ВЕРСИЯ ДЛЯ СЛАБОВИДЯЩИХ
Войти
Логин:
Пароль:
Забыли пароль?
научная деятельность
структура институтаобразовательные проектыпериодические изданиясотрудники институтапресс-центрконтакты
русский | english

Интегрируемые структуры в статистических и полевых моделях

Семинар Лаборатории квантовой физики и информации 

23 февраля (четверг), 1400аудитория 304 НМУ  

Александр Одесский (Brock University  Canada)

Деформации комплексных структур на римановых поверхностях и интегрируемые структуры иерархий типа Уизема

Abstract: We obtain variational formulas for holomorphic objects on Riemann surfaces with respect to arbitrary local coordinates on the moduli space of complex structures. These formulas are written in terms of a canonical object on the moduli space which corresponds to the pairing between the space of quadratic differentials and the tangent space to the moduli space. This canonical object satisfies certain commutation relations which appear to be the same as the ones that emerged in the integrability theory of Whitham type hierarchies. Driven by this observation, we develop the theory of Whitham type hierarchies integrable by hydrodynamic reductions as a theory of certain differential-geometric objects. As an application we prove that the universal Whitham hierarchy is integrable by hydrodynamic reductions.

страница семинара

 

21.02.2017 |
 

 

© Федеральное государственное бюджетное учреждение науки
Институт проблем передачи информации им. А.А. Харкевича Российской академии наук, 2025
Об институте  |  Контакты  |  Противодействие коррупции