Войти
Логин:
Пароль:
Забыли пароль?
научная деятельность
структура институтаобразовательные проектыпериодические изданиясотрудники институтапресс-центрконтакты
русский | english
Лаборатория № 2 >> Основные направления исследований >> Анализ и обработка изображений для решен...

Методы анализа и обработки изображений для решения задач восстановления

Всякая система формирования, передачи и регистрации видеосигнала, не будучи идеальной, вносит различные по своей физической природе искажения. Например, к искажениям приводят аберрации в оптических системах, турбулентность среды в астрономии и гидролокации, относительное движение регистрирующей системы и объекта. Изображения, сформированные такими системами, как правило, не поддаются интерпретации. Поэтому весьма актуальной становится задача восстановления (реконструкции) исходного неискаженного изображения по заданному искаженному. В качестве достаточно полной математической модели изображающих систем, как правило, используют линейное интегральное уравнение I-ого рода, а сама задача восстановления формулируется как типичная обратная задача с неполными данными. Задача обработки и восстановления искаженных изображений в общем виде может быть сформулирована как недоопределенная обратная задача математической физики.

В настоящее время существует обширная литература, посвященная решению задачи восстановления. Однако каким бы эффективным ни был метод восстановления, успех в решении задачи определяется в первую очередь точностью математической модели формирования изображения. В некоторых случаях апостериорное определение искажающего оператора достаточно просто реализуемы. В астрофизике по изображениям одиночных звезд определяется функция рассеяния точки и параметры турбулентности атмосферы.

Проведен анализ основных свойств и характерных особенностей фазовой составляющей Фурье-спектра искаженного изображения F[Az]=F[h]F[ν]. Этот анализ был выполнен для случая, когда Фурье-спектр ядра искажающего оператора F[h]=Sh(z) есть целая функция экспоненциального типа. Было показано, что некоторые искажающие операторы не изменяют фазовую составляющую изображения. Искажению подвергается только амплитудная составляющая. В частности, это утверждение справедливо, в случае, когда ядро искажающего оператора - действительная четная функция, спектр которой Sh(z) не содержит нулей. Например, в случае Гауссова распределения. Если же ядро искажающего оператора - четная функция с конечным носителем, то фаза искаженного изображения argSν(z)=arg Su(z)- Sh(z) может отличается от фазы исходного неискаженного изображения либо на  +π, , либо на – π , в зависимости от способа реализации преобразования Фурье. При этом изменение фазы (скачок фазы) может происходить только в изолированных точках, где амплитудная составляющая равна нулю.

Исследована задача восстановления искаженных изображений – типичная обратная задача с неполными данными, успех в решении которой определяется точностью модели искажающего оператора и априорной информацией об искомом изображении. В случае, когда исходное уравнение может быть сведено к уравнению типа свертки, решение задачи получают с помощью преобразования Фурье функций, заданных на вещественной оси. Было использовано аналитическое продолжение этих функций на комплексную плоскость, как эффективный инструмент анализа искажающего оператора и исходного неискаженного изображения по наблюдаемому искаженному изображению. В частности, было показано, что спектр ядра искажающих операторов для некоторого класса функций определяет характерные структурные особенности спектров Фурье искаженных изображений (см. Рис. 2).

 

(а)                                        (б)

Рис. 2. Спектры изображений при искажающих операторах: (a) - оптическая дефокусировка и (б) - равномерное движение.

На основе анализа спектров искаженных изображений в комплексной области предложен новый подход к решению двух актуальных задач: определение типа искажающего оператора (равномерное движение, оптические искажения, турбулентность среды и т. п.) и оценка параметров искажения по амплитудной составляющей спектра искаженного изображения с помощью системы распознавания изображений. Кроме этого, для многих искажающих операторов разработан алгоритм решения задач распознавания изображения по фазовой составляющей искаженного изображения без предварительной процедуры его восстановления.

НОВОСТИ И ОБЪЯВЛЕНИЯ
22 июня 2017 года на 87 году жизни после продолжительной болезни скончался главный научный сотрудник...
На этой неделе совместными усилиями учёных из ИППИ РАН и научных журналистов портала “Чердак” в свет...
С понедельника 19 июня направление связей с общественностью в ИППИ РАН возглавил научный журналист Д...
Семинар, посвященный 80-летию со дня рождения В.И. Арнольда: 21.06.2017 (среда), факультет математик...
Семинар Добрушинской математической лаборатории: 20.06.2017 (вторник), 16:00, ауд. 307 ИППИ РАН. Анд...
12 июня 2017 года на 92 году жизни скончался старейший сотрудник ИППИ, ветеран ВОВ Владимир Нейман....
В Сколтее и НИУ ВШЭ состоялись презентации новой, только что вышедшей в свет книги «Математические п...
Общемосковский междисциплинарный семинар <<Глобус>> 15 июня в 15.40 в НМУ, конференц-зал. Юрий Зархи...
Все новости   
 

 

  © Федеральное государственное бюджетное учреждение науки
Институт проблем передачи информации им. А.А. Харкевича Российской академии наук, 2017
Об институте  |  Контакты  |  Старая версия сайта