ВЕРСИЯ ДЛЯ СЛАБОВИДЯЩИХ
Войти
Логин:
Пароль:
Забыли пароль?
научная деятельность
структура институтаобразовательные проектыпериодические изданиясотрудники институтапресс-центрконтакты
русский | english

23 апреля 2012 г. - Совместный семинар Арифметика, геометрия и теория кодирования лаборатории Понселе НМУ и сектора 4.1 ИППИ РАН

23 апреля (понедельник), 18:00, НМУ, ауд. 308

 

К. Куюмжиян (Лаборатория алгебраической геометрии НИУ ВШЭ)

"Нормальность замыканий орбит максимального тора в неприводимых представлениях простых алгебраических групп" (предзащита диссертации)

Аннотация:

Пусть X -- аффинное алгебраическое многообразие с действием редуктивной группы G. Рассмотрим некоторую G-орбиту и её замыкание. Если оно нормально, то его очень удобно изучать. Так как любое G-многообразие допускает замкнутое эквивариантное вложение в рациональный G-модуль, то логично изучать сразу G-орбиты в линейных представлениях. Первый результат был получен Костантом, который показал, что для любой G нуль-конус в присоединённом представлении G нормален. Далее Х. Крафтом и К. Прочези в 1979-1988 годах был изучен следующий вопрос: для каких простых групп замыкания всех орбит в присоединённом модуле нормальны? Этот вопрос до конца не изучен. Рассмотрение действия G на паре пространств приводит нас к следующей задаче. Зафиксируем в G максимальный тор T и будем искать такие неприводимые G-модули V, для которых для любого v из  V замыкание орбиты Tv нормально. Для одной отдельно взятой орбиты Tv на данный вопрос есть простой комбинаторный ответ -- насыщенность соответствующего множества весов. В работах (Б+К, К, К) найдены все такие пары (G,V), для которых замыкания всех T-орбит нормальны. В решении использован критерий для одной T-орбиты и строение множеств весов неприводимых представлений.

 

(Богданов, Куюмжиян)   arXiv:1105.4577

(Куюмжиян) arXiv:0806.1981  arXiv:1009.4724 

 

Страница семинара.

 

23.04.2012 | Петров Леонид Александрович
 

 

© Федеральное государственное бюджетное учреждение науки
Институт проблем передачи информации им. А.А. Харкевича Российской академии наук, 2025
Об институте  |  Контакты  |  Противодействие коррупции