23 апреля (понедельник), 18:00, НМУ, ауд. 308
К. Куюмжиян (Лаборатория алгебраической геометрии НИУ ВШЭ)
"Нормальность замыканий орбит максимального тора в неприводимых представлениях простых алгебраических групп" (предзащита диссертации)
Аннотация:
Пусть X -- аффинное алгебраическое многообразие с действием редуктивной группы G. Рассмотрим некоторую G-орбиту и её замыкание. Если оно нормально, то его очень удобно изучать. Так как любое G-многообразие допускает замкнутое эквивариантное вложение в рациональный G-модуль, то логично изучать сразу G-орбиты в линейных представлениях. Первый результат был получен Костантом, который показал, что для любой G нуль-конус в присоединённом представлении G нормален. Далее Х. Крафтом и К. Прочези в 1979-1988 годах был изучен следующий вопрос: для каких простых групп замыкания всех орбит в присоединённом модуле нормальны? Этот вопрос до конца не изучен. Рассмотрение действия G на паре пространств приводит нас к следующей задаче. Зафиксируем в G максимальный тор T и будем искать такие неприводимые G-модули V, для которых для любого v из V замыкание орбиты Tv нормально. Для одной отдельно взятой орбиты Tv на данный вопрос есть простой комбинаторный ответ -- насыщенность соответствующего множества весов. В работах (Б+К, К, К) найдены все такие пары (G,V), для которых замыкания всех T-орбит нормальны. В решении использован критерий для одной T-орбиты и строение множеств весов неприводимых представлений.
(Богданов, Куюмжиян) arXiv:1105.4577
(Куюмжиян) arXiv:0806.1981 arXiv:1009.4724
| 23.04.2012 | Петров Леонид Александрович |










