ВЕРСИЯ ДЛЯ СЛАБОВИДЯЩИХ
Войти
Логин:
Пароль:
Забыли пароль?
научная деятельность
структура институтаобразовательные проектыпериодические изданиясотрудники институтапресс-центрконтакты
русский | english

14 мая 2012 г. - Совместный семинар Арифметика, геометрия и теория кодирования лаборатории Понселе НМУ и сектора 4.1 ИППИ РАН

14 мая (понедельник), 18:00, НМУ, ауд. 308

 

Л. Посицельский (НИУ ВШЭ, ИППИ РАН)

"Полубесконечная гомологическая алгебра" (предзащита диссертации)

Аннотация:

Некоторым алгебраическим объектам, таким как тейтовские (локально линейно компактные) алгебры Ли или локально компактные вполне несвязные топологические группы, можно сопоставить теории (ко)гомологий, занумерованные всеми целыми числами и представляющие собой "смесь" гомологий вдоль одной группы переменных и когомологий вдоль другой.  В наибольшей ныне известной общности, такие двусторонние производные функторы сопоставляются ассоциативным полуалгебрам, т.е. алгебрам над коалгебрами или кокольцами.

В отличие от  обычной ассоциативной алгебры или кольца, над коалгеброй или полуалгеброй есть не две, а четыре абелевых категории модулей --  наряду с комодулями, есть еще контрамодули.  Естественной областью определения теорий полубесконечных (ко)гомологий являются категории неограниченных в обе стороны комплексов (полу,контра)модулей, рассматриваемых с точностью до эквивалентности, чуть более тонкой, чем привычный квазиизоморфизм -- так называемые полупроизводные категории.  Полупроизводные категории левых полумодулей и левых полуконтрамодулей над данной полуалгеброй естественным образом эквивалентны.

Я расскажу об истории этой области алгебры, ключевых идеях и концепциях, составляющих ее современное состояние, и приведу наброски некоторых доказательств.

 

 

 

Страница семинара.

 

11.05.2012 | Петров Леонид Александрович
 

 

© Федеральное государственное бюджетное учреждение науки
Институт проблем передачи информации им. А.А. Харкевича Российской академии наук, 2025
Об институте  |  Контакты  |  Противодействие коррупции