:
:
?
-
| english
  |  | 
:    : 1 2345 ... 910111213
2019 .
: ..

B. M. Gurevich, S. A. Komech, A. A. Tempelman, Random averaging in ergodic theorem and boundary deformation rate in symbolic dynamics, Moscow Mathematical Journal, 19:1 (2019), 7788

2019 .
: ..

, , .55, .2, .82-111.
(401.1 KB)

2019 .
: Puhalskii A.

Large deviations of the long term distribution of a non Markov process, Electron. Commun. Probab. 24(35), 111.
(366.7 KB)

2019 .
: Puhalskii A.

On long term investment optimality, Applied Mathematics & Optimization, 80(1), 162
(473.3 KB)

2017 .
: ..

Ergodic averaging with and without invariant measures, Nonlinearity 30:12(2017), 4649-4664.

2017 .
: ..

Abundance of typical points in measurable dynamics, International Conference Contemporary mathematics in honor of the 80th birthday of Vladimir Arnold, Moscow, December 18-23, 2017.

2017 .
: ..

Dynamical Averaging with Respect to a Non-Invariant Measure"", Book of abstracts. The 8th International Conference on Differential and Functional Differential Equations, Moscow, August 13-20, 2017 (DFDE-2017), p.27.

2017 .
: .., ..

B. M. Gurevich, S. A. Komech, Deformation rate of boundaries in Anosov and related systems, Order and chaos in dynamical systems, Collected papers. On the occasion of the 125th anniversary of the birth of Academician Dmitry Victorovich Anosov, Tr. Mat. Inst. Steklova, 297, MAIK Nauka/Interperiodica, Moscow, 2017, 211223(in russian); Proc. Steklov Inst. Math., 297 (2017), 188199 (in english)

2017 .
: ..

A. Komech, A. E. Merzon, Asymptotic completeness of scattering in the nonlinear Lamb system for nonzero mass, Russ. J. Math. Phys. 24 (2017), no. 3, 336-346.

2017 .
: ..

V. Imaykin, A. Komech, H. Spohn, On invariants for the Poincaré equations and applications, J. Math. Phys. 58 (2017), no. 1, 012901-012913.

2017 .
: ..

A. Komech, E. Kopylova, On stability of ground states for finite crystals in the SchrödingerPoisson model, J. Math. Phys. 58 (2017), no. 3, 031902-1 031902-18. Open access.

2017 .
: ..

V. Imaykin, A. Komech, H. Spohn, On invariants for the Poincaré equations and applications, J. Math. Phys. 58 (2017), no. 1, 012901-1 012901-13. arXiv:1603.03997

2017 .
: ..

. , . , . , , , 29 (2017), no. 2, 34-58. (On global attractors and radiation damping for nonrelativistic particle coupled to scalar field)

2016 .
: ..

How to divide the indivisible, Doklady Akademii Nauk, 471:6(2016), 635639. Doklady Mathematics, 94:3(2016), 688691.

2016 .
: ..

Typical points in chaotic dynamics, Book of abstracts. International conference Anosov Systems and Modern Dynamics, Moscow, December 1923, 2016, pp.16-19.

2016 .
: ..

On ergodic averaging with and without invariant measure, Proceedings of VIII Moscow International Conference on Operations Research (ORM 2016) 17-22.10.16, p.208-209.

2016 .
: ..

Fresh look at fair division problems: case with a massive discrete component, Proceedings of VIII Moscow International Conference on Operations Research (ORM 2016) 17-22.10.16, p.89-90.

2016 .
: ..

Massive/meager sets of typical points, Mathematics, Theoretical Physics and Data Science 2016 (dedicated to anniversaries of Yakov Sinai and Grigory Margulis). July 5-7, (2016).

2016 .
: ..

The Problem of Fair Division for a Hybrid Resource, Problemy Peredachi Informacii, 52:3(2016), 108-116. Problems of Information Transmission, 52:3(2016), 201-209.

2016 .
: ..

On the Birkhoff theorem with respect to a non-invariant measure, Uspekhi Mat. Nauk, 71:3(2016), 199-200.

2016 .
: ..

Self-Organization under the Action of a Random Force, Doklady Akademii Nauk, 466:3(2016), 257-260. Doklady Mathematics, 93:1(2016), 14.

2016 .
: ..

On the linear stability of crystals for the Schr\"odinger-Poisson model, {\em J. Stat. Phys.} {\bf 165} (2016), no. 2, 246-273.
(204.5 KB)

2016 .
: ..

Attractors of nonlinear Hamilton PDEs, {\em Discrete and Continuous Dynamical Systems A} {\bf 36} (2016), no. 11, 6201-6256. arXiv:1409.2009
(1.3 MB)

2016 .
: ..

On crystal ground state in the Schr\"odinger-Poisson model with point ions, {\em Math. Notes} {\bf 99} (2016), no. 6, 886-894.
(339.9 KB)

2016 .
: .., .

Asymptotic stability of stationary states in the wave equation coupled to a nonrelativistic particle, {\em Russ. J. Math. Phys.} {\bf 23} (2016), no. 1, 93-100. arXiv:1511.08680
(476.3 KB)

2016 .
: .., ..

B.M. Gurevich & S.A. Komech, "Entropy, Lyapunov exponents and the boundary deformation rate under the action of hyperbolic dynamical systems", Journal of Difference Equations and Applications, Volume 22, Issue 1, pages 140-146.

2015 .
: ..

Dynamics of alternating functions, Doklady Akademii Nauk, 461:2(2015), 131-135. Doklady Mathematics, 91:2(2015), 150-153.

2015 .
: .., ..,

Time-dependent scattering of (generalized) plane waves by wedge, {\em Mathematical Methods in Applied Sciences}, {\bf 38} (2015), no. 18, 4774-4785. arXiv:1405.7114.

2015 .
: ..

On the Hartree-Fock dynamics in wave-matrix picture, {\em Dynamics of PDE} {\bf 12} (2015), no. 2, 157-176. arXiv:1407.5208
(187.4 KB)

2015 .
: ..

On dynamical justification of quantum scattering cross section, {\em J. Math. Anal. Appl.} {\bf 432} (2015), no. 1, 583-602. arXiv:1206.3677
(454.1 KB)

2015 .
: .., ..,

On uniqueness and stability of Sobolevs solution in scattering by wedges, {\em Zeitschrift f\"ur angewandte Mathematik und Physik}, {\bf 66} (2015), no. 5, 2485-2498. Co-authored by A.E. Merzon, J.E. De la Paz Mendez.
(875.4 KB)

2015 .
: .., .

On the eigenfunction expansion for Hamilton operators, {\em J. Spectral Theory} {\bf 5} (2015), no.2, 331-361.
(353.1 KB)

2015 .
: .., .., ,

On the Keller-Blank solution to the scattering problem of pulses by wedges, {\em Mathematical Methods in Applied Sciences}, {\bf 38} (2015), no. 10, 2035-2040.
(134.2 KB)

2015 .
: ..

On the crystal ground state in the Schr\"odinger-Poisson model, {\em SIAM J. Math. Anal} {\bf 47} (2015), no.2, 1001-1021. arXiv:1310.3084
(249.5 KB)

2015 .
: .., .

Weighted energy decay for magnetic Klein-Gordon equation, {\em J. Applicable Analysis} {\bf 94} (2015), no. 2, 219-233. arXiv:1309.1759.
(407.2 KB)

2015 .
: , .., ..

Elena Zhizhina, Sergey Komech, Xavier Descombes, arXiv:1512.02603, Modelling axon growing using CTRW

2015 .
: Gontsov R., Vyugin I.

Solvability of linear differential systems with small exponents in the Liouvillian sense, Arnold Math. J., 2015, V. 1(4), P. 445-471.
(584.8 KB)

2015 .
: ., ..

On spectral stability of the nonlinear Dirac equation. http://arXiv.org/abs/1211.3336

2015 .
: - ., .., ., ., ., .., .

Solitary waves of a PT-symmetric Nonlinear Dirac equation (with J. Cuevas--Maraver, P.G. Kevrekidis, A. Saxena, F. Cooper, A. Khare, and C. Bender). Journal of Selected Topics in Quantum Electronics (the IEEE Photonics Society), 22 (2016), no. 5, 1--9. DOI:10.1109/JSTQE.2015.2485607 http://arXiv.org/abs/1508.00852

2015 .
: ., ..

Symmetry and Dirac points in graphene spectrum. http://arXiv.org/abs/1412.8096

2015 .
: .., ., .

Asymptotic stability of solitary waves in generalized Gross--Neveu model. Annales de l"Institute Henri Poincaré (Analyse non linéaire). DOI:10.1016/j.anihpc.2015.11.001 http://dx.doi.org/10.1016/j.anihpc.2015.11.001 http://arXiv.org/abs/1407.0606

2015 .
: ..

Global Attraction to Solitary Waves, chapter in the book Quantization, PDEs, and Geometry. The Interplay of Analysis and Mathematical Physics. Advances in Partial Differential Equations 251, 117--152. Birkhäuser, Berlin, 2015. ISBN 978-3-319-22407-7

2015 .
: ., .., .

Vakhitov-Kolokolov and energy vanishing conditions for linear instability of solitary waves in models of classical self-interacting spinor fields Nonlinearity 28 (2015), 577--592 DOI:10.1088/0951-7715/28/3/577 MR3311594 http://arxiv.org/abs/1306.5150

2015 .
: .., ..

On the eigenfunction expansion for Hamilton operators. J. Spectr. Theory 5 (2015), no. 2, 331361

2015 .
: .., A..

Weighted energy decay for magnetic Klein-Gordon equation. Appl. Anal. 94 (2015), no. 2, 219233.

2015 .
: ..

Limiting absorption principle for the 1D discrete Dirac equation. Russ. J. Math. Phys. 22 (2015), no. 1, 3438

2015 .
: ..

Imaykin, Valeriy; Komech, Alexander; Spohn, Herbert; On the Lagrangian theory for rotating charge in the Maxwell field. Phys. Lett. A 379 (2015), no. 1-2, 510.

2014 .
: ..

Ergodic properties of a chaotic collective walk governed by Anosov maps, Book of abstracts. The Seventh International Conference on Differential and Functional Differential Equations, August 22-29, 2014 (DFDE-2014)

2014 .
: ..

Ergodicity of a collective random walk on a circle, Nonlinearity, 27:5 (2014) 953-971.

2014 .
: .., ., .

On linear instability of solitary waves for the nonlinear Dirac equation Annales de l"Institute Henri Poincaré (Analyse non linéaire), 31 (2014), 639--654 DOI:10.1016/j.anihpc.2013.06.001 MR3208458 http://arXiv.org/abs/1209.1146

:    : 1 2345 ... 910111213




/








 

 

  ©
. .. , 2020
  |    |