ВЕРСИЯ ДЛЯ СЛАБОВИДЯЩИХ
Войти
Логин:
Пароль:
Забыли пароль?
научная деятельность
структура институтаобразовательные проектыпериодические изданиясотрудники институтапресс-центрконтакты
русский | english

Семинар "Дискретная и вычислительная геометрия"

21 февраля (вторник), 1345, аудитория 307 ИППИ РАН  

Докладчик: Михаил Карпухин (McGill University, НМУ)

Тема: Метрики на поверхностях, экстремальные для собственных значений оператора Лапласа--Бельтрами

Аннотация: Настоящий доклад посвящён задаче геометрической оптимизации собственных значений оператора Лапласа. Для фиксированного замкнутого многообразия собственные значения оператора Лапласа--Бельтрами можно рассматривать как функционалы на пространстве метрик единичного объёма. В случае поверхностей, согласно работам Кореваара, Ли, Янга и Яу, они оказываются ограниченными.

Возникает вопрос нахождения максимальных метрик и точной верхней границы для функционалов собственных значений. В последние годы этот вопрос получил особый интерес ввиду связи с теорией минимальных помногообразий в сферах. Используя эту связь, Пенской получил примеры экстремальных метрик на торе и бутылке Клейна. В данном докладе мы приведем новые примеры экстремальных метрик, полученные докладчиком, а также обсудим их максимальность.

страница семинара 

 

20.02.2017 |
 

 

© Федеральное государственное бюджетное учреждение науки
Институт проблем передачи информации им. А.А. Харкевича Российской академии наук, 2025
Об институте  |  Контакты  |  Противодействие коррупции