Âîéòè
Ëîãèí:
Ïàðîëü:
Çàáûëè ïàðîëü?
íàó÷íàÿ äåÿòåëüíîñòü
ñòðóêòóðà èíñòèòóòàîáðàçîâàòåëüíûå ïðîåêòûïåðèîäè÷åñêèå èçäàíèÿñîòðóäíèêè èíñòèòóòàïðåññ-öåíòðêîíòàêòû
ðóññêèé | english
Ïóáëèêàöèé íà ñòðàíèöå:    Ñòðàíèöà: 1 2345 ... 147148149150151
2021 ã.
Àâòîðû: Ì.Ë. Ëàòàø, Òàëèñ Â.Ë.

Bernstein’s Philosophy of Time: An Unknown Manuscript by Nikolai Bernstein (1949),Motor Control; Volume 25: Issue 2; 315–336
Ïåðåéòè ê ïóáëèêàöèè Çàãðóçèòü (559.8 KB)

2021 ã.
Àâòîðû: Øèëîâñêèé Ã.À., Ïóòÿòèíà Ò.Ñ., Ìîðãóíîâà Ã.Â., Ñåëèâåðñòîâ À.Â., Àøàïêèí Â.Â., Ñîðîêèíà Å.Â., Ìàðêîâ À.Â., Ñêóëà÷åâ Â.Ï.

A crosstalk between the biorhythms and gatekeepers of longevity: dual role of glycogen synthase kinase-3. Biochemistry Moscow. 2021. V. 86. P. 433-448. DOI: 10.1134/S0006297921040052
Ïåðåéòè ê ïóáëèêàöèè

2021 ã.
Àâòîðû: Ïîñèöåëüñêèé Ë.Å.

Quasi-coherent torsion sheaves, the coderived category, and the cotensor product. Ýëåêòðîííûé ïðåïðèíò arXiv:2104.05517 [math.AG], 59 ñòð.
Ïåðåéòè ê ïóáëèêàöèè

2021 ã.
Àâòîðû: Manko O.M., Gracheva M., Rozhkova G., Smoleevsky A.E., Nadezhda V.

Assessment of visual functions during a 4-month isolation in the SIRIUS-19 project. XXIII International Symposium HUMANS IN SPACE (April 5-9, Moscow, Russia). Aerospace and Environmental Medicine. 2021. V. 55 ¹ 1/1 special issue, p. 90.

2021 ã.
Àâòîðû: Panyushev D.

Nilpotent orbits and mixed gradings of semisimple Lie algebras, Indagationes Mathematicae, 32 (2021)
Ïåðåéòè ê ïóáëèêàöèè

2021 ã.
Àâòîðû: Ëåâèí Ì.Ø.

Combinatorial planning framework for geological exploration. Information Processes, 21(1), 65-81, 2021.
Ïåðåéòè ê ïóáëèêàöèè

2021 ã.
Àâòîðû: ×î÷èà Ï.À.

Chochia P.A. Image decomposition based on region-constrained smoothing // Del Bimbo et al. (eds). 25th Int. Conf. Pattern Recognition. ICPR Int. Workshops and Challenges. ICPR 2020, Part V. Lecture Notes in Computer Science, vol. 12665. Cham: Springer, Switzerland, 2021, pp. 103-111.
Ïåðåéòè ê ïóáëèêàöèè

2021 ã.
Àâòîðû: Davydov A., Marcugini S., Pambianco F.

Twisted cubic and plane-line incidence matrix in PG(3,q), electronic preprint, arXiv:2103.11248v3 [math.CO], 29 pages, 2 tables, 24 references, Mar. 2021
Ïåðåéòè ê ïóáëèêàöèè Çàãðóçèòü (319.9 KB)

2021 ã.
Àâòîðû: Davydov A., Marcugini S., Pambianco F.

Twisted cubic and orbits of lines in PG(3,q), electronic preprint, arXiv:2103.12655v2 [math.CO], 27 pages, 19 references, Mar. 2021
Ïåðåéòè ê ïóáëèêàöèè Çàãðóçèòü (277.8 KB)

2021 ã.
Àâòîðû: Òàëèñ Â.Ë.

Talis V. "Nikolai Bernstein in 1947: From summarizing to planning". In "Bernstein"s Construction of Movements Original Text and Commentaries". M.Latash Routledge, 2020:223-234.
Ïåðåéòè ê ïóáëèêàöèè

2021 ã.
Àâòîðû: Davydov A., Marcugini S., Pambianco F.

On cosets weight distributions of the doubly-extended Reed-Solomon codes of codimension 4, electronic preprint, arXiv:2007.08798v2 [cs.IT], 20 pages, 2 tables, 37 references, Feb. 2021
Ïåðåéòè ê ïóáëèêàöèè Çàãðóçèòü (239.8 KB)

2021 ã.
Àâòîðû: Davydov A., Marcugini S., Pambianco F.

On the weight distribution of the cosets of MDS codes, electronic preprint, arXiv:2101.12722 [cs.IT], 26 pages, 40 references, Jan. 2021
Ïåðåéòè ê ïóáëèêàöèè Çàãðóçèòü (312.5 KB)

2021 ã.
Àâòîðû: Âüþãèí Â.Â.

Â.Â.Âüþãèí. Ìàòåìàòè÷åñêèå îñíîâû ìàøèííîãî îáó÷åíèÿ è ïðîãíîçèðîâàíèÿ, 2018, Èçä. ÌÖÍÌÎ, 384ñ. (ýëåêòðîííàÿ âåðñèÿ 484ñ. Îáíîâëåíà 18.04.2020)
Çàãðóçèòü (2.3 MB)

2021 ã.
Àâòîðû: Ïîñèöåëüñêèé Ë.Å., Øòîâè÷åê ß.

Derived, coderived, and contraderived categories of locally presentable abelian categories. Ýëåêòðîííûé ïðåïðèíò arXiv:2101.10797 [math.CT], 45 ñòð.
Ïåðåéòè ê ïóáëèêàöèè

2021 ã.
Àâòîðû: Rozhkova G., Alexander B., Gracheva M., Ershov E., Nikolaev P.

A simple method for comparing peripheral and central color vision by means of two smartphones. bioRxiv 2021.01.12.426150; doi: https://doi.org/10.1101/2021.01.12.426150
Ïåðåéòè ê ïóáëèêàöèè

2021 ã.
Àâòîðû: Çàé÷èêîâà À.À., Äàìÿíîâè÷ È., Ìàêñèìîâ Ï.Â., Àëèïåð À.Ò., Ìàêñèìîâà Å.Ì.

Íåéðîíû tectum opticum ðûá, ýëåêòðè÷åñêàÿ àêòèâíîñòü è ïîäáîð àäåêâàòíîé ñòèìóëÿöèè // Ñåíñîðíûå ñèñòåìû, 35 (2021), ¹ 1, ñ. 11–22. doi: 10.31857/S0235009221010108
Ïåðåéòè ê ïóáëèêàöèè

2021 ã.
Àâòîðû: Ïîñèöåëüñêèé Ë.Å.

Exact categories of topological vector spaces with linear topology. Ýëåêòðîííûé ïðåïðèíò arXiv:2012.15431 [math.CT], 70 ñòð.
Ïåðåéòè ê ïóáëèêàöèè

2021 ã.
Àâòîðû: Maximova E., Aliper A., Damjanović I., Zaichikova A., Maximov P.

Ganglion Cells with Sustained Activity in the Fish Retina and Their Possible Function in Evaluation of Visual Scenes. Neurosci Behav Physi 51, 123–133 (2021). Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 106, No. 4, pp. 486–503 (2020). doi: 10.1007/s11055-020-01047-1
Full text (for online reading)
Ïåðåéòè ê ïóáëèêàöèè

2021 ã.
Àâòîðû: Kudina L., Andreeva R.

Evidence of two modes of spiking evoked in human firing motoneurones by Ia afferent electrical stimulation. Exp Brain Res (2021) 239: 719-730. doi: 10.1007/s00221-020-05998-2.

2021 ã.
Àâòîðû: Ñåëèâåðñòîâ À.Â.

Ýâðèñòè÷åñêèå àëãîðèòìû ðàñïîçíàâàíèÿ íåêîòîðûõ êóáè÷åñêèõ ãèïåðïîâåðõíîñòåé. Ïðîãðàììèðîâàíèå. 2021. ¹ 1. Ñ. 65–72. DOI: 10.31857/S0132347421010106
Ïåðåéòè ê ïóáëèêàöèè

2021 ã.
Àâòîðû: Enayat A., Kanovei V.

An unpublished theorem of Solovay, on OD partitions of reals into two non-OD parts, revisited.
Journal of Mathematical Logic, 2021. Online ready 26 December 2020.
DOI: 10.1142/S0219061321500148
WoS Q1.
Ïåðåéòè ê ïóáëèêàöèè

2021 ã.
Àâòîðû: Ïîñèöåëüñêèé Ë.Å., Øíþðåð Î.

Unbounded derived categories of small and big modules: Is the natural functor fully faithful? Journ. of Pure and Appl. Algebra 225 ¹11 (2021), 106722, 23 ñòð.
Ïåðåéòè ê ïóáëèêàöèè

2021 ã.
Àâòîðû: Ïîñèöåëüñêèé Ë.Å.

Remarks on derived complete modules and complexes. Ýëåêòðîííûé ïðåïðèíò arXiv:2002.12331 [math.AC], 40 ñòð. Ïðèíÿò ê ïå÷àòè â æóðíàëå Mathematische Nachrichten.
Ïåðåéòè ê ïóáëèêàöèè

2021 ã.
Àâòîðû: Ïîñèöåëüñêèé Ë.Å.

Pseudo-dualizing complexes of bicomodules and pairs of t-structures. Ýëåêòðîííûé ïðåïðèíò arXiv:1907.03364 [math.CT], 42 ñòð.
Ïåðåéòè ê ïóáëèêàöèè

2021 ã.
Àâòîðû: Êàíîâåé Â.Ã., Ëþáåöêèé Â.À.

Ìîäåëè òåîðèè ìíîæåñòâ, â êîòîðûõ òåîðåìà îòäåëèìîñòè íåâåðíà.
Èçâåñòèÿ Ðîññèéñêîé àêàäåìèè íàóê. Ñåðèÿ ìàòåìàòè÷åñêàÿ, 2021, òîì 85, ¹6, ïðèíÿòà ê ïå÷àòè.
DOI: 10.1070/IM8937
WoS Q2
Ïåðåéòè ê ïóáëèêàöèè Çàãðóçèòü (231 KB)

2021 ã.
Àâòîðû: Kanovei V., Schindler R.

Definable Hamel bases and ACω(R).
Fundamenta Mathematicae, 2021, 253, 3, p. 239-256.
DOI 10.4064/fm909-6-2020
WoS Q3
Ïåðåéòè ê ïóáëèêàöèè

2021 ã.
Àâòîðû: Kanovei V., Lyubetsky V.

Factoring Solovay-random extensions, with application to the Reduction property.
Monatshefte fur Mathematik, 2021, 194, 1, pp. 105–117.
DOI: 10.1007/s00605-020-01482-9
WoS Q2.
Ïåðåéòè ê ïóáëèêàöèè

2021 ã.
Àâòîðû: Kanovei V., Lyubetsky V.

The full basis theorem does not imply analytic wellordering,
Annals of pure and applied logic, 2021, volume 172, issue 4, paper no 102929.
DOI: 10.1016/j.apal.2020.102929
WoS Q1
Ïåðåéòè ê ïóáëèêàöèè

2021 ã.
Àâòîðû: Ïîñèöåëüñêèé Ë.Å.

Contramodules over pro-perfect topological rings. Ýëåêòðîííûé ïðåïðèíò arXiv:1807.10671 [math.CT], 51 ñòð.
Ïåðåéòè ê ïóáëèêàöèè

2021 ã.
Àâòîðû: Ïîñèöåëüñêèé Ë.Å., Øòîâè÷åê ß.

The tilting-cotilting correspondence. Internat. Math. Research Notices 2021, ¹1, ñòð.189-274.
Ïåðåéòè ê ïóáëèêàöèè

2020 ã.
Àâòîðû: Ñåëèâåðñòîâ À.Â.

Î êðóãîâûõ ñå÷åíèÿõ ïîâåðõíîñòè âòîðîãî ïîðÿäêà. Êîìïüþòåðíûå èíñòðóìåíòû â îáðàçîâàíèè. 2020. ¹ 4. Ñ. 59-68. DOI: 10.32603/2071-2340-2020-4-59-68
Ïåðåéòè ê ïóáëèêàöèè Çàãðóçèòü (281.8 KB)

2020 ã.
Àâòîðû: Âåäåíèíà Â.Þ., Í. Ñåâàñòüÿíîâ, Ò. Òàðàñîâà

Contributions to the study of the grasshopper (Orthoptera: Acrididae: Gomphocerinae) courtship songs from Kazakhstan and adjacent territories. Zootaxa. 4895 (4): 505-527.
Çàãðóçèòü (3.5 MB)

2020 ã.
Àâòîðû: Ê.-Ã. Õåëëåð, Ì. Âîëëåò, Âåäåíèíà Â.Þ., À. Ìàðÿøêà-Íàäàõîâñêà, Å. Âàðøàëîâñêà-Ñëèâà

A perfect duet? The acoustic behaviour of Anaulacomera almadaenis sp. nov., a species with an unusual chromosome complement, discovered in the footsteps of the explorers Spix and Martius in Brazil (Orthoptera, Tettigonioidea, Phaneropterinae). Spixiana, 43 (1): 105-118.

2020 ã.
Àâòîðû: ×î÷èà Ï.À.

×î÷èà Ï.À. Êîíòóðíî-îãðàíè÷åííîå ñãëàæèâàíèå, ñîõðàíÿþùåå ñòðóêòóðó èçîáðàæåíèÿ // Èíôîðìàöèîííûå ïðîöåññû, 2020, Ò. 20, ¹ 3, Ñ. 193-204.
Ïåðåéòè ê ïóáëèêàöèè

2020 ã.
Àâòîðû: Øèëîâñêèé Ã.À., Ñîðîêèíà Å.Â.

Îõðàòîêñèí À è èíäóêöèÿ àíòèîêñèäàíòíîé / àíòèòîêñè÷åñêîé ñèñòåìû êëåòêè òðàíñêðèïöèîííûì ôàêòîðîì NRF2 (îáçîð ëèòåðàòóðû). Ïðîáëåìû ìåäèöèíñêîé ìèêîëîãèè, 2020, òîì 22, ¹ 4, ñòð. 3–7.
Ïåðåéòè ê ïóáëèêàöèè

2020 ã.
Àâòîðû: Ìîðãóíîâà Ã.Â., Øèëîâñêèé Ã.À., Õîõëîâ À.Í.

Âîçðàñòíûå ðàññòðîéñòâà ìåòàáîëèçìà: îò «÷åòûð¸õ ìîäåëåé ìåäèöèíû» äî êëåòîê. Êëèíè÷åñêàÿ ãåðîíòîëîãèÿ, 2020, òîì 26, ¹ 9–10, ñòð. 17–20. DOI: 10.26347/1607-2499202009-10017-020
Ïåðåéòè ê ïóáëèêàöèè

2020 ã.
Àâòîðû: Kozyakin V.

On boundedness of infinite matrix products with alternating factors from two sets of matrices. ArXiv.org e-Print archive. 2020. October. 2010.03890
Ïåðåéòè ê ïóáëèêàöèè

2020 ã.
Àâòîðû: Ñîëîìåíöåâ ß.Ê., ×î÷èà Ï.À.

Solomentsev Ya.K., Chochia P.A. Application of Neural Networks for Diagnostics of Type and Parameters of Image Distortions // Journal of Communications Technology and Electronics, 2020, vol. 65, no. 12, pp. 1499-1504.

2020 ã.
Àâòîðû: Kanovei V., Lyubetsky V.

On the "definability of definable" problem of Alfred Tarski. Mathematics, 2020, Vol. 8, No. 12, Art. 2214. DOI: 10.3390/math8122214 (WoS Q1)
Ïåðåéòè ê ïóáëèêàöèè

2020 ã.
Àâòîðû: Ôåîêòèñòîâà Ñ.Â., Âàñèëüåâà Í.Í., Ïðèõîäüêî Å.Â.

Ôðóñòðàöèÿ ïåäàãîãîâ êàê ôàêòîð ïñèõîëîãè÷åñêîé ãîòîâíîñòè ê îïòèìàëüíîìó ïîâåäåíèþ â óñëîâèÿõ ìîäåðíèçàöèè îáðàçîâàòåëüíîé ñðåäû // Íîâîå â ïñèõîëîãî-ïåäàãîãè÷åñêèõ èññëåäîâàíèÿõ. 2020. ¹ 2. (ïðèíÿòî ê ïå÷àòè) (ÂÀÊ)

2020 ã.
Àâòîðû: Ðîæêîâà Ã.È., Âàñèëüåâà Í.Í.

Èíòåãðàòèâíîå âçàèìîäåéñòâèå çðèòåëüíûõ ñåíñîðíûõ, àêêîìîäàöèîííûõ è ãëàçîäâèãàòåëüíûõ ìåõàíèçìîâ â ñòåðåîñêîïè÷åñêèõ óñëîâèÿõ âîñïðèÿòèÿ. Ñáîðíèê êîíôåðåíöèè "Èíòåãðàòèâíàÿ ôèçèîëîãèÿ 2020", 2020. (ïðèíÿòî ê ïå÷àòè).
Ïåðåéòè ê ïóáëèêàöèè

2020 ã.
Àâòîðû: Âàñèëüåâà Í.Í.

Èíòåãðàöèÿ ìåòîäîâ ôèçèîëîãèè è ïñèõîëîãèè ïðè ðàçðàáîòêå îáðàçîâàòåëüíûõ ìàðøðóòîâ äëÿ äåòåé ñ ÎÂÇ. Ñáîðíèê êîíôåðåíöèè "Èíòåãðàòèâíàÿ ôèçèîëîãèÿ 2020", 2020. (ïðèíÿòî ê ïå÷àòè).

2020 ã.
Àâòîðû: Ãðà÷åâà Ì.À., Ðîæêîâà Ã.È., Áåëîêîïûòîâ À.Â., Åðøîâ Å.È., Íèêîëàåâ Ï.Ï.

Îñîáåííîñòè âçàèìîäåéñòâèÿ çðèòåëüíûõ ìåõàíèçìîâ ïðè âîñïðèÿòèè îáúåêòîâ â öåíòðå è íà ïåðèôåðèè ïîëÿ çðåíèÿ. "Èíòåãðàòèâíàÿ ôèçèîëîãèÿ 2020": Âñåðîññèéñêàÿ êîíôåðåíöèÿ ñ ìåæäóíàðîäíûì ó÷àñòèåì, ïîñâÿù¸ííàÿ 95-ëåòèþ Èíñòèòóòà ôèçèîëîãèè èì. È.Ï. Ïàâëîâà ÐÀÍ, Ñàíêò-Ïåòåðáóðã (9-11 äåêàáðÿ 2020 ã.). – Òåçèñû äîêëàäîâ. – ÑÏá.: Èí-ò ôèçèîëîãèè èì. È.Ï. Ïàâëîâà ÐÀÍ, 2020, 2020. Ñ. 58.
Ïåðåéòè ê ïóáëèêàöèè

2020 ã.
Àâòîðû: Êàçàêîâà À.À., Ãðà÷åâà Ì.À., Ïîêðîâñêèé Ä.Ô., Ìåäâåäåâ È.Á.

Îñòðîòà çðåíèÿ êàê èíòåãðàëüíûé ïîêàçàòåëü ñîñòîÿíèÿ çðèòåëüíîé ñèñòåìû ïî îöåíêå ïîðîãîâ ðàçðåøåíèÿ è ðàñïîçíàâàíèÿ. "Èíòåãðàòèâíàÿ ôèçèîëîãèÿ 2020": Âñåðîññèéñêàÿ êîíôåðåíöèÿ ñ ìåæäóíàðîäíûì ó÷àñòèåì, ïîñâÿù¸ííàÿ 95-ëåòèþ Èíñòèòóòà ôèçèîëîãèè èì. È.Ï. Ïàâëîâà ÐÀÍ, Ñàíêò-Ïåòåðáóðã (9-11 äåêàáðÿ 2020 ã.). – Òåçèñû äîêëàäîâ. – ÑÏá.: Èí-ò ôèçèîëîãèè èì. È.Ï. Ïàâëîâà ÐÀÍ, 2020, 2020. Ñ. 73. 
Ïåðåéòè ê ïóáëèêàöèè

2020 ã.
Àâòîðû: Âàñèëüåâà Í.Í., Ðîæêîâà Ã.È.

Âîñïðèÿòèå âèðòóàëüíûõ ñòåðåîîáúåêòîâ: îñîáåííîñòè âçàèìîäåéñòâèÿ çðèòåëüíûõ ìåõàíèçìîâ è ïðîñòðàíñòâåííûå ïåðöåïòèâíûå ýôôåêòû. Ýêñïåðèìåíòàëüíàÿ ïñèõîëîãèÿ. 2020. 13. (ïðèíÿòî ê ïå÷àòè).

2020 ã.
Àâòîðû: Âüþãèí Â.Â.

Âüþãèí Â.Â. Êîëìîãîðîâñêàÿ ñëîæíîñòü è àëãîðèòìè÷åñêàÿ òåîðèÿ èíôîðìàöèè, 271ñ. 2020 (ðàñøèðåííûé âàðèàíò îò 20.11.2020)
Çàãðóçèòü (1.3 MB)

2020 ã.
Àâòîðû: Ðîæêîâà Ã.È.

Ôóíêöèîíàëüíûé àíàëèç ðàçëè÷íûõ ìåòîäîâ îöåíêè ôóçèîííûõ ðåçåðâîâ // Íåâñêèå ãîðèçîíòû - 2020 / «Ïèàñòð Ïëþñ». — Ñ. 111-113.
Ïåðåéòè ê ïóáëèêàöèè Çàãðóçèòü (616.1 KB)

2020 ã.
Àâòîðû: Gorbunov K., Lyubetsky V.

Linear time additively exact algorithm for transformation of chain-cycle graphs for arbitrary costs of deletions and insertions. Mathematics, Vol. 8, No. 11, Art. 2001. DOI: 10.3390/math8112001 (WoS Q1)
Ïåðåéòè ê ïóáëèêàöèè

2020 ã.
Àâòîðû: Ãîðáóíîâ Ê.Þ., Ëþáåöêèé Â.À.

Ýâîëþöèÿ ìèòîõîíäðèàëüíûõ ãåíîìíûõ ñòðóêòóð ó Metazoa: àëãîðèòì è ïðîãðàììà. Ìàòåðèàëû ìåæäóíàðîäíîãî ôîðóìà «Áèîòåõíîëîãèÿ: ñîñòîÿíèå è ïåðñïåêòèâû ðàçâèòèÿ», Ìîñêâà, 28–30 îêòÿáðÿ 2020, âûï. 18, ñòð. 260–261. DOI: 10.37747/2312-640X-2020-18-260-262
Ïåðåéòè ê ïóáëèêàöèè

2020 ã.
Àâòîðû: Ðóáàíîâ Ë.È., Øèëîâñêèé Ã.À., Ñåëèâåðñòîâ À.Â., Çâåðêî́â Î.À., Ëþáåöêèé Â.À.

Ïðåäñêàçàíèå ïîòåðü ãåíîâ íà îñíîâå ãåíîìíûõ ñòðóêòóð. Ìàòåðèàëû ìåæäóíàðîäíîãî ôîðóìà «Áèîòåõíîëîãèÿ: ñîñòîÿíèå è ïåðñïåêòèâû ðàçâèòèÿ», Ìîñêâà, 28–30 îêòÿáðÿ 2020, âûï. 18, ñòð. 258–259. DOI: 10.37747/2312-640X-2020-18-258-260
Ïåðåéòè ê ïóáëèêàöèè

Ïóáëèêàöèé íà ñòðàíèöå:    Ñòðàíèöà: 1 2345 ... 147148149150151
Ïîèñê ïî ïóáëèêàöèÿì
Ãîä ïóáëèêàöèè
ñ ïî
Àâòîð

Íàçâàíèå/êëþ÷åâîå ñëîâî

Òèï ïóáëèêàöèè

Íàëè÷èå â ìåæäóíàðîäíûõ áàçàõ öèòèðîâàíèÿ
Èñêàòü â ïîäðàçäåëåíèè

Ïî óáûâàíèþ äàòû
Ïî âîçðàñòàíèþ äàòû
 

 

  © Ôåäåðàëüíîå ãîñóäàðñòâåííîå áþäæåòíîå ó÷ðåæäåíèå íàóêè
Èíñòèòóò ïðîáëåì ïåðåäà÷è èíôîðìàöèè èì. À.À. Õàðêåâè÷à Ðîññèéñêîé àêàäåìèè íàóê, 2021
Îá èíñòèòóòå  |  Êîíòàêòû  |  Ñòàðàÿ âåðñèÿ ñàéòà