =

�

Γ

x2

1 + x2
Λ(dx) + IΓ(0)σ

2.

Show that µ is a finite measure for which Lévy’s formula transforms into
Khinchin’s formula.

6. Theorem (uniqueness). There can exist only one finite measure µ and
one number b for which ϕ(t, λ) is representable by Khinchin’s formula. There
can exist only one measure Λ satisfying (7) and unique numbers b and σ2

for which ϕ(t, λ) is representable by Lévy’s formula.

Proof. Exercises 4 and 5 show that we may concentrate only on the first
part of the theorem. The exponent in Khinchin’s formula is continuous in λ
and vanishes at λ = 0. Therefore it is uniquely determined by ϕ(t, λ), and
we only need prove that µ and b are uniquely determined by the function

g(λ) :=

�

R

f(λ, x)µ(dx) + ibλ.

Clearly, it suffices only to show that µ is uniquely determined by g.

For h > 0, we have

g(λ) −
g(λ+ h) + g(λ− h)

2
=

�

R

eiλx
1− cos xh

x2
(1 + x2)µ(dx) (8)

with the agreement that (1 − cos xh)/x2 = h2/2 if x = 0. Define a new
measure

νh(Γ) =

�

Γ
ρ(x, h)µ(dx), ρ(x, h) =

1− cosxh

x2
(1 + x2)

and use
�

R

f(x) νh(dx) =

�

R

f(x)ρ(x, h)µ(dx)

for all bounded Borel f . Then we see from (8) that the characteristic func-
tion of νh is uniquely determined by g. Therefore, νh is uniquely determined
by g for any h > 0.

Now let Γ be a bounded Borel set and h be such that Γ ⊂ [−1/h, 1/h].
Take f(x) = ρ−1(x, h) for x ∈ Γ and f(x) = 0 elsewhere. By the way,
observe that f is a bounded Borel function. For this f

�

R

f(x) νh(dx) =

�

R

f(x)ρ(x, h)µ(dx) = µ(Γ),
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where the left-hand side is uniquely determined by g. The theorem is proved.

7. Corollary. Define

µt(dx) =
x2

t(1 + x2)
Ft(dx), bt =

1

t

�

R

sin xFt(dx).

Then µt → µ weakly and bt → b as t ↓ 0.

Indeed, similarly to (3) we have

1

t

�

R

(eiλx − 1)Ft(dx)→ g(λ),

which as in the proof of the Lévy-Khinchin theorem shows that the family

{µt; t ≤ 1} is weakly compact. Next, if µtn�
w
→ ν, then, again as in the proof

of the Lévy-Khinchin theorem, btn� converges, and if we denote its limit by c,
then Khinchin’s formula holds with µ = ν and b = c. Finally, the uniqueness
implies that all weak limit points of µt, t ↓ 0, coincide with µ and hence

(cf. Exercise 1.2.10) µ(t)
w
→ µ as t ↓ 0. This obviously implies that bt also

converges and its limit is b.

8. Corollary. In Lévy’s formula

σ2 = lim
n→∞

lim
t↓0

1

t
Eξ2t I|ξt|≤εn ,

where εn is a sequence such that εn > 0 and εn ↓ 0. Moreover, Ft/t converges
weakly on R \ {0} as t ↓ 0 to Λ, that is,

lim
t↓0

1

t

�

R

f(x)Ft(dx) = lim
t↓0

1

t
Ef(ξt) =

�

R

f(x)Λ(dx) (9)

for each bounded continuous function f which vanishes in a neighborhood
of 0.

Proof. By the definition of Λ and Corollary 7, for each bounded contin-
uous function f which vanishes in a neighborhood of 0, we have

�

R

f(x)Λ(dx) =

�

R

f(x)
1 + x2

x2
µ(dx)

= lim
t↓0

�

R

f(x)
1 + x2

x2
µt(dx) = lim

t↓0

1

t

�

R

f(x)Ft(dx).

This proves (9).
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Let us prove the first assertion. By the dominated convergence theorem,
for every sequence of nonnegative εn → 0 we have

σ2 = µ({0}) =

�

R

I[0,0](x)µ(dx)

=

�

R

I[0,0](x)(1 + x
2)µ(dx) = lim

n→∞

�

R

I[−εn,εn](x)(1 + x
2)µ(dx).

By Theorem 1.2.11 (v), if µ({εn}) = µ({−εn}) = 0, then

�

R

I[−εn,εn](x)(1 + x
2)µ(dx)

= lim
t↓0

1

t

�

R

I[−εn,εn](x)x
2 Ft(dx) = lim

t↓0

1

t
Eξ2t I|ξt|≤εn.

It only remains to notice that the set of x such that µ({x}) > 0 is count-
able, so that there exists a sequence εn such that εn ↓ 0 and µ({εn}) =
µ({−εn}) = 0. The corollary is proved.

9. Exercise. Prove that, if ξt ≥ 0 for all t ≥ 0 and ω, then Λ((−∞, 0]) = 0.
One can say more in that case, as we will see in Exercise 3.15.

We know that the Wiener process has independent increments, and also
that it is homogeneous and stochastically continuous (even just continuous).
In Lévy’s formula, to get E exp(iλwt) one takes Λ = 0, b = 0, and σ = 1.

If in Lévy’s formula we take σ = 0, Λ(Γ) = IΓ(1)µ, and b = µ sin 1,
where µ is a nonnegative number, then the corresponding process is called
the Poisson process with parameter µ.

If σ = b = 0 and Λ(dx) = ax−2 dx with a constant a > 0, the corre-
sponding process is called the Cauchy process.

Clearly, for the Poisson process πt with parameter µ we have

Eeiλπt = etµ(e
iλ−1),

so that πt has Poisson distribution with parameter tµ. In particular,

E|πt+h − πt| = Eπh = hµ

for t, h ≥ 0. The values of πt are integers and πt is not identically constant
(the expectation grows). Therefore πt does not have continuous modifica-
tion, which shows, in particular, that the requirement β > 0 in Theorem
1.4.8 is essential. For µ = 1 we come to the Poisson process introduced in
Exercise 2.3.8.
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10. Exercise. Prove that for the Cauchy process we have ϕ(t, λ) =
exp(−ct|λ|), with a constant c > 0.

11. Exercise*. Prove that the Lévy measure of the process τa+, a ≥ 0 (see
Theorem 2.6.1, and Exercise 1.12) is concentrated on the positive half line

and is given by Ix>0(2π)
−1/2x−3/2 dx. This result will be used in Sec. 6.

You may also like to show that

ϕ(t, λ) = exp(−t|λ|1/2(a− ib sign λ)),

where

a = (2π)−1/2

� ∞

0
x−3/2(1− cos x) dx, b = (2π)−1/2

� ∞

0
x−3/2 sin x dx,

and, furthermore, that a = b = 1.

12. Exercise. Prove that if in Lévy’s formula we have Λ = 0 and σ = 0,
then ξt = bt (a.s.) for all t, where b is a constant.

3. Jump measures and their relation to Lévy measures

Let ξt be an infinitely divisible cadlag process on [0,∞). Define

Δξt = ξt − ξt−.

For any set Γ ⊂ R+ × R := [0,∞) × R let p(Γ) be the number of points
(t,Δξt) ∈ Γ. It may happen that p(Γ) =∞. Obviously p(Γ) is a σ-additive
measure on the family of all subsets of R+ ×R. The measure p(Γ) is called
the jump measure of ξt.

For T, ε ∈ (0,∞) define

RT,ε = [0, T ] × {x : |x| ≥ ε}.

1. Remark. Notice that p(RT,ε) < ∞ for any ω, which is to say that on
[0, T ] there may be only finitely many t such that |Δξt| ≥ ε. This property
follows immediately from the fact that the trajectories of ξt do not have
discontinuities of the second kind. It is also worth noticing that p(Γ) is
concentrated at points (t,Δξt) and each point of this type receives a unit
mass.

We will need yet another measure defined on subsets of R. For any
B ⊂ R define

pt(B) = p((0, t]×B).
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2. Remark. By Remark 1, if B is separated from zero, then pt(B) is finite.
Moreover, let f(x) be a Borel function (perhaps unbounded) vanishing for
|x| < ε, where ε > 0. Then, the process

ηt := ηt(f) :=

�

R

f(x) pt(dx)

is well defined and is just equal to the (finite) sum of f(Δξs) for all s ≤ t
such that |Δξs| ≥ ε.

The structure of ηt is pretty simple. Indeed, fix an ω and let 0 ≤ s1 <
... < sn < ... be all s for which |Δξs| ≥ ε (if there are only m < ∞ such s,
we let sn = ∞ for n ≥ m + 1). Then, of course, sn → ∞ as n → ∞. Also
s1 > 0, because ξt is right continuous and ξ0 = 0. With this notation

ηt =
�

sn≤t

f(Δξsn). (1)

We see that ηt starts from zero, is constant on each interval [sn−1, sn),
n = 1, 2, ... (with s0 := 0), and

Δηsn = f(Δξsn). (2)

3. Lemma. Let f(x) be a function as in Remark 2. Assume that f is
continuous. Let 0 ≤ t <∞ and tni be such that

s = tn1 < ... < t
n
k(n)+1 = t, max

j=1,...,k(n)
(tnj+1 − t

n
j )→ 0

as n→∞. Then for any ω

ηt(f)− ηs(f) =

�

R+×R

I(s,t](u)f(x) p(dudx) = lim
n→∞

k(n)�

j=1

f(ξtnj+1
− ξtnj ). (3)

Proof. We have noticed above that the set of all u ∈ (s, t] for which
|Δξu| ≥ ε is finite. Let {u1, ..., uN} be this set. Single out those intervals
(thj , t

n
j+1] which contain at least one of the ui’s. For large n we will have

exactly N such intervals. First we prove that, for large n,

|ξtnj+1
− ξtnj | < ε, f(ξtnj+1

− ξtnj ) = 0

if the interval (tnj , t
n
j+1] does not contain any of the ui’s. Indeed, if this were

not true, then one could find a sequence sk, tk such that |ξtk − ξsk | ≥ ε,
sk, tk ∈ (s, t], sk < tk, tk − sk → 0, and on (sk, tk] there are no points ui.
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Without loss of generality, we may assume that sk, tk → u ∈ (s, t] (actually,
one can obviously assume that u ∈ [s, t], but since the trajectories are right
continuous, ξsk , ξtk → ξs if sk, tk → s, so that u �= s).

Furthermore, there are infinitely many sk’s either to the right or to the
left of u. Therefore, using subsequences if needed, we may assume that the
sequence sk is monotone and then that tk is monotone as well. Then, since ξt
has finite right and left limits, we have that sk ↑ u, sk < u, and tk ↓ u, which
implies that |Δξu| ≥ ε. But then we would have a point u ∈ {u1, ..., uN}
which belongs to (sk, tk] for all k (after passing to subsequences). This is a
contradiction, which proves that for all large n the sum on the right in (3)
contains at most N nonzero terms. These terms correspond to the intervals
(tj, tj+1] containing ui’s, and they converge to f(Δξui).

It only remains to observe that the first equality in (3) is obvious and,
by Remark 2,

�

R+×R

I(s,t](u)f(x) p(dudx) =

N�

i=1

f(Δξui).

The lemma is proved.

4. Definition. For 0 ≤ s < t < ∞ define Fξs,t as the completion of the

σ-field generated by ξr − ξs, r ∈ [s, t]. Also set F
ξ
t = Fξ0,t.

5. Remark. Since the increments of ξt are independent, the σ-fields F
ξ
0,t1
,

Fξt1,t2 ,..., F
ξ
tn−1,tn are independent for any 0 < t1 < ... < tn.

Next remember Definition 2.5.10.

6. Definition. Random processes η1
t , ..., η

n
t defined for t ≥ 0 are called

independent if for any t1, ..., tk ≥ 0 the vectors (η1
t1 , ..., η

1
tk
), ..., (ηnt1 , ..., η

n
tk
)

are independent.

7. Lemma. Let ζt be an R
d-valued process starting from zero and such that

ζt − ζs is Fξs,t-measurable whenever 0 ≤ s < t < ∞. Also assume that, for

all 0 ≤ s < t <∞, the random variables ζ1
t − ζ

1
s ,..., ζ

d
t − ζ

d
s are independent.

Then the process ζt has independent increments and the processes ζ1
t ,..., ζ

d
t

are independent.

Proof. That ζt has independent increments follows from Remark 5. To
prove that the vectors

(ζ1
t1 , ..., ζ

1
tn), ..., (ζ

d
t1 , ..., ζ

d
tn) (4)
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are independent if 0 = t0 < t1 < ..., < tn, it suffices to prove that

(ζ1
t1 − ζ

1
t0 , ζ

1
t2 − ζ

1
t1 , ..., ζ

1
tn − ζ

1
tn−1

), ..., (ζdt1 − ζ
d
t0 , ζ

d
t2 − ζ

d
t1 , ..., ζ

d
tn − ζ

1
tn−1

)

(5)

are independent. Indeed, the vectors in (4) can be obtained after applying a
linear transformation to the vectors in (5). Now take λkj ∈ R for k = 1, ..., d
and j = 1, .., n, and write

E exp
�
i
�

k,j

λkj (ζ
k
tj − ζ

k
tj−1

)
�

= E exp
�
i

�

j≤n−1,k

λkj (ζ
k
tj − ζ

k
tj−1

)
�
E{exp

�
i
�

k

λkn(ζ
k
tn − ζ

k
tn−1

)
�
|Fξ0,tn−1

}

= E exp
�
i

�

j≤n−1,k

λkj (ζ
k
tj − ζ

k
tj−1

)
�
E exp

�
i
�

k

λkn(ζ
k
tn − ζ

k
tn−1

)
�

= E exp
�
i

�

j≤n−1,k

λkj (ζ
k
tj − ζ

k
tj−1

)
� �

k

E exp
�
iλkn(ζ

k
tn − ζ

k
tn−1

)
�
.

An obvious induction allows us to represent the characteristic function of
the family {ζktj − ζ

k
tj−1

, k = 1, ..., d, j = 1, ..., n} as the product of the char-

acteristic functions of its members, thus proving the independence of all
ζktj − ζ

k
tj−1

and, in particular, of the vectors (5). The lemma is proved.

8. Lemma. Let f be as in Remark 2 and let f be continuous. Take α ∈ R

and denote ζt = ηt(f) + αξt. Then

(i) for every 0 ≤ s < t < ∞, the random variable ζt − ζs is Fξs,t-
measurable;

(ii) the process ζt is an infinitely divisible cadlag process and

Eeiζt = exp t
�

�

R

(ei(f(x)+αx) − 1− iα sin x)Λ(dx) + iαb− α2σ2/2
�
. (6)

Proof. Assertion (i) is a trivial consequence of (3). In addition, Remark
5 shows that ζt has independent increments.

(ii) The homogeneity of ζt follows immediately from (3) and the similar
property of ξt. Furthermore, Remark 2 shows that ζt is cadlag. From the
homogeneity and right continuity of ζt we get

lim
s↑t
Eeiλ(ζt−ζs) = lim

s↑t
Eeiλζt−s = Eeiλζ0 = 1, t > 0.
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Similar equations hold for s ↓ t with t ≥ 0. Therefore, ζs
P
→ ζt as s→ t, and

ζt is stochastically continuous.

To prove (6), take Khinchin’s measure µ and take µt and bt from Corol-
lary 2.7. Also observe that

lim
n→∞

ann = lim
n→∞

en log an = lim
n→∞

en(an−1)

provided an → 1 and one of the limits exists. Then we have

Eei(ηt+αξt) = lim
n→∞

�
Eei(f(ξt/n)+αξt/n)

�n

= lim
n→∞

expn

�

R

(ei(f(x)+αx) − 1)Ft/n(dx),

with

lim
n→∞

n

�

R

(ei(f(x)+αx) − 1)Ft/n(dx)

= lim
n→∞

t

�

R

(ei(f(x)+αx) − 1− iα sin x)(1 + x2)/x2 µt/n(dx) + iαtb

= t

�

R

(ei(f(x)+αx) − 1− iα sin x)(1 + x2)/x2 µ(dx) + iαtb.

Now to get (6) one only has to refer to Exercise 2.4. The lemma is proved.

9. Theorem. (i) For ab > 0 the process pt(a, b] is a Poisson process with
parameter Λ((a, b]), and, in particular,

Ept(a, b] = tΛ((a, b]); (7)

(ii) if am < bm, ambm > 0, m = 1, ..., n, and the intervals (am, bm] are
pairwise disjoint, then the processes pt(a1, b1], ..., pt(an, bn] are independent.

Proof. To prove (i), take a sequence of bounded continuous functions
fk(x) such that fk(x) → λI(a,b](x) as k → ∞ and fk(x) = 0 for |x| < ε :=
(|a| ∧ |b|)/2. Then, for each ω,

�

R

fk(x) pt(dx)→ λpt(a, b]. (8)

Moreover, | exp{ifk(x)} − 1| ≤ 2I|x|≥ε and
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�

R

I|x|≥εΛ(dx) ≤
1 + ε2

ε2

�

R

x2

1 + x2
Λ(dx) <∞. (9)

Hence, by Lemma 8 and by the dominated convergence theorem,

Eeiλpt(a,b] = exp t

�

R

(eiλI(a,b](x) − 1)Λ(dx) = exp{tΛ((a, b])(eiλ − 1)}.

The homogeneity of pt(a, b] and independence of its increments follow
from (8) and Lemma 8. Remark 2 shows that pt(a, b] is a cadlag process.
As in Lemma 8, this leads to the conclusion that pt(a, b] is stochastically
continuous. This proves (i).

(ii) Formula (8) and Lemma 8 imply that pt(a, b] − ps(a, b] is F
ξ
s,t-

measurable if s < t. By Lemma 7, to prove that the processes pt(a1, b1],...,
pt(an, bn] are independent, it suffices to prove that, for any s < t, the random
variables

pt(a1, b1]− ps(a1, b1], ..., pt(an, bn]− ps(an, bn] (10)

are independent.

Take λ1, ..., λn ∈ R and define f(x) = λm for x ∈ (am, bm] and f = 0
outside the union of the (am, bm]. Also take a sequence of bounded continu-
ous functions fn vanishing in a neighborhood of zero such that fn(x)→ f(x)
for all x ∈ R. Then

ηt(fn)− ηs(fn)→ ηt(f)− ηs(f) =

n�

m=1

λm{pt(am, bm]− ps(am, bm]}.

Hence and from Lemma 8 we get

E exp(i
n�

m=1

λm{pt(am, bm]− ps(am, bm]}) = lim
n→∞

Eei(ηt(fn)−ηs(fn))

= lim
n→∞

Eeiηt−s(fn) = lim
n→∞

exp{(t− s)

�

R

(eifn(x) − 1)Λ(dx)}

= exp{(t− s)

�

R

(eif(x)− 1)Λ(dx)} =

n�

m=1

exp{(t− s)Λ((am, bm])(e
iλm − 1)}.

This and assertion (i) prove that the random variables in (5) are indepen-
dent. The theorem is proved.
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10. Corollary. Let f be a Borel nonnegative function. Then, for each t ≥
0, �

R\{0}
f(x) pt(dx)

is a random variable and

E

�

R\{0}
f(x) pt(dx) = t

�

R

f(x)Λ(dx). (11)

Notice that on the right in (11) we write the integral over R instead of
R\{0} because Λ({0}) = 0 by definition. To prove the assertion, take ε > 0
and let Σ be the collection of all Borel Γ such that pt(Γ\(−ε, ε)) is a random
variable and

νε(Γ) := Ept(Γ \ (−ε, ε)) = tΛε(Γ) := tΛ(Γ \ (−ε, ε)).

It follows from (7) and from the finiteness of Λ(R \ (−ε, ε)) that R ∈
Σ. By adding an obvious argument we conclude that Σ is a λ-system.
Furthermore, from Theorem 9 (i) we know that Σ contains Π := {(a, b] :
ab > 0}, which is a π-system. Therefore, Σ = B(R). Now a standard
measure-theoretic argument shows that, for every Borel nonnegative f , we
have

E

�

R\(−ε,ε)
f(x) pt(dx) =

�

R

f(x) νε(dx)

= t

�

R

f(x)Λε(dx) = t

�

R\(−ε,ε)
f(x)Λ(dx).

It only remains to let ε ↓ 0 and use the monotone convergence theorem.

11. Corollary. Every continuous infinitely divisible process has the form
bt+ σwt, where σ and b are the constants from Lévy’s formula and wt is a
Wiener process if σ �= 0 and wt ≡ 0 if σ = 0.

Indeed, for a continuous ξt we have pt(α, β] = 0 if αβ > 0. Hence
Λ((α, β]) = 0 and ϕ(t, λ) = exp{ibtλ − σ2λ2t/2}. For σ �= 0, it follows
that ηt := (ξt − bt)/σ is a continuous process with independent increments,
η0 = 0, and ηt − ηs ∼ N(0, |t − s|). As we know, ηt is a Wiener process. If
σ = 0, then ξt − bt = 0 (a.s.) for any t and, actually, ξt − bt = 0 for all t at
once (a.s.) since ξt − bt is continuous.

12. Corollary. Let an open set G ⊂ R \ {0} be such that Λ(G) = 0. Then
there exists Ω� ∈ F such that P (Ω�) = 1 and, for each t ≥ 0 and ω ∈ Ω�,
Δξt(ω) �∈ G.
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Indeed, represent G as a countable union (perhaps with intersections)
of intervals (am, bm]. Since Λ((am, bm]) = 0, we have Ept(am, bm] = 0 and
pt(am, bm] = 0 (a.s.). Adding to this that pt(am, bm] increases in t, we
conclude that pt(am, bm] = 0 for all t (a.s.). Now let

Ω� =
�

m

{ω : pt(am, bm] = 0 ∀t ≥ 0}.

Then P (Ω�) = 1 and

p((0, t] ×G) ≤
�

m

pt(am, bm] = 0

for each ω ∈ Ω� and t ≥ 0, as asserted.

The following corollary will be used for deriving an integral representa-
tion of ξt through jump measures.

13. Corollary. Denote qt(a, b] = pt(a, b] − tΛ((a, b]). Let some numbers
satisfying ai ≤ bi and aibi > 0 be given for i = 1, 2. Then, for all t, s ≥ 0,

Eqt(a1, b1]qs(a2, b2] = (s ∧ t)Λ((a1, b1] ∩ (a2, b2]). (12)

Indeed, without loss of generality assume t ≥ s. Notice that both parts
of (12) are additive in the sense that if, say, (a1, b1] = (a3, b3] ∪ (a4, b4] and
(a3, b3] ∩ (a4, b4] = ∅, then

qt(a1, b1] = qt(a3, b3] + qt(a4, b4],

Λ((a1, b1] ∩ (a2, b2]) = Λ((a3, b3] ∩ (a2, b2]) + Λ((a4, b4] ∩ (a2, b2]).

It follows easily that to prove (12) it suffices to prove it only for two cases:
(i) (a1, b1] ∩ (a2, b2] = ∅ and (ii) a1 = a2, b1 = b2.

In the first case (12) follows from the independence of the processes
p·(a1, b1] and p·(a2, b2] and from (7). In the second case, it suffices to remem-
ber that the variance of a random variable having the Poisson distribution
with parameter Λ is Λ and use the fact that

qt(a, b] = qs(a, b] + (qt(a, b]− qs(a, b]),

where the summands are independent.

We will also use the following theorem, which is closely related to The-
orem 9.
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14. Theorem. Take a > 0 and define

ηt =

�

[a,∞)
x pt(dx) +

�

(−∞,−a]
x pt(dx). (13)

Then:

(i) the process ηt is infinitely divisible, cadlag, with σ = b = 0 and Lévy
measure Λ(Γ \ (−a, a));

(ii) the process ξt − ηt is infinitely divisible, cadlag, and does not have
jumps larger in magnitude than a;

(iii) the processes ηt and ξt − ηt are independent.

Proof. Assertion (i) is proved like the similar assertion in Theorem 9
on the basis of Lemma 8. Indeed, take a sequence of continuous functions
fk(x) → x(1 − I(−a,a)(x)) such that fk(x) = 0 for |x| ≤ a/2. Then, for any
ω,

�

R

fk(x) pt(dx)→ ηt. (14)

This and Lemma 8 imply that ηt is a homogeneous process with independent
increments. That it is cadlag follows from Remark 2. The stochastic conti-
nuity of ηt follows from its right continuity and homogeneity as in Lemma 8.
To find the Lévy measure of ηt, observe that | exp{iλfk(x)}− 1| ≤ 2I|x|≥a/2.
By using (9), Lemma 8, and the dominated convergence theorem, we con-
clude that

Eeiληt = exp t

�

R

(eiλx(1−I(−a,a)(x))−1)Λ(dx) = exp t

�

R\(−a,a)
(eiλx−1)Λ(dx).

In assertion (ii) the fact that ξt − ηt is an infinitely divisible cadlag
process is proved as above on the basis of Lemma 8. The assertion about
its jumps is obvious because of Remark 2. Another explanation of the same
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fact can be obtained from Lemma 8, which implies that

Eei(ληt+αξt)

= exp t
�

�

R

(eiλx(1−I(−a,a)(x))+iαx − 1− iα sin x)Λ(dx) + iαb− α2σ2/2
�

= exp t
�

�

(−a,a)
(eiαx − 1− iα sin x)Λ(dx)

+

�

R\(−a,a)
(ei(λ+α)x − 1− iα sin x)Λ(dx) + iαb− α2σ2/2

�
, (15)

where, for λ = −α, the expression in the last braces is

�

(−a,a)
(eiαx − 1− iα sin x)Λ(dx) + iα(b−

�

R\(−a,a)
sin xΛ(dx)) − α2σ2/2,

which shows that the Lévy measure of ξt − ηt is concentrated on (−a, a).

To prove (iii), first take λ = β − α in (15). Then we see that

Eeiβηt+iα(ξt−ηt) = etg,

where

g =

�

R\(−a,a)
(eiβx − 1)Λ(dx)

+

�

(−a,a)
(eiαx−1−iα sinx)Λ(dx)+iα(b−

�

R\(−a,a)
sin xΛ(dx))−α2σ2/2,

so that Eeiβηt+iα(ξt−ηt) = EeiβηtEeiα(ξt−ηt). Hence, for any t, ηt and ξt − ηt
are independent.

Furthermore, for any constants λ, α ∈ R, the process ληt + α(ξt − ηt) =
(λ − α)ηt + αξt is a homogeneous process, which is proved as above by
using Lemma 8. It follows that the two-dimensional process (ηt, ξt − ηt)
has homogeneous increments. In particular, if s < t, the distributions of
(ηt−s, ξt−s−ηt−s) and (ηt−ηs, ξt−ηt− (ξs−ηs)) coincide, and since the first
pair is independent, so is the second. Now the independence of the processes
ηt and ξt − ηt follows from Lemma 7 and from the fact that ηt − ηs, ξt − ξs,

and (ηt − ηs, ξt − ηt − (ξs − ηs)) are F
ξ
s,t-measurable (see (14) and Lemma

8). The theorem is proved.

The following exercise describes all nonnegative infinitely divisible cadlag
processes.
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15. Exercise. Let ξt be an infinitely divisible cadlag process satisfying ξt ≥
0 for all t ≥ 0 and ω. Take ηt = ηt(a) from Theorem 14.

(i) By using Exercise 2.9, show that all jumps of ξt are nonnegative.

(ii) Prove that for every t ≥ 0, we have P (ηt(a) = 0) = exp(−tΛ([a,∞))).

(iii) From Theorem 14 and (ii), derive that ξt− ηt(a) ≥ 0 (a.s.) for each
t ≥ 0.

(iv) Since obviously ηt(a) increases as a decreases, conclude that ηt(0+) ≤
ξt < ∞ (a.s.) for each t ≥ 0. From (15) with α = 0 find the characteristic
function of ηt(0+) and prove that ξt − ηt(0+) has normal distribution. By
using that ξt − ηt(0+) ≥ 0 (a.s.), prove that ξt = ηt(0+) (a.s.).

(v) Prove that

� 1

0
xΛ(dx) <∞, ξt =

�

(0,∞)
x p(t, dx) (a.s.),

and, in particular, ξt is a pure jump process with nonnegative jumps.

4. Further comments on jump measures

1. Exercise. Let f(t, x) be a Borel nonnegative function such that f(t, 0) =
0. Prove that

�
R+×R

f(s, x) p(dsdx) is a random variable and

E

�

R+×R

f(s, x) p(dsdx) =

�

R+×R

f(s, x) dsΛ(dx). (1)

2. Exercise. Let f(t, x) = f(ω, t, x) be a bounded function such that f = 0
for |x| < ε and for t ≥ T , where the constants ε, T ∈ (0,∞). Also assume

that f(ω, t, x) is left continuous in t for any (ω, x) and Fξt ⊗B(R)-measurable
for any t. Prove that the following version of (1) holds:

E

�

R+×R

f(s, x) p(dsdx) =

�

R+×R

Ef(s, x) dsΛ(dx).

The following two exercises are aimed at generalizing Theorem 3.9.

3. Exercise. Let f(t, x) be a bounded Borel function such that f = 0 for
|x| < ε, where the constant ε > 0. Prove that, for t ∈ [0,∞),

ϕ(t) := E exp{i

�

(0,t]×R

f(s, x) p(dsdx)} = exp{

�

(0,t]×R

(eif(s,x)−1) dsΛ(dx)}.



Ch 5 Section 5. Representing processes through jump measures 155

4. Exercise. By taking f in Exercise 3 as linear combinations of the indica-
tors of Borel subsets Γ1, ...,Γn of R+×R, prove that, if the sets are disjoint,
then p(Γ1), ..., p(Γn) are independent. Also prove that, if Γ1 ⊂ RT,ε, then
p(Γ1) is Poisson with parameter (�× Λ)(Γ1).

The following exercise shows that Poisson processes without common
jumps are independent.

5. Exercise. Let (Ω,F , P ) be a probability space, and let Ft be σ-fields
defined for t ≥ 0 such that Fs ⊂ Ft ⊂ F for s ≤ t. Assume that ξt and ηt
are two Poisson processes with parameters µ and ν respectively defined on
Ω, and such that ξt and ηt are F-measurable for each t and ξt+h − ξt and
ηt+h − ηt are independent of Ft for all t, h ≥ 0. Finally, assume that ξt and
ηt do not have common jumps, that is, (Δξt)Δηt = 0 for all t and ω. Prove
that the processes ξt and ηt are independent.

5. Representing infinitely divisible processes

through jump measures

We start with a simple result.

1. Theorem. Let ξt be an infinitely divisible cadlag process with parameters
σ, b, and Lévy measure concentrated at points x1, ..., xn.

(i) If σ �= 0, then there exist a Wiener process wt and Poisson pro-
cesses p1t ,..., p

n
t with parameters Λ({x1}), ...,Λ({xn}), respectively, such that

wt, p
1
t ,..., p

n
t are mutually independent and

ξt = x1p
1
t + ...+ xnp

n
t + bt+ σwt ∀t ≥ 0 (a.s.). (1)

(ii) If σ = 0, assertion (i) still holds if one does not mention wt and
drops the term σwt in (1).

Proof. (i) Of course, we assume that xi �= xj for i �= j. Notice that
Λ({0}) = 0. Therefore, xm �= 0. Also

Λ(R \ {x1, ..., xn}) = 0.

Hence, by Corollary 3.12, we may assume that all jumps of ξt belong to the
set {x1, ..., xn}.

Now take a > 0 such that a < |xi| for all i, and define ηt by (3.13).
By Theorem 3.14 the process ξt − ηt does not have jumps and is infinitely
divisible. By Corollary 3.11 we conclude that

ξt − ηt = bt+ σwt.
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In addition, formula (3.1) shows also that

ηt = x1pt({x1}) + ...+ xnpt({xn}) = x1pt(a1, b1] + ...+ xnpt(an, bn],

where am, bm are any numbers satisfying ambm > 0, am < xm ≤ bm,
and such that (am, bm] are mutually disjoint. This proves (1) with p

m
t =

pt(am, bm], which are Poisson processes with parameters Λ({xm}).

To prove that wt, p
1
t ,..., p

n
t are mutually independent, introduce p

η as
the jump measure of ηt and observe that by Theorem 3.14 the processes
ξt − ηt = bt + σwt and ηt (that is, wt and ηt) are independent. It follows
from Lemma 3.3 that, if we take any continuous functions f1, ..., fn vanishing
in the neighborhood of the origin, then the process wt and the vector-valued
process

�
�

R

f1(x) p
η
t (dx), ...,

�

R

fn(x) p
η
t (dx)

�

are independent. By taking appropriate approximations we conclude that
the process wt and the vector-valued process

(pηt (a1, b1], ..., p
η
t (an, bn])

are independent. Finally, by observing that, by Theorem 3.9, the processes
pηt (a1, b1],..., p

η
t (an, bn] are independent and, obviously (cf. (3.2)), p

η = p,
we get that wt, p

1
t ,..., p

n
t are mutually independent. The theorem is proved.

The above proof is based on the formula

ξt = ζ
a
t + η

a
t , (2)

where

ηat =

�

R\(−a,a)
x pt(dx), ζat = ξt − η

a
t , a > 0,

and the fact that for small a all processes ηat are the same. In the general
case we want to let a ↓ 0 in (2). The only trouble is that generally there is
no limit of ηat as a ↓ 0. On the other hand, the left-hand side of (2) does
have a limit, just because it is independent of a. So there is a hope that if we
subtract an appropriate quantity from ζat and add it to η

a
t , the results will

converge. This appropriate quantity turns out to be the stochastic integral
against the centered Poisson measure q introduced by

qt(a, b] = pt(a, b]− tΛ((a, b]) if ab > 0.
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2. Lemma. Let Π = {(0, t] × (a, b] : t > 0, a < b, ab > 0} and for A =
(0, t] × (a, b] ∈ Π let q(A) = qt(a, b]. Then Π is a π-system and q is a
random orthogonal measure on Π with reference measure �× Λ.

Proof. Let A = (0, t1]× (a1, b1], B = (0, t2]× (a2, b2] ∈ Π. Then

AB = (0, t1 ∧ t2]× (c, d], (c, d] := (a1, b1] ∩ (a2, b2],

which shows that Π is a π-system. That q is a random orthogonal measure
on Π with reference measure �× Λ is stated in Corollary 3.13. The lemma
is proved.

3. Remark. We may consider Π as a system of subsets of R+ × R \ {0}.
Then as is easy to see, σ(Π) = B(R+) ⊗B(R \ {0}). By Theorem 2.3.19,
L2(Π,Λ) = L2(σ(Π), �×Λ). Therefore, Lemma 2 and Theorem 2.3.13 allow
us to define the stochastic integral

�

R+×(R\{0})
f(t, x) q(dtdx)

for every Borel f satisfying

�

R+×R

|f(t, x)|2 dtΛ(dx) <∞

(we write this integral over R+×R instead of R+×(R\{0}) because Λ({0}) =
0 by definition). Furthermore,

E|

�

R+×(R\{0})
f(t, x) q(dtdx)|2 =

�

R+×R

|f(t, x)|2 dtΛ(dx),

E

�

R+×(R\{0})
f(t, x) q(dtdx) = 0,

(3)

the latter following from the fact that Eq(A) = 0 if A ∈ Π (see Remark
2.3.15).

4. Remark. Denote

�

R\{0}
f(x) qt(dx) =

�

R+×(R\{0})
I(0,t](u)f(x) q(dudx). (4)

Then (3) shows that, for each Borel f satisfying
�

R
|f(x)|2 Λ(dx) < ∞ and

every t, s ∈ [0,∞),
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E
�
�
�

R\{0}
f(x) qt(dx)−

�

R\{0}
f(x) qs(dx)|

2 = |t− s|

�

R

|f(x)|2 Λ(dx),

E
�
�
�

R\{0}
f(x) qt(dx)|

2 = t

�

R

|f(x)|2 Λ(dx).

In the following exercise we use for the first time our assumption that
(Ω,F , P ) is a complete probability space. This assumption allowed us to

complete σ(ξs : s ≤ t) and have this completion, denoted Fξt , to be part
of F . This assumption implies that, if we are given two random variables

satisfying ζ = η (a.s) and ζ is Fξt -measurable, so is η.

5. Exercise*. Prove that if f is a bounded Borel function vanishing in a
neighborhood of zero, then

�
R
|f(x)|2 Λ(dx) <∞ and

�

R\{0}
f(x) qt(dx) =

�

R

f(x) pt(dx) − t

�

R

f(x)Λ(dx) (a.s.). (5)

By using Lemma 3.8, conclude that the left-hand side of (5) is Fξt -measur-
able for every f ∈ L2(B(R),Λ).

6. Exercise*. As a continuation of Exercise 5, prove that (5) holds for
every Borel f satisfying f(0) = 0 and

�
R
(|f |+ |f |2)Λ(dx) <∞.

7. Lemma. For every Borel f ∈ L2(B(R),Λ) the stochastic integral

ηt :=

�

R\{0}
f(x) qt(dx)

is an infinitely divisible Fξt -adapted process such that, if 0 ≤ s ≤ t < ∞,

then ηt−ηs and F
ξ
s are independent. By Theorem 1.11 the process ηt admits

a modification with trajectories in D[0,∞). If we keep the same notation
for the modification, then for every T ∈ [0,∞)

E sup
t≤T

η2
t ≤ 4T

�

R

|f(x)|2 Λ(dx). (6)

Proof. If f is a bounded continuous function vanishing in a neighborhood
of zero, the first statement follows from Exercise 5 and Lemma 3.8. An
obvious approximation argument and Remark 4 allow us to extend the result
to arbitrary f in question.

To prove (6) take 0 ≤ t1 ≤ ... ≤ tn ≤ T and observe that, owing to the

independence of ηtk+1
− ηtk and F

ξ
tk
, we have
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E(ηtk+1
− ηtk |F

ξ
tk
) = E(ηtk+1

− ηtk) = 0.

Therefore, (ηtk ,F
ξ
tk
) is a martingale. By Doob’s inequality

E sup
k
η2
tk
≤ 4Eη2

T = 4T

�

R

|f(x)|2 Λ(dx).

Clearly the inequality between the extreme terms has nothing to do with
ordering tk. Therefore by ordering the set ρ of all rationals on [0, T ] and
taking the first n rationals as tk, k = 1, ..., n, and then sending n to infinity,
by Fatou’s theorem we find that

E sup
r∈ρ,r<T

η2
r ≤ 4T

�

R

|f(x)|2 Λ(dx).

Now equation (6) immediately follows from the right continuity and the
stochastic continuity (at point T ) of η·, since (a.s.)

sup
t≤T

η2
t = sup

t<T
η2
t = sup

r∈ρ,r<T
η2
r .

The lemma is proved.

8. Theorem. Let ξt be an infinitely divisible cadlag process with parameters
σ, b, and Lévy measure Λ.

(i) If σ �= 0, then there exist a constant b̄ and a Wiener process wt, which
is independent of all processes pt(c, d], such that, for each t ≥ 0,

ξt = b̄t+ σwt +

�

(−1,1)
x qt(dx) +

�

R\(−1,1)
x pt(dx) (a.s.). (7)

(ii) If σ = 0, assertion (i) still holds if one does not mention wt and
drops the term σwt in (7).

Proof. For a ∈ (0, 1) write (2) as

ξt = ζ
a
t +

�

(−1,1)\(−a,a)
x pt(dx) +

�

R\(−1,1)
x pt(dx).

Here, by Exercise 5,

�

(−1,1)\(−a,a)
x pt(dx) =

�

(−1,1)\(−a,a)
x qt(dx) + t

�

(−1,1)\(−a,a)
xΛ(dx),

so that
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ξt = κ
a
t +

�

(−1,1)\(−a,a)
x qt(dx) +

�

R\(−1,1)
x pt(dx), (8)

where

κat = ζ
a
t + t

�

(−1,1)\(−a,a)
xΛ(dx).

By Lemma 7, for any T ∈ (0,∞),

E sup
t≤T

|

�

(−1,1)\(−a,a)
x qt(dx) −

�

(−1,1)
x qt(dx)|

2 → 0

as a ↓ 0. Therefore, there exists a sequence an ↓ 0, along which with
probability one the first integral on the right in (8) converges uniformly on
each finite time interval to the first integral on the right in (7). It follows
from (8) that almost surely κan

t also converges uniformly on each finite time
interval to a process, say κt. Bearing in mind that the κ

a
t are cadlag and

using Exercise 1.8, we see that κt is cadlag too. By Theorem 3.14, the
process ζat is infinitely divisible cadlag. It follows that κ

a
t and κt are infinitely

divisible cadlag as well.

Furthermore, since ζat does not have jumps larger in magnitude than a,
the process κt does not have jumps at all and hence is continuous (the last
conclusion is easily proved by contradiction). Again by Theorem 3.14, the
process ζat is independent of η

a
t and, in particular, is independent of the jump

measure of ηat (cf. Lemma 3.3). The latter being pt((c, d]\(−a, a)) (cf. (3.2))
shows that ζat as well as κ

a
t are independent of all processes pt((c, d]\(−a, a)).

By letting a ↓ 0, we conclude that κt is independent of all processes pt(c, d].

To conclude the proof it only remains to use Corollary 3.11. The theorem
is proved.

9. Exercise. It may look as though assertion (i) of Theorem 8 holds even
if σ = 0. Indeed, in this case σwt ≡ 0 anyway. However, generally this
assertion is false if σ = 0. The reader is asked to give an example in which
this happens.

6. Constructing infinitely divisible processes

Here we want to show that for an arbitrary Lévy measure and constants b
and σ there exists an infinitely divisible process ξt, defined on an appropriate
probability space, such that
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Eeiλξt = exp t{

�

R

(eiλx − 1− iλ sin x)Λ(dx) + ibλ− σ2λ2/2}. (1)

By the way, this will show that generally there are no additional properties
of Λ apart from those listed in (2.7).

The idea is that if we have at least one process with “arbitrarily” small
jumps, then by “redirecting” the jumps we can get jump measures corre-
sponding to arbitrary infinitely divisible process. We know that at least one
such “test” process exists, the increasing 1/2-stable process τa+, a ≥ 0 (see
Theorem 2.6.1 and Exercises 1.12).

The following lemma shows how to redirect the jumps of τa+.

1. Lemma. Let Λ be a positive measure on B(R) such that Λ(R\(−a, a)) <
∞ for any a > 0 and Λ({0}) = 0. Then there exists a finite Borel function
f(x) on R such that f(0) = 0 and for any Borel Γ

Λ(Γ) =

�

f−1(Γ)
|x|−3/2 dx.

Proof. For x > 0, define 2F (x) = Λ{(x,∞)}. Notice that F (x) is right
continuous on (0,∞) and F (∞) = 0. For x > 0 let

f(x) = inf{y > 0 : 1 ≥ xF 2(y)}.

Since F (∞) = 0, f is a finite function.

Next notice that, if t > 0 and f(x) > t, then for any y > 0 satisfying
1 ≥ xF 2(y), we have y > t, which implies that 1 < xF 2(t). Hence,

{x > 0 : f(x) > t} ⊂ {x > 0 : xF 2(t) > 1}. (2)

On the other hand, if t > 0 and xF 2(t) > 1, then due to the right continuity
of F also xF 2(t+ ε) > 1, where ε > 0. In that case, f(x) ≥ t+ ε > t. Thus
the sets in (2) coincide if t > 0, and hence

Λ{(t,∞)} = 2F (t) =

� ∞

1/F 2(t)
x−3/2 dx =

�

x:xF 2(t)>1
x−3/2 dx = ν{(t,∞)},

where

ν(Γ) =

�

x>0:f(x)∈Γ
x−3/2 dx.

A standard measure-theoretic argument allows us to conclude that
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Λ(Γ ∩ (0,∞)) = ν(Γ)

not only for Γ = (t,∞), t > 0, but for all Borel Γ ⊂ (0,∞).

Similarly, one constructs a negative function g(x) on (−∞, 0) such that

Λ(Γ ∩ (−∞, 0)) =

�

x<0:g(x)∈Γ
|x|−3/2 dx.

Finally, the function we need is given by f(x)Ix>0 + g(x)Ix<0. The lemma
is proved.

We also need the following version of Lemma 3.8.

2. Lemma. Let pt be the jump measure of an infinitely divisible cadlag
process with Lévy measure Λ, and let f be a finite Borel function such that
f(0) = 0 and Λ({x : f(x) �= 0}) <∞. Then

(i) we have
�

R\{0}
|f(x)| pt(dx) <∞

(a.s.), and

ξt :=

�

R\{0}
f(x) pt(dx)

is well defined and is cadlag;

(ii) ξt is an infinitely divisible process, and

Eeiξt = exp t

�

R

(eif(x) − 1)Λ(dx). (3)

Proof. (i) By Corollary 3.10

Ept({x : f(x) �= 0}) = tΛ({x : f(x) �= 0}) <∞.

Since the measure pt is integer valued, it follows that (a.s.) there are only
finitely many points in {x : f(x) �= 0} to which pt assigns a nonzero mass.
This proves (i).

To prove (ii) we use approximations. The inequality |eif − 1| ≤ 2If �=0

and the dominated convergence theorem show that, if assertion (ii) holds

for some functions fn(x) such that fn
Λ
→ f , Λ({x : supn |fn(x)| > 0}) <∞,

and
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�

R\{0}
|f − fn| pt(dx)

P
→ 0, (4)

then (ii) is also true for f . By taking fn = (−n) ∨ f ∧ n, we see that it
suffices to prove (ii) for bounded f . Then considering fn = fI1/n<|x|<n
reduces the general case further to bounded functions vanishing for small
and large |x|. Any such function can be approximated in L1(B(R),Λ) by
continuous functions fn, for which (4) holds automatically due to Corollary
3.10 and (3) holds due to Lemma 3.8 (ii) with α = 0. The lemma is proved.

Now let Λ be a Lévy measure and b and σ some constants. Take a
probability space carrying two independent copies η±t of the process τt+,
t ≥ 0, and a Wiener process wt independent of (η

+
t , η

−
t ). By Exercise 2.11,

the Lévy measure of η±t is given by c0x
−3/2Ix>0 dx, where c0 is a constant.

Define

Λ0(dx) = c0|x|
−3/2 dx

and take the function f from Lemma 1 constructed from Λ/c0 in place of
Λ, so that, for any Γ ∈ B(R),

Λ(Γ) = Λ0f
−1(Γ) = Λ0({x : f(x) ∈ Γ}). (5)

3. Remark. Equation (5) means that, for any Γ ∈ B(R) and h = IΓ,

�

R

h(x)Λ(dx) =

�

R

h(f(x))Λ0(dx). (6)

A standard measure-theoretic argument shows that (6) is true for each Borel
nonnegative h and also for each Borel h for which at least one of

�

R

|h(x)|Λ(dx) and

�

R

|h(f(x))|Λ0(dx)

is finite. In particular, if h is a Borel function, then h ∈ L2(B(R),Λ) if and
only if h(f) ∈ L2(B(R),Λ0).

4. Theorem. Let p± be the jump measures of η±t and q± the centered Pois-
son measures of η±t . Define
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ξ±t =

�

R\{0}
f(±x)I|f(±x)|<1 q

±
t (dx) +

�

R\{0}
f(±x)I|f(±x)|≥1 p

±
t (dx)

=: α±t + β
±
t .

Then, for a constant b̄, the process

ξt = b̄t+ σwt + ξ
+
t + ξ

−
t

is an infinitely divisible process satisfying (1).

Proof. Observe that
�

R

f2(±x)I|f(±x)|<1 Λ0(dx) =

�

(−1,1)
x2 Λ(dx) <∞.

Therefore, the processes α±t are well defined. In addition,

Λ0({x > 0 : |f(±x)| ≥ 1}) ≤ Λ0({x : |f(x)| ≥ 1}) = Λ(|x| ≥ 1) <∞.

Hence, β±t is well defined due to Lemma 2.

Next, in order to find the characteristic function of ξ±t , notice that
fI|f |<a → 0 in L2(B(R),Λ0) as a ↓ 0, so that upon remembering the prop-
erties of stochastic integrals, in particular, Exercise 5.6, we obtain

α±t = l.i.m.
a↓0

�
�

R\{0}
f(±x)Ia≤|f(±x)|<1 p

±
t (dx)

− t

� ∞

0
f(±x)Ia≤|f(±x)|<1 Λ0(dx)

�
.

It follows that

ξ±t = P - lim
a↓0

�
�

R\{0}
f(±x)Ia≤|f(±x)| p

±
t (dx)

− t

� ∞

0
f(±x)Ia≤|f(±x)|<1 Λ0(dx)

�
.

Now Lemma 2 implies that ξ±t are infinitely divisible and

Eeiλξ
±
t

= lim
a↓0
exp t

� ∞

0

�
(eiλf(±x) − 1)Ia≤|f(±x)| − iλf(±x)Ia≤|f(±x)|<1)

�
Λ0(dx).
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In the next few lines we use the fact that |eiλx − 1 − iλxI|x|<1| is less

than λ2x2 if |x| < 1 and less than 2 otherwise. Then, owing to Remark 3,
we find that

g(λ, a) :=

� ∞

0

�
(eiλf(x) − 1)Ia≤|f(x)| − iλf(x)Ia≤|f(x)|<1

�
Λ0(dx)

+

� ∞

0

�
(eiλf(−x) − 1)Ia≤|f(−x)| − iλf(−x)Ia≤|f(−x)|<1

�
Λ0(dx)

=

�

R

�
(eiλf(x) − 1)Ia≤|f(x)| − iλf(x)Ia≤|f(x)|<1

�
Λ0(dx)

=

�

R\(−a,a)

�
eiλx − 1− iλxI|x|<1

�
Λ(dx).

This along with the dominated convergence theorem implies that

g(λ, a)→

�

R

(eiλx−1− iλxI|x|<1)Λ(dx) =

�

R

(eiλx−1− iλ sin x)Λ(dx)+ iλb̃,

where

b̃ =

�

R

(sin x− xI|x|<1)Λ(dx)

is a well-defined constant because | sin x− xI|x|<1| ≤ 2 ∧ x
2.

Finally, upon remembering that the processes wt, p
+
t , p

−
t are indepen-

dent, we conclude that ξt is infinitely divisible and

Eeiλξt = lim
a↓0
exp t

�
iλb̄− σ2λ2/2 + g(λ, a)

�
,

which equals the right-hand side of (1) if b̄+ b̃ = b. The theorem is proved.

The theory in this chapter admits a very natural generalization for
vector-valued infinitely divisible processes, which are defined in the same
way as in Sec. 2. Also as above, having an infinitely divisible process with
jumps of all sizes in all directions allows one to construct all other infinitely
divisible processes. In connection with this we set the reader the following.

5. Exercise. Let wt, w
1
t , ..., w

d
t be independent Wiener processes. Define

τt = inf{s ≥ 0 : ws ≥ t} and

ηt = (w
1
t , ..., w

d
t ), ξt = ητt .

Prove that:

(i) The process ξt is infinitely divisible.
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(ii) E exp(iλ·ξt) = exp(−ct|λ|) for any λ ∈ R
d, where c > 0 is a constant,

so that ξt has a multidimensional Cauchy distribution.

(iii) It follows from (ii) that the components of ξt are not independent.
On the other hand, the components of ηt are independent random processes
and we do a change of time in ηt, random but yet independent of η. Explain
why this makes the components of ξt = ητt depend on each other. What
kind of nontrivial information about the trajectory of ξ2t can one get if one
knows the trajectory ξ1t , t > 0 ?

7. Hints to exercises

1.8 Assume the contrary.

1.12 For any cadlag modification ξ̃t of a process ξt we have ξt
P
→ ξ̃s as t ↓ s.

2.10 Use
�

R
(λ sin(x/λ) − sin x)x−2 dx = 0, which is true since sin x is an

odd function.

2.11 To show that a = b = 1, observe that

Ψ(z) :=

� ∞

0
x−3/2(e−zx − 1) dx

is an analytic function for Re z > 0 which is continuous for Re z ≥ 0. Fur-
thermore, for real z, changing variables, prove that Ψ(z) =

√
zΨ(1) and

express Ψ(1) through the gamma function by integrating by parts. Then

notice that
√
2πΨ(i) = −a− ib.

3.15 (ii) P (ηt(a) = 0) = P (p[a,∞) = 0). (iii) Use that ξt − ηt(a) and ηt(a)
are independent and their sum is positive. (iv)&(v) Put α = 0 in (3.15) to
get the characteristic function of ηt(0+) and also the fact that

lim
a↓0

�

[a,∞)
(eiλx − 1)Λ(dx)

exists.

4.1 Corollary 3.10 says that the finite measures

νε,T (Γ) := Ep{((0, T ] × (R \ (−ε, ε))) ∩ Γ}

and

(�× Λ){((0, T ] × (R \ (−ε, ε))) ∩ Γ}

coincide on sets Γ of the form (0, t] × (a, b].

4.2 Assume f ≥ 0, approximate f by the functions f([tn]/n, x), and prove
that
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E

�

(k/n,(k+1)/n]×R

f(k/n, x) p(dsdx)

= E

�

(k/n,(k+1)/n]×R

(Ef(k/n, x)) p(dsdx).

To do this step, use π- and λ-systems in order to show that it suffices to
take f(k/n, x) equal to IA×Γ(ω, x), where A and p(k+1)/n(Γ) − pk/n(Γ) are
independent.

4.3 First let there be an integer n such that f(t, x) = f((k + 1)2−n, x)
whenever k is an integer and t ∈ (k2−n, (k+1)2−n], and let f((k+1)2−n, x)
be continuous in x. In that case use Lemma 3.8. Then derive the result for
any continuous function f(t, x) vanishing for |x| < ε. Finally, pass to the
limit from continuous functions to arbitrary ones by using (4.1).

4.5 Take some constants α and β and define ζt = αξt + βηt, ϕ(t) = Ee
iζt .

Notice that

eiζt = 1 +

�

(0,t]
eiζt−{[eiα − 1] dξt + [e

iβ − 1] dηt},

where on the right we just have a telescoping sum. By taking expectations
derive that

ϕ(t) = 1 +

� t

0
ϕ(s){[eiα − 1]µ+ [eiβ − 1]ν} ds.

This will prove the independence of ξt and ηt for any t. To prove the inde-
pendence of the processes, repeat part of the proof of Lemma 3.7.

5.5 First check (5.5) for f = I(a,b] with ab > 0, and then use Corollary
3.10, the equality L2(Π,Λ) = L2(σ(Π),Λ), and (2.7), which shows that
Λ(R \ (−a, a)) <∞ for any a > 0.

5.6 The functions (n ∧ f)I|x|>1/n converge to f in L1(B(R),Λ) and in
L2(B(R),Λ).

6.5 (i) Use Theorem 2.6.1. (ii) Add that

E exp(iλ · ξt) =

� ∞

0
E exp(iλ · ηs)P (τt ∈ ds).

(iii) Think of jumps.





Chapter 6

Itô Stochastic Integral

The reader may have noticed that stochastic integrals or stochastic integral
equations appear in every chapter in this book. Here we present a systematic
study of the Itô stochastic integral against the Wiener process. This integral
has already been introduced in Sec. 2.7 by using an approach which is equally
good for defining stochastic integrals against martingales. This approach
also exhibits the importance of the σ-field of predictable sets. Traditionally
the Itô stochastic integral against dwt is introduced in a different way, with
discussion of which we start the chapter.

1. The classical definition

Let (Ω,F , P ) be a complete probability space, Ft, t ≥ 0, an increasing
filtration of σ-fields Ft ⊂ F , and wt, t ≥ 0, a Wiener process relative to Ft.

1. Definition. Let ft = ft(ω) be a function defined on Ω × [0,∞). We
write f ∈ H0 if there exist nonrandom points 0 = t0 ≤ t1 ≤ ... ≤ tn < ∞
such that the fti are Fti-measurable, Ef

2
ti <∞, and ft = fti for t ∈ [ti, ti+1)

if i ≤ n, whereas ft = 0 for t ≥ tn.

2. Exercise. Why does it not make much sense to consider functions sat-
isfying ft = fti for t ∈ (ti, ti+1] ?

For f ∈ H0 we set

If =

n−1�

i=0

(wti+1 − wti)fti .
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Obviously this definition is independent of the partition {ti} of [0,∞) pro-
vided that f ∈ H0. In particular, the notation If makes sense, and I is a
linear operator on H0.

3. Lemma. If f ∈ H0, then

E(If)2 = E

� ∞

0
f2
t dt, EIf = 0.

Proof. We have (see Theorem 3.1.12)

Ef2
tj (wtj+1 − wtj )

2 = Ef2
tjE{(wtj+1 − wtj )

2|Ftj} = Ef
2
tj (tj+1 − tj),

since wtj+1 − wtj is independent of Ftj and ftj is Ftj -measurable. This and
Cauchy’s inequality imply that the first expression in the following relations
makes sense:

Efti(wti+1 − wti)ftj (wtj+1 − wtj )

= Efti(wti+1 − wti)ftjE{(wtj+1 − wtj )|Ftj} = 0

if i < j, since ti+1 ≤ tj and ftj , wti+1 − wti , fti are Ftj -measurable, whereas
wtj+1 − wtj is independent of Ftj . Hence

E(If)2 =
n−1�

j=0

Ef2
tj (wtj+1−wtj )

2+2
�

i<j≤n−1

Efti(wti+1 −wti)ftj (wtj+1−wtj )

=
n−1�

j=0

Ef2
tj (tj+1 − tj) = E

� ∞

0
f2
t dt.

Similarly, Eftj (wtj+1 − wtj ) = 0 and EIf = 0. The lemma is proved.

The next step was not done in Secs. 2.7 and 2.8 because we did not have
the necessary tools at that time. In the following lemma we use the notion
of continuous time martingale, which is introduced in the same way as in
Definition 3.2.1, just allowing m and n to be arbitrary numbers satisfying
0 ≤ n ≤ m.

4. Lemma. For f ∈ H0, define Isf = I(I[0,s)f). Then (Isf,Fs) is a mar-
tingale for s ≥ 0.

Proof. Fix s and without loss of generality assume that s ∈ {t0, ..., tn}.
If s = tk, then

I[0,s)ft =
k−1�

i=0

ftiI[ti,ti+1)(t), Isf =
k−1�

i=0

fti(wti+1 − wti).


