ВЕРСИЯ ДЛЯ СЛАБОВИДЯЩИХ
Войти
Логин:
Пароль:
Забыли пароль?
научная деятельность
структура институтаобразовательные проектыпериодические изданиясотрудники институтапресс-центрконтакты
русский | english
Лаборатория № 1 им.М.С.Пинскера >> Математическая теория информации и управ... >> Методы анализа рассинхронизованных систе...

Анализ динамики систем с дискретными элементами представляет важный раздел общей теории процессов управления. Наличие в системе дискретных элементов (ключей, экстраполяторов, элементов памяти, микропроцессоров и др.), каждый из которых может менять свое состояние (подвергаться коррекции, срабатывать, переключаться) лишь в некоторые дискретные моменты времени, не совпадающие в общем случае с моментами изменения состояния других дискретных элементов, ставит вопрос о влиянии на динамику системы синхронности (или, наоборот, несинхронности) изменения состояния различных ее элементов или частей. С теоретической точки зрения указанные вопросы приводят к просто формулируемым, но сложным, по сути, и нетрадиционным математическим проблемам и конструкциям. Основы теории устойчивости рассинхронизованных систем были заложены в работах д.ф.-м.н. В.С. Козякина, к.ф.-м.н. Е.А. Асарина, М.А. Красносельского, А.Ф. Клепцына и Н.А. Кузнецова в 80-х годах и получили систематическое изложениие в монографии «Анализ устойчивости рассинхронизованных дискретных систем».(Наука, 1992)

Одной из проблем, связанной с анализом устойчивости рассинхронизованных систем, явилась так называемая проблема о конечности, высказанная в1995 г. Дж. Лагариасом и Янгом Вангом, которые предположили, что обобщенный спектральный радиус конечного набора матриц всегда достигается на некотором конечном произведении матриц. В 2003 г. к.ф.-м.н А.А. Владимиров с бельгийскими коллегами В. Блонделем и Ж. Тэссом представили доказательство контрпримера к гипотезе о конечности, основанное на комбинаторных свойствах перестановок произведений положительных матриц. В теории управления и общей теории динамических систем обобщенный спектральный радиус используется для описания скорости сходимости или расходимости траекторий, описываемых произведениями матриц. В этом контексте упомянутые выше методы построения контрпримера к гипотезе о конечности оказываются не вполне удовлетворительными, поскольку не дают достаточно конструктивного описания структуры траекторий с максимальной скоростью роста. В связи с этим д.ф.-м.н. В.С. Козякин предложил еще одно доказательство контрпримера к гипотезе о конечности, выполненное в духе теории динамических систем. Построение контрпримера к проблеме Лагариаса–Ванга явилось еще одним подтверждением сложности анализа сходимости бесконечных произведений матриц, дополняющим ставшие классическими формальные обоснования сложности д.ф.-м.н. В.С. Козякина в терминах алгебраической неразрешимости, а также В. Блонделя и Дж. Цициклиса а терминах NP-сложности. В обзоре «Рассинхронизованные системы: обзор и нерешенные вопросы» представлены основные результаты по данной тематике.

НОВОСТИ И ОБЪЯВЛЕНИЯ
22 июля 2025 года руководитель лаборатории беспроводных сетей ИППИ РАН Евгений Хоров выступил с лекц...
Москва, август 2025 года — в здании ИППИ РАН на Большом Каретном и на кампусе МФТИ в Долгопрудном по...
24 июля состоится семинар Сектора 11.1 ИППИ РАН "Акусто-оптическая колориметрия: наработки, первые р...
17 июля состоится семинар Сектора 11.1 ИППИ...
Решение полувековой проблемы: ученые из ИППИ РАН и НИУ ВШЭ уточнили скорость сходимости черновских п...
С 2021 года подать документы в аспирантуру можно на портале...
В четверг, 10 июля, в 17:00 состоится семинар Сектора 11.1 ИППИ...
3 июля в 17:00 в аудитории 615 состоится семинар Сектора 11.1 ИППИ...
Все новости   
 

 

© Федеральное государственное бюджетное учреждение науки
Институт проблем передачи информации им. А.А. Харкевича Российской академии наук, 2025
Об институте  |  Контакты  |  Противодействие коррупции